
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health Monitoring / Barchi,
F; Zanatta, L; Parisi, E; Burrello, A; Brunelli, D; Bartolini, A; Acquaviva, A. - In: FUTURE INTERNET. - ISSN 1999-5903. -
13:8(2021). [10.3390/fi13080219]

Original

Spiking Neural Network-Based Near-Sensor Computing for Damage Detection in Structural Health
Monitoring

Publisher:

Published
DOI:10.3390/fi13080219

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978472 since: 2023-05-12T16:39:42Z

MDPI



Article

Spiking Neural Network based Near-Sensor Computing for
Damage Detection in Structural Health Monitoring

Francesco Barchi 1,†,∗ , Luca Zanatta 1,†, Emanuele Parisi 1,†, Alessio Burrello 1,
Davide Brunelli 2, Andrea Bartolini1 and Andrea Acquaviva 1

Citation: Barchi, F.; Zanatta, L.;

Parisi, E. et al. Spiking Neural

Network based Near-Sensor

Computing for Damage Detection in

Structural Health Monitoring. Future

Internet 2021, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2023 by the authors.

Submitted to Future Internet for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 DEI, Università di Bologna
2 DII, Università di Trento
* Correspondence: francesco.barchi@unibo.it
† These authors contributed equally to this work.

Abstract: In this work, we present an innovative approach for damage detection of infrastructures1

on edge devices, exploiting a brain-inspired algorithm. The proposed solution exploits recurrent2

Spiking Neural Network (LSNN), which are emerging for their theoretical energy efficiency and3

compactness, to recognise damage conditions by processing data from low-cost accelerometers4

(MEMS) directly on the sensor node. We focus on designing an efficient coding of MEMS data to5

optimise SNN execution on a low-power microcontroller. We characterised and profiled LSNN6

performance and energy consumption on a hardware prototype sensor node equipped with an7

STM32 embedded microcontroller and a digital MEMS accelerometer. We used a Hardware-8

in-the-Loop environment with virtual sensors generating data on an SPI interface connected to9

the physical microcontroller to evaluate the system with a data stream from a real viaduct. We10

exploited this environment also to study the impact of different on-sensor encoding techniques,11

mimicking a bio-inspired sensor able to generate events instead of accelerations. Obtained results12

show that the proposed optimised embedded LSNN (eLSNN), when using a spike-based input13

encoding technique, achieves 54% lower execution time with respect to a naive LSNN algorithm14

implementation present in the state-of-art. The optimised eLSNN requires around 47 kCycles,15

which is comparable with the data transfer cost from the SPI interface. However, the spike-16

based encoding technique requires considerably larger input vectors to get the same classification17

accuracy, resulting in a longer pre-processing and sensor access time. Overall the event-based18

encoding techniques leads to a longer execution time (1.49x) but similar energy consumption.19

Moving this coding on the sensor can remove this limitation leading to an overall more energy-20

efficient monitoring system.21

Keywords: Spiking NN, SHM, Cyber-Physical Systems, Energy Efficiency, MEMS22

1. Introduction23

The application of distributed sensors to pervasive monitoring of physical processes24

is one of the most critical and relevant domains. In particular, Structural Health Monitor-25

ing (SHM) is a key deployment scenario, where ensuring the safety of infrastructures26

such as buildings and bridges can be, in principle, achieved by deploying low-cost27

sensors to detect structural variations due to damages. The convergence of Artificial28

Intelligence (AI) to Internet-of-Things (IoT) and edge computing in this domain can help29

approach these challenges. In this context, executing AI detection algorithms directly30

on the IoT sensor nodes potentially reduces data transmission overheads and improves31

response time. A review of recent embedded AI approaches to detection in SHM can32

be found in [1]. Due to the low-cost, low-power and increasing accuracy of MEMS33

accelerometers, their application to distributed SHM is becoming popular.34

Signal compression techniques on edge have also been proposed to compress35

MEMS data gathered from several nodes and sending them to the cloud storage and36
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analytic facility [2]. Still, on MEMS data, on-sensor modal estimation was proposed by37

implementing procedures to detect relevant peaks in the acquired signal spectrum [3].38

Optimized machine learning algorithms on edge have been recently proposed to39

increase the intelligence of distributed detection for SHM. Considering the availability of40

code and libraries to implement machine learning algorithms on low-power microcon-41

trollers [4,5], it is a viable solution to execute detection algorithms on-edge and on-sensor.42

In this context, hazard monitoring based on an array of event-triggered single-channel43

micro-seismic sensors with advanced signal processing is proposed exploiting a Convo-44

lutional Neural Network (CNN) implemented on a low-power microcontroller can be45

found in [6].46

Applied to anomaly detection on a highway bridge, in [7] a compression technique47

to identify anomalies in the structure using a semi-supervised approach is proposed48

using either a fully connected or a convolutional autoencoder implemented on the sensor49

node. In the present work we provide an alternative solution applied to the same case50

study using a supervised algorithm for near-sensor anomaly detection based on Spiking51

Neural Networks (SNN). SNNs gained interest in the research community in various52

application domains, including SHM, because of their brain-inspired, event-based nature,53

which potentially allows reduced energy requirement compared to traditional ANN [8–54

12]. While Artificial Neural Networks (ANNs) have been successfully applied to SHM [1,55

13–16], SNN are of increasing interest in this field because of their theoretical information56

greater processing efficiency by exploiting a sparse computation approach. In [17] a57

feed forward SNNs has been applied to low-cost, MEMS-based inspection of damaged58

buildings.59

However, the state-of-art in SNN applications to SHM misses a real implementation60

of a data processing pipeline with the execution of SNN directly on the sensor node.61

Also, embedded machine learning libraries currently lack efficient SNN implementations.62

In the context of SNN, when time-series data from sensors are concerned, recurrent63

neural networks have shown to be effective [18]. For this reason, instead of more simple64

feed-forward architectures, we investigate recurrent SNNs for SHM data processing.65

In particular we consider a state-of-art recurrent implementation of SNN called LSNN66

(Long Short-Term SNN) introduced in [19] because of its interesting signal processing67

features and learning effectiveness. Also, a relevant aspect to be explored is the encoding68

of the input signal, which impacts subsequent computation steps and associated energy69

consumption. In particular, SNNs have been used with event-based input such as pixel70

variations from Dynamic Vision Sensor (DVS) cameras [20], but they can also effectively71

process "continuous" data streams in speech recognition applications [19]. However, in72

the context of SHM in general, which encoding is the best suited for anomaly detection73

task has not been studied so far.74

This work presents the design, implementation, and characterisation of an LSNN75

on a low-power sensor node equipped with a commercial microcontroller and a MEMS76

accelerometer. The LSNN has been evaluated using real data from a highway viaduct,77

for which it was able to detect structural variations associated with a degraded condition.78

To the best of our knowledge, this is the first implementation of an LSNN on a low-power79

microcontroller that we integrated into a complete SNN-based near-sensor computing80

system. We designed and compared different input data encoding schemes in terms of81

performance and energy. We designed an optimised LSNN version for microcontroller82

targets, and we characterised its performance and energy consumption on silicon, in-83

cluding the overhead of data transfer from the MEMS sensor and their coding. Thanks84

to our Hardware-in-the-Loop measurement set-up, we were also able to emulate the85

behaviour of a smart sensor able to send spikes directly instead of acceleration values.86

We are comparing with an alternative semi-supervised edge anomaly detection87

applied to the same dataset [7]. Authors of [7] show that the anomaly detection of the88

faulty and normal condition requires a complex pipeline. It consists of: i) A filtering step;89

ii) An anomaly detector; iii) A final smoothing post-processing. They either propose a90
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Figure 1. Monitoring system installation.
Principal Component Analysis compression and decompression or a fully connected91

autoencoder to implement the anomaly detector. The autoencoder features a single92

hidden layer of 32 neurons, an input layer with 500 samples, and an output layer with93

500 neurons. Both these algorithms show a complexity of 500× 32× 2 (32 000) multiply-94

and-accumulate operations1. We show that we can achieve similar accuracy results with95

considerably fewer computational resources, to solve the same detection problem, the96

proposed solution uses 15 750 sums and 750 multiplications.97

While the two algorithms are not directly comparable because of the different98

ML approaches, the comparison against the reference testify that proposed solution is99

effective in solving the same detection problem. The contribution of this paper can be100

summarized as follows:101

• We studied the computational requirements and complexity of the LSNN, and we102

provide an implementation on a low-power microcontroller-based sensor node.103

• We designed and implemented an optimized LSNN version for performance con-104

strained architectures, and we compared a continuous versus event-based input105

encoding.106

• We evaluated the benefits of the proposed optimizations both theoretically and on107

real hardware, and we explored accuracy versus energy and performance trade-offs,108

including the cost of sensor data transfer.109

• We demonstrate that LSNNs can be effectively executed near the MEMS sensor110

with a few tens of K cycles (comparable with data transfer cost) and deliver MCC111

levels higher than 0.75 (corresponding to almost 90% of accuracy) using data from112

a real case study of damage detection in SHM.113

The rest of this paper is organized as follows. Section 2 presents some background114

on SHM and LSNN. Section 3 presents the LSNN architecture, training and input115

coding methods. Section 4 explains the introduced optimizations. Section 5 reports the116

experimental test-bed and results, and Section 6 concludes the work.117

2. Background118

This section describes the SHM problem and the reference SoA monitoring system119

composed of sensor nodes, edge-node, and cloud architecture. We then give some120

background about Spiking Neural Networks and their recurrent LSNN counterparts,121

input coding strategy, and training algorithm adopted. Finally, the sensor board and122

microcontroller used for measurements are introduced.123

As described earlier, the manuscript focuses on the feasibility analysis of using124

a brain-inspired algorithm on the sensor-node MicroController Unit (MCU) and its125

implementation trade-offs. To experimentally validate this approach in Section 5 we will126

describe the experimental setup consisting of a hardware-in-the-loop (HIL) approach.127

2.1. Bridge Structure & SHM Framework128

The structure under study is a highway viaduct 2 built with eighteen sections,129

each one supported by two pairs of concrete pillars situated at their two ends. We130

1 The neurons, intended as the application in the hidden and output layers of a non-linear function like sigmoid or RELU, are 532 (hidden plus output
neurons). Instead, the number of MAC operations is due to the number of connections. In this way, we have 500x32 MAC for the input-hidden layer
and 32x500 MAC for the hidden-output layer, for a total of 500x32x2 MAC.

2 A32 Torino-Bardonecchia - Viadotto S.S.335
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Figure 2. Mean natural frequency shift before and after scheduled maintenance.

focus on a single section instrumented for data analysis before a scheduled maintenance131

intervention in this work. Maintenance was necessary for the strengthening of the132

viaduct structure.133

The acquisition framework is described in Figure 1. The system contains five134

identical sensor nodes. Each one features an STM32F4 microcontroller (MCU) and135

samples 3-axis accelerations and temperature data, and stores them into the cloud136

through a 4G-connected Raspberry Pi3 gateway.137

The five nodes are connected through CAN-BUS to the gateway. Note that the138

acquisition system only collects the data without any local edge-side signal processing.139

In this basic configuration, data analysis is executed on the cloud. The accelerometer140

samples the data with a frequency of 25.6 kHz to avoid aliasing. Subsequently, the data141

is subsampled to have a final output frequency ( fs) of 100 Hz.142

The cloud part is composed of a data-ingestion job, which receives and store data143

from the gateway, and periodically scheduled analysis tasks to monitor the health status144

of the bridge [21].145

The MCU is an ARM 32-bit Cortex-M4 running at 168 MHz, with 192 kB of SRAM146

and 1 MB of Flash memory, popular in different edge applications for its low power147

consumption. Further, the MCU features a floating-point unit and a digital signal148

processing (DSP) library. The gateway is a standard Raspberry Pi 3 module B [22] (RPi3).149

It includes a Broadcom BCM2837 SoC, with 64 bits 4-core Cortex-A53 running at 1.2 GHz150

and 1 GB of DDR2 RAM. The gateway runs an Ubuntu operating system, easing the151

scheduling of communication tasks through common python interfaces (e.g., an MQTT152

broker [23]). The cloud system is divided into a storage section and a computing node153

allocated on the IBM cloud service.154

In this work, we propose to replace cloud processing with a brain-inspired near-155

sensor anomaly detection algorithm directly computed on the microcontroller (MCU)156

on the sensor node board. We will show that the proposed algorithm can identify the157

normal and faulty bridge conditions, avoiding the RAW data transmission to the cloud.158

2.2. Structural Health Monitoring Data159

SHM frameworks usually process acceleration data for monitoring structures’160

health status [24]. The datasets used in the study contain 3-axial accelerations data161

acquired with the previously described framework. As above-mentioned, the viaduct162

underwent a technical intervention to strengthen its structure, with a corresponding163

change in the natural frequencies of a bridge. Figure 2 shows how the power spectrum164

density, averaged over 6 hours, is modified before and after the intervention.165

Given these data’s uniqueness, we use them as a proxy of an aged viaduct compared166

to a healthy one. In particular, in this work, we consider the signals collected after the167

intervention as the normal data produced by a healthy viaduct. Analogously, the data168

gathered before the maintenance intervention are considered “anomalies” since they are169

sampled on a damaged and aged bridge. Although the data do not represent the whole170
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Figure 3. Full pipeline. The signal over time is encoded in current or events. Once transformed, it
will be given as input to the SNN which will classify the data as a healthy or damaged bridge.

history of the viaduct, to the best of our knowledge, it is the only dataset containing171

vibrations from the viaduct during two different structural phases of the building.172

2.3. Spiking Neural Networks173

This paper proposes to study a Spiking Neural Network Model to solve the SHM174

supervised anomaly detection problem directly on the sensor’s node MCU. The SNN175

model is a brain-inspired (so-called third-generation) type of neural network. They have176

a greater computational capacity as the single neuron is modelled with a much more177

complex dynamic than the neurons present in traditional Artificial Neural Networks178

(ANNs). This means that SNNs can solve the same tasks as ANNs with fewer neurons [8].179

Moreover, their hardware implementation on neuromorphic architectures and accelera-180

tors can lead to greater energy efficiency in data management and computation [25–29].181

In this work, we do not consider neuromorphic implementation because the objective is182

to work with low-cost commercial MCUs, for which SNN porting is not available.183

In particular, we consider a recurrent type of SNN called LSNN (Long Short-Term184

SNN) because they are suitable to process temporal data streams like their artificial coun-185

terparts (e.g. LSTMs). While SNN has already attracted attention for SHM applications,186

so far, literature papers focused on simple feed-forward SNN, which are less powerful187

and do not exploit the potential of SNN, nor do they impose training challenges [17].188

The recurrent LSNN structure is depicted in Figure 3, where the input, output and189

recurrent layers are represented. The input is a signal while the output is a classification190

encoded in the output neurons, meaning that each output neuron represents one of the191

possible classes. For instance, the neurons generating the highest output values is the192

one representing the recognised class. The time it takes to the network to process every193

single input and produce a stable output is called inference time (tin f ). As explained194

later in this Section, the input to the network can be either of current or event type. A195

current input type is a constant value over a time ∆t = tin f , while an event input type is196

a train of spikes, encoding the input signal using one of the possible methods described197

in Section 2.4.198

This is the first work to study the feasibility of leveraging SNN inference on the199

sensor node on an embedded microcontroller. Detecting the health status of the structure200

directly on the node’s MCU has the clear benefit of ease the network communication201

requirements of the sensors node to the edge node leading to energy reduction op-202

portunities. The event-driven nature of the SNN processing can lead to an optimised203

implementation consisting of (i) a coding of the input sensor stream into a sequence of204

events depending on the intensity of inputs and (ii) a computation workload (internal205

activity of the SNN) which processes these events as spikes. Since spikes are binary206

signals, linear algebra operators can be implemented with simplified arithmetic. We207

designed a pre-processing stage to apply LSNN to SHM real-life dataset. The state-of-208

the-art of LSNN applied to a similar problem of phonemes recognition is solved in [19],209
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which processes the TIMIT dataset (representing phonemes) by Mel-frequency cepstrum210

(MFC). The spectral coefficients are given as input to the network as synaptic currents.211

Starting from this reference LSNN (designed for server machines), we implemented212

an LSNN to process the spectral coefficient of the accelerometer waveform to detect213

a structural change in a highway viaduct. Through this network, we classified two214

categories of signals: Damaged or healthy (or repaired) bridge. In both cases, the bridge’s215

natural frequency, detectable by oscillations due to the passage of vehicles, undergoes a216

shift that is typically difficult to identify in the presence of noise caused by environmental217

stimuli and variable traffic conditions. A spike neuron model is considerably more218

complex than an artificial neuron model (accumulation and threshold), so its training219

and inference require higher computational effort than its simplified version. To train220

the LSNN model, we applied Backpropagation Through Time (BPTT) algorithm [19].221

The network used in this work is described in [19]. The input layer is composed of222

input neurons (I) which are connected in an all-to-all fashion through the W I matrix to223

the recurrent layer, which is composed of Adaptative-Integrate and Fire neuron (ALIF).224

The recurrent layer is connected recursively to itself with an all-to-all connection matrix225

WH , and it is linked to the output layer in an all-to-all fashion with the matrix WO.226

The ALIF neurons are described by two state variables v and a. The first one is called227

membrane potential and increase when the neuron receives a stimulus (spike or current).228

When the v reach a value called vth, it emits a spike. The ALIF neurons have a changeable229

vth; this behaviour is described by a the second state variable. The following equations230

describe an ALIF neuron:231

vt
j =

α︷ ︸︸ ︷
e−

δt
τm vt−1

j +

ALif→ALif︷ ︸︸ ︷
∑
i 6=j

WH
ji zt−1

i +

In→ALif︷ ︸︸ ︷
∑
n

W I
jnxt

i −

Reset︷ ︸︸ ︷
vthzt−1

j (1)

at
j =

ξ︷︸︸︷
e−

δt
τa at−1

j + zt−1
j

At
j = vth + ρat

j

(2)

zt
j =

1 if vt
j ≥ At

j and rt
j 6= 1

0 otherwise
(3)

Equation 1 describes the update of the membrane potential. α is the decay of the232

neuron, and it depends on the tick (δt) of the network and the membrane time constant233

τm. The second and the third term describe the contribution of the recurrent part and234

the input layer, respectively. In the end, there is the reset of the membrane potential if235

this reaches the vth, z are the spikes of the ALIF, while x can be either spikes or current.236

Equation 2 describes the update of the spike threshold of the ALIF, ξ is the decay of237

the adaptative threshold, and it depends on δt and τa called decay time constant, a is238

rescaled by a factor ρ before being added to vth. Equation 3 describe the spike condition.239

The neuron can spike (fire) only if it reaches a certain value (A) and if it is not in the240

refractory period (r). The refractory period is triggered when a neuron spike, and it is a241

time-lapse in which the neuron cannot fire.242

The output neurons are continuous; therefore, the output is not a spike train but a
continuous waveform. The following equation describes the outputs neurons:

yt
k =

β︷︸︸︷
e−

δt
τo yt−1

k +

ALif→Out︷ ︸︸ ︷
∑

j
WO

kj zt
j +

Bias︷︸︸︷
bk (4)

where τo is the decay constant of the membrane potential of the neurons and b is the bias243

of the neuron, which represents a constant current that stimulates the neuron.244
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2.4. Input Encoding Methods245

The LSNN we used in this work can work with two types of input encodings:246

Current (current-driven) or events (events-driven). In the Current-Driven LSNN, the247

input signal is constant for all the inference time, while in the Events-Driven LSNN, the248

signal is first encoded as spikes and then provided as input. This section describes some249

of the state-of-the-art encoding methods and details the algorithm we implemented to250

encode acceleration signals coming from the MEMS sensor. Considering Figure 2, which251

shows the frequency shift that we want to detect, we give as input to the network the252

FFT of the acceleration signal due to the vehicle crossing the viaduct.253

Literature is rich in algorithms to encode a waveform into a stream of spikes. Some254

of those approaches try to minimise signal reconstruction error, while others focus on255

emulating biological-plausible behaviours.256

The authors of [30] propose a family of methods that minimise signal reconstruction257

error. All proposed methodologies are characterised by the presence of two complemen-258

tary neurons (normally referred to as positive and negative), which expose a contrasting259

behaviour, that is, when one of the two fires, the other does not.260

The simplest temporal encoding algorithm is called Threshold Based Representation261

(TBR). In this algorithm, whenever the difference between two consecutive signal sam-262

ples is higher than a predetermined fixed threshold, then the positive neuron emits a263

spike. Unfortunately, while being computationally cheap to implement, TBR is known264

for leading to high reconstruction error [30], even for signals with simple dynamics.265

The Step Forward (SF) method uses a baseline value (initialised as the value of the266

first signal sample) and a fixed threshold. Suppose the absolute value of the difference267

between two consecutive samples is higher than the sum of baseline and threshold. In268

that case, the positive neuron spikes and the baseline is updated, adding the baseline. A269

variation of this encoding strategy is called Moving Window (MW), where the baseline is270

updated looking at a moving window of signal samples. The other encoding methods271

proposed in [30] have not been considered in this work because of their inherent higher272

computational complexity that is not suitable for the chosen architectural target.273

In [31], the authors describe some biological methods of encoding without consid-274

ering the reconstruction error. In all these methods, the information is encoded in the275

reciprocal spikes of several neurons, meaning that proper encoding of the signal depends276

on the number of neurons adopted. At the time of the first spike, the information is277

stored in the delay between the start of the stimulus and the neuron’s firing. In this278

method, the first neuron inhibits all the others; therefore, the information is in just279

one spike. In latency code, the information lies in the time between spikes of different280

neurons. In Rank-Order Coding (ROC), the information is encoded in the order of the281

spikes. In this method, every neuron can fire at most once for every sample (representing282

a single FFT in our case).283

3. Brain Inspired Processing284

This section describes the two main components of the brain-inspired processing285

pipeline, namely input encoding and LSNN architecture. Next section will describe the286

optimization performed to improve LSNN implementation for edge devices.287

3.1. LSNN Input Coding288

In the previous section, we discussed possible encoding methods proposed in the289

literature for LSNNs. In this section, we describe the method we applied to SHM data290

in our brain-inspired processing pipeline. An example of the input signal is shown in291

Figure 2.292

In Figure 4 the entire data flow is shown. After collecting the data from the sensor,293

we extract only the z-axis values since they are more sensitive to the vehicles passages.294

These data are collected with a sampling frequency of 100 Hz and successively down-295
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Figure 4. Data preprocessing.

sampled to 12.5 Hz. Subsequently, we get only the windows where vehicles passages296

have been detected. This was done by thresholding the signal.297

The FFT of these windows is computed. The number of input neurons has been298

selected as two possible values: 50 or 150. This choice was made because a larger number299

of inputs would have caused a matrix of input weights (W I) too large to train for such a300

small network, while a smaller number of inputs risks not extracting enough features301

from the signal [32]. So each vehicle’s window can be composed of 100 or 300 coefficients302

that, in time, is equal to 8 or 24 seconds.303

FFT coefficients are then given as input to the encoding stage. In the case of Current-304

Driven encoding, they are provided to the LSNN network one to each neuron for a305

constant time corresponding to tin f . On the other side, in the case of Event-Driven306

encoding, the ROC algorithm is applied.307

Each coefficient is thus encoded as a spike time interval. The larger the coefficient,308

the smaller the "time-to-spike". As a result, the spike time interval is inversely pro-309

portional to the value of the coefficients. As such, higher coefficients, which are more310

relevant for the damage detection because they have more energy, will fire first. Lower311

coefficients will fire later. Since tin f is the inference time for each sample, all neurons that312

have not fired for t < tin f will no longer be able to fire. This implies that the coefficients313

with low energy (no information) will not impact the network input. The applied ROC314

encoding algorithm is shown below:315

Algorithm 1: Compute Time-to-Event
input :A signal S of I coefficients and a inference time tin f
output :A Time-to-Event T array of I spiking intervals
m = min(S);
M = max(S);
for i← 0 to I − 1 do

t = (S[i]−m)/(M−m);
tcheck = round(1/t);
if tcheck ≤ tinf then

T[i] = tcheck
end

end
return T;
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Figure 5. SNN architecture.

Parameter Description Explored Values

I Input neurons 50, 150
τm Recurrent layer membrane potential decay 20, 30
τo Output layer membrane potential decay 3, 10, 30
vthc Spike threshold coefficient 0.01, 0.03
βc Adaptive threshold coefficient 1.7, 1.8
τac Adaptive threshold decay 0.5, 1.0

tin f Inference ticks 5, 10, 20
regc Loss regularization coefficent 1, 100, 300
regr Firing rate regularization coefficent 0.01, 0.001

Table 1: LSNN parameters explored

The signal S is the sequence of FFT coefficients corresponding to the observed316

acceleration window made of I coefficients. The inference time tin f is also an input of317

the algorithm as it is a network parameter.318

3.2. LSNN Architecture319

The proposed LSNN network is shown in Figure 5, and it is composed of 20 ALIF320

and two output neurons which discriminate between the two classes of the bridge. We321

isolated the most important configuration parameters of the training algorithms (hyper-322

parameters) and studied their impact in terms of LSNN computational complexity and323

internal activity with an exhaustive search. The hyperparameters that we explored324

can be divided into two classes, the network parameters and the training parameters325

(summarised in Table 1). The first class comprises all the constants that strictly concern326

the network, while the second class is composed of all the values used to reach better327

performances but that don’t feature the network. The network parameters that we328

explored are:329

• The input number (I) [50, 150] is the number of input neurons in the first layer. A330

high number create a huge W I matrix that cannot be trained by a small network,331

while a low number risks not extracting all the features of the input signal [32].332

• τm [20, 30] represents the decay of the membrane potential in the recurrent layer.333

With high values, the neuron will need more time to return to the resting potential,334

representing the membrane potential of the neuron if any inputs have not perturbed335

it.336

• τo [3, 10, 30] is the decay of the membrane potential of the output neurons.337

• vthc [0.01, 0.03]. The spike threshold (vth) of the neurons is computing as: vth =338

vthc/(1−e−δt/τm ). A high value of the vthc is translated into a higher value of the339

threshold.340

• βc [1.7, 1.8] is used to compute the increase of the adaptive threshold (ξ) in the ALIF341

neurons. Higher values of this parameter are equivalent to a greater increase in the342

spike threshold.343

• τac [0.5, 1] is used to compute the decay of the adaptive threshold (τa). τa should344

have a value comparable to the time length of the problem [19].345
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Figure 6. Flowchart of the LSNN update cycle. Neuron variables are represented with rectangles.
Simple mathematical operations are represented with circles. Matrix multiplication operations
with synaptic weights are represented by grids. Constants are represented with black circles. Data
movements are represented by arrows between operators and operands.

The training parameters that we explored are the inference time (tin f ) expressed in ticks346

[5, 10, 20]. A tick in an SNN represents a cycle to complete the dynamics integration of347

all network neurons. The actual time depends on the implementation. The inference348

time is then the number of ticks that the network uses to process the input sample. For349

the regularisation coefficient we use (regc) [1, 100, 300] and for the regularisation rate we350

use (regr) [0.01, 0.001]. The two regularisation values are used to computing the loss of351

the network:352

L f r =
1
2 ∑

j

(
1

nT

nT

∑
t=1

zt
j − regr

)2

(5)

L = Lp + L f r ∗ regc (6)

Loss is composed of two parts (eq. 6), the loss of the classification (Lp) that is computing353

with the cross-entropy and the weighted firing-rate loss (L f r). The L f r is computed as354

the difference between the firing rate activity of the network and the regr that is the355

desired firing rate [19].356

4. eLSNN: The Optimized Embedded LSNN357

The implementation of LSNNs was performed taking into account resource con-358

straints and exploiting SNN properties. In particular, sparsity in neuron response (e.g.359

firing) was exploited in order to skip processing cycles. The firing activity of neurons can360

be tuned as described in [19] using a loss value dedicated to limit the neuron activity.361

Our LSNN implementation is depicted in Figure 6 and consists of four main steps:362

(i) Membrane voltage update (v), (ii) Membrane voltage threshold update (a), (iii)363

Evaluation of the spike emission (z), (iv) Evaluation of the output (y). The diagram364

shows: x data dependencies in green, v data dependencies in blue, a data dependencies365

in red, z data dependencies in purple and y data dependencies in magenta. In the366

next sections we will describe in detail the network implementation and the performed367

optimisations.368

4.1. Membrane voltage update369

The computation involved in the membrane voltage update (v), as shown in Figure370

6 in the first blue ⊕ operator, is done through the following steps:371

1. Membrane voltage decay: v(α) := αv372

2. Contribution of inputs on membrane voltage: v(I) := W I x373

3. Contribution of internal neuronal activity on membrane voltage: v(H) := WHz374

4. Reduction of membrane voltage in case of previous spike emission: v(th) := −vthz375
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Item Naive Optimised

sum mul store sum mul store

v(α) - 1 - - 1 -
v(I) I-1 I - x̃ - 1 - -
v(H) N-1 N - z̃ - 1 - -
v(th) - 1 - 1 - -
v 4 - 1 4 - 1

Total I+N+2 I+N+2 1 x̃ + z̃ + 3 1 1

Table 2: Operations analysis for a single neuron. These operations must be executed for
each neuron (N) and for each inference tick (tin f ).

5. Update of membrane voltage: v← v + v(α) + v(I) + v(H) + v(th)
376

In Table 2 we report the operations (sum and multiply) of both the non optimized377

(Naive) and optimised version for each component of v. Overall, the operations to be378

performed are: (I + N + 2)Ntin f sum and (I + N + 2)Ntin f multiplication.379

Because of the event-driven design of the network, it is possible to implement the380

computation of the v(I) and v(H) components more efficiently. Considering the row-381

column multiplication between the matrix W (with N ×M elements) and the column382

vector x (with M× 1 elements), the operation result will be added to the vector v. When383

the elements of x can only assume binary values (xi ∈ {0, 1}) the Wx operation can384

be implemented using only sums. The following pseudo-code formally describes the385

operation:386

Algorithm 2: Optimized implementation of v ← Wx when x is a boolean
vector.

i← 0;
while i < events do

offset← x̆[i];
while n ≤ neurons do

v[n]← v[n] + W[offset];
offset← offset + neurons;

end
i← i+1;

end

Let x̆ be a list containing only the index of the non-zero elements of x. By iterating387

over the elements of x̆ we select the columns of W to be considered in the sum cycle (inner388

cycle). The sum cycle iterates over the rows of the selected column, and for each element389

accumulates its content in the result vector. The required operations will therefore be390

dependent on the number of non-zero elements in the vector x. The number of non-zero391

elements in the vector x will change with each inference tick. We then identify using the392

symbol x̃ the average number of non-zero elements of x for each inference tick.393

We then reduce the sums required for the membrane voltage update from (I +394

N + 2)Ntin f to (x̃ + z̃ + 3)Ntin f and the multiplications from (I + N + 2)Ntin f to Ntin f .395

The value of x̃ depends on the chosen event encoding. The value of z̃ depends on the396

behaviour of the network. When training the network, it is possible to minimise z̃ by397

introducing its value into the loss calculation.398

4.2. Threshold update399

Updating the threshold for the membrane voltage (a), as shown in Figure 6 in the400

first red ⊕ operator, is broken down into the following operations:401
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1. Evaluation of threshold decay: a(ξ) := ξa402

2. Threshold adjustment in case of previous spike: a(z) := z403

3. Threshold update: a← a + a(ξ) + a(z)404

4. Weighted threshold computation: a(ρ) := ρa405

5. Reference threshold augmentation v(a)
th := vth + a(ρ)406

In total, 3Ntin f sums and 2Ntin f multiplications are required to implement the adaptive407

threshold functionality.408

4.3. Spike emission check409

At each inference tick, the spike firing condition must be checked. For each neuron,410

the membrane voltage is compared with the spike threshold. In this particular imple-411

mentation, the threshold voltage is adapted to the activity of the neuron and increases as412

its activity increases. A spiking neuron is also inhibited for a period tre f called refractory413

time. Even if the neuron has a membrane voltage above the threshold during this period,414

it will not fire. To check this condition, each neuron stores the information about the tick415

of the last spike t(z)i .416

When checking the emission of a spike, as shown in Figure 6 in the first purple ♦417

operator, two conditions must therefore be checked for each neuron:418

1. The membrane voltage must be above the adaptive threshold: vi ≥ v(a)
th419

2. The neuron must not be inhibited by an earlier spike: t ≥ t(z)i + tre f420

If the above conditions are satisfied, the vector z will take the value 1 at position i,421

otherwise the value 0.422

In our implementation, instead of directly handling the vector z, we use the list of423

events z̆. Using the list of events, we can replace matrix multiplications WHz and WOz424

with sums. At the beginning of the spike emission check phase, the list z̆ of previous425

events are cleared. In the presence of a spike emission, the identifier of the spiking426

neuron will be added into the z̆ list.427

4.4. Output update428

Output neurons receive spikes generated by network neurons in the recurrent layer429

at the same tick as they are emitted. As shown in Figure 6 in the first magenta⊕ operator,430

the output neurons have a similar update cycle to the recurrent neurons:431

1. Output decay: y(β) := βy432

2. Contribution of internal neuronal activity on output: y(H) := WOz433

3. Bias contribution: y(b) := b434

4. Update of output: y← y + y(β) + y(H) + y(b)
435

Again, the calculation of y(H) requires a multiplication between the matrix WO and436

the vector z. The procedure described in 4.1 helps to lower the number of operations.437

Using the list z̆ it is possible to solve the operation WOz using sums only. The number438

of operations is then lowered from (N − 1)Otin f sums and NOtin f multiplications to439

z̃Otin f sums.440

4.5. Current-driven input441

In this work, we consider also an alternative to input events, using continuous442

(e.g. real) values in the vector x [19]. While in this case it is not possible to perform443

the optimisations described in Algorithm.2 for solving v(I) := W I x, we provide an444

optimised version of the LSNN using this type of input to evaluate the trade-offs lead445

by the two encoding methods and reported in Section 5. We note that in this case the446

contribution of internal neuronal activity v(H) (hidden/recursive layer) is still spike-447

based, however in the input-layer it is not possible to remove multiply operations as it is448

possible using input spike events.449
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Figure 7. Flowchart modified to handle current-driven input. In this application scenario the
input and output have two different time domains from the network. vin and ẑ vectors are used
to pass information from the input to the network and from the network to the output.

In the literature, networks using continuous input typically observe a sample for a450

period called the exposure time texp. Within the network exposure time, the same values451

of x are always presented. This leads to the formation of three time domains (although it452

is common for the time domains of input and output to coincide) represented in figure 7:453

• Temporal domain of the input, where the input varies over time.454

• Temporal domain of the network, for each tick in the input-time-domain the net-455

work performs texp iterations always observing the same value of x456

• Temporal domain of output, where output varies over time.457

In order to efficiently handle this LSNN variant, the time domains are decoupled by458

vectors vin and ẑ. The first vector decouples the input from the network; it is computed459

by a row-column multiplication between the matrix W I and the vector x each time the460

input changes. Then, the vector vin will be used to increment v at each tick of the network.461

The number of operations to compute v(I) then becomes (1/texp(I − 1)N + N)tin f sums462

and tin f/texp IN multiplications.463

The second vector decouples the network from the output. The output will no464

longer process the spikes coming from the network but will use the average activity of465

the network within the exposure time as information. At each tick, the network must466

accumulate the emitted spikes inside the vector ẑ. In the time domain of the output the467

content of the vector will be averaged (z̄) and used for the calculation of y(H) := WOz̄.468

The number of operations for calculating y(H) then becomes (1/texp(N − 1)O +469

z̃)tin f sums and tin f/texp NO multiplications.470

In the following, we will refer to this LSNN version as current-driven eLSNN, since471

the continuous and constant input over the exposure time can be interpreted as a constant472

current stimulus. The version working with input spikes (e.g. binary values) will be473

referred to as event-driven eLSNN instead.474

5. Experimental Result475

This section first describes the experimental setup used to test the LSNN imple-476

mentation presented in the previous sections. Then, it reports the results of the design477

trade-off characterisation for the proposed eLSNN. In particular:478

• Section 5.1 describes the Hardware-in-the-Loop system we implemented to profile479

the runtime and energy performance of the SHM application.480

• In Section 5.2, we study the accuracy of the trained eLSNNs (current-driven and481

event-driven). We evaluated the MCC on the test dataset for the first order hyper-482

parameters, which impact the energy and computational efficiency of the eLSNN483

implementation. The first-order hyper-parameters are the input number (I) and484

inference ticks (t_in f ) of the networks.485

• In Section 5.3, we study the impact of the eLSNN performance (#execution cycles)486

considering the most accurate networks for each eLSNN version (current-driven487

and event-driven). We also considered different combinations of the first-order488

parameters as a function of the activity factors of the eLSNNs (number of non-zero489

elements (spikes), both in the input (x) and hidden/recurrent layer z).490
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Figure 8. Architecture of the Hardware-in-the-Loop test system. The PXI system comprises a
PXIe-4309 Analog Input module to monitor current consumption in each stage of the pipeline. The
PXIe7858R FPGA, along with the PXIe-8880 Windows 7 controller, implements the Virtual Sensor
and allow loading MEMS readings from a CSV file in real-time, emulating a real buffered digital
MEMS node in hardware. The whole application runs on a STM32F4 development board featuring
a Cortex-M4 ARM core.

• In Section 5.4, we perform a complete characterisation of the SHM sensing node491

firmware for a network implementation having median activity-factors. This cor-492

responds to a typical behaviour of the sensor node for a real SHM application in493

terms of execution time and energy-consumption.494

5.1. Testbed495

We prepared a Hardware-in-the-Loop setup to characterise the performance and496

energy of the data acquisition and processing board. As shown in Figure 8, the testbed497

we implemented is composed of three actors: i) A development board hosting the498

STM32 MCU (System-on-Chip) on the left; ii) A data acquisition system to monitor the499

consumption of the STM32 development board (Analog Input) on the right and iii) A500

FPGA emulation module able to feed the processing unit in the system-on-chip with501

data coming from the real-world SHM application described in Section 2 in real-time502

(Virtual Sensor). (based on PXIe systems from NI [33])503

Both the Analog Input and the Virtual Sensor are part of a PXIe systems from NI [33]).504

This is a modular, LabVIEW controlled environment able to perform fast measurements505

requiring high-performance digital and analog I/O. The following three subsections506

provide further details about the PXI modules used in the experimental setup and their507

role in the pipeline characterisation.508

5.1.1. System-on-Chip509

We implemented and deployed the entire SHM pipeline on an STM32F407VG6510

MCU. It is a system-on-chip manufactured by STMicroelectronics, which features an511

ARM Cortex-M4 with a floating-point unit. The core comes with 192 KB RAM and512

1 MB FLASH memory and supports a maximum clock frequency of 168 MHz. The513

STM32F407VG6 supports multiple low-power modes and various clock frequency con-514

figurations, which allow a fine-grained tuning of the system performance depending on515

the application needs. For the sake of this work, we apply the following policies:516

• When the system is in RUN mode, the system-on-chip is always clocked at the517

maximum allowed clock frequency, equal to 168 MHz.518

• When the system fetches data from the MEMS sensor over SPI, the transfer is519

performed via DMA with the core in SLEEP mode. Before entering SLEEP mode,520

the MCU core is clocked down to 16 MHz to minimize SLEEP current consumption.521

• When the system-on-chip is not working, it is put in STANDBY mode, switching522

off the voltage regulator to achieve the lowest consumption possible. Notice that523
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we can apply such an aggressive power-saving policy since we assume our SHM524

application does not need to retain any state before one LSNN inference and the525

next inference.526

Considering the software stack employed to implement the SHM application, we in-527

terfaced the on-board peripherals using the Hardware Abstraction Layer provided by528

STMicroelectronics. Instead, the mathematical processing (e.g. FFT computation, FFT-to-529

spike conversion) is implemented using the CMSIS-DSP library primitives. It is a set of530

routines developed by ARM to deliver DSP-like functions optimized to run on Cortex531

cores.532

5.1.2. Analog Input533

The power and performance monitoring activity of the pipeline has two require-534

ments: i) Measure the current sunk by the system-on-chip at any time of the data535

acquisition and processing and ii) precisely split the current waveform into each pipeline536

stage, to detect the analysis stages that are the more power hungry or require most MCU537

cycles to be accomplished. Both requirements are met by using a PXIe-4309 ADC device538

reading 2M Samples per second and featuring 32 channels 18 bit wide. We used two of539

the available input channels to perform the following synchronous activities:540

• Sample the current sunk by the MCU using a 1 Ohm shunt resistor. Such measure-541

ment exploits a jumper available on the development board to monitor current542

consumption on the VDD of the system-on-chip.543

• Read the logic level of a debug GPIO (DBG pin, Figure 8) that is toggled by the544

application software each time a processing stage is started or completed, to asso-545

ciate each phase (e.g. SPI transfer, FFT computation, SNN inference) to its current546

consumption waveform (with negligible overhead on the application performance).547

5.1.3. Virtual Sensor548

The Virtual Sensor is an FPGA-based emulation system that allows feeding the SPI549

interface of the MCU with data taken from a trace. The trace was obtained from a real550

sensor deployment on the field. For characterisation and profiling purposes, the virtual551

sensor was connected to the MCU replacing the MEMS present in the sensor node board.552

The Virtual Sensor is completely implemented within the PXI system and is made of two553

modules sharing data through a DMA-controlled hardware FIFO:554

• PXIe-8880: The PXI system controller, which is a general-purpose CPU-based host555

running Windows 7 and LabVIEW. It loads the accelerations measured on the556

bridge from a CSV file and pushes them into a FIFO at the boundary of the FPGA557

system.558

• PXIe-7858R: The PXI FPGA module, which loads the measurements the DMA move559

from the controller to its FIFO. It acts as a digital MEMS that samples structural560

accelerations at a constant rate and stores them in an on-board buffer which can be561

accessed in-order through an SPI interface.562

5.2. Accuracy vs. first-order hyper-parameters563

As introduced in Section 2, to study the impact of the eLSNNs hyper-parameters564

and flavours on the accuracy, we conducted an exhaustive search. We evaluated the565

accuracy as the Matthews Correlation Coefficient (MCC) on the test set, which includes566

all the samples related to vehicle passages on the bride section during a randomly chosen567

day before and after the scheduled maintenance intervention.568

In Figure 9, we report on the y-axis the network accuracy measured as MCC. We569

limited the plot to those hyper-parameters configurations leading to eLSNNs with an570

MCC ≥ 0.6. This corresponds to an accuracy of 0.77. Moreover, in the same figure, we571

draw the line at the MCC = 0.75. We consider all the eLSNNs configurations achieving an572

MCC higher than 0.75 as acceptable or "good" configurations. This threshold corresponds573

to accuracy above 0.88.574
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Figure 9. Inference ticks and number of inputs impact on MCC using the Current Input and the
Event Input. Each point is a configuration of LSNN, which is characterised by its hyperparameters.

On the x-axis, we report three sets of plots. Each set corresponds to different575

inference ticks (tin f = 5, 10, 20). Inside each set, the left plot refers to the current-driven576

eLSNN, and the right plot refers to the event-driven eLSNN. Inside each of these plots,577

we report the eLSNN configurations achieving a MCC > 0.6. The percentage of these578

configurations on the total evaluated (1728 for each eLSNN flavour) is reported in the579

text on each plot’s bottom. The MCC accuracy of each configuration is reported with red580

bins for an input number of 50 and with blue bins for an input number of 150 bins. In581

the SHM application, the input number (I) corresponds to the magnitude of the spectral582

components of the FFT. It thus is equal to the double of the accelerations samples, which583

needs to be read by the sensor to compute an eLSNN inference.584

The combination of these parameters (tin f &I) constitutes the first-order hyper-585

parameter that, as we will see in the next section, impact the inference execution time586

of the eLSNNs and then their energy consumption. From the figure, we can notice587

that for the current-driven eLSNNs, the largest number of acceptable configurations is588

achieved for an input number (I) of 50. Which also corresponds to the lower complexity589

of the eLSNN computations (see Section4). Differently, for the event-driven eLSNNs,590

acceptable configurations can be achieved only with an input number (I) of 150. As591

we will see in Section5.4, this has a severe drawback on the pre-processing cost for this592

eLSNN flavour. It is also worth to note that for the current-driven eLSNNs the accuracy593

improves with larger inference ticks, having any acceptable configurations with I = 50594

and tin f = 5 but several with I = 50 and tin f = 10, 20. However, this is not the case595

for the event-driven eLSNNs for which their MCC does not improve significantly with596

progressive tin f increases. It is now interesting to evaluate these parameters’ impact in597

terms of eLSNN inference execution cycles.598

5.3. Execution time vs. activity-factors599

As described in Section 4, the optimised eLSNN algorithm we propose in this paper600

leverages the sparse nature of the spikes for saving computations. If a neuron does601

not receive a spike, it does not trigger accumulation in the membrane potential. This602

means that the computational burden of the eLSNN algorithm depends on the average603

number of non-zero elements for each inference tick in the recursive/hidden layers. This604

is true for both current-driven and event-driven eLSNNs. For the event-driven eLSNN605

only, also the input layer must be considered in this computation. To understand the606

relevance of these effects on the total eLSNN inference time, we have to analyse different607

input samples. Each sample corresponds to the FFT coefficients of the accelerations608

read by the MCU during a passage of a vehicle. More specifically, the number of spikes609

corresponding to non-zero elements in the recurrent layer during an eLSNN inference610

(denoted with z) depends on the specific input sample and network hyper-parameters.611

Differently from the recurrent/hidden layer activity (z), the input activity factors vary612
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Figure 10. A) Cycle count for the event-driven eLSNN for the best configurations (input number
with different colours, and inference ticks with different markers) computed on minimal, median
and maximal spike activities on the input-layer (x). B) Cycle count for the current-driven eLSNN
computed on minimal, median and maximal spike activities on the recurrent/hidden-layer (z).
Different colour represent different number of inputs configuration for the eLSNN. All networks
have an 10 inference ticks.

Figure 11. A) cycle count breakdown for the event-driven (event) and current-driven (current) eL-
SNN best configurations (input number - inference ticks) computed on median activity conditions.
B) Distribution of the spikes in input for the event-driven eLSNN with different configurations
(input number - inference ticks).

between the eLSNN flavour. For the current-driven eLSNNs, the input activity depends613

only on the input number (I). In contrast, for the event-driven eLSNNs, the input layer614

activity depends on the input spikes and non-zero elements in the coded inputs for all615

the ticks (x). x depends on the input sample and input number (I) as it is a property of616

the spiking input encoding.617

Figure 10.B reports on the y-axis the total number of cycles needed by the eLSNN618

to complete one inference computation on a given input sample. This number of cycles619

accounts only for the eLSNN computation after the pre-processing step. On the x-axis,620

we report the value of z, which corresponds to the number of spikes/events/non-zero621

elements in the recurrent/hidden layer integrated into all the inference ticks (tin f ).622

The different colours refer to the two different networks selected among the many623

with acceptable performance. For each type of network, we selected the ones with a624

number of inputs (I) leading to the largest (z) variation among the input samples in the625

test set.626

Then, we plot three values of z chosen for each network corresponding to the627

minimum, the maximum, and the median sample. From the plot, we can notice that628

the impact of the z is negligible with respect to the total execution time of the eLSNN629

inference. Differently, the inference time for current-driven eLSNN halves when reducing630

the input number I from 150 to 50. As the impact of z is negligible, we can ignore its631

effect in the following plots.632
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Figure 11.B reports on the y-axis the distribution of the non-zero elements in the633

input layer for each input sample in the test set for event-driven eLSNNs. The distribu-634

tion depends on the input element and the encoding, which depends on the first-order635

hyper-parameters, namely the inference ticks (tin f ) and the number of inputs (I). In the636

y-axis, we report the different configurations of the first-order hyper-parameters. From637

the plot, we can see that the number of events/spikes/non-zero elements in the input638

layer (x) is more significant and has higher variability than the same quantity in the639

recurrent/hidden layer (Figure10.B). Moreover, the number of input events/spikes/not-640

zero elements increases both in average and standard deviation with the increase of the641

input number and inference ticks.642

Figure 10.A reports for each of the different configurations of the first-order hyper-643

parameters and for the input sample corresponding to the minimum, maximum and644

median values of x the execution time of the event-driven eLSNN. We can see that both645

the first-order hyper-parameters vary the execution time. The execution time increases646

linearly with the inference ticks and with x. It is interesting to notice that for the event-647

driven eLSNNs, the input number (I) does not increase the execution time directly648

as with the current-driven eLSNNs but indirectly. Indeed, a larger input number (I)649

increases the execution time proportionally to the increase of x. Which eLSNN flavour650

and configuration should thus be preferred?651

5.4. Event-driven vs. current-driven652

This section concludes the eLSNN study by comparing the performance of the most653

performing and energy-efficient current-driven, and event-driven eLSNN averaged on654

the test set. This is obtained by evaluating the candidate eLSNNs in the median sample655

with respect to both x and z.656

Figure 11.A reports on the same plot the breakdown of the total number of cycles657

taken by the median inference time of both the current-driven and event-driven eLSNNs.658

For the current-driven networks, all the first-order hyper-parameters combinations are659

reported, while for the event-driven eLSNNs, we report only the configurations with660

inference ticks equal to 5, which corresponds to the most energy-efficient networks. By661

comparing the different networks, we can notice that the two most performing eLSNNs662

which achieves MCC ≥ 0.75 are the configuration I = 150, tin f = 5 for the event-driven663

eLSNN and I = 50, tin f = 5 for the current-driven eLSNN. The event-driven eLSNN664

requires less than half of the cycles of the current-driven eLSNN. We can conclude that665

event-driven eLSNN is significantly more efficient (> 50%) than the current-driven666

eLSNN. It must be noted that this conclusion does not account for the pre-processing of667

the input sample (affecting the input number) which is more significant for the selected668

event-driven eLSNN. It is interesting to notice that the event-driven eLSNN configured669

with I = 50, tin f = 5 is the most efficient one, but its MCC is lower (0.72) than the670

accuracy threshold of MCC≥ 0.75. Moreover, in the Figure 11.A we report with different671

patterns the number of cycles needed to perform the computational steps described in 4.672

• Phase 0: Compute of v(α)
673

• Phase 1: Compute of v(I)
674

• Phase 2: Compute of v(H)
675

• Phase 3: Compute of a(ξ)
676

• Phase 4: Compute of a(th) and a(z)
677

• Phase 5: Compute of z and insert items in z̆678

• Phase 6: Compute of y679

• Phase 7: Insert items in x̆ for next iteration.680

For the current-driven eLSNN the Phase 1 dominates the computational time since681

it must compute the vin vector by means of a complete matrix-vector multiplication.682

Phase 0 and Phase 3 involves N multiplications, and at increasing tin f their execution683

times become increasingly evident.684



Version May 12, 2023 submitted to Future Internet 19 of 22

Figure 12. SHM application current consumption patterns for the best eLSNN networks working
with current (top) and event (bottom) inputs. To better highlight the different stages of the
application, the waveforms were obtained with the MCU clock slowed down to 16 MHz, while
the SPI clock was 2 MHz.

Stage
Current-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 542 - 5.01 16.53 8.96
FFT 41 6971 38.76 127.91 5.24
ABS 26 4284 36.58 120.71 3.14
Encoding - - - - -
eLSNN 215 36036 40.26 132.86 28.56

Total 824 47291 - - 45.90
Mean - - 16.88 55.70 -

Table 3: Power report of the SHM application featuring the best eLSNNs tested. The SPI
master transfers data with a serial clock of 8 MHz. The SPI stage includes: i) The SPI
data transfer, ii) the time required by the system-on-chip to reconfigure the clock to 168
MHz when it wakes-up from SLEEP mode and iii) the conversion of sensor data from
raw integers to floating-point.

Figure 12 shows the MCU’s current consumption when executing the entire pro-685

cessing steps needed to read the sensor values through the SPI interface, pre-process686

the sample (FFT + ABS), and compute the eLSNN kernel. We report the current-driven687

eLSNN in its most efficient configuration on the left plot, and on the right plot, we report688

the event-driven eLSNN in its most efficient configuration. Even if the event-driven689

eLSNN kernel costs halves of the cycles than the current-driven eLSNN, it requires690

three times more sensor’s readings to compute an inference for an input sample. This691

increases the cycles needed to read the sensor’s data in SPI and compute the FFT and abs.692

Moreover, the event-driven eLSNN requires an additional pre-processing step consisting693

of the coding of the spectral components in spikes/events described in Section 3.694

As described in section 4.5 the version of the network with current input needs695

a matrix-vector multiplication for each input tick tinp = tin f /texp. In this use case, we696

have only one input tick and only one matmul is executed, but it is enough to increase697

the number of cycles considerably. In Figure 12.A it is possible to appreciate this phase698

because it is visible for a long period (around milliseconds 2 and 3) not present in figure699

12.B.700

Tables 3 and 4 summarises all these effects. We can notice that even if the event-701

driven eLSNN kernel takes 54% fewer cycles than the current-driven eLSNN network,702

the total computation time is 1.51x longer for the event-driven eLSNN. This is primarily703
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Stage
Event-Driven

Time Cycles Current Power Energy
[µs] [#] [mA] [mW] [µJ]

SPI 949 - 4.33 14.29 13.56
FFT 101 16968 38.17 125.96 12.72
ABS 50 8316 35.97 118.70 5.94
Encoding 32 5459 42.65 140.75 4.50
eLSNN 99 16631 38.20 126.06 12.48

Total 1231 47374 - - 49.20
Mean - - 12.11 39.97 -

Table 4: Power report of the SHM application featuring the best eLSNNs tested. The SPI
master transfers data with a serial clock of 8 MHz. The SPI stage includes: i) The SPI
data transfer, ii) the time required by the system-on-chip to reconfigure the clock to 168
MHz when it wakes-up from SLEEP mode and iii) the conversion of sensor data from
raw integers to floating-point.

due to the SPI transfer, which is 2x longer than for the current-driven eLSNN. Even with704

this extra execution time, the total time for computing the network matches the real-time705

requirements of the SHM application. Due to the lower power cost of the SPI transfer (w.706

DMA), however, the energy-consumption for the eLSNN flavours ( event-driven and707

current-driven inputs) is comparable and in the range of 46 - 49 µJ.708

In future works, we will explore temporal coding techniques and migrate the709

coding task directly in the MEMS sensor and in the time domain. These on-sensor710

coding techniques will remove the FFT cost and the amount of data to be read from the711

MEMS sensors, achieving further energy reduction in the sensor node.712

6. Conclusion713

In this paper, we presented an optimised implementation of a recurrent Spiking714

Neural Network on embedded microcontrollers for damage detection in Structural715

Health Monitoring applications. We studied the feasibility of spiking based processing716

and the trade-offs involved in using an event-based input. Thanks to this implementation,717

called eLSNN, we were able to design, implement and characterise an SNN-based718

monitoring system, where the computation is performed near to the sensor node. We719

described the optimisations we performed with respect to a naive LSNN algorithm720

present in the state-of-art to reduce computation cycles and improve energy efficiency.721

We also studied two alternative encodings of the input, showing how they impact722

performance and energy. We highlight the trade-offs between eLSNN execution and723

data transfer costs that have to be explored to select the best energy/performance724

configurations. Results of accuracy obtained on a real use case demonstrated that LSNN725

is a viable solution for damage detection in SHM, having high accuracy (MCC ≥ 0.75)726

and low cycle and energy overheads if compared with the data transfer costs. Also,727

the results highlight that moving the spike-coding directly in the sensor can lead to728

even more energy-efficient implementation. The eLSNN working with input spikes is729

more energy-efficient than the one using real (continuous) values. The promising results730

in this work open the way to the implementation of SNN-based processing on edge.731

Moreover, when compared with a state-of-art work leveraging an autoencoder (ANN)732

on the same dataset [7], the proposed eLSSN approach shows lower complexity (from733

32 000 MAC operations to 15 750 sums and 750 multiplications).734

Future work will be devoted to evaluate and compare event-based SNN approaches735

against other SHM datasets and comparing extensively with ANN algorithms.736
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