Abstract

After reviewing the main mathematical tools relevant to the formulation of a supergravity theory, both in its ungauged and gauged version, two specific examples are presented. In the first example, the D=4 $\mathcal{N}=3$ SO(3) × SU(3) gauged model inspired by the $\mathrm{AdS}_4 \times \mathrm{N}^{0,1,0}$ compactification of M-theory is constructed. Two inequivalent $(\mathrm{SU}(1,1)/\mathrm{U}(1))^3$ truncations, obtained from singlets with respect to two different discrete groups, are discussed in detail. In the second example, a maximal D=4 $\mathcal{N}=8$ SO(1,1) × SO(6) × \mathbb{R}^{12} dyonically gauged supergravity is studied. An $\mathcal{N}=1$ truncation with respect to a \mathbb{Z}_2^3 discrete group is discussed. Both models share the property of having families of perturbatively stable vacua parameterized by supersymmetry breaking flat directions corresponding holographically to perturbatively stable non-supersymmetric conformal manifolds. In the latter example, a two-parameter family is uplifted to type IIB supergravity and pieces of evidence for non-perturbative stability of the conformal manifold are presented.