
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Investigating the magnitude and temporal localization of inertial particle mixing in turbulent channel flows / Perrone,
Davide; Kuerten, J. G. M.; Ridolfi, Luca; Scarsoglio, Stefania. - In: INTERNATIONAL JOURNAL OF MULTIPHASE
FLOW. - ISSN 0301-9322. - ELETTRONICO. - 165:(2023). [10.1016/j.ijmultiphaseflow.2023.104489]

Original

Investigating the magnitude and temporal localization of inertial particle mixing in turbulent channel flows

Publisher:

Published
DOI:10.1016/j.ijmultiphaseflow.2023.104489

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978526 since: 2023-05-16T09:19:43Z

Elsevier



International Journal of Multiphase Flow 165 (2023) 104489

A
0

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Investigating the magnitude and temporal localization of inertial particle
mixing in turbulent channel flows
Davide Perrone a,∗, J.G.M. Kuerten b, Luca Ridolfi c, Stefania Scarsoglio a

a Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
b Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
c Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10129, Italy
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A B S T R A C T

Mixing of inertial point particles in a turbulent channel flow at Re𝜏 = 950 is investigated by means of direct
numerical simulations. We consider inertial particles, at varying Stokes number, released from pairs of sources
located at different positions inside the channel and analyze the rate at which particles come into close
proximity to each other. To do so, we employ a Lagrangian framework, which is suitable for the analysis
of trajectories and in general for the study of mixing and dispersion problems. By varying the release position
of particles along the wall-normal direction we obtain a thorough description of mixing in an anisotropic
turbulent flow. Moreover, we analyze the effects of particle inertia and show that these are not univocal but
also depend on the position and alignment of the sources, owing in particular to the dependence of the flow
timescales on the distance from the wall.
1. Introduction

The mixing of inertial particles advected by fluid flows is strongly
affected by turbulence, which enhances the intensity at which particles
are displaced from their origin and driven towards each other (Warhaft,
2000; Falkovich et al., 2001; Dimotakis, 2005). In anisotropic wall-
bounded flows, that are ubiquitous in nature and in industrial pro-
cesses, the effects of turbulent fluctuations and of the mean flow
intertwine and further complicate the analysis of mixing (Nguyen and
Papavassiliou, 2018). Several numerical and experimental studies have
been performed to investigate the mixing of scalar quantities and
inertial particles, focusing on the analysis of the effects of particle prop-
erties, their release configuration and the features of the underlying
flow (Jayesh and Warhaft, 1992; Panchapakesan and Lumley, 1993;
Eswaran and Pope, 1988; Yeung et al., 2002; Eisma et al., 2021). The
interplay of turbulence and particle inertia leads in general to strongly
uneven concentration of inertial particles, which tend to accumulate in
low vorticity zones of the flow domain (Calzavarini et al., 2008; Mor-
timer et al., 2019; Oujia et al., 2020; Brandt and Coletti, 2022), forming
clusters that are relatively short-lived (Liu et al., 2020). Overall, the
inertia of particles adds complexity to their behavior. The most relevant
parameter in this regard is the ratio between the typical timescale of
particles 𝜏𝑝 = 𝜌𝑝𝐷2

𝑝∕ (18𝜈) and the smallest local timescale of the flow 𝜏𝜂
(the Kolmogorov time), i.e. the Stokes number 𝑆𝑡𝐾 . While at low Stokes
numbers 𝑆𝑡𝐾 (much lower than unity) particles are akin to tracers,

∗ Corresponding author.
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when 𝑆𝑡𝐾 becomes (1) phenomena such as preferential concentration
and turbophoresis are at a peak. Finally, at even higher Stokes number
particles behave ballistically and react weakly to turbulence. Such
mechanisms may lead to local concentrations of particles that largely
exceed the average, global, concentration and have been recognized
as key players in cloud formation, environmental flows subjected to
pollution, and combustion processes (Crowe et al., 1988; Chein and
Chung, 1988; Shaw et al., 1998; Pan et al., 2013; Lau and Nathan,
2014).

Lagrangian statistics of non-tracer particles have been extensively
studied, highlighting the impact of inertia on the magnitude of the
velocity fluctuations of particles (Marchioli et al., 2008). Particles
with higher inertia react weakly to small-scale velocity fluctuations
of the carrier fluid. Furthermore, their velocity distribution is skewed,
resulting in a net motion towards the wall, usually termed turbophoresis.
Marchioli and Soldati (2002) analyzed how sweeps and ejections play
a crucial role in determining turbophoresis: sweeps transfer particles
into the near-wall region and ejections move them back into the outer
flow, but may fail to do so as inertial particles become concentrated
into very elongated streamwise-aligned streaks associated with nega-
tive streamwise velocity fluctuations (as also observed experimentally
by Fong et al. (2019)). Furthermore, sweeps and ejections must retain
enough spatial and temporal coherence in order to actively displace
inertial particles.
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Besides inertia effects on the interaction of particles with the near
wall velocity field, another important feature of non-tracer particles
is their tendency to preferentially sample only certain regions of the
domain and thus locally increase or reduce the concentration, which
is named inertial clustering. The latter turns out to be strongly in-
fluenced by the interplay between particle response time 𝜏𝑝 and the
timescale of the relevant eddies of the flow. Clustering has been quan-
tified using several methods, including box-counting methods (Rouson
and Eaton, 2001), Voronoi tessellation methods (Monchaux et al.,
2010, 2012; Liu et al., 2020) and wavelet filters (Bassenne et al.,
2017). Numerical simulations and experiments, along with analytical
approaches (Esmaily-Moghadam and Mani, 2016), confirm that the
most intense degree of clustering is attained when the particle timescale
matches that of the smallest scale of the fluid (that is, 𝑆𝑡𝐾 = (1)).
articles heavier than the carrier fluid are swept away from vortex
ores. Oka et al. (2021) demonstrated, for light particles which in-
tead accumulate around vortex cores, how the multiscale nature of
omogeneous turbulence affects clustering. In particular, particles with
ifferent response times 𝜏𝑝 cluster around vortex cores of different sizes.
n non-homogeneous turbulence the flow properties are not constant in
pace, but depend on position. Consequently, clustering is influenced by
he instantaneous location of particles. In channel flow, both the local
olmogorov timescale and the integral timescale of particle velocities
ave to be taken into account for an accurate description of particle
ehavior (Marchioli et al., 2006).

Together, timescale features influence dispersion and mixing of
nertial particles. Bec et al. (2010) investigated pair separation of light
nd heavy particles in homogeneous turbulence, finding that the inertia
f particles is relevant on short timescales, while a tracer-like behavior
s recovered for longer times. In channel flow, Pitton et al. (2012) found
uperdiffusive behavior due to mean shear for long times, a definite
nfluence of the direction of the initial separation of particles and a non
rivial dependence on wall-distance of the rate of separation of pairs.

In this work, we propose a Lagrangian approach to characterize
he mixing of particles released from pairs of point-like sources in
urbulent channel flow, in order to perform a thorough description
f mixing properties with respect to different parameters (i.e., particle
nertia, position and distance of the sources). In particular, we measure
he number of particles, coming from distinct sources, that come at
mutual distance shorter than a threshold 𝑅, and are therefore able

o define a probability 𝐸 that initially distant particles come in close
roximity to each other. By doing so, we aim to quantify the influence
f the different phenomena concerning inertial particles and their role
n determining the evolution of mixing.

Lagrangian approaches appear suitable to further our comprehen-
ion of mixing processes and have widely been applied to the analysis
f massless tracer particles (Raissi et al., 2019; Llamas et al., 2020; Liu
t al., 2020; Perrone et al., 2020, 2021; Schneide et al., 2022). Similar
pproaches to the one presented in this work have been employed
y Iacobello et al. (2019), to quantify mixing of passive tracers using a
etwork-based perspective, and by Rypina and Pratt (2017), to provide
straightforward measure for the mixing potential in an oceanic flow.
n the contrary, the characterization of the mixing properties of inertial
articles in non-homogeneous, wall-bounded flows using a Lagrangian
erspective has not yet been carried out to the best of our knowledge.

We employ direct numerical simulation (DNS) of turbulent channel
low at Re𝜏 = 950, together with Lagrangian tracking. We consider point
articles with inertia, which do not affect the flow and do not undergo
ollisions. We also performed simulations at a lower Reynolds number
e𝜏 = 590 to show the variation of mixing properties with respect to this
arameter. Direct numerical simulations have become an invaluable
ool due to their accuracy, the insight on complex flow features and
he relative ease with which several flow parameters can be varied.

We consider inertial particles with different diameters, resulting
n four cases at distinct Stokes numbers 𝑆𝑡+ = 0.2, 1, 5, 25, where
+ + +
2

𝑡 = 𝜏𝑝 = 𝑆𝑡𝐾𝜏𝜂 is the Stokes number in wall units, which is
sed instead of 𝑆𝑡𝐾 as the latter is not constant across the channel
eight, the Kolmogorov time 𝜏𝑝 being 𝑦-dependent. Therefore we test
large range of different behaviors, from tracer-like particles to ones
ith large inertia. Furthermore, by varying the location of the two

ources, we provide a thorough description of the influence of both the
bsolute position of the sources and of their mutual distance, both of
hich are important as the effect of the convection performed by the
ean velocity profile and the turbulence structure on mixing is strongly

nisotropic.
This work is organized as follows. Section 2 describes the DNS setup,

he release configuration of inertial particles and the method employed
o compute the probability that particles released from distinct sources
ncounter. Section 3 reports the main results of our analysis. Section 4
ecaps the main findings and gives some final remarks. Finally, in
ppendix A we provide brief results at a different, lower Reynolds
umber. In Appendix B we report Eulerian statistics of channel flow,
ith the comparison with previous simulations used to validate our

ode. Finally, in Appendix C we analyze the sensitivity of our approach
ith respect to the threshold range of the interaction 𝑅.

. Methods

.1. DNS and particle tracking

In order to measure the mixing of Lagrangian point particles re-
eased in a non-homogeneous flow, we performed a pseudo-spectral
umerical simulation of a fully developed turbulent channel flow and
racked inertial point particles released inside it. The Navier–Stokes
quations in rotation form

⋅ 𝐮 = 0, (1)

𝜕𝐮
𝜕𝑡

+ 1
𝜌
∇𝑃 = 𝐟 − 𝝎 × 𝐮 + 𝜈∇2𝐮, (2)

where 𝐮 is the velocity, 𝜌 the fluid mass density, 𝝎 = ∇×𝐮 the vorticity,
𝜈 the kinematic viscosity and 𝑃 the total pressure, were solved in a box
of size 2𝜋𝛿 × 2𝛿 × 𝜋𝛿, with 𝛿 being the channel half-height. Periodic
boundary conditions were set along the streamwise 𝑥 and spanwise

directions, while the no-slip condition was imposed along the wall-
ormal 𝑦 direction at the two walls 𝑦 = 0 and 𝑦 = 2𝛿. We performed

the direct numerical simulation at a Reynolds number Re𝜏 = 950, where
Re𝜏 = 𝛿𝑢𝜏∕𝜈 is the Reynolds number based on the friction velocity 𝑢𝜏 =
√

𝜏𝑤∕𝜌 (𝜏𝑤 is the wall shear stress). Details regarding the effects of the
Reynolds number are given in Appendix A, with results of simulations
at Re𝜏 = 590. Eqs. (1)–(2) were discretized in space using Fourier base
functions in the periodic 𝑥 and 𝑧 directions and a Chebyshev-𝜏 approach
in the wall-normal one. The number of Fourier polynomials is 768 in
both homogeneous directions, while 384 Chebyshev polynomials were
used to discretize quantities along the wall-normal direction. Nonlinear
terms were computed in physical space and dealiased using the 3∕2 rule
and were explicitly advanced in time with a second order Runge–Kutta
method, while linear terms were integrated implicitly with a Crank–
Nicolson scheme. The time-step of the simulation was 𝛥𝑡+ = 0.095. A
sketch of the channel geometry is given in Fig. 1(a). The numerical
scheme adopted is the same as defined in Kuerten and Brouwers (2013)
and the simulation was run until a state of fully developed turbulence
was reached and flow quantities reach statistical stationarity. Average
flow quantities were compared with those of previous simulations. In
particular, average and root mean square velocity components were
found in very good agreement with those of Hoyas and Jiménez (2008),
although the domain is smaller while the streamwise and spanwise
resolutions are higher. Comparison between statistical quantities of this
simulations and those used as reference can be found in Appendix B.

In order to obtain sets of trajectories 𝐱(𝐱0, 𝑡) we integrated the
velocity of each particle 𝐯(𝐱0, 𝑡) with the same explicit Runge–Kutta
scheme as used for the nonlinear terms of the Navier–Stokes equations,
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Fig. 1. (a) Channel geometry and coordinate system; two pairs of sources are represented, one aligned along the streamwise direction, the other along the wall-normal one. (b)
Schematic depiction of how encounters are determined starting from particle trajectories.
starting from the release location 𝐱0. Inertial particles, that are treated
as point particles in the simulations, do not match the fluid velocity and
are instead subject to a drag force. Accordingly, for particles with non-
negligible particle Reynolds number Re𝑝, the equation for the particle
velocity 𝐯 is

d𝐯
d𝑡

=
𝐮(𝐱(𝐱0, 𝑡), 𝑡) − 𝐯(𝐱0, 𝑡)

𝜏𝑝

(

1 + 0.15Re0.687𝑝

)

, (3)

where Re𝑝 = 𝑑𝑝 ||𝐮 − 𝐯||∕𝜈, 𝜏𝑝 = 𝜌𝑝𝑑2𝑝∕ (18𝜌𝜈), and 𝑑𝑝 and 𝜌𝑝 are the
particle diameter and mass density, respectively (Maxey and Riley,
1983; Kuerten, 2006). The ratio between the particle relaxation time
𝜏𝑝 and the characteristic time scale of the flow is the Stokes number
St = 𝜏+𝑝 , where the + superscript indicates normalization with wall
units. The density ratio 𝜌𝑝∕𝜌 between the particles and the carrier
fluid is 769.23; the Stokes number is varied by changing the diameter
of particles, thus resulting in diameters ranging from 𝑑+𝑝 = 0.068 at
𝑆𝑡+ = 0.2 to 𝑑+𝑝 = 0.764 at 𝑆𝑡+ = 25. Collisions with the wall are
treated elastically. Gravity effects were not included in order to focus
only on turbulence-induced features of particles dynamics, which are
easily overwhelmed by settling effects if gravity is included.

2.2. Measure of particle encounters

We aim to measure the rate at which clouds of tracers, released from
different sources, encounter and mix together. We released 𝑁𝑝 = 256
tracers from spherical, point-like sources whose size is finite and of
the order of the smallest scales of the flow. We set the radius of the
spherical sources equal to 1 in wall units, which is comparable to the
Kolmogorov length scale (although the latter is not constant across
the channel height). In this way, the evolution of trajectories reflects
the properties of a local region while avoiding that particle velocities
remain correlated for very long times, as would instead happen if
all particles were released in the same point. This is done solely to
accelerate the computation of statistics by releasing a relatively large
set of particles from each source and measuring the interaction as will
be detailed in the following. The aim of this paper is to investigate the
mixing behavior of particles at particle volume fractions that are so low
that their effect on the fluid and their interaction are negligible. In the
simulations presented in the paper the number of particles is only high
to calculate the mixing of all particle pairs in one simulation and to
increase the statistical accuracy of the results.

To quantify mixing between two distinct sources, we measured the
number of particle pairs coming from the two plumes that are closer
than a threshold distance 𝑅, as shown in Fig. 1(b). We defined this num-
ber, normalized by its maximum attainable value 𝑁2

𝑝 , as the encounter
probability 𝐸. An encounter probability of 1 would be obtained only in
the presence of perfect mixing between two sources, i.e. if all particles
released from both sources become located in a small (of the order of
3

the threshold 𝑅) region of space. For two plumes released from two
distinct locations 𝐱1 and 𝐱2, the (time-dependent) encounter probability
can be computed as

𝐸𝐱1 ,𝐱2 (𝑡) =
|

{

‖𝐱𝑖(𝑡) − 𝐱𝑗 (𝑡)‖ ⩽ 𝑅 ∶ 𝐱𝑖(0) = 𝐱1 ∧ 𝐱𝑗 (0) = 𝐱2
}

|

𝑁2
𝑝

. (4)

𝐱𝑖∕𝑗 (𝑡) is the trajectory of the 𝑖∕𝑗th particle of the plume starting from
𝐱1∕2 and ‖ ⋅ ‖ is the Euclidean norm. From the definition it follows that
𝐸𝐱1 ,𝐱2 (𝑡) = 𝐸𝐱2 ,𝐱1 (𝑡).

The choice of the threshold distance 𝑅 is non trivial. The threshold
should be sufficiently small, such that the clusters formed by the com-
bined action of turbulence and particle inertia are accurately described
and their effects are fully accounted for when measuring mixing. Since
inertial clustering happens on relatively small scales (e.g. tens of wall
units), as it is the result of the action of small-scale features of the
flow (Brandt and Coletti, 2022), we chose a threshold size 𝑅+ = 2;
an analysis of the sensitivity of our results with respect to the value of
𝑅 is reported in Appendix C.

As the position of the two sources has the greatest influence on the
evolution of the encounter probability, we thoroughly vary 𝐱1 and 𝐱2
across the channel. It is convenient to report the absolute position of
one of the two sources, e.g. 𝐱1, and the distance between the two sources
𝐝 = 𝐱2 − 𝐱1. As channel properties are statistically homogeneous along
the 𝑥 and 𝑧 directions, only the wall-normal component of the position
𝑦1 = 𝐱1 ⋅ �̂�𝑦 will be considered in the following. Instead, 𝐝 is in general a
vector quantity, since channel flow is anisotropic and mixing properties
may depend on the relative orientation of the two sources. Meaningful
values of 𝑑 = ||𝐝|| are restricted by the constraint that at least some
particles come close enough that their mutual distance is less than 𝑅.
Accordingly, the admissible values of 𝑑 are bound to that of 𝑅, since
if 𝑑 ≫ 𝑅 the encounter probability becomes negligible. In this work,
we analyze mixing with a distance between sources comprised between
𝑑+ = 4 and 𝑑+ = 32 (at which the encounter probability is already
vanishing).

Finally, as particles are released into fully developed turbulent
flow, their initial velocities are also subject to turbulent fluctuations
and thus have locally different initial encounter properties. In order
to achieve statistical convergence, for each set of parameters (𝑦1, 𝐝,
𝑆𝑡) we analyze multiple pairs of sources, positioned at different 𝑥
and 𝑧 coordinates and at different times, with such spacing that their
evolution is uncorrelated. Since channel properties are statistically
homogeneous along the streamwise and spanwise directions and are
statistically steady through time, the results can be averaged to obtain
a statistically significant value of the encounter properties. For each
set of parameters we analyze 𝑁𝑟 = 384 independent pair of sources;
accordingly, the total number of particles considered for each set of
parameters is 2𝑁𝑝𝑁𝑟 ≈ 2 ⋅ 105 and the total number of particles
simulated is approximately 7.68 ⋅ 107 considering all Stokes numbers.
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. Results

The encounter probability of particles released from each pair of
ources transiently grows owing to the action of turbulent diffusion and
ocal shear. Indeed, turbulent velocity fluctuations and the local shear
ave both the effect (on average) to increase the size of the puffs of
articles coming from each source over time. Still, locally and on short
imescales, otherwise distant groups of particles are brought together
y the local action of turbulence. After a peak of 𝐸 has been reached,
articles are continuously driven apart because of turbulent diffusion
nd the mean shear due to the streamwise velocity profile, resulting in
vanishing encounter probability at long times.

Fig. 2 shows the typical evolution of the encounter probability
or some pairs of sources, that are releasing particles whose Stokes
umber is 0.2 (panels (a) and (b)) and at varying Stokes number (panel
c)). In particular, we chose source pairs at two different wall-normal
oordinates 𝑦+1 = 20 and 𝑦+1 = 950 in order to highlight the different
roperties of mixing found near the wall and at the center of the
hannel. Fig. 2(a) shows the encounter probability for two cases. In the
irst case the distance between sources is 𝐝 = 𝑑�̂�𝑥, i.e. the pair of sources
s aligned along the streamwise direction 𝑥, while in the second case the
istance is 𝐝 = 𝑑�̂�𝑦 and as such sources are aligned along 𝑦; in both cases
+ = 4. As noted before, channel properties are in general anisotropic
and especially near the wall) and also the properties of mixing depend
n the direction of alignment of the sources. As can be seen in the
igure, the encounter probability along the streamwise direction is
igher near the wall, while it decreases away from it. Mixing of 𝑦-
ligned sources (𝐝 = 𝑑�̂�𝑦) is negligible near the wall (where the
ifferences of the local mean velocity are high) and increases towards
he center. Most notably, encounter probabilities are independent of
he direction near the center of the channel, where indeed channel
roperties tend towards homogeneity and the mean shear is close to
ero. On the other hand, towards the channel walls mean shear is
ne of the main factors causing strong mixing of streamwise-aligned
ources (especially due to their finite size) and weak mixing of 𝑦-aligned
ources. In order to isolate the influence of mean shear from those of
urbulent fluctuations, we also integrated the trajectories using only the
ean turbulent velocity profile 𝑈 (𝑦), effectively computing encounter
roperties that are determined solely by mean shear. Trivially, the
ncounter probability for 𝑦-aligned sources remains zero at all times
as particles travel along straight lines and do not come closer to
ach other). Instead, in the case of streamwise-aligned sources, a peak
ncounter value approximately equal to 𝐸𝑝𝑒𝑎𝑘 = 0.2 (with 𝑑+ = 4, as is
or Fig. 2(a)) is reached independently of the 𝑦 coordinate of release
xcept for the exact center of the channel where there is no shear.
urbulent velocity fluctuations cause the dispersion of particles, thus
verall reducing the encounter rate, although this is also dependent on
4

he intensity of mean shear and the size of sources (in the limit of very w
mall source size, the effect of shear on the encounter rate becomes
egligible).

Fig. 2(b) shows the effect of the value of 𝑑 on the encounter
robability, at a single 𝑦1 value. Both in the case of streamwise and
all-normal mixing, increasing the distance between sources greatly

educes the encounter probability. Fig. 2(c) shows instead the stream-
ise (𝐝 = 𝑑�̂�𝑥, 𝑑+ = 4) encounter probability at different Stokes
umbers. While near the wall the encounter probability evolves almost
ndependently of the Stokes number, near the center of the channel
dotted lines) a larger variability is seen with respect to the inertia
f particles. Different Stokes numbers lead to different behavior with
espect to inertial clustering, thus causing differences in the encounter
ate. Near the wall (see solid lines) particle inertia does not seem to
nfluence the encounter rate, possibly because encounters happen on a
imescale so short that clustering still cannot influence mixing. A more
etailed comparison between the Lagrangian timescales of particles and
hose of mixing will be performed below. Moreover, particles released
ear the wall tend to organize in elongated, streamwise-aligned streaks,
hat exert a predominant influence on mixing.

On the other hand, near the center of the channel (dotted lines) the
ncounter probability appears to be stronger at 𝑆𝑡+ = 25 and lower at
𝑡+ = 1, with 𝑆𝑡+ = 0.2 and 𝑆𝑡+ = 5 having an intermediate behavior. A
ifferent behavior is found in the case of 𝑦-aligned sources (not shown
n the figure), where the encounter probability at 𝑆𝑡+ = 5 reaches a
ower peak than those at the other Stokes numbers. It appears that near
he center of the channel the differences in particle inertia lead to non
rivial behaviors with regard to mixing and the encounter probability.
nertial particles organize into small clusters also near the center of the
hannel, albeit not in elongated streaks (Kuerten and Vreman, 2016).

The evolution of the encounter probability is the result of the
ction of competing phenomena, which initially bring a fraction of
he particles together while at the same time dispersing them across
arger and larger regions of the flow domain. Indeed, the combined
nd cumulative action of the different flow scales sampled by clouds of
articles may, especially at short times and lengths, result in behaviors
pposite to that of long term dispersion. As such, the short-term action
f turbulence causes the interaction of particles released by the two
ources, which determines an increase of the encounter probability 𝐸
ue to the presence of converging motions inside the flow that drive
articles together (Warhaft, 2000). The peak with respect to time of
he encounter probability is the point in the evolution of the two
uffs of particles where these competing phenomena are in balance.
igher peak values 𝐸𝑝𝑒𝑎𝑘 indicate that the local action of the flow is
ble to overcome, at least for a finite amount of time, the long time
ffects of dispersion which ultimately brings the encounter probability
o zero. Similarly, the time 𝑡𝑝𝑒𝑎𝑘 at which the peak happens is tightly
inked to the timescales at which mixing happens. In the following,

e will analyze the properties of the peak of the encounter rate with
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espect to the position of the sources inside the channel and the particle
roperties.

Fig. 3 explicitly highlights how the encounter probability rate (and
n turn the peak time) is correlated to both 𝑦+1 (the distance from
he wall) and 𝑑+ (the reciprocal source distance), at a fixed 𝑆𝑡+ =
.2. In particular, 3(a) and (b) show streamwise (along �̂�𝑥) and wall-
ormal (along �̂�𝑦) peak encounter probability, respectively. As previ-
usly noted, mixing of streamwise-aligned sources is stronger near the
all, while mixing of sources aligned along 𝑦 increases away from it.
he region where mixing of streamwise-aligned sources is the highest is
onfined well inside the viscous sublayer, where the dispersing action
f turbulence is reduced. Accordingly, very high values (almost 0.2) of
he encounter probability are reached for nearby sources. Instead, the
all-normal encounter probability is weaker (the largest peak values
re of the order of 0.02), but the region where mixing is the strongest
ccupies a large portion of the channel, from the upper limit of the
ogarithmic region up to the centerline. While for the mixing of sources
ligned along 𝑥 only turbulent diffusion determines the decrease of the
ncounter probability, especially at short times, for source pairs aligned
long �̂�𝑦 also mean shear is present, thus lowering the values of 𝐸.
urthermore, mean shear reaches a maximum near the walls; indeed,
uffs of particles released at different 𝑦 coordinates have strongly
ifferent mean velocity and are rapidly driven apart, resulting in almost
ero peak encounter probability. The flatness of the turbulent velocity
rofile has the effect that outside of the logarithmic region this factor
s of reduced importance. Furthermore, 𝐸𝑝𝑒𝑎𝑘 decreases as 𝑑 increases
or both �̂�𝑥 and �̂�𝑦: indeed, if the two sources are more distant, the
ispersive action of turbulence makes sure that fewer particles come in
lose proximity. Indeed, even if turbulence enables the initial growth
f the encounter probability (as particles are dispersed and a fraction
f them is driven close together), velocity fluctuations also disperse
articles in all directions, thus the distance between sources tends
n average to decrease the encounter probability (although it is still
ossible that some distant particles come in close proximity due to the
eatures of the local velocity field).

Fig. 3(c) and (d) show instead the time 𝑡𝑝𝑒𝑎𝑘 at which the peak
ncounter probability is achieved, for mixing of sources aligned along 𝑥
5

nd 𝑦, respectively. In the case of streamwise-aligned sources it appears s
hat, especially for nearby sources (small 𝑑), the peak time is higher
here mixing is less intense and vice versa. The high intensity mixing

aking place near the wall is achieved very quickly by particles that
ecome entrained together in the elongated structures typical of the
ear-wall region. As the distance between sources increases, longer
eak times are observed for pairs of sources located in the buffer layer,
lthough results may be skewed by the small number of encounters
aking place.

In the case of 𝑦-aligned sources on the other hand, the peak time
s higher near the center of the channel, where also the highest values
f 𝐸𝑝𝑒𝑎𝑘 are found, opposed to what was found for streamwise-aligned
ources; nonetheless, peak times for pairs of sources near the wall are
ot negligible, especially at higher Stokes numbers as will be detailed in
he following. The typical timescales of particle motion are in general
igher near the center of the channel, thus resulting in increased
eak times for the mixing of both streamwise and wall-normal aligned
ources.

As shown before in Fig. 2(c), particle inertia has an effect on the
ncounter probability, as it affects clustering properties which deter-
ine the rate at which particles become confined to a smaller region

f the fluid domain. Fig. 4 shows a comparison of the peak encounter
robability 𝐸𝑝𝑒𝑎𝑘 and of its time 𝑡𝑝𝑒𝑎𝑘 for different Stokes numbers (at
fixed distance 𝑑+ = 4, which is also typical for the behavior at higher
alues of 𝑑).

The peak encounter rate of source pairs located inside the viscous
ublayer is independent of the Stokes number in the streamwise align-
ent case. On the other hand, farther away from the wall, streamwise-

ligned sources (Fig. 4(a)) have slightly stronger peaks at higher Stokes
umbers. A noticeable increase of 𝐸𝑝𝑒𝑎𝑘 can be found for particles with
𝑡+ = 5 near 𝑦+ = 100, while at near the center of the channel the

ame can be found for particles with 𝑆𝑡+ = 25. Similar behavior has
een found using different, uncorrelated particle simulations.

The wall-normal encounter probability (Fig. 4(b)) has a slight de-
endence on the Stokes number at low 𝑦+1 values, where particles with
igher Stokes numbers 𝑆𝑡+ also have higher peak encounter rates. The
ear wall behavior is shown in the inset of Fig. 4(b) using logarithmic
caling because of the very small values of 𝐸 attained by 𝑦-aligned

ources. Instead, 𝐸𝑝𝑒𝑎𝑘 is higher towards the center of the channel for
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articles with 𝑆𝑡+ = 0.2 and 𝑆𝑡+ = 25, but at slightly lower coordinates
again, around 𝑦+ = 100) it is stronger at 𝑆𝑡+ = 5. The inset of Fig. 4(a)
hows the value of the Kolmogorov timescale 𝜏+𝜂 in wall units across
he channel height. Values of the timescale range from 𝜏+𝜂 ≈ 5 at
round 𝑦+ = 100 to 𝜏+𝜂 ≈ 25 at around 𝑦+ = 900. Accordingly, the
tokes number scaled with Kolmogorov units for particles with 𝑆𝑡+ = 5

located at around 𝑦+ = 100 is approximately 𝑆𝑡𝐾 = 𝑆𝑡+∕𝜏+𝜂 ≈ 1,
hile it is again 𝑆𝑡𝐾 ≈ 1 for particles with 𝑆𝑡+ = 25 located near the

enter of the channel. Recalling that particles with values of 𝑆𝑡𝐾 of
he order of unity tend to experience stronger clustering phenomena,
t is very likely that the two slight increases of 𝐸𝑝𝑒𝑎𝑘 found at 𝑦+ =
00 for particles with 𝑆𝑡+ = 5 and at 𝑦+ = 900 for particles with
𝑡+ = 25 are attributable to inertial clustering (see Fig. 4(a)–(b)). This

s only true away from the wall, whereas close to it the organization
f particles into elongated structures aligned with the mean flow is
he predominant effect leading to encounters (or the absence thereof).
ndeed, no effect of particle inertia on the encounter properties is found
or source pairs located close to the wall. Enhanced encounter rates are
lso present near the center of the channel for particles with 𝑆𝑡+ = 0.2,
ven if in this case particles are more akin to tracers given their very
ow inertia (𝑆𝑡𝐾 ≈ 10−2) and should not experience inertial clustering.

e performed another set of particle simulations in order to confirm
hat this is not due to a too small sample size. Since in this region there
s almost no mean shear and inertial clustering should not be a relevant
actor for these smaller particles, these increased values of 𝐸𝑝𝑒𝑎𝑘 may
e caused by the action of the wall-normal velocity fluctuations, but
he exact mechanisms behind this is not fully clear.

Fig. 4(c) and (d) show the peak time 𝑡𝑝𝑒𝑎𝑘 of the encounter rate for
- and 𝑦-aligned sources, respectively. Values are shown normalized
y the local Lagrangian velocity timescale 𝑇𝐿, computed from the
treamwise velocity in the case of 𝑥-aligned sources and from the
all-normal velocity in the case of 𝑦-aligned sources. The Lagrangian

ntegral velocity timescale is computed as

𝐿,𝑖(𝑦) = ∫

∞

0
𝜌(𝑦, 𝜏)d𝜏 = ∫

∞

0

⟨𝑢𝑖(𝑦, 0)𝑢𝑖(𝑦, 𝜏)⟩
√

⟨𝑢𝑖(𝑦, 0)2⟩⟨𝑢𝑖(𝑦, 𝜏)2⟩
d𝜏, (5)

here the ensamble average ⟨⋅⟩ is taken over particles released from
he same 𝑦 coordinate, the 𝑖th component of the velocity fluctua-
ion 𝑢𝑖 is used and the integral is performed up to the first zero-
rossing of the autocorrelation function 𝜌 because of the finiteness
6

o

f the data (Stelzenmuller et al., 2017). First, encounters between
treamwise-aligned sources positioned near the wall happen on a very
hort timescale, which may explain why the peak value 𝐸𝑝𝑒𝑎𝑘 has little
ependence on the Stokes number. Indeed, the timescale of encounters
s so short that clustering phenomena are yet to arise in this case,
hile a stronger influence is made by the initial condition, as particle

rajectories are still well into the ballistic regime (i.e., their velocity is
strongly correlated with that at release) at the time of peak encounter.
As already stated, in the near-wall region the evolution of the encounter
rate appears independent of the inertia of particles, as it takes place
on shorter timescales and is rather an effect of the organization of
particles into elongated streaks. The peak time becomes longer than
the Lagrangian timescale in the log layer, possibly due to the weaker
mean shear which causes slower mixing of streamwise-aligned sources.
Towards the center of the channel instead, peak encounters happen on
a timescale shorter than the Lagrangian, even if shear is at a minimum
there; accordingly, a more important role in this case is played by
turbulent velocity fluctuations and inertial clustering effects. In the
case of 𝑦-aligned sources instead, mixing near the wall happens on a
timescale which is up to two orders of magnitude longer than for 𝑥-
ligned sources. Indeed, here mean shear strongly inhibits encounters
nd only turbulent fluctuations may drive particles together (in very
mall quantities, as shown by the low values of 𝐸𝑝𝑒𝑎𝑘 in Fig. 4(b)). The
eak time diminishes monotonically towards the center of the channel
ollowing the reduction of mean shear.

. Conclusions

In this work we explored properties of mixing of inertial particles in
urbulent channel flow. We defined a metric, the encounter probability
, which takes into account the spatial proximity of particles released
y sources inside the channel. Analyzing a large parameter space which
ncompasses particle properties and source position, mutual distance
nd alignment with respect to the mean flow, we were able to provide a
horough description of mixing in a complex setting such as anisotropic
urbulence. The definition of an encounter probability to represent the
ikeliness that particles released from distinct sources mix is an effective
ool that relies solely on a Lagrangian description of particle motion.

We have shown how the evolution of 𝐸 through time is a result

f the competing interaction of processes that bring particles together
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and disperse them, acting on a range of flow scales. We demonstrated
the highly anisotropic features of mixing near the wall, where mixing of
streamwise-aligned sources is far larger than that of those aligned along
the wall-normal direction. Indeed, the tendency of particles released
very close to the wall to organize themselves into elongated streaks
aligned with the direction of the mean flow favors this directional
imbalance between mixing properties. Further away from the wall, the
encounter probabilities tend to become independent of the direction
of alignment of sources, as channel properties also tend to isotropy
given the reduced influence of the solid boundary. Still, while isotropy
is attained at lower Stokes number, this is not the case for particles with
larger inertia where wall-normal mixing is hindered at the center of the
channel. We also computed encounter properties for pairs of sources
aligned along the spanwise direction, obtaining results that are quite
similar to those obtained from 𝑦-aligned sources (although encounter
rates near the wall are higher due to the absence of mean shear).

Effects of particle inertia are evident throughout the results reported
in this work, although the properties of the encounter probability do
not have a straightforward dependence on the Stokes number. More
precisely, the effects of varying particle inertia are different depending
on the position of source pairs inside the channel and on their align-
ment. Indeed, the role played by inertial clustering depends heavily on
the ratio between the particle response time and the smallest relevant
timescale of the flow 𝜏𝜂 , i.e. 𝑆𝑡𝐾 . The latter depends on the distance
from the wall and in particular increases away from it, ranging from
values of around 𝜏+𝜂 = 2 near the wall to around 30 at the center of the
hannel. As the effects of inertial clustering are the most intense when
𝑡𝐾 = 𝑆𝑡+∕𝜏+𝜂 is of order unity, particles experience clustering not only

depending on their inertia, but also on their position inside the channel.
Indeed, a particle experiencing strong inertial clustering near the center
of the channel could move towards the wall and start reacting weakly
to turbulent fluctuations as its (local) Stokes number 𝑆𝑡𝐾 increases. The
encounter rate and the medium- to long-term evolution of the mixing,
which are the focus of this work, appear to be affected by the formation
of small-scale clusters, which happens on a short timescale (Liu et al.,
2020).

Near the wall, peak encounter rates of streamwise-aligned sources
are achieved in such short times (compared to the integral velocity
timescale of particles) that no differences due to the Stokes number
arise. On the other hand, for wall-normal-aligned sources, values of
𝐸𝑝𝑒𝑎𝑘 are slightly higher at higher Stokes numbers, albeit still very
small. Moving farther away from the wall, particles with 𝑆𝑡+ = 5 first
and 𝑆𝑡+ = 25 afterwards experience the effects of inertial clustering
as their typical timescale matches locally that of the flow, possibly
resulting in the increases of the peak encounter rate seen near 𝑦+ = 100
at 𝑆𝑡+ = 5 and 𝑦+ = 900 at 𝑆𝑡+ = 25.

Accordingly, two different processes emerge as the cause of the
observed trends of the encounter rate. The highly anisotropic fea-
tures of near-wall turbulence, which result in elongated and highly
persistent streaks of particles, determine strong mixing of streamwise-
aligned sources (and weak mixing of wall-normal-aligned sources) on
timescales so short that inertial effects caused by the matching between
the particle response time, 𝜏𝑝, and the smallest timescales of the flow
are negligible. Here it is possible that the relevant timescale of the
encounter rate evolution is linked to the Lagrangian integral timescale,
highlighting the importance of the initial condition that determines
the very-short term evolution of particle motion. On the other hand,
away from the wall the properties of the encounter rate are clearly
influenced by inertial clustering, with encounter rates increasing where
the particle timescale locally matches that of the flow. Therefore, both
the Kolmogorov timescale of the flow and the Lagrangian integral
timescale of particles influence the encounter rate and, by consequence,
mixing.

In order to test the sensitivity of results on the Reynolds number,
we simulated mixing for Re𝜏 = 590 (see Appendix A). We observed
7

that the measures presented previously have a reduced sensitivity on e
the Reynolds number (at least in the range of Re𝜏 considered), except
the fact that the evolution of the encounter probability takes place on
a slightly longer timescale. Furthermore, we tested our choice of the
threshold value 𝑅 showing that it is appropriate to capture the organi-
zation of particles into clusters due to their inertia (see Appendix C).
Indeed, at larger values of 𝑅 most of the differences between particles
at different Stokes numbers disappear. Conversely, the variation of the
threshold value is a simple way to investigate the typical scale at which
inertial clustering effects are relevant for mixing processes.

Differently from methods that investigate mixing of particles by,
for example, binning particles into fixed partitions of the domain, the
method used in this work is purely Lagrangian, that is only particle
trajectories and their mutual distances are analyzed. This is advanta-
geous as it eliminates the need (and the arbitrariness) to define bins
and rather uses only particle mutual distance as a criterion (Nguyen
and Papavassiliou, 2018). Further developments may be conducted by
relating particle distributions with the underlying local properties of
the turbulent flow field, in order to provide a deeper characterization
of the interplay of near-wall coherent structures, inertial clustering
phenomena and velocity fluctuations observed in this work.

Overall, Lagrangian based methods emerge naturally when mixing
and dispersion problems are studied, and are especially convenient in
complex settings such as those represented by turbulent flows. A deeper
understanding of basic mixing processes achieved through high resolu-
tion simulation is instrumental in developing better simplified models
of mixing. This is especially true given the relevance of processes
involving inertial particles, where the formation of particle clusters may
greatly influence processes such as turbulent combustion.
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ppendix A. Effects of the reynolds number

In order to test the dependency of the results presented in this
ork on the Reynolds number Re𝜏 , we performed the same analysis at
e𝜏 = 590. To do so, we performed a direct numerical simulation of the
ame channel flow geometry, integrating the trajectories of particles
t different Stokes numbers using the same release configuration as
efore. The grid of the DNS was left unchanged, while the time-step
as 𝛥𝑡+ = 0.07375.

Fig. A.5 shows the effects of the lower Reynolds number on the

ncounter probability, and especially on the peak value and on the
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Fig. A.5. Streamwise (a) and wall-normal (b) peak encounter probability at Re𝜏 = 950 (solid lines) and Re𝜏 = 590 (dotted lines). 𝑑+ = 4 in all cases. Peak time of the streamwise
c) and wall-normal (d) encounter probability at Re𝜏 = 950 (solid lines) and Re𝜏 = 590 (dotted lines).
Fig. B.6. Mean (a) and root mean square (b) velocity profiles in wall units of the Eulerian phase of the channel flow simulation. Solid lines: present simulation; dots: data
rom Hoyas and Jiménez (2008).
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ime of the peak 𝑡𝑝𝑒𝑎𝑘. In all plots we normalize the wall-normal
oordinate using the value of 𝛿 (the channel half-height), so that both

configurations are compared in outer units. Fig. A.5(a) and (b) show the
streamwise and wall-normal peak encounter probability, respectively.
As can be noted, the Reynolds number has little to no influence on the
value of 𝐸𝑝𝑒𝑎𝑘 along both directions. On the other hand, the peak (see
Fig. A.5(c) and (d)) occurs at an earlier time (in wall units) at the lower
Reynolds number, both in the case of streamwise mixing for sources
located away from the wall and everywhere in the channel in the case
of wall-normal mixing. If outer units are used for time (i.e. 𝑡 = 𝑡+𝑢𝜏∕𝜈),
no Reynolds independence is observed either, and 𝑡𝑝𝑒𝑎𝑘 occurs at a
later time instead at Re𝜏 = 590. Therefore there is no clear scaling
f peak times with respect to the Reynolds number in the range here
onsidered.

ppendix B. Direct numerical simulation validation

Mean and root mean square velocities from the channel flow were
omputed for the streamwise, wall-normal and spanwise components
nd are shown in Fig. B.6. Results were obtained by computing sta-
istical quantities over several flow-through times. The present re-
ults, shown with solid lines in Fig. B.6, were compared with those
rom Hoyas and Jiménez (2008) (dots) and found in good agreement.
8
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Appendix C. Effects of the threshold distance R

As stated before, the choice of the value of the threshold 𝑅 is
nstrumental in describing the key interactions between particles that
ead to their mixing, especially in relation to the length scales typical
f inertial clustering of particles with 𝑆𝑡 > 0. We evaluated, using the
ame setup as before, the influence of the value of 𝑅 by computing the
eak encounter probability properties with 𝑅+ = 1 and 𝑅+ = 8. The
esults are shown, along with those obtained using 𝑅+ = 2 as before,
n Fig. C.7. Fig. C.7(a) and (b) show the peak encounter probability
ormalized by

(

𝑅+)3. In all cases, 𝑑+ has been chosen equal to 20
n order to avoid that sources have a nonzero encounter probability
t the time of release. Indeed, it can a priori be assumed that the
ncounter rate is proportional to the volume of the sphere of influence
urrounding each particle. The larger the volume of the sphere, the
arger the number of interactions that will be experienced by each
article. In reality, this is shown to be approximately true only in
ome cases. In the case of streamwise mixing, the independency of
𝑝𝑒𝑎𝑘∕

(

𝑅+)3 from 𝑅 is only attained in a weak manner near the center
f the channel (where differences between mixing at different 𝑆𝑡 are
inimal and appear amplified by the logarithmic scale), while near

he wall and up to about 𝑦+ = 200 the peak encounter probability
rows more slowly than 𝑅3 when 𝑅 is increased. On the other hand,

he collapse of the peak encounter probabilities with different values of
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Fig. C.7. Streamwise (a) and wall-normal (b) peak encounter probability at varying Stokes number and 𝑑+ = 20. In all panels, solid lines indicate 𝑅+ = 2, dotted lines 𝑅+ = 1,
nd dash-dotted lines 𝑅+ = 8 (a logarithmic scale is used on the vertical axis).
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he threshold distance is stronger in the case of wall-normal mixing and
s attained for source pairs at a lower 𝑦+ coordinate. Furthermore, the
eak encounter probability grows faster than 𝑅3 when 𝑅 is increased, in
ontrast to what happens for streamwise mixing. The intense anisotropy
f turbulence in the near-wall region and the presence of the wall
ighly skew mixing processes in certain directions. This may cause
n turn a non-homogeneous growth of the encounter probability with
espect to the threshold distance 𝑅, which grows faster than expected
long �̂�𝑦 and slower along �̂�𝑥.

Furthermore, we note that at 𝑅+ = 8 the differences between
eak encounter probabilities at different Stokes numbers are vanishing,
hich is a sign that the threshold is larger than the length scales typical
f inertial clustering and thus differences due to inertia do not emerge
nymore. Indeed, this indicates that mixing processes involving parti-
les with larger inertia are not always influenced by inertial clustering,
nly those happening at sufficiently small length scales. Overall, similar
rends are observed across this range of threshold values, although the
ensitivity to inertial clustering decreases with increasing values of 𝑅.
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