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Data-driven structural health monitoring (SHM) requires precise estimates of the target system behaviour. In this sense, SHM by
means of modal parameters is strictly linked to system identifcation (SI). However, existing frequency-domain SI techniques have
several theoretical and practical drawbacks. Tis paper proposes using an input-output system identifcation technique based on
rational interpolation, known as the Loewner framework (LF), to estimate the modal properties of mechanical systems. Pio-
neeringly, the Loewner framework mode shapes and natural frequencies estimated by LF are then applied as damage-sensitive
features for damage detection. To assess its capability, the Loewner framework is validated on both numerical and experimental
datasets and compared to established system identifcation techniques. Promising results are achieved in terms of accuracy and
reliability.

1. Introduction

Te use of vibration-based data in structural health
monitoring (SHM) is an important topic, traditionally
based on the identifcation of modal parameters [1, 2]
obtained through system identifcation (SI). Tus, ef-
fective and precise SI is of paramount importance for
damage detection, yet several alternative strategies exist
for SI.

Tese SI methods can be divided into many categories,
depending on the data domain (time or frequency) and the
identifcation procedure (input-output or output-only).
Input-output data are usually obtained by experimental
modal analysis (EMA) [3], while output-only techniques are
collected with operational modal analysis (OMA) techniques
[4]. Recent advances have focused on frequency-domain
techniques and EMA for the SHM of engineering systems
[5–7]. Output-only SI was applied for monitoring multi-
span bridges by Chaudhary and Fujino [8] and for arch dams
by Zhi-Qian et al. [9].

In this context, the input-output SI method applied in
this work is the Loewner framework (LF): an interpolation-
based SI method for the model order reduction (MOR) of
large-scale dynamical systems frst introduced by Antoulas
and co-authors in electrical engineering [10, 11].

Tis work aims to demonstrate the suitability of the LF
[10, 11] as an efcient means for the extraction of modal
parameters, by comparing it to other state-of-the-art tech-
niques for SHM purpose and modal parameter-based
damage detection, as it will be shown in the later sections
of this paper. Sensitivity, accuracy, and precision of the
identifed modal parameters are fundamental for their use in
damage detection. Terefore, the SHM problem is the
perfect platform for the validation of the LF against existing
and well-known SI techniques.

Te main contributions of this work are as follows:

(i) Te use of the LF to extract the modal parameters of
mechanical systems

(ii) Te application of the LF for SHM
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To the best of the authors’ knowledge, this is the frst
time these two tasks have been attempted. To this aim, the LF
implementation proposed in [10–12] is modifed to ac-
commodate for the extraction of modal parameters, such as
natural frequencies (ωn), damping ratios (ζn), and mode
shapes (ϕn). Te goodness of the proposed method is
evaluated on a numerical system, where the robustness to
noise is also tested, and on a well-known experimental
benchmark.

In the rest of this section, a brief recall of the two
concepts of SI and SHM is given. For comparability, two
well-known alternatives, numerical algorithms for subspace
state-space system identifcation (N4SID) in the time do-
main and a frequency-domain version of least-squares
complex exponential (LSCE) [13], are here recalled as
well, before moving to the discussion of LF in the next
section.

1.1. System Identifcation. Tis section focuses on linear SI
from input-output data in the time and frequency domain.
Readers interested in a more comprehensive review are
directed to [14].

Subspace state-space system identifcation (SSI)
methods, particularly N4SID, are, predominantly, time-
domain methods for SI and are regarded as the state-of-
the-art methods for linear experimental and operational
modal analysis (EMA and OMA) in all felds of industrial
and civil engineering. For this work, N4SID will be con-
sidered, since input-output data were used. Linear SSI
methods, like N4SID, aim to characterise systems in the
state-space form of a linear time-invariant (LTI) system
under known excitation [15]:

xk+1 � Axk + Buk + wk

yk � Cxk + Duk + vk

􏽢E wpvp􏼐 􏼑
T
wT

q v
T
q􏼐 􏼑􏼔 􏼕 �

Q S

ST R
􏼠 􏼡δpq ≥ 0.

(1)

A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input
matrix, C ∈ Rl×n is the output matrix, and D ∈ Rl×m is the
direct feed-through matrix. m is the number of inputs, while
l is the number of outputs and n is the order of the unknown
system. Te vectors uk ∈ Rm×1 and yk ∈ Rl×1 are the mea-
surements at time instant k of, respectively, the inputs and
outputs of the process. Te vector xk is the state vector of the
process at discrete time instant k, vk ∈ Rl×1 is the mea-
surement noise, and wk ∈ Rn×1 is the process noise. vk and
wk are assumed to be zero mean, stationary white noise
vector sequences and uncorrelated with the inputs uk. Te
matricesQ ∈ Rn×n, S ∈ Rn×l, and R ∈ Rl×l are the covariance
matrices of vk and wk, while 􏽢E is the expected value operator
and ∆pq is the Kronecker delta.

In brief, the identifcation procedure of N4SID can be
seen as a two-step process: in the frst instance, the input-
output data are used to develop, via projection and SVDs,
the extended observability matrix and an estimate of the

state sequence matrix. Tis, with a given set of weights
specifc to N4SID, is used to solve a simple set of over-
determined equations, in the least-squares sense, to obtain
the state-space matrices and noise model.

Te interested reader is referred to [15] for the com-
prehensive theoretical background on SSI and N4SID. No
further information on the method is provided in the re-
mainder of the article, as N4SID is only considered
a benchmark method for the scope of this article.

Another industry standard method [16] chosen for this
work is a frequency-domain variant of LSCE. LSCE iden-
tifcation is an evolution of the complex exponential (CE)
[17, 18] method that overcomes the single-input single-
output (SISO) limitation of the latter, acquiring single-
input multi-output (SIMO) capabilities. Te LSCE imple-
mentation used within this work starts by computing, via
inverse Fourier transform, the impulse response functions
(IRFs) from the acquired frequency response functions
(FRFs) and by ftting to the response a set of complex
damped sinusoids using Prony’s method, hence allowing to
fnd the poles of the systems and its mode shapes. Te in-
terested reader is referred to [13, 19] for a more
mathematical-based background of the method. Te algo-
rithms used within this work to implement N4SID and LSCE
are, respectively, adaptations of MATLAB’s n4sid and
modalft functions.

1.2. Structural Health Monitoring. Damage is defned as
a change in a system that undermines or afects its opera-
tional capability [1]. Te process of implementing a damage
detection strategy for aerospace [20], civil [21], and me-
chanical engineering infrastructure [22] is known as
structural health monitoring. SHM strategies can be divided
into two categories: direct and indirect methods [23]. Te
latter involves model-based methods [24], and the former
often relies on data-driven (especially vibration-based)
strategies [2].

In the latter case, modal parameters, such as ωn, ζn, and
ϕn, are commonly chosen as damage indicators because they
are easily identifable from vibrational data [25] and have
a direct relationship with the mass and stifness of the target
structure [2]. Tese can serve diferent purposes, for in-
stance, damage severity assessment and damage localisation.
ωn work best for identifying the severity of the damage, but
less so for the localisation, as they can easily be buried by
environmental and operational variations [26] since the
change in frequency is usually very small. On the other hand,
ϕn are more suited for damage localisation, which is usually
done by detecting a diference between the baseline and
damaged ϕn. ζn are usually the least-used modal parameters
as a standalone damage indicator, due to their nature. In fact,
ζn has a strong dependence on nonstructural factors, so it is
difcult to defne the extent of the change which is due to
damage and which is not [7, 27].

For the scope of this work, ωn is used to assess the
damage severity and ϕn is used to assess damage localisation,
while ζn is only included to evaluate the goodness of the
identifcation in scenarios with and without damage.
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Damage quantifcation is obtained by computing the relative
change of the corresponding ωn between the baseline and
damaged cases, while localisation is achieved by comparing
the baseline and damaged ϕn. Tese approaches are well
documented in the literature.

Te remainder of the article is organised as follows. As
anticipated, the LF theory for SI is discussed in the next
section, starting from the Loewner matrix. Ten, the LF is
used on a numerical example, a 9 DoF system, to assess both
the efect of noise on the LF identifcation and its sensitivity
to damage. Te results on the noise-free cases are also
compared with N4SID and LSCE. Next, the LF SI capability
is experimentally compared to N4SID and LSCE on the
three-storey structure from the Engineering Institute (EI) at
Los Alamos National Laboratory (LANL), where the LF is
able to correctly identify modal properties and damage over
the 17 cases of the dataset. Finally, the article ends with the
Conclusions.

2. The Loewner Framework

Only recently has the LF been applied for SI of electrical
[10, 11] and aerodynamic [28] systems. Here it is proposed
for mechanical systems, in particular for the detection of
modal properties and, so, for SHM purposes. To the
knowledge of the authors, this has not previously been
proposed. In this section, the mathematical background of
the Loewner framework is provided.Te discussion starts by
introducing the Loewner matrix (L) and then the Loewner
pencil (L, Ls). Finally, the realisation problem based on the
Loewner pencil is discussed.Te section ends by introducing
the authors’ contribution to this framework.

Te LF actively fts a set of frequency-domain data, in the
form of FRFs, via rational interpolation, which aims at
representing a given function as the quotient of two poly-
nomials. In this case, the Loewner interpolant, matrix L, is
then used to create, or realise, a state-space representation of
the data for a given order k.

Te fnal goal does not difer from more established
techniques for mechanical systems, such as rational fraction
polynomial (RFP) [29], or from the recently developed [6, 7]
fast relaxed vector ftting (FRVF) [30], which is an evolution
of the well-known vector ftting (VF) [31]. Nevertheless, the
LF’s main attribute is to provide a trade-of between the
accuracy of ft and complexity of the model by overcoming
the severe ill-conditioning of current ftting processes
[10, 32]. Te LF is a linear SI method, despite some ex-
tensions that have recently been developed for limited
nonlinear problems, such as Hammerstein cascaded dy-
namical systems [33]. For this work, the classic linear LF is
considered.

2.1. Te Loewner Matrix. Te matrix L is defned as
follows [34].

Given a row array of pairs of complex numbers (μj, vj),
j � 1,. . ., q, and a column array of pairs of complex numbers
(λi, wj), i � 1,. . ., k, with λi, μj distinct, the associated L, or
divided-diferences matrix, is

L �

v1 − w1

μ1 − λ1
· · ·

v1 − wk

μ1 − λk

⋮ ⋱ ⋮

vq − w1

μq − λ1
· · ·

vq − wk

μq − λk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
q×k

. (2)

If there is a known underlying function ϕ, then wi �

ϕ(λi) and vj � ϕ(μj).
Loewner established a connection between L and ra-

tional interpolation, also known as Cauchy interpolation.
Tis allows the construction of interpolants in state-space
form based on the determinants of submatrices of L [35]. In
fact, rational interpolants can be derived from L, according
to [32, 36, 37], from the Loewner pencil, and this approach is
considered for the remainder of this work. Te Loewner
pencil comprises (L, Ls), where Ls is the shifted Loewner
matrix, which is defned later.

Te concept of interpolation and rational interpolation is
not discussed further, as they are out of the main scope of
this work; for further reading, the interested reader is re-
ferred to [38, 39].

2.2. Te Loewner Realisation. Let us consider an LTI dy-
namical system Σwith m inputs and p outputs and n internal
variables in descriptor-form representation which is given
by

Σ: E
d

dt
x(t) � Ax(t) + Bu(t), y(t) � Cx(t) + Du(t), (3)

where x(t) ∈ Rn is the internal variable, u(t) ∈ Rm is the
function’s input, and y(t) ∈ Rp is the output. Te constant
matrices are

E,A ∈ Rn×n
,B ∈ Rn×m

,C ∈ Rp×n
,D ∈ Rp×m

. (4)

When the matrix A − λE is nonsingular for a given fnite
value λ, such that λ ∈ C, a Laplace transfer function,H(s), of
Σ can be defned in the form of a p × m rational matrix
function:

H(s) � C(sE − A)
− 1B + D. (5)

Let us consider the more general case of tangential in-
terpolation, also known as rational interpolation along
tangential directions [40]. Te right interpolation data are

λi; ri,wi( 􏼁, i � 1, . . . , ρ

Λ � diag λ1, . . . , λρ􏽨 􏽩 ∈ Cρ×ρ

R � r1  . . . rρ􏽨 􏽩 ∈ Cm×ρ

W � w1  . . .  wρ􏽨 􏽩 ∈ Cp×ρ

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (6)

Likewise, the left interpolation data are

μj, lj, vj􏼐 􏼑, j � 1, . . . , q

M � diag μ1, . . . , μq􏽨 􏽩 ∈ Cq×q

LT
� l1  . . . lq􏽨 􏽩 ∈ Cp×q

VT
� v1  . . .  vq􏽨 􏽩 ∈ Cm×q

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7)
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λi and μj are the index values s at which the dataset (R
and L) is sampled to produce the approximationH(s), and ρ
and q are, respectively, the dimensions of the left and right
data. Te vectors ri and lj are, respectively, the right and left
tangential general directions, which are selected randomly in
practice [28]. wi and vj are the right and left tangential data.
Te rational interpolation problem is solved when the
transfer functionH, associated with realisation Σ in equation
(3), is linked to wi and vj:

H λi( 􏼁ri � wi, j � 1. . . . , ρ and liH μj􏼐 􏼑 � vj, i � 1, . . . , q,

(8)

such that equation (8) is satisfed via the Loewner pencil.
Now, for a set of points Z � z1, . . . , zN􏼈 􏼉 within the

complex plane, the corresponding values of H(s) can be
divided into the left and right data:

Z � λ1, . . . , λρ􏽮 􏽯∪ μ1, . . . , μq􏽮 􏽯, (9)

with N � q + ρ; hence, the matrix L becomes

L �

v1r1 − l1w1

μ1 − λ1
· · ·

v1rρ − l1wρ

μ1 − λρ

⋮ ⋱ ⋮

vqr1 − lqw1

μq − λ1
· · ·

vqrρ − lqwρ

μq − λρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cq×ρ
. (10)

Since vvrp and lvwp are scalars, L satisfes the Sylvester
equation in such a fashion:

LΛ − ML � LW − VR. (11)

Now, it is possible to defne the shifted Loewner matrix,
Ls, as L corresponding to sH(s):

Ls �

μ1v1r1 − λ1l1w1

μ1 − λ1
· · ·

μ1v1rρ − λρl1wρ

μ1 − λρ

⋮ ⋱ ⋮

μqvqr1 − λ1lqw1

μq − λ1
· · ·

μqvqrρ − λρlqwρ

μq − λρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cq×ρ
.

(12)

Likewise, the Sylvester equation is satisfed as follows:

LsΛ − MLs � LWΛ − MVR. (13)

Let us consider equation (5) and, particularly, matrix D.
As shown in [37], the D-term is incorporated in the other
matrices as it it does not infuence interpolation; hence, D is
set to 0 per convention. So, equation (5) becomes

H(s) � C(sE − A)
− 1B. (14)

A realisation of the smallest possible dimension exists
only when it is completely controllable and observable.
Hence, when the data are assumed to be sampled from
a system for which the transfer function can be described by
equation (14), the generalised tangential observability, Oq,
and generalised tangential controllability, Rρ, matrices can
be defned from equations (13) and (14) as follows [11]:

Oq �

l1C μ1E − A( 􏼁
− 1

⋮

lvC μqE − A􏼐 􏼑
− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rq×n

, (15)

Rρ � λ1E − A( 􏼁􏼂
− 1Br1 · · · λρE − A􏼐 􏼑

− 1
Brρ􏽩 ∈ R

n×ρ
. (16)

Now, let us incorporate equations (15) and (16) into,
respectively, equations (10) and (12):

Lj,i �
vjri − ljwi

μj − λi

�
ljH μi( 􏼁ri − ljH λi( 􏼁ri

μj − λi

� −ljC μjE − A􏼐 􏼑
− 1
E λiE − A( 􏼁

− 1Bri, (17)

Ls( 􏼁j,i �
μjviri − λiljwi

μj − λi

�
μjljH μi( 􏼁ri − λiljH λi( 􏼁ri

μj − λi

� −ljC μjE − A􏼐 􏼑
− 1
A λiE − A( 􏼁

− 1Bri. (18)

First, let us frst consider the case of minimal amount of
data, where it is assumedp � v.Te assumption is based on the

fact that no duplicated data are allowed in R and L. Tus,
rearrange equations (15) and (16) into equations (17) and (18):
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L � −OvERρ,

Ls � −OvARρ.
(19)

Ten, let the Loewner pencil be a regular pencil, in the
sense of eig((L,Ls))≠ (μi, λi):

E � −L,

A � −Ls,

B � V,

C � W.

(20)

Accordingly, the interpolating rational function is de-
scribed as

H(s) � W Ls − sL( 􏼁
− 1V. (21)

Te aforementioned derivation refers to the minimal
amount of data instance, which is rarely the case when
dealing with real data. Nevertheless, the LF is extendable to
redundant data. First, let us assume

rank ζL − Ls􏼂 􏼃 � rank LLs􏼂 􏼃 �� rank
L

Ls

􏼢 􏼣

� k;∀ζ ∈ λj􏽮 􏽯∪ μi􏼈 􏼉.

(22)

Secondly, the short singular value decomposition (SVD)
of ζL − Ls is computed:

svd ζL − Ls( 􏼁 � YΣlX, (23)

where rank(ζL − Ls) � ran k(Σl) � size(Σl) � k,Y ∈
Cq×k andX ∈ Ck×ρ, where k is the order of the approxima-
tion. Tirdly, note that

−AX + EXΣl � Y∗LsX
∗X − Y∗LX∗XΣl

� Y∗ Ls − LΣl( 􏼁 � Y∗VR � BR,
(24)

and likewise, −YA + MYE � LC such that X andY are, re-
spectively, the generalised controllability and observability
matrices for the system Σ with D � 0.

After checking for the right and left interpolation
conditions, the Loewner realisation for redundant data is

E � −Y∗LX,

A � −Y∗LsX,

B � Y∗V,

C � WX.

(25)

Te formulation of equation (25)—i.e., the Loewner
realisation for redundant data—is going to be considered in
the remainder of this work. Te interested reader is referred
to [32, 37] for a more in-depth discussion of each step.

2.3. Te Algorithm. Having outlined the general process to
characterise a system in the form of equation (25), the
general application is applied to the specifc case of
frequency-domain data. Of particular interest is the appli-
cation in [10–12] for a MIMO system. Tese advances were

of service to the authors to develop their application to
mechanical systems. Particularly, the implementation de-
viates from the one proposed in [10–12] as it introduces the
identifcation of modal parameters, thus making the LF
a viable instrument for the identifcation of modal param-
eters of linear mechanical systems. Te implementation is
outlined in Algorithm 1, and a MATLAB implementation is
available from a Cranfeld Online Research Data (CORD)
entry [41].

In Algorithm 1, the function Loewner creates L,Ls and
the interpolation data matrices, V and W, by following the
process outlined in equations (6)–(13). Te data in H are
sampled in the right and left data vectors, respectively, in
such a fashion: 1 : 2 : end and 2 : 2 : end (using MATLAB
notation).Ten, the generalised tangential directions vectors
are generated as random vectors, using the randn MATLAB
function. After having established the right and left data, it is
trivial, by following the abovementioned proofs, to obtain
the L, Ls and the interpolation data matrices, V andW, and
progress in the algorithm. Te main contribution and
novelty of this work for the processing of vibrational signals
from mechanical systems are outlined in points 7 and 8 of
Algorithm 1.

2.4. Numerical Case Study. In order to investigate the
goodness of ft and the efect of noise on the results of the LF-
based SI, a numerically simulated 9 DoF mass-spring-
damper system, as shown in Figure 1, is developed. Te
system consists of nine masses, such that mn � 1 kg, adja-
cently linked with springs, such that kn �5000Nm−1, and
dampers, characterised by the critical damping ratio of
ζn � 1% ∀n. Tis is based on the case illustrated in [42].

Te numerical model is excited with a unit (1N) rect-
angular impulse applied to the frst mass as input force, and
the data are recorded at a sampling frequency fs � 200Hz,
with a frequency resolution of ∆f � 0.05Hz. According to
the Nyquist criterion, only frequencies up to 100Hz are
inspected; however, this is not an issue since all nine modes
fall into this frequency range. Te receptance FRFs are
extracted by dividing the fast Fourier transform (FFT) of the
output displacement recordings by the input force FFT, at
each output channel (i.e., at each mass and DoF). Note that
the algorithm can be applied both in a SISO or a SIMO
fashion. For brevity, only the results for a SIMO application
(considering all the available output channels at once) are
reported and discussed.

Te response of the modelled system is considered with
and without artifcially added additive white Gaussian noise
(AWGN), to test its robustness to measurement noise. Te
error is calculated with respect to the known numerical
results. For the idealised noise-free scenario, the LF can
correctly identify ω1−9, with a maximum discrepancy of
0.025%, ζ1−9, and ϕ1−9, demonstrated [43] with a MAC
(modal assurance criterion) of unity for all modes.TeMAC
is computed with the usual formulation [44]:

MAC ϕb, ϕe( 􏼁 �
ϕb · ϕe( 􏼁

2

ϕb · ϕb( 􏼁 ϕe · ϕe( 􏼁
, (26)
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where b and e subscripts, respectively, represent the baseline
and the mode shape to be compared.

Before introducing the investigation of noise efects in
the numerical system, it is benefcial to compare the pre-
cision of LF with that of N4SID and LSCE against the known
ground truth (benchmark). In Tables 1–3, ωn, ζn, and ϕn are
compared for the noiseless case.

From Tables 1–3, it is clear that the parameters identifed
via LF andN4SID are extremely coherent with the numerical
values. In fact, N4SID is virtually identical for every pa-
rameter, while LF shows a very slight (0.025%) diference for
ωn, but perfect adherence to the numerical values for ζn and
ϕn. On the other hand, LSCE performance is very poor.
Errors for the ωn identifcation are above 40% and 800% for
ζn. Tis tendency is also confrmed for ϕn, for which only the
frst mode is acceptably coherent with the numerical results.
Te poor performance of LSCE could be explained by the
closely spaced modes included in the dataset. Due to its
computation steps, LSCE is only able to build a rank-
defcient matrix and so misinterpret the closely spaced
modes. As is shown later in the experimental case study,
LSCE works fne for sparser modes.

It can be said that for noiseless scenarios, even for closely
spaced modes, the LF can perform similarly to the most
established technique, N4SID, and better than others, e.g.,
LSCE. Tis is the frst step toward proving the feasibility of
LF as a SI method. A test of the LF robustness to noise
follows and anticipates a potential application for SHM.Te
same numerical system as above is used for these studies.

2.5. Investigation of Noise Efects. Te efects of noise on the
Loewner-based SI are numerically investigated as follows.
Te signal is corrupted at the input, at the output, and/or at
both with a noise range between 0 and 25% with intervals of

1%, totalling 75 independent cases. Te percentage of noise
is defned as a fraction of the signal’s standard deviation, σ.
As an overall metric of ftness between the numerically
derived receptance FRF and the Loewner realisation, a de-
viation quantity is introduced as local root mean square
error (RMSEij) between the FRFs’ columns at a given fre-
quency step and is defned with the following formulation:

RMSEij �

����������������

f
fit
i (j) − fi(j)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽲

, (27)

where ff it
i (j) indicates the Loewner realisation’s column at

the given frequency vector index j, likewise fi(j) as the
FRFs’ columns at the corresponding frequency. Te global
root mean square error (RMSE) is then calculated with its
usual formulation:

RMSE �

������������������������

1
I

􏽘

I

i�1

1
K

􏽘

K

j�1
f

fit

i (j) − fi(j)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽶
􏽴

, (28)

where I is the number of FRFs’ columns and the other
notation is consistent with equation (27). Te number of
frequency points, K, is given by fs/2/∆f, which
returns 2000.

Te results of the goodness of ft of the model for input-
output noise equal to 0%, 1%, and 5% are presented in
Figure 2. For all the aforementioned cases, as it will be
discussed later in further detail, Figure 3 shows the efect of
noise on the estimations of ωn, ζn, and ϕn, while Figure 4
reports the efect of noise in terms of RMSE, per given noise
level and iteration (considering fve iterations).

By analysing Figure 2 in detail, the FRFs of the nine
channels are superimposed for conciseness, with the nu-
merical data represented by a blue line and the ftted model
by a dashed red line. As expected, the deviation, indicated

Input: Te system’s FRFs as H(ω), the frequency vector as ω, and the LF order as k.
Output: A matrix with the modal properties (ωn, ζn, and ϕn), the Loewner realisation, and [E,A,B,C,D].

(1) [L,Ls, V, W, μ, λ] � loewner (jω, H, ω)[11], [14];
(2) [X, Y] � svd (L) and enforce order k of the LF: Xk � X(:, 1: k) and Yk � Y(:, 1: k);
(3) Find [E,A,B,C] as per equation (25);
(4) Ensure pole stability: if necessary, turn E into an identity matrix;
(5) Set D � 0;
(6) Obtain [E,A,B,C,D] and the Loewner realisation;
(7) Convert from descriptor state-space model to continuous state-space model;
(8) Compute the system poles and obtain ωn, ζn, and ϕn.

ALGORITHM 1: Te LF for mechanical system algorithm.

m1k1 k2

u1 (t)

k3 k4 k5 k6 k7 k8 k9

c1 c2
F (t)

c3 c4 c5 c6 c7 c8 c9

m2 m3 m4 m5 m6 m7 m8 m9

u2 (t) u3 (t) u4 (t) u5 (t) u6 (t) u7 (t) u8 (t) u9 (t)

Figure 1: 9 DoF system: schematic diagram (adapted from [42]).
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Table 1: Natural frequencies, in Hz, identifed via LF, N4SID, and LSCE and their relative diference to the numerical values.

Natural frequency (Hz)-(relative diference-%)
Mode Benchmark LF N4SID LSCE
#1 1.859 1.859 1.859 2.647

— (0.025) (−) (42.394)
#2 5.525 5.527 5.525 5.963

— (0.025) (−) (7.923)
#3 9.041 9.044 9.041 9.311

— (0.025) (−) (2.982)
#4 12.311 12.314 12.311 12.012

— (0.025) (−) (−2.425)
#5 15.244 15.248 15.244 15.420

— (0.025) (−) (1.150)
#6 17.762 17.766 17.762 16.144

— (0.025) (−) (−9.106)
#7 19.795 19.800 19.795 19.046

— (0.025) (−) −3.784
#8 21.288 21.294 21.288 21.705

— (0.025) (−) 1.956
#9 22.201 22.206 22.201 22.694

— (0.025) (−) 2.219

Table 2: Damping ratios identifed via LF, N4SID, and LSCE and their relative diference to the numerical values.

Damping ratio (−)-(relative diference-%)
Mode Benchmark LF N4SID LSCE
#1 0.010 0.010 0.010 0.096

— (−) (−) (864.412)
#2 0.010 0.010 0.010 0.056

— (−) (−) (456.304)
#3 0.010 0.010 0.010 0.036

— (−) (−) (261.094)
#4 0.010 0.010 0.010 0.025

— (−) (−) (149.527)
#5 0.010 0.010 0.010 0.002

— (−) (−) (−81.580)
#6 0.010 0.010 0.010 0.019
— (−) (−) (90.889)
#7 0.010 0.010 0.010 0.017
— (−) (−) (69.254)
#8 0.010 0.010 0.010 0.013
— (−) (−) (25.981)
#9 0.010 0.010 0.010 0.011

— (−) (−) (12.645)

Table 3: MAC values between the mode shapes obtained from LF, N4SID, and LSCE and the numerical value.

MAC value (computed with respect to the benchmark) (−)
Mode Benchmark LF N4SID LSCE
#1 1 1 1 0.979
#2 1 1 1 0.110
#3 1 1 1 0.034
#4 1 1 1 0.005
#5 1 1 1 0.110
#6 1 1 1 0.124
#7 1 1 1 0.025
#8 1 1 1 0.001
#9 1 1 1 0.018
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Figure 2: Continued.
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by the green line, increases with the noise. Also, the
phase accuracy decreases as the noise increases, par-
ticularly for high DoF. However, the absolute value of
the deviation does not rise signifcantly with increasing
noise, excluding the noise-free scenario. Considering
these early results on a numerical model, it could be
asserted that, for the LF, phase modelling is more
sensitive to noise than peak amplitude. However, it
should be noted, particularly with reference to
Figure 2(b), that the deviation does not have a constant
value. In fact, it seems linearly related to the frequency.
A qualitative explanation of this phenomenon could be
traced back to the nature of the LF as an interpolation
matrix. Te increase in deviation over frequency could
be justifed by the sum of multiple interpolation errors
along the FRF. Te minimum order case k � 1 (for the
LF, the minimum order should be two times the number
of modes to be discovered in the frequency interval) is
considered in Figure 2. However, the decay in perfor-
mance over noise does not constitute a problem, as
shown in Figure 3, when addressing modal parameters
as the order k of the Loewner realisation was raised
accordingly and a stabilisation diagram was used to
detect the stable poles.

Figure 3 compares the correlation between the numerical
and estimated data when subjected to noise. Figures 3(a)–
3(c) show the results for the case of input noise,
Figures 3(d)–3(f) show the results for output noise, and
Figures 3(g)–3(i) show the results for the input-output noise
case. Te main modal quantities, ωn, ζn, and ϕn, were

considered. ωn and ζn estimation results are presented as the
relative diference (∆), in percentage, calculated by

∆ �
xe − xb

xb

, (29)

where xe and xb represent, respectively, the estimated and
baseline quantities.

As expected, the increase in noise is related to a decrease
in the identifcation of the precision of the modal parameters
by the LF. However, it should be noted that input noise has
a negligible efect compared to output-only and input-
output noise. As shown in Figures 3(a)–3(c), for input-
only noise, the correlation between the numerical and es-
timated properties is almost uninfuenced by any noise level,
even themost severe. Conversely, for output-only and input-
output noise, ωn are almost always correctly identifed for all
cases and ϕn always show a good correlation for the frst 5
modes. ζn, as expected, appear to be the most problematic
quantity. For any case where noise is higher than 2% and
a mode higher than 3, considerable errors, exceeding 50%,
are identifed. Nevertheless, ζn are correctly identifed for all
modes only with 0% and 1% noise.

In Figure 4, the efect of noise on the global RMSE is
investigated over fve iterations, for statistical signifcance. It
should be noted that the LF order was set to its minimum
order k. As already discussed, the global RMSE of the input-
only noise is considerably lower, about fve times, than the
output and input-output cases. In fact, while all three cases
increase linearly with noise, the latter two have a very similar
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Figure 2: 9 DoF system: results of the numerical study on the numerical case: the 9 DoF system numerical receptance FRF is compared with
LF’s transfer function results for the 0% (a), 1% (b), and 5% (c) input-output noise cases. In each subfgure, from left to right, the gain’s
absolute value and the phase angle are presented. For conciseness, all 9 channels are superimposed.
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trend and magnitude. Hence, output noise has a greater
efect on the goodness of the Loewner realisation than
input noise.

Overall, the abovementioned results show that the LF is
a promising method for the identifcation of mechanical
systems. Importantly, the value of global RMSE never ex-
ceeds 5∙10− 4, and Figure 3 shows that, for small enough
noise values, the modal properties are correctly identifed.

Tis is also confrmed in Figure 2, where, as the level of noise
increases, the ftted model deviated from the numerical data;
however, this is particularly true for phase data and ζn, rather
than amplitude, ωn, and ϕn.

From these numerical results, it can be said that the LF
is able to correctly identify the modal parameters of the
numerical system even when it is artifcially corrupted
with noise. In particular, in the given study, the LF is
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Figure 3: 9 DoF system: results of the numerical study. (a, b, c) Efects of input-only noise. (d, e, f ) Output-only noise. (g, h, i) Input-output
noise. Te frst column refers to the relative diference in ωn, in %.Te second column reports the same diferences for ζn. Te third column
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10 Structural Control and Health Monitoring



virtually unafected by input noise, while output-only
noise and input-output noise are found to have a simi-
lar infuence. Notably, the mode shapes and natural fre-
quencies of the frst three modes are always correctly
identifed at all noise levels. ϕn is the less afected pa-
rameter, followed by ωn. ζn is the one relatively more
afected by noise. In conclusion, LF is a suitable method, in
terms of noise and precision, for the identifcation of the
modal parameters of mechanical systems. In addition, the
robustness to noise of ωn and ϕn identifcation makes the
LF sensitive enough to detect small variations under re-
alistic conditions. Tis property makes it a valid candidate
for the SHM of mechanical systems, as is shown in the
following section.

2.6. Investigation of Damage Efects. Having assessed the
capability of the LF to identify mechanical systems, this
section investigates its ability to be employed as a SHM
method, i.e., the capacity of the LF to detect changes in ωn,
ζn, and ϕn due to a damage condition. For this scope, the 9
DoF system shown in Figure 1 is considered. In order to
simulate damage, the stifness of the ffth element (k6) is
reduced by 5, 10, and 30%. It should be made clear that ζn

levels, in terms of damping ratio, are not modifed in the
damaged system as they are heavily infuenced by noise;
hence, comparison on ζn is deferred to the experimental
example in the following section. Noise is also taken into
consideration; however, for SHM scope, only the input-
output noise case is considered, as it is shown that input-
only noise has a negligible efect and that output-only noise

has a similar efect to input-output noise. Te same noise
intervals as in the previous section are considered, hence
giving 26 cases per damage step and a total, over the three
damage scenarios, of 78. Te results in this section are
presented by comparing the identifed ωn, in Hz, with the
numerical damaged counterpart. Te same is done for ζn.

In order to measure ϕn’s correlation with the numerical
damaged case, the MAC value between the numerical and
the identifed ϕn, computed as per equation (26), is selected
as the fgure of merit. Table 4 shows ωn of the baseline and
damaged numerical cases, which serves as a source of
comparison with the data in Figure 5.

Figure 5 shows that the LF detects all the damaged cases
correctly for all modes with noise levels less than 3%, except
for ζn, which confrms it to be the parameter most infuenced
by noise. It is seen that for all noise levels and damage cases,
ωn, ζn, and ϕn show a good correlation, with the expected
results, for the frst four modes. In addition, ωn and ϕn are
well correlated for the frst eight modes. A case of specifc
interest is the 5% stifness reduction scenario, as it allows to
demonstrate the ability of the LF to detect small changes in
ωn, as highlighted in Table 4, thus demonstrating the fea-
sibility of the method for SHM. In addition, Figure 6 shows
the efect of the three diferent damage scenarios, which, for
conciseness’ sake, includes only the modal parameters of the
frst three modes. Since ζn is left unchanged, Figures 6(a) and
6(b), respectively, portray the ∆ changes (calculated
according to equation (29)) between ω1−3 and plot ϕ1−3
between the estimated undamaged and damaged noiseless
case. As shown, there is a clear relationship between the
increase in damage and ω1−3’s ∆ and in ϕ1−3 trajectories. Te
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diference between the baseline and damaged ω1−3 increases
and the ϕ1−3 trajectory deviation gets more pronounced as
the damage increases, as expected. Tis allows damage se-
verity assessment in addition to damage detection. More-
over, the most signifcant deviation in the ϕn trajectories
happens within the ffth node, thus allowing for the use of LF
for damage localisation as well.

To summarise this set of results, the performance of the
LF has been numerically evaluated for the detection of
changes in ωn and ϕn induced by progressive stifness re-
ductions. As preliminarily shown for the baseline scenario,
the identifcation of the damaged scenarios is coherent with
the expected values for low levels of noise. Tis translates to
the possibility of using the extracted modal parameters for
damage detection and localisation. As expected, the SI ap-
proach is able to track the decrease of ωn caused by the
stifness reduction; the identifed modal coordinates refect
ϕn’s deviated trajectories, according to the severity and lo-
cation of the damage. Tis proves that the LF is precise and
robust enough to be used for damage detection in me-
chanical systems.

In the following section, the LF is again compared to
N4SID, in the time domain, and to LSCE, in the frequency
domain, to evaluate its SI and SHM capabilities on
a benchmark experimental case study.

2.7. Experimental Case Study. Since the results presented for
the numerical case demonstrate that the LF can be a feasible
alternative for the SI and SHM of mechanical systems, this
study is to test the reliability of the method against real data.
Te experimental case study selected to extensively test the
LF’s capabilities to detect and track changes in the me-
chanical properties of the system (both mass and stifness),
even under noisy conditions and with nonlinearities added
to the system, is the well-known [45–48] three-storey frame
structure benchmark experiment performed at the EI at the
LANL [49, 50].

Te three-storey structure, as shown in Figure 7, is made
of four plates (30.5× 30.5× 2.5 cm) linked to columns
(17.7× 2.5× 0.6 cm) by bolted joints. A small protrusion
(15.0× 2.5× 2.5 cm) is suspended from the top foor part of
a bumper-column system. Tis is intended to simulate

nonlinear efects, mimicking a breathing crack mechanism
[51], with its interaction with a bumper placed on the second
foor (see the zoomed-in part in Figure 7). Te base plate is
constrained on rails that allow movement in the transverse
direction only, which is also the direction of the input force
acting on the base plate. Te structure can be regarded as a 4
DoF system, with each DoF corresponding to a foor. For
civil engineering purposes, this is a classic simplifed model
of shear-type multi-storey building. Te frame structure and
the shaker are mounted on the same baseplate
(76.2× 30.5× 2.5 cm). Te input force from the shaker to the
structure is measured via a load cell with a nominal sen-
sitivity of 2.2mVN−1. Four accelerometers with nominal
sensitivities of 1,000mVg−1 are attached at the centerline of
each foor. Data are collected and processed by the means of
a Dactron Spectrabook and the shaker is driven by a Techron
5530 Power Supply Amplifer. Te structure is excited with
a band-limited random excitation in the range of 20–150Hz.
Te lower limit is selected to avoid the rigid-body mode of
the structure. A 2.6V RMS in the Dactron system, ap-
proximately 20N RMS measured at the input, is set as the
excitation level.

Table 5 lists the 17 tested scenarios. Te frst is the
baseline confguration, #2-#3 represent changes in envi-
ronmental conditions by the means of adding mass, #4 to #9
represent stifness reductions by changing column thickness,
and #10 to #17 are nonlinear cases. Te nonlinearity, as
previously mentioned, is introduced with the extra columns
and bumper, and it is regulated by the distance between the
two.Tis causes a pointwise source of bilinear stifness at the
top foor, which is free to vibrate when moving in the
positive x direction and constrained when moving in the
opposite (negative) x direction. Notably, cases #10–14 are
nonlinear-only confgurations, while #15–17 are nonlinear
and environmentally conditioned confgurations. It is worth
noting that LF is a linear SI method; hence, nonlinearity, for
the scope of this work, is considered as a noise-like dis-
turbance and not as a per se phenomenon. Hence, the
identifed parameters for this case refer to the underlying
linear system and not to the bilinear stifness induced by the
bumper-stopper interaction. A total of 850 realisations, 50
for each case, exist, and this allowed for an exhaustive
statistical comparison of the identifcation methods’ results.

Table 4: 9 DoF system: natural frequencies, in Hz, of the numerical undamaged and damaged (5, 10, and 30%) cases.

Natural frequency (Hz)
Mode Undamaged 5% 10% 30%
#1 1.859 1.855 1.851 1.827
#2 5.525 5.500 5.472 5.327
#3 9.041 9.040 9.039 9.030
#4 12.311 12.243 12.170 11.796
#5 15.244 15.235 15.226 15.176
#6 17.762 17.693 17.617 17.239
#7 19.795 19.737 19.677 19.433
#8 21.288 21.261 21.231 21.095
#9 22.201 22.098 22.010 21.784
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Figure 5: 9 DoF system: 30% damage (top), 10% damage (middle), and 5% damage (bottom) at position 6. Results of the numerical study on
the numerical case afected by input-output noise. (a, d, g) Efects on ωn identifcation. (b, e, h) Efects on ζn. (c, f, i) Efects on ϕn. In the
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Each instance comes with a recorded input (in terms of
force, N, time histories (THs)) and the four respective
outputs (as acceleration THs, in g); consequently, 50 SIMO
accelerance FRFs (considering all the available output
channels) are at disposal for any of the 17 cases. For ad-
herence with the Système international of units, the output’s
THs in g are converted to ms−2.

For the scope of this work, the frst peak in the
frequency-domain response of the three-storey structure is
not considered because (as reported in the literature [49, 50])
it is not a vibration mode but actually a rigid-body motion,
for which there is no interest for the proposed applications of
the LF.

3. Results

In Figure 8, the Loewner realisation corresponding to the
lowest order, k � 6, is compared with the accelerance FRF of
selected cases, in this instance, scenarios #1, #4, and
#14—hence, taking under consideration the baseline sce-
nario, a damaged linear scenario, and a nonlinear scenario.
Tis comparison features a single instance of a given sce-
nario for conciseness. Table 6 presents the mean, μ, values of
the identifed ωn and ζn for the three cases of interest in
Figure 8, alongside benchmark [50] and literature [6] values,
identifed via FRVF. Table 6 and Figure 9 present the modal
parameters identifed by the LF, LSCE, and N4SID for the
selected cases. Te identifed ωn and ζn are statistically

analysed in the boxplots of Figure 10, where LF results are
also measured against the value obtained by N4SID. Lastly,
Figure 11 compares ∆, as per equation (29), between the
identifed ωn and ζn values of three damaged cases, #4, #5,
and #9, and the baseline scenario, case #1, and Figure 12
plots ϕn of the cases just mentioned.

Figure 8 presents the results of the LF ftting over the
accelerance FRFs of a single instance of cases #1 (Fig-
ure 8(a)), 4 (Figure 8(b)), and 14 (Figure 8(c)). For all cases
shown, the maximum deviation (green line) is, by an order
of magnitude, less than unity for the gain amplitude.Te red
dashed line represents the Loewner realisation, and the blue
line represents the accelerance FRFs. Both amplitude and
phase seem to be correctly modelled by the LF; nevertheless,
case #14 shows that the noising efect of nonlinearity has
a tangible efect on LF, particularly on phase modelling.

As can be seen in Table 6, ωn values are very close for the
three methods; nevertheless, ζn identifcation is not con-
sistent for the last case for the LF. In fact, case #14’s ζn is
underestimated by the LF if compared with N4SID and
LSCE. As it will be discussed in depth later, this is also the
case with the other nonlinear scenarios. It should be noted
that for the three cases under scrutiny, LSCE overestimates
ζ1−2, compared to N4SID. A good agreement is detected
between the modal parameters identifed via LF within this
paper and the benchmark and literature results.

Nevertheless, the LF is able to correctly identify the three
ϕn of the nonrigid-body modes of the three-storey structure,
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marks the damage location.
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as shown in Figure 9. Te values plotted are the μ values of
the identifed modal displacements for each method. Te
blue solid line represents the N4SID identifcation, the red
dashed line represents LF, and the black dashed-dotted line
represents LSCE. Te coherence within the ϕn is confrmed
by the MAC matrix diagonal values between the identifed
ϕn (N4SID vs. LSCE, N4SID vs. LF, and LSCE vs. LD) being
very close to unity, thus showing an almost perfect
correlation.

Lastly, the results of the LF identifcation of the 850 in-
stances are compared to the μ values of the corresponding
N4SID identifcation in Figure 10. In Figures 10(a) and 10(b),

the median value is represented by the central red line. Te
bottom and top blue edges of the box plots represent the 25th
and 75th percentiles, while the whiskers are the largest and
smallest data points not considered as outliers, and the red
Greek cross indicates the outlier values. Tese metrics give
statistical signifcance to the parameters identifed via the LF.
Te identifed ωn values match their N4SID-identifed
counterparts, while for ζn, the LF match with N4SID re-
sults is less ideal. Generally, the LF underestimates in all
scenarios of ζn, when compared to N4SID; nevertheless, the
diference is small, except for cases #5, #13, and #14. Cases #13
and #14 also show the biggest diference between their 25th
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Figure 7: Tree-storey frame structure: experimental test setup and schematic diagrams of the three-storey frame structure (adapted from
[6, 49]).

Table 5: Tree-storey frame structure: damage scenarios.

Case Description
#1 Linear baseline
#2 Linear, added mass of 1.2 kg at the base
#3 Linear, added mass of 1.2 kg at the frst foor
#4 Linear, 87.5% stifness reduction in one column of the frst interstorey
#5 Linear, 87.5% stifness reduction in two columns of the frst interstorey
#6 Linear, 87.5% stifness reduction in one column of the second interstorey
#7 Linear, 87.5% stifness reduction in two columns of the second interstorey
#8 Linear, 87.5% stifness reduction in one column of the third interstorey
#9 Linear, 87.5% stifness reduction in two columns of the third interstorey
#10 Nonlinear, distance between bumper and column tip: 0.20mm
#11 Nonlinear, distance between bumper and column tip: 0.15mm
#12 Nonlinear, distance between bumper and column tip: 0.13mm
#13 Nonlinear, distance between bumper and column tip: 0.1mm
#14 Nonlinear, distance between bumper and column tip: 0.05mm
#15 Nonlinear, bumper 0.20mm from column tip, 1.2 kg added at the base
#16 Nonlinear, bumper 0.20mm from column tip, 1.2 kg added on the frst foor
#17 Nonlinear, bumper 0.1mm from column tip, 1.2 kg added on the frst foor
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and 75th percentiles for ωn. Te cause of this issue can be
traced back to the high nonlinearity of these two cases, which
is perceived as noise by the LF, which is sensitive to high noise
levels. In general, identifed ωn are quite stable, except for the
mentioned cases. Tis stability is less pronounced for ζn,
particularly for the frst nonrigid-body mode.

Figure 11 shows ∆ between cases #4, #5, and #9 and the
baseline case, #1. Cases #4 and #5 are two similar damaged
cases. Te former has a stifness reduction in one column
of the frst interstorey, and the latter has a stifness re-
duction in two columns of the same interstorey. Hence,
their damage difers only in severity rather than

localisation, which is the case for case #9: featuring
a stifness reduction in two columns of the third inter-
storey. Tese facts are well represented in Figure 11(a), as
∆ of the identifed ωn increase between cases #4 and #5 and
case #9 experiences a negative ∆, as expected in a damaged
scenario. Figure 11(b) reports on ∆ between identifed ζn

in the damaged cases and the baseline cases. However, it is
well known that changes in modal damping generally
provide little useful information for damage detection. In
fact, no strong correlation between ∆ζn and increasing
damage is visible, independently of the considered system
identifcation algorithm.
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Figure 8: Tree-storey structure: the FRF computed from the test data is compared with the LF’s transfer function, for a single instance of
cases #1 (a), 4 (b), and 14 (c). Te absolute gain (left) and the phase angle (left) are presented with all 4 channels superimposed for
conciseness.

Table 6: Tree-storey structure: identifed ωn, in Hz, and ζn of scenarios #1, 4, and 14 from benchmark [49], literature (FRVF [6]), N4SID,
LSCE, and LF.

Scenario Mode# 2 3 4 Scenario Mode# 2 3 4

#1

Benchmark 30.700 54.200 70.100

#1

Benchmark 0.063 0.020 0.010
FRVF 30.890 54.740 71.610 FRVF 0.034 0.008 0.007
N4SID 30.980 54.731 71.542 N4SID 0.033 0.008 0.006
LSCE 30.992 54.594 71.432 LSCE 0.038 0.014 0.007
LF 30.986 54.751 71.574 LF 0.029 0.007 0.006

#4

Benchmark 30.900 51.200 69.200

#4

Benchmark 0.071 0.022 0.006
FRVF 30.650 51.540 70.050 FRVF 0.036 0.009 0.004
N4SID 30.742 50.919 70.026 N4SID 0.033 0.011 0.003
LSCE 30.735 51.103 70.041 LSCE 0.038 0.015 0.003
LF 30.700 51.532 70.013 LF 0.028 0.009 0.003

#14

Benchmark 33.500 57.600 74.200

#14

Benchmark 0.071 0.022 0.010
FRVF 31.730 56.980 73.710 FRVF 0.530 0.055 0.030
N4SID 31.520 57.532 72.872 N4SID 0.035 0.018 0.017
LSCE 32.093 57.886 73.886 LSCE 0.035 0.019 0.009
LF 31.667 57.577 73.110 LF 0.016 0.005 0.001
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Finally, Figure 12 plots the identifed ϕn of the baseline
and the damaged cases #4, #5, and #9. Te diference in
values between the data from cases #4 and #5 increases with
damage, but the mode shape still retains the same trajectory,
as expected for a decrease of stifness, while for case #9, the
variation is more consistent, as a pointwise source of
nonlinearity is added at the top foor.

To summarise the experimental validation, the extensive
benchmark dataset of the three-storey frame structure

allowed for a thorough validation of the SI procedure for the
precise extraction of modal parameters with diferent levels of
increasing damage. Te modal parameters extracted via LF
are generally coherent to those extracted by N4SID, LSCE,
and FRVF, as well as to the benchmark results reported in the
scientifc literature. Tis is particularly valid for all the ωn and
ϕn values. In sparse occasions, the benchmark ζn results are
not fully coherent with the LF-identifed parameters; how-
ever, this is also true for N4SID, LSCE, and FRVF results.
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Hence, the precision of the LF-identifed modal parameters
allows for damage severity assessment and localisation, at least
to the same extent as the other three techniques.

 . Conclusions

In this work, the suitability of the LF as an input-output SI
method for the extraction of modal parameters has been
numerically and experimentally verifed. Furthermore, the
viability of such precise estimates for damage detection has
been investigated as well, applying them to classic SHM
procedures. To the authors’ best knowledge, this work is the
frst attempt at extracting modal parameters (ωn, ζn, and ϕn)
via LF and also the frst application of LF for SHM
purposes.

First, the LF has been validated with a numerical model
of a 9 DoF system against the same parameters as identifed
via N4SID and LSCE.Tis displayed the limitations of LSCE
for closely spaced modes, while instead proving the accuracy
and precision of the LF. Furthermore, an investigation of the
efects of measurement noise has been carried out on the
same numerical case study, also considering the case of
developing damage. Te signals have been corrupted with
AWGN. For damage detection purposes, three damaged
scenarios (5%, 10%, and 30% stifness reduction on the ffth
element) have been generated. Te LF correctly identifed
the modal parameters and found the diferences between
diferent damage states.

Lastly, the LF has been compared to N4SID and LSCE on
an experimental three-storey frame structure dataset from
LANL, which features 17 diferent structural scenarios. Once
again, the LF reliably returned the modal parameters of the
structure under investigation, even with noisy measurement
and/or in presence of damage-induced nonlinearities, such
as for cases #14–17. Tese identifcations were found to be
accurate enough to allow for damage detection, localisation,
and severity assessment and thus for a full damage diagnosis
and assessment procedure.

To summarise the main fndings, the main advantage of the
LF over the existing methods, in particular over LSCE, is a more
consistent ζn estimation. It must be said that, as it happens for
similar techniques, ζn remains the most difcult modal pa-
rameter to estimate accurately. Te results for the three-storey
structure show great agreement with the benchmark values and
those available in the scientifc literature.

Another point to consider is that the identifcation is more
infuenced by output noise rather than input noise; therefore,
accurate sensing devices should be used, as usual for any ex-
perimental setup. Given the requirement for precise and ac-
curate modal parameters for SHM and considering the
aforementioned results and discussion, the LF is clearly validated
for SI and SHM applications to mechanical systems. Te only
real practical limitation for LF lies in being an input-output
method, which is generally less practical than output-only ap-
proaches for the OMA of large structures. Tis aspect will be
addressed in future works.

Data Availability

Te experimental data used to support the fndings of this
study are available in the Engineering Institute at Los
Alamos National Laboratory website at https://www.lanl.
gov/projects/national-security-education-center/engineeri
ng/ei-software-download/index.php (data fle 1), and more
data that support this study (data fle 2) can be accessed
through the Cranfeld University repository (CORD) at
https://doi.org/10.17862/cranfeld.rd.16636279. Tis proj-
ect contains the following underlying data: data fle 1—the
three-storey structure dataset from the Engineering In-
stitute at Los Alamos National Laboratory; data fle 2—a
tutorial on the Loewner framework for mechanical systems.
Data fle 2 is available under the terms of the Creative
Commons Attribution 4.0 International (CC BY 4.0).
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