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Wepropose amachine learning-basedmodel to extract physical parameters characterizing

stationary-and-dynamic behavior of a VCSEL. The model is trained with circuit-level simu-

lations of light-current and S21 characteristics. Excellent results are achieved as a relative

prediction error.
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INTRODUCTION

In the last decades, a significant number of physical models have been proposed in the literature to describe the

complex behavior of edge-emitting or vertical-cavity laser diodes, either with a phenomenological or an empiri-

cal approach. With an accurate description of advanced physical effects, these tools allow a better understanding

of the laser behavior and the optimization of device properties according to designers’ needs. As a drawback, the

number of involved physical parameters (geometrical properties, material characteristics, electrical and thermal ef-

fects) is generally so large that it may be challenging to find a correct set of parameters fitting experimental laser

measurements, starting from the fundamental light-current (L-I) characteristics and the small signal modulation re-

sponses (S21). The extraction of these physical parameters from experimental curves can be time-consuming, since

it often relies on brute-force minimization routines, trial-and-error approaches, or regression analysis. We propose

a Machine Learning (ML) approach to the problem, based on Deep Learning (DP), which can extract from experi-

mental measurements the parameters required by a circuit-level model of a Vertical-Cavity Surface-Emitting Laser

(VCSEL) [1], implemented in Synopsys OptSim™ [2]. With respect to other works, which focused on edge emitting de-

vices [3] or required two separate simulations to take into account temperature-dependent effects [4], we propose

a single DL-based agent that can deal with all the electrical, optical, and thermal effects considered in OptSim™.

VERTICAL-CAVITY SURFACE-EMITTING LASER MODEL

For the description of the optical and electrical properties of the VCSEL, we rely on the model available in Synopsys

OptSim™ [2], which implements and expands the circuit-level model originally proposed in [1]. There, the explicit

spatial dependence of the number of carriers N(r, t) in the transverse plane is eliminated by assuming cylindrical

symmetry and by introducing a two-term Bessel series expansion:

N(r, t) = N0(t)−N1(t)J0(σ1r/R)

with J0 and J1 Bessel functions of the first kind, σ1 first nonzero root of J1, and R effective radius of the active layer.

The temporal evolution of the expansion coefficients N0(t) and N1(t) is given by the following spatially independent
rate equations:

dN0

dt
=

η iI
q

− N0

τn

− G [γ00(N0 −Ntr)− γ01N1]

1+ εS
S− Il

q
;

dN1

dt
=−N1

τn

(1+hdiff)+
G [φ100(N0 −Ntr)−φ101N1]

1+ εS
S

with ηi injection efficiency, τn carrier lifetime, G gain coefficient, Ntr transparency carrier number, Il leakage term,

ε gain compression factor, hdiff diffusion coefficient. The four coefficients γ00, γ01, φ100, φ101 quantify the interaction

with the fundamental transverse mode profile, assumed to have a Gaussian profile [1].

The temporal evolution of the photon number S in the cavity and its associated phase φ [5] are described by the

following rate equations:

dS
dt

=− S
τp

+
β spN0

τn

+
G [γ00(N0 −Ntr)− γ01N1]

1+ εS
;

dφ

dt
=

α

2
G [γ00(N0 −Ntr)− γ01N1]

1+ εS

with τp photon lifetime, β sp spontaneous emission coefficient, α linewidth enhancement factor. The output power

Pout is obtained from S through a proper multiplication coefficient kf.
The device temperature is dynamically calculated as [6]

T = T amb+(IV −Pout)Rth− τ th

dT
dt
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Fig. 1: Example of a VCSEL dataset entry. Markers indicate the samples stored in the recordset. (a) L-I curves at

25 °C, 40 °C, and 55 °C; (b) S21 curves evaluated in the conditions indicated by rectangles in (a).

with V applied voltage, T amb ambient temperature, Rth thermal impedance and τ th thermal time constant. The

parameters G, Nt, I l depend on the device temperature T through empirical laws:

G(T ) = G0
ag0+ag1T +ag2T 2

bg0+bg1T +bg2T 2

Ntr(T ) = Ntr0

(
cn0+ cn1T + cn2T 2)

Il(N0,T ) = Il0 exp
[
−a0 +a1N0 +a2N0T −a3/N0

T

]
DATASET GENERATION &MACHINE LEARNING ENGINE

The dataset is obtained by changing the 22 VCSEL parameters listed in Table 1; for each parameter, a value is ran-

domly generated with uniform distribution in the reported range. During the generation of the random set of values,

nonphysical combinations of parameters can be generated, leading, for instance, to thresholds far outside the in-

vestigated current ranges. These combinations are discarded and only 14 000 valid records are used in the final data

set.

The following values are calculated for each set of random parameters:

• 16 samples from each L-I characteristic, for T amb 25 °C, 40 °C, and 55 °C, respectively.

• 16 samples of the S21 responses calculated at 5mA, 10mA, and 15mA at 25 °C

• 16 samples of the S21 responses calculated at 5mA and 10mA at 40 °C

• 16 samples of the S21 responses calculated at 15mA at 55 °C

The L-I points are calculated with 16 currents uniformly distributed in the range 0 to 15mA, while the S21 charac-

teristics are obtained from 16 frequencies logarithmically spaced in the 100mHz-50GHz interval. As a result, each

record is formed by 192 samples. An example of L-I curves at different temperatures and the corresponding S21

responses are shown in Fig. 1. After the generation of the dataset, the ML-based framework to extract the VCSEL

model parameters is finally developed. The proposed ML agent is constructed with a parallel Deep Neural Network

(DNN) architecture, meaning that each individual VCSEL parameter is extracted by its own dedicated DNN. Thus, we

are able to increase the prediction accuracy by independently optimizing the DNN hyperparameters for each VCSEL

parameter under test. In particular, we scanned different combinations of hidden layers number ([2, 3, 4, 5, 6, 7]), of

neurons per layer ([20, 30, 50, 100]) and batch size ([100, 200, 500, 1000, 2000]), with fixed learning rate of 0.001. In

the proposed DNN model, the Mean Squared Error (MSE) is used as loss function, while ReLU is the activation func-

tion of each hidden layer. Of the entire dataset, 70% is dedicated to training, while 30% is for testing. The parallel

DNN architecture is developed using TensorFlow™ with the Keras API.

RESULTS AND CONCLUSIONS

The accuracy of the predictions made by a DNN unit is evaluated using the relative prediction error(
∆ = Predicted Value−Actual Value

Actual Value

)
of each considered parameter. The findings of the DL agent are shown in Fig. 2 as

a histogram of the relative error of the parameters that are considered, together with the standard deviation (σ ) of

the relative prediction error. The most critical parameters are related to the leakage current (a2 and I l0); for all the
considered parameters the error is less than ≈ 20%. The proposed approach can find a reasonably accurate set of

VCSEL parameters in a short time using a fully automated and model-agnostic mechanism. In order to generate the

19 - 21 April 2023, University of Twente, Netherlands, 24th European Conference on Integrated Optics



Table 1: Parameters investigated and corresponding variation ranges for generating dataset.

Parameters Range Parameters Range

Injection efficiency η i 0.7 to 1 Transparency carrier Ntr 2 × 106 to 1 × 107

Photons to power kf 1 × 10−8 W to 6 × 10−8 W Gain saturation factor ε 1 × 10−6 to 5 × 10−6

Carrier lifetime τn 0.5 ns to 5 ns Leakage current factor Il0 1 A to 2 A

Photon lifetime τp 1.5 ps to 3.5 ps Transp. number param.Cn0 1 to 10

Gain coeff. g0 1 × 104 s−1 to 2 × 105 s−1 Transp. number param.Cn1 −0.1 K−1 to −0.01 K−1

Gain coeff. ag0 −1 × 104 to −4 × 103 Transp. number param.Cn2 0 K−2 to 1 × 10−4 K−2

Gain coeff. ag1 5 K−1 to 20 K−1 Leakage current param. a0 2000 K to 10 000 K

Gain coeff. ag2 0.02 K−2 to 0.2 K−2 Leakage current param. a1 0 K to 3 × 10−4 K

Gain coeff. bg0 1 × 103 to 1 × 104 Leakage current param. a2 1 × 10−9 to 4 × 10−8

Gain coeff. bg1 −100 K−1 to 0 K−1 Diffusion parameter hdiff 1 to 20

Gain coeff. bg2 0 K−2 to 1 K−2 Thermal impedance Rth 500 KW−1 to 8000 KW−1
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Fig. 2: Relative predicting error of the DL agent for the 22 parameters listed in Table I. In each histogram, the

relative error standard deviation is also numerically reported.

dataset and to train the DL agent, the simulation is executed for a few hours on the latest workstations. In addition,

the proposed model can easily be scaled up with a high level of accuracy for a larger number of parameters (com-

pared to the 22 parameters that are analyzed in this work) due to its parallel architecture, which has the capability to

be rapidly expanded without compromising accuracy. This enables the proposed architecture to be advantageously

adapted to study other laser classes.

We present amethod that uses DL to extract the essential physical parameters that characterize the stationary and

dynamic behavior of the VCSEL source. Circuit-level simulations of the L-I and S21 characteristics of VCSELs, including

temperature-related effects, are used to generate the data sets. The proposed technique is fully automated and can

be operated for fast and accurate extraction of VCSEL parameters. Furthermore, the suggested scheme is easily

scalable to a more vast set of parameters in more complicated models, rather than being restricted to the given

set-up.
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