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A B S T R A C T

Third-party logistics is now an essential component of efficient delivery systems, enabling companies to
purchase carrier services instead of an expensive fleet of vehicles. However, carrier contracts have to be booked
in advance without exact knowledge of what orders will be available for dispatch. The model describing this
problem is the variable cost and size bin packing problem with stochastic items. Since it cannot be solved for
realistic instances by means of exact solvers, in this paper, we present a new heuristic algorithm able to do
so based on machine learning techniques. Several numerical experiments show that the proposed heuristics
achieve good performance in a short computational time, thus enabling its real-world usage. Moreover, the
comparison against a new and efficient version of progressive hedging proves that the proposed heuristic
achieves better results. Finally, we present managerial insights for a case study on parcel delivery in Turin,
Italy.
1. Introduction

The growth of the urban population and rising living standards have
led to a dramatic increase in the demand for services and goods. These
conditions have paved the way to a competitive environment where
companies fight for market share by continuously providing flexibility
in delivering options while maintaining high resource efficiency. Con-
sequently, the entire last-mile delivery sector is impacted, making it the
most challenging in the entire logistic chain (Perboli et al., 2021a; Sergi
et al., 2021).

Several management solutions have been developed to achieve the
desired efficiency level and hedge against the risks coming from real-
world uncertainty. The most important is third-party logistics (3PL),
which is an organization’s use of third-party businesses to outsource
elements on the distribution, warehousing, and/or fulfillment services
side (Perboli et al., 2017b). The adoption of 3PL translates into the
advantage of reducing fleet investment while maintaining the same
quality of service. This work focuses on the usage of 3PL for logistic
tasks, i.e., we consider a company booking containers from a third-
party logistic company to deliver goods. A practical example of such a
decision is when service providers secure long-term distance contracts
with the carriers (Crainic et al., 2016). In this context, the primary
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decision is related to the volume of bins to book for transportation.
Such a decision is strongly affected by demand uncertainty and possible
supply delays. As a result, researchers have developed several stochastic
models to assist the decision-making process (Perboli et al., 2014).
Among them, the most relevant is the Variable Cost and Size Bin Pack-
ing problem with Stochastic Items (VCSBPPSI) (Crainic et al., 2014a). It
considers a two-stage stochastic optimization problem characterized by
a tactical and an operational phase. During the tactical phase, the com-
pany negotiates a capacity plan with one or more 3PL firms, resulting
in medium-term contracts specifying the capacity to be used (quantity
and type of bins). The bins included in the capacity plan are chosen
in advance without exact knowledge of what items will be dispatched.
Extra capacity is purchased at a higher price during the operational
phase if the planned capacity is not sufficient. A previous study on the
VCSBPPSI has shown that commercial solvers are not able to deal with
realistic instances of the problem in a reasonable amount of time, thus
justifying the implementation of heuristics (Crainic et al., 2014a). In
particular, the progressive hedging (PH) heuristic has proven to be the
most effective (Crainic et al., 2016). However, despite its good perfor-
mance in its classical form, it is not able to solve real-world instances
when decisions must be made within a short period of time, as in e-
commerce applications. Such a drawback requires new methods, among
vailable online 28 April 2023
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which the most promising are the ones applying machine learning
(ML) techniques. In recent years, the so-called learning to optimize (or
imply L2O) have quickly surfaced as efficient and effective solutions
o many optimization problems (Chen et al., 2021). The key idea of
2O is to train a machine learning algorithm to learn the optimization
rocess over a set of training problem instances and generalize it to
ew testing problems. Even if these methods require a time-consuming
raining phase, the inference step requires negligible computational
ime, thus enabling their usage in a real-time setting. Furthermore,
hese approaches prove to have good generalization capabilities with
espect to realistic instances since they may use practitioners’ insights
ithout any architectural modification. Nevertheless, in the litera-

ure, there are two major gaps. First, only a few papers consider ML
euristics tailored for the solution of two-stage stochastic optimization
roblems (Nair et al., 2018; Dumouchelle et al., 2022). Second, ML
lgorithms are widely used together with other techniques (e.g., with
enetic algorithm Achamrah et al., 2021 or with exact solver Baldo
t al., 2023) but only a few times are used alone (Dumouchelle et al.,
022). In fact, the major limitation to directly predict the solution is
he inability to handle hard constraints (Dumouchelle et al., 2022).

This paper contributes to filling these gaps and improving the results
lready found. In particular, we introduce a new ML heuristic based on
upervised classification techniques and apply it to calculate the first-
tage decision variables of the VCSBPPSI. To assess its performance,
e compare it against the most recent and effective version of the PH
n a set of instances with different characteristics. The computational
esults show that the proposed methodology is more efficient than the
H, which paves the way to a real-time application of the solution.
oreover, the proposed ML heuristic can be easily generalized and ap-

lied to other optimization problems characterized by binary variables.
inally, we show how the ML approach can be integrated into a more
omplex last-mile process by applying it to a real case study.

To summarize, the contributions of the paper are the following:

• we improve the ML heuristic in Baldo et al. (2023) in order to deal
with a two-stage stochastic program and to provide the whole
solution of the optimization problem. This new method can be
easily applied to other two-stage stochastic problems with binary
decision variables;

• we prove that ML algorithms can be used as heuristics to solve
two-stage stochastic problems without relying on other solution
methods such as genetic algorithm, adaptive large neighborhood
search, etc.;

• we provide two new heuristics (the improved PH and the ML
heuristic) which enhance the previous results on the VCSBPPSI.

• we apply the approach to the real case study of a medium-sized
metropolitan area. The problem setting comes from collabora-
tions of the authors, including work on urban distribution in the
metropolitan area of Turin (Italy) as part of the development of
the new Logistics and Mobility Plan of the Regional Government
of the Piedmont region to be activated in 2025 (Perboli et al.,
2021a,b).

The paper is organized as follows. Section 2 covers the review of the
xisting literature. Section 3 presents the mathematical description of
he VCSBPPSI. The ML heuristic and the PH algorithm are described
n Section 4, while the experimental setting and numerical results
re presented in Section 5. In addition, interesting policy-making and
anagerial insights are derived from the real case study in Section 6.

inally, conclusions and future work are presented in Section 7.

. Literature review

In this section, we explore the literature review following two
ranches. First, we review the most promising and recent heuristics
pproaches using ML techniques. Then, we present the literature about
2

existing mathematical formulations and heuristics for the VCSBPPSI
and related problems.

The application of ML methods for the optimization process is a
recent and growing topic in the literature. The most recent surveys
on the topics include (Mele et al., 2021), which considers the appli-
cation of ML to the traveling salesman problem, Talbi (2020), which
resumes data-driven ML meta-heuristics, and Ning and You (2019),
which analyzes the applications of deep learning to mathematical
programming under uncertainty. Based on our literature analysis, the
vast majority of applications use ML to decide the optimal values of
parameters/hyperparameters of some solution techniques (Lodi and
Zarpellon, 2017; Montemanni et al., 2018; da Costa et al., 2021)
or to approximate complex terms of the objective function (Bengio
et al., 2020). Nevertheless, to our knowledge, few researchers have
directly tried to find the optimal solution to an optimization problem by
directly using ML techniques (Baldo et al., 2023; Miki and Ebara, 2019).
The advantage of these methods is that they can compute accurate
solutions in real-time applications. In particular, they can be effective
in blockchain-based solutions, where the smart contracts cannot make
use of traditional heuristic approaches, due to the consequent decrease
of the performance of the overall system (Capocasale et al., 2021;
Perboli et al., 2018a). Moreover, for most ML approaches to account
for uncertainty, it is not required to provide a proper probability
distribution.

This work focuses on applying ML to stochastic combinatorial opti-
mization problems. To the best of the authors’ knowledge, it is possible
to identify three representative papers in this setting: Mirshekarian
and Sormaz (2018), Larsen et al. (2018), and Baldo et al. (2023). The
first presents a general agent-based ML adaptation for combinatorial
optimization problems, it requires considerable tuning and does not
account for uncertainty, which prevents its application to the VCS-
BPPSI. In the second, the authors apply different ML-based heuristics
to approximate the second stage of the two-stage stochastic program.
Consequently, it reduces the computational burden related to the sce-
narios, but it leads to a non-linear optimization problem. The present
work concentrates on the first-stage decision variables, providing a
robust solution with reduced computational effort. The third paper is
an example of effective usage of the L2O stream, it presents a simple-
to-implement ML heuristic that uses classifiers to decide the variables’
values. In particular, the heuristic exploits the power of a supervised
ML algorithm that assigns to each binary variable the probability of
being 0 or 1, based on a predefined set of features; from these values,
the variables whose result is closest to the bounds are directly set to the
predicted value, while for the most uncertain ones, a run of the exact
solver is executed, with a significantly reduced search space.

A similar approach dealing with constraints and not with variables
has been proposed in Jiménez-Cordero et al. (2022). In particular,
the authors first identify offline the invariant constraints set of MILP
instances. Then, they train a machine learning method for detecting
an invariant constraints set as a function of the problem parameters
of each instance. Finally, they predict the invariant constraints set of
the new unseen MILP application and use it to initialize the constraint
generation method. This approach can be seen as the dual of the
approach proposed in Baldo et al. (2023).

The present work has its roots in the heuristic in Baldo et al. (2023)
and improves it to the point that the ML procedure can generate the
entire solution. This proves that ML approaches can be used in the
context of stochastic combinatorial optimization as a heuristic method,
whose performance can overpass those of more traditional methods
such as the PH.

The first mathematical model for the 3PL problem has been for-
mulated with the variable cost and size bin packing problem (VCS-
BPP), which is a generalization of the bin packing problem introduced
in Crainic et al. (2011). It consists of packing a set of items into a set
of heterogeneous bins (i.e., with different sizes and costs), minimizing

the cost of all used bins. Two approaches have been considered to
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account for demand uncertainty. The first one consists in mitigating
uncertainty by using demand forecast (Fadda et al., 2021). Never-
theless, this approach requires accurate tuning of parameters and it
does not compute solutions robust to uncertainty. Instead, the second
approach is to generalize the problem to its stochastic version by
considering the characteristics of items to be dispatched not known
in advance (Crainic et al., 2014a). The number of variables in this
model increases drastically and prevents the usage of standard off-the-
shelf solvers for solving realistic instances. Thus, heuristics to solve
VCSBPPSI are required.

The one that shows the best performance so far is the PH (Crainic
et al., 2016). Originally proposed in Rockafellar and Wets (1991), it is
based on the augmented Lagrangian relaxation of the non-anticipative
constraints of the stochastic problem. The PH converges to the optimal
solution if the problem is convex, while there is no guarantee of
convergence if the problem has integer variables (as for the VCSBPPSI).
Nevertheless, it has shown good performance as a heuristic for sev-
eral discrete problems (Perboli et al., 2017a; Crainic et al., 2014b).
Recent advances in PH-based heuristics have proposed using the sum
of the absolute rather than the sum of the squared (as done in the
augmented Lagrangian relaxation) (Fadda et al., 2019; Li et al., 2020).
This improvement leads to a linear programming problem instead of a
quadratic one, thus reducing the computational burden and increasing
the solver’s efficiency and effectiveness. Despite its excellent perfor-
mance, the PH algorithm requires solving several integer sub-problems.
As a result, its computational time is not negligible, and it cannot be
used in real-time applications such as logistic platform support (Kwak
et al., 2020). This discussion confirms the necessity of developing the
ML-based heuristics for the VCSBPPSI to account for the uncertainty
and to be used efficiently in real-time applications.

3. Variable cost and size bin packing problem with stochastic
items

In this section, we recall VCSBPPSI problem, its possible applica-
tions and the mathematical formulation (Crainic et al., 2014a). The
VCSBPPSI concerns the decision problem of a shipper which needs to
secure capacity of different types from a carrier, to meet uncertain
demand. The capacity types could be transportation modes (e.g., ship
or train slots, containers, space in cargo bikes or vans), specific carriers,
or storage space within given facilities. Each type has particular charac-
teristics in terms of unit cost and size. This problem setting is relevant
in different contexts, where the main ones are last-mile delivery and
long-haul transportation.

In last-mile delivery, tactical capacity planning aims to ensure that
consolidation can be efficiently performed. Specifically, managers must
secure the required numbers of vehicles of various types, which will
be available to correctly perform the transportation operations. Private
and public (e.g., transit authorities) carriers and service providers
make coalitions for capacity sharing and integrated decision-making
to consolidate freight and reduce the impact of freight transportation
and logistics on the city. Also multi-tier smart urban transportation
systems are implementing these approaches (Perboli and Rosano, 2020;
Crainic et al., 2021). The goal of such systems is to reduce the negative
impacts (i.e., costs, congestion, noise, etc.) associated with the vehicles
transporting freight in urban areas by more efficiently using their
capacity (i.e., increasing the average vehicle fill rate and reducing the
number of empty trips that are performed). These multi-tier systems are
based on the application of two general principles: (i) the consolidation
of loads originating from different shippers within the same vehicles
and (ii) the coordination of the distribution operations within the city.
In this case, the use of multiple transportation tiers enables the system
to utilize specifically adapted infrastructure and specialized fleets at
each tier to better attain the overall goal. In this context, the main
source of uncertainty is due to short-term customers’ deliveries due
to same-day service provided by companies such as Amazon (Perboli
3

Fig. 1. Graphical representation of the sequence of decisions and stages.

et al., 2021a), and VCSBPPSI aims to ensure that consolidation can be
efficiently performed by forecasting the proper mix of vehicles serving
the different tiers.

Instead, in long-haul transportation, the VCSBPPSI is more related
to tactical capacity planning. The shipper negotiates multi-type capac-
ity in advance and uses it to perform its shipping or storage activities
repeatedly, e.g., every day, week, or month, over a certain planning
horizon, e.g., one semester, season, or year. The output of this ne-
gotiation is a medium-term contract, which includes the quantity,
i.e., the number of units, the capacity of each type, the costs to use the
contracted capacity (Crainic et al., 2014a). Indeed, given the time lag
that usually exists between the signing of the contract and the logistics
operations, as well as the hazards and risks associated with predicting
future supply and demand levels, several sources of uncertainty are
affecting the contract negotiation.

The source of uncertainty we consider in the VCSBPPSI is the
demand, i.e., the orders that the shipper transports or stores. Indeed,
even in the most ‘regular" context of operations, the demand fluctuates
in time and what one observes at any given occurrence of activity
is generally different from a single-value (also called point forecast)
prediction of the number of units to transport or store and the size
of each of those units. This may result in insufficient booked capacity
available on the shipping day, compromising the fulfillment of the
contract and generating additional costs to handle the situation.

The VCSBPPSI problem is described as a two-stage stochastic pro-
gram. In the first stage the decision maker, which we assume to be
a company, has to rent some bins from a 3PL provider. Then, in
the second stage, all the information about the items is available,
and the decision maker has to decide to rent more bins. A graphical
representation of the sequence of decisions and stages is depicted in
Fig. 1.

Let us consider a set of scenarios  with cardinality 𝑆. Since the
information related to the items is unknown in the first stage, we define
the set of items to be packed in scenario 𝑠 as 𝑠. Each item 𝑖 ∈ 𝑠
has a random volume 𝑣𝑠𝑖 . Bins are divided into two sets: the set of
bins available during the first stage  and the set of bins available in
scenario 𝑠, 𝑠. Each bin 𝑗 ∈  and 𝑘 ∈ 𝑠 is characterized by a cost 𝑐𝑗
and 𝑐𝑘 and by a volume 𝑉𝑗 and 𝑉𝑘, respectively. Notice that both bin
costs and volumes are deterministic because they are known in advance
and represent a shared knowledge between the decision-maker and
the 3PL provider. Since the second-stage bins are booked on the spot
market and not ahead, we consider that 𝑐𝑘∕𝑉𝑘 > 𝑐𝑗∕𝑉𝑗 ∀ 𝑗 ∈  𝑘 ∈ 𝑠.

The model considers the following binary decision variables:

• 𝑥𝑠𝑖𝑗 , 𝑖 ∈ , 𝑗 ∈  ∪ 𝑠, 𝑠 ∈  equal to 1 if the item 𝑖 is packed in
the bin 𝑗 in scenario 𝑠;

• 𝑦𝑗 , 𝑗 ∈  equal to 1 if bin 𝑗 is booked;
• 𝑧𝑠𝑘, 𝑘 ∈ 𝑠 equal to 1 if bin 𝑘 is booked in scenario 𝑠.

The VCSBPPSI formulation is

min
∑

𝑗∈
𝑐𝑗𝑦𝑗 +

∑

𝑠∈
𝑝𝑠(

∑

𝑘∈𝑠
𝑐𝑘𝑧

𝑠
𝑘) (1)

s.t.
∑

𝑗∈
𝑥𝑠𝑖𝑗 +

∑

𝑘∈𝑠
𝑥𝑠𝑖𝑘 = 1, ∀𝑖 ∈ 𝑠, ∀𝑠 ∈  (2)

∑

𝑣𝑠𝑖𝑥
𝑠
𝑖𝑗 ≤ 𝑉𝑗𝑦𝑗 , ∀𝑗 ∈  , ∀𝑠 ∈  (3)
𝑖∈𝑠
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∑

𝑖∈𝑠
𝑣𝑠𝑖𝑥

𝑠
𝑖𝑘 ≤ 𝑉𝑘𝑧

𝑠
𝑘, ∀𝑘 ∈ 𝑠, ∀𝑠 ∈  (4)

𝑥𝑠𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑠, ∀𝑗 ∈  (5)

𝑥𝑠𝑖𝑘 ∈ {0, 1}, ∀𝑖 ∈ 𝑠, ∀𝑘 ∈ 𝑠 (6)

𝑦𝑗 ∈ {0, 1}, ∀𝑗 ∈  (7)

𝑧𝑠𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝑠, (8)

here 𝑝𝑠 is the probability of realization of the scenario 𝑠 ∈ . The
bjective function (1) minimizes the sum of the cost of booking the
irst-stage bins and the expected cost associated with the extra capacity
ought on the spot market. Constraints (2) ensure that each item is
acked in a single bin. Constraints (3), and (4) make sure that the
apacity of each bin is not exceeded. Finally, Constraints (5)–(8) specify
he domain of the decision variables.

Model (1)–(8) has 𝐽 +𝐽 ∑

𝑠 𝐼𝑠+
∑

𝑠 𝐾𝑠+
∑

𝑠 𝐾𝑠𝐼𝑠 variables, where the
erms account for 𝑦𝑗 , 𝑥𝑠𝑖𝑗 , 𝑧

𝑠
𝑘, and 𝑥𝑠𝑖𝑘, respectively. If just one or no sce-

arios are considered, the problem boils down to the variable sized bin
acking problem. This problem contains the classical one-dimensional
in packing problem as a particular case. There, all the bins have the
ame capacity and cost. Since the bin packing problem is an NP-hard
roblem (Garey, 1979) thus, also the VSBPP is NP-hard (Correia et al.,
008) as well as the VCSBPPSI.

It is worth noting that considering deterministic bin volumes in
he second stage (i.e., 𝑉𝑘 instead of 𝑉 𝑠

𝑘 ) does not entail a modeling
restriction. In fact, 𝑉𝑘 affects Constraints (4) only and, by dividing both
terms of the equation for 𝑉𝑘, we obtain
∑

𝑖∈𝑠
𝜓𝑠𝑖 𝑥

𝑠
𝑖𝑘 ≤ 𝑧𝑠𝑘,

where 𝜓𝑠𝑖 = 𝑣𝑠𝑖 ∕𝑉𝑘 is a random coefficient even if 𝑉𝑘 is not. Thus, by
considering a suitable distribution for 𝑣𝑠𝑖 , it is possible to incorporate
the effect of stochasticity in the second-stage volumes. Moreover, it is
possible to model an item whose order is known in the first stage by
setting 𝑣𝑠𝑖 = 𝑣̄𝑖, ∀𝑠 ∈ .

Finally, please notice that model (1)–(8) can be infeasible if the vol-
ume of the bins is not sufficient to contain all the items. Nevertheless, in
the following, we do not consider this issue since usually the number of
bins available through 3PL providers is much greater than the volume
of the bins to allocate.

4. Solution heuristics

In this section, we present the proposed ML heuristic in 4.1. Since
our goal is not only to prove its effectiveness but also to compare
its performances with another state-of-the-art heuristic, we consider
an improved version of PH whose traditional version has been used
in Crainic et al. (2014a). We present the heuristic in Section 4.2 for the
sake of completeness.

4.1. Machine learning heuristic

This section introduces the ML heuristic based on a supervised
classifier applied to the first-stage variables. We are not interested in
the second stage variables, since the real decisions that have to be
implemented are the ones of the first stage (Birge and Louveaux, 1997).
The main idea is to classify each bin according to whether it belongs
to the set that must be booked or not by using its characteristics.
Intuitively, given a set of bins and items to deliver, it is reasonable
to assume that the bins characterized by the lowest cost per unit of
volume will be in the solution. However, this may lead to a simplistic
and sub-optimal decision rule, i.e., to book all the bins with a cost per
unit lower than a threshold. The ML heuristic generalizes this guess
by considering more features (e.g., the exact value of the continuous
4

relaxation of the associated decision variable, reduced costs, etc.) and
a more sophisticated decision rule, provided by the non-linearity of the
ML classifiers.

In particular, for each first-stage bin 𝑗 ∈  , a vector of features 𝑓 𝑗
is computed. This vector is fed into a classifier which has been trained
to compute 𝑦̂𝑗 , an estimation of 𝑦𝑗 . In other words, the classifier defines
two classes of bins: those used in the solution (𝑦̂𝑗 = 1) and those that
are not (𝑦̂𝑗 = 0).

The training dataset is built by collecting the features and the
respective optimal value of 𝑦𝑗 for all the items 𝑗 of several instances.
Thus, the training dataset is made by a set of observations (𝑓 𝑗 , 𝑦𝑗 ). To
further clarify this procedure, we present a pseudo-code in Algorithm
1.
Algorithm 1 Training set building.
1: 𝐷 = ∅
2: for 𝑘 = 1, 2, ...𝐾 do
3: Generate a problem instance
4: 𝑦← solution of the problem (1)–(8).
5: for 𝑗 = 1, 2, ...𝐽 do
6: Compute the features 𝑓 𝑗
7: Add to 𝐷 the features 𝑓 𝑗 and the label 𝑦𝑗
8: end for
9: end for

Since the classifier acts as a general function that for each bin
computes the associated 𝑦𝑗 variables, the features selected must collect
information on the quality of the single bin as well as the interaction
between the other bins. In Table 1, we summarize the considered
features with a short description and the corresponding equations to
compute them. In particular, we consider a first set of features describ-
ing the characteristics of the single bin from an economic point of view
(Relative cost sum, Relative cost max Unitary cost) as
well as from a physical point of view (Relative capacity sum,
Relative capacity max). Despite being related to every single bin,
these features are normalized with respect to the characteristics of the
other bins. Since the best normalization procedure is not known a pri-
ori, several features consider different strategies. Of course, we expect
that when applying feature selection just a small subset of them would
be selected. Then, we consider features collecting the information about
the likelihood to have a particular bin in the final solution, namely
Continuous relaxation, Reduced cost, Items placed avg,
Items placed max and Items placed min. All these quantities
are obtained by solving the continuous relaxation of the model, thus
they can be computed really quickly. While Continuous relax-
ation and Reduced cost measure the likelihood of a given bin to
be booked, Items placed avg, Items placed max and Items
placed min measure their utility in the second stage. Since 𝑥𝑠𝑖𝑗 is equal
to one if the item 𝑖 is assigned to container 𝑗 in scenario 𝑠, the greater
is the ∑

𝑗 𝑥
𝑠
𝑖𝑗 , the more the usefulness of bin 𝑗. Here, again we propose

a different way to measure the same quantity and we expect that the
feature will select just a few of them. Moreover, Items capacity and
Items capacity quant measure the number of items each bin can
contain. Bins with high values of these coefficients can be successfully
used to hedge against the unexpected volume in the second stage of
the problem. Finally, Unitary cost wrt ss avg, Unitary cost
wrt ss max, Unitary cost wrt ss min measure the economic
convenience of using a first stage bin against a second stage one. This
coefficient is particularly useful to detect possible bins whose unitary
costs are not too convenient with respect to the ones in the second
stage.

The computation of the proposed features can be done in polyno-
mial time since the most expensive operation is to solve the continuous
realization of Model (1)–(8). It is interesting to point out that from a
general point of view, the ML heuristic can be seen as a complex de-
cision rule similar to the precedence rule used in scheduling problems.
In fact, as in scheduling applications we use a given feature (earliest
due date, weighted shortest processing time first, etc.) to decide which
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Table 1
Feature description and computation.
Feature name Description Expression

Relative cost sum Relative cost of bin 𝑗, normalized through summation 𝑐𝑗
∑

𝑗∈ 𝑐𝑗

Relative cost max Relative cost of bin 𝑗, normalized through maximum 𝑐𝑗
max𝑗∈ 𝑐𝑗

Relative capacity sum Relative capacity of bin 𝑗, normalized through summation 𝑉𝑗
∑

𝑗∈ 𝑉𝑗

Relative capacity max Relative capacity of bin 𝑗, normalized through maximum 𝑉𝑗
max𝑗∈ 𝑉𝑗

Unitary cost Unitary cost of bin 𝑗 , defined as its ‘‘gain’’ 𝑐𝑗∕𝑉𝑗
max𝑗∈ (𝑐𝑗∕𝑉𝑗 )

Continuous relaxation
solution

The value of 𝑦𝑗 in the continuous relaxation of Model (1)–(8) –

Reduced cost The normalized value of the reduced cost 𝑟𝑗 of the bin in the continuous
relaxation of Model (1)–(8)

𝑟𝑗
max𝑗∈ 𝑟𝑗

Items placed avg The average quantity of the items placed into the bin 𝑗 in the continuous
relaxation of Model (1)–(8)

1
𝑆

∑

𝑠∈
∑

𝑖∈ 𝑥
𝑠
𝑖𝑗

Items placed max The maximum quantity of the items placed into the bin 𝑗 in the continuous
relaxation of Model (1)–(8)

max𝑠∈
∑

𝑖∈ 𝑥
𝑠
𝑖𝑗

Items placed min The minimum quantity of the items placed into the bin 𝑗 in the continuous
relaxation of Model (1)–(8)

min𝑠∈
∑

𝑖∈ 𝑥
𝑠
𝑖𝑗

Items capacity The theoretical number of item that the bin may contain 𝑉𝑗
1
𝑆

∑

𝑠∈
1
𝐼𝑠

∑

𝑖∈𝑠 𝑣
𝑠
𝑖

Items capacity quant The theoretical item capacity, where 𝑞(𝑣𝑠𝑖 , 0.8) is the 0.8 quantile of the 𝑣𝑠𝑖
𝑉𝑗

1
𝐼

∑

𝑖∈ 𝑞(𝑣
𝑠
𝑖 ,0.8)

Unitary cost wrt ss avg
The unitary cost of the bin with respect to estimations of the second-stage unitary
cost, defined through averaging, maximum and minimum functions (𝑔𝑗 = 𝑐𝑗∕𝑉𝑗 )

𝑔𝑗
1
𝐾

∑

𝑘
1
𝑆

∑

𝑠∈𝑆 𝑔
𝑠
𝑘

Unitary cost wrt ss max 𝑔𝑗
max𝑘

1
𝑆

∑

𝑠∈𝑆 𝑔𝑘

Unitary cost wrt ss min 𝑔𝑗
min𝑘

1
𝑆

∑

𝑠∈𝑆 𝑔
𝑠
𝑘

𝑝
s
c
i

1
1
1
1

operation must be processed first, the ML heuristic uses a complex
decision function based on a set of features to decide which first stage
bins to book.

Finally, it is worth noting that the decision-maker can introduce
other features to add particular insights (e.g., the risk or financial expo-
sition of the provider of bins 𝑗, or integrating with IoT data Malagnino
et al., 2021; Cagliero et al., 2018). This fact is indeed one of the main
strengths of the presented heuristics. Another one is its generality and
the possibility of applying it to every two-stage stochastic problem
characterized by binary variables.

4.2. Customized progressive hedging

The PH consists of an augmented Lagrangian relaxation of the
non-anticipative constraints. Its convergence to the optimal solution is
guaranteed if the problem is convex, and it has proved to be an effective
heuristic in several cases when convexity is not guaranteed (Fadda
et al., 2019).

Since Model (1)–(8) separate the decision variables of the first and
second stages, it does not have non-anticipative constraints. Hence, to
apply the PH framework, we replace each first-stage variable (𝑦𝑗) with
new decision variables, one for each scenario (𝑦𝑠𝑗), and we add the
following non-anticipative constraints:

𝑦𝑠𝑗 = 𝑦𝑠
′
𝑗 ∀𝑠 ≠ 𝑠′ with 𝑠, 𝑠′ ∈  and 𝑗 ∈  ,

which can be rewritten as

𝑦𝑠𝑗 = 𝑦̄𝑗 ∀𝑠 ∈  , 𝑗 ∈  , (9)

where 𝑦̄𝑗 =
∑

|𝑆|
𝑠=1 𝑝𝑠𝑦

𝑠
𝑗 . The PH takes advantage of Lagrangian relaxation

f Constraints (9) by splitting the original problem in |𝑆| indepen-
ent sub-problems. As mentioned above, the PH is the augmented
agrangian relaxation of the non-anticipativity constraints. The term
‘augmented’’ refers to the fact that, in order to increase the speed of
onvergence, the typical PH scheme adds the squared 𝑙2 norm of the
rror term (i.e., given 𝑢, 𝑣 ∈ R𝑛, ‖𝑢 − 𝑣‖22 =

∑𝑛
𝑖=1(𝑢𝑖 − 𝑣𝑖)

2) to the cost
unction. To maintain the problem’s linearity, we used a customized
ersion of the PH, proposed by Fadda et al. (2019) and successfully
pplied by Li et al. (2020). In this customized version, the 𝑙 norm is
5

2

replaced with the 𝑙1 norm (i.e. given 𝑢, 𝑣 ∈ R𝑛, ‖𝑢−𝑣‖1 =
∑𝑛
𝑖=1 |𝑢𝑖 − 𝑣𝑖|).

As a result, for each scenario 𝑠, the following problem is obtained:

min
∑

𝑗∈
𝑐𝑗𝑦

𝑠
𝑗 +

∑

𝑘∈𝑠
𝑐𝑘𝑧𝑘 +

∑

𝑗∈
𝜃𝑠|𝑦̄𝑗 − 𝑦𝑠𝑗 |

s.t. (2), (3), (4), (5), (7) and (8).
(10)

where 𝜃𝑠 is the penalty term that weights the difference between the
different solutions of the scenario problems.

The overall heuristic is outlined in Algorithm 2, where 𝜌 is the
Lagrangian multiplier associated with the non-anticipative constraints,
and 𝜀 is a stopping parameter for ending the algorithm if 𝑔(𝑘) =
𝑠
∑

|𝑆|
𝑠=1 ‖𝑦

(𝑘) − 𝑦𝑠(𝑘)‖1 is small enough. If the condition (9) holds, we
ay that the solutions have reached a consensus and the algorithm
onverges. As the reach of the consensus in a mixed-integer problem
s not guaranteed, a variable fixing procedure is used if needed.
Algorithm 2 Customized progressive hedging.
1: 𝑘 := 0
2: 𝑔(𝑘) := + ∞
3: 𝑦̄(𝑘) := 0
4: 𝜃(𝑘)𝑠 := 0 ∀ 𝑠 ∈ 𝑆
5: while 𝑔(𝑘) ≥ 𝜀 do
6: for 𝑠 in 𝑆 do
7: 𝑦(𝑘)𝑠 ← Solution of the problem (10).
8: 𝜃(𝑘+1)𝑠 ∶= 𝜌 |𝑦̄(𝑘) − 𝑦(𝑘)𝑠 |

9: end for
0: 𝑦̄(𝑘+1) ∶= 𝑝𝑠

∑

|𝑆|
𝑠=1 𝑦

(𝑘)
𝑠

1: 𝑔(𝑘) ∶= 𝑝𝑠
∑

|𝑆|
𝑠=1 ||𝑦

(𝑘) − 𝑦𝑠(𝑘)||1
2: 𝑘 := 𝑘 + 1
3: end while

In the following, with a slight abuse of notation, PH refers to the
described technique.

5. Numerical results

This section reports the numerical experiments for assessing the
performance of the proposed heuristics. In particular, we start by pre-
senting the instance generation procedure in Section 5.1. In Section 5.2,
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Table 2
Parameters used for instance generation.

Instance type benchmark small medium large

Max items 100 1000 2000 3000
Known items 50 500 1000 1000
Min volume 3 10 3 3
Max volume 20 15 15 5
Bins available 10 120 60 30
Max bins second
stage

10 120 60 30

Min bin capacity 10 10 50 100
Max bin capacity 500 50 100 500

we study the out-of-sample stability of the approaches. Moreover, in
Sections 5.4 and 5.5 we present the implementation of the ML heuristic
and the feature selection process, respectively. Finally, in Section 5.6,
the optimality gaps of the two heuristics with respect to the exact solver
are quantified, and in Section 5.7 the comparison between the PH and
the ML heuristic on large instances is performed. All the computation
experiments are performed on an Intel Core i7-9750H CPU @2.60
GHz. The exact solver used for comparison is Gurobi 9.1.2 (Gurobi
Optimization, LLC, 2021) (the source codes are available upon request).

5.1. Instance generation

The instance generator procedure generalizes the one in Crainic
et al. (2014a). In particular, for each instance, we consider the follow-
ing parameters:

• Max items: the maximum number of items that must be shipped,
i.e., the maximum cardinality of 𝑠 over all the scenarios;

• Known items: the number of items with known volumes (i.e.,
the one for which 𝑣𝑠𝑖 = 𝑣̄𝑖, ∀𝑠 ∈ );

• Min volume and Max volume: the minimum and maximum
volume of each item;

• Bins available: the number of bins available during the first
stage;

• Max bins second stage: the maximum number of bins in the
second stage, i.e., the maximum cardinality of 𝑠 over all the
scenarios;

• Min bin capacity and Max bin capacity: the maximum
and minimum volume of the bin capacity.

In the experiments, four types of instances are considered, namely,
small, medium, large, and benchmark. The small instances
represent situations in which each bin may contain at most a few items;
this is common in applications such as food delivery, in which the
freight is delivered by bikes. The large instances model bins that may
contain several items; this is a setting when large vans and containers
are considered for transportation. The medium instances have inter-
mediate characteristics. The benchmark instances have the highest
variability but the lowest dimension, so they are used to compare the
two heuristics with respect to the exact solver and to train the ML
heuristics.

The parameters for each type of instance are shown in Table 2.
Given the parameters, the following operations for the instance’s

generation are performed:

• The number of items for each scenario is sampled from a uniform
in [Known items, Max items].

• For each item, its volume is uniformly sampled in [Min volume,
Max volume] (if the item is deterministic, only one realization
is considered for all the scenarios).

• The number of bins available during the second stage is sampled
from a uniform in [0, Max bins second stage].

• For each bin, its capacity is uniformly sampled in [Min bin
capacity, Max bin capacity].
6

• The costs for the first-stage bin 𝑗 ∈  is 𝐶𝑗 = 𝑉 2𝜂
𝑗 , where 𝜂 is

uniformly sampled from [0.7, 1.3] (Crainic et al., 2014a).
• The costs for the second-stage bin 𝑘 ∈ 𝑠 is 𝐶𝑗 = 𝑉 2𝜌

𝑗 , where 𝜌 is
sampled uniformly from [1.4, 1.8] (Crainic et al., 2014a).

s discussed in Section 3, we consider model (1)–(8) to be feasible.
rom a practical point of view, we achieve that by enforcing that the
um of the volumes of the items is smaller than the sum of the volumes
f the bins and that the volume of each bin is much greater than the
ize of each item. These two assumptions are reasonable since in several
pplications the number of bins available through 3PL providers is
nough to contain all the items and the volume of the parcels is smaller
han the one of the bins.

.2. Stability test

Before starting with the experiments, it is necessary to compute the
ut-of-sample stability of the proposed model (Birge and Louveaux,
997). The procedure used is standard: we generate 𝑆 scenarios and
se them to solve Model (1)–(8). We then generate 𝑆′ ≫ 𝑆 new
cenarios (called ‘‘out-of-sample’’ because they are not used for the
olution computation), and we compute the average cost over the 𝑆′

cenarios by fixing the first-stage solution obtained. The percentage
ifference between the optimal value of Model (1)–(8) and the obtained
verage for different values of |𝑆| is shown in Fig. 2. In particular, for
ach value of 𝑆, we consider 𝑆′ = 10000, and we average the results
ver a 100 instance of the benchmark type. As the reader can notice,
50 scenarios are needed to have a percentage gap lower than 3%. Thus,
e set 𝑆 = 150 for the exact method in the following.

The effect of the number of scenarios has to be quantified in the
roposed heuristics as well. In general, we expect that the greater the
umber of scenarios 𝑆, the better the solution performance in the out-
f-sample test. Therefore, we consider the average gap between the
olution obtained using 𝑆 scenarios and the one obtained by using 5%
ore scenarios (i.e., (1+0.05)𝑆). In other words, we are considering the
arginal gain from adding 5% more scenarios to the solution. Figs. 3

nd 4 show the results, which were averaged over 300 instances (100
mall, 100 medium and 100 large).

For the ML heuristics, 110 scenarios are enough to have a marginal
ain from adding more scenarios close to zero. Instead, the PH needs
50 scenarios. In the following, we set 𝑆 = 150 for the PH and 𝑆 = 110
or the ML heuristics.

.3. Exact method performance analysis

In this section, we analyze the solutions’ characteristics and the
roperties of the mathematical model. In particular, we consider the
enchmark instance, and we set different numbers of items and bins
vailable in the two stages. For each combination, we compute the
ollowing:

• the computational time of the exact solver;
• the fraction of the total cost due to the renting of first-stage bins

(first-stage cost);
• the expected value of perfect information (𝐸𝑉 𝑃𝐼) computed as
𝐸𝑉 𝑃𝐼 = 𝑅𝑃−𝑊𝑆

𝑅𝑃 , where 𝑅𝑃 is the optimal value of the recourse
problem, and 𝑊𝑆 is the optimal value of the wait-and-see prob-
lem (i.e., the problem that assumes perfect knowledge of the
future). For the 𝑅𝑃 computation, we consider 150 scenarios, while
we compute the 𝐸𝑉 𝑃𝐼 by using 1000 out-of-sample scenarios;

• the value of the stochastic solution (𝑉 𝑆𝑆) computed as 𝑉 𝑆𝑆 =
𝐸𝐸𝑉 −𝑅𝑃
𝐸𝐸𝑉 , where 𝐸𝐸𝑉 is the expected value of using the solution

of the expected value problem. Because of the stochasticity in-
fluence, the second stage sets 𝑠 and 𝑠 to compute the expected
value problem, we consider the sets ̄ and ̄ obtained by selecting
all the items and bins that are present in more than 50% of the
scenarios. As for the 𝐸𝑉 𝑃𝐼 , the 𝑅𝑃 is computed by considering
150 scenarios, and the 𝑉 𝑆𝑆 is computed using 1000 out-of-sample

scenarios.
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Fig. 2. Exact approach stability test results.
Fig. 3. PH heuristics stability test results.
Fig. 4. ML heuristics stability test results.
The obtained results are shown in Table 3. All the values are av-
eraged on 10 instances. As expected, the computational time increases
as the number of items and bins increases. We do not solve instances
with more than 150 items, 10 first-stage bins, and 10 second-stage bins
since the exact solver generates an out-of-memory exception.

It is interesting to note that the more items and second-stage bins
that are considered, the more the percentage of the first-stage cost
decreases. The reason for this is that waiting to allocate items with
a wider set of alternatives in the second stage becomes more conve-
nient. Moreover, having more bins in the second stage increases the
7

probability of a convenient bin appearing, along with the fact that the
volume and quantity of the items become fully known in the second
stage, making the second-stage bins more attractive. In every instance,
50 items are deterministically generated (as stated in Table 2). Despite
this, the first-stage cost is never 100% since, with the exception of a
few instances, the first-stage capacity is not enough to pack all the
items. As can be seen, 𝐸𝑉 𝑃𝐼 decreases as the number of second-stage
bins increases. The same behavior can be observed for the 𝑉 𝑆𝑆. This
effect is due to the lower importance of hedging against risk in the
first stage when there are more bins in the second stage. Nevertheless,
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Table 3
For a different instance dimension, the computational time of the exact solver, the fraction of the cost given by the first-stage
bins, the 𝐸𝑉 𝑃𝐼 , and the 𝑉 𝑆𝑆 are computed.

Items Bins Comp. time [s] First-stage cost [%] EVPI [%] VSS [%]

f.s. s.s.

50 5 5 4.5 (2.4) 98.8 (0.8) 21.7 (16.8) 129.1 (34.4)
75 5 5 12.4 (3.8) 82.4 (2.4) 16.7 (17.2) 137.4 (54.7)
100 5 5 45.1 (4.2) 75.8 (3.5) 18.3 (13.6) 72.3 (31.1)
125 5 5 129.3 (10.7) 62.1 (3.7) 5.4 (8.8) 81.3 (37.4)
150 5 5 510.2 (21.4) 65.9 (3.4) 9.6 (9.1) 84.0 (32.9)
50 5 10 75.4 (1.8) 95.3 (0.5) 12.4 (11.4) 48.5 (31.2)
75 5 10 198.7 (10.5) 66.9 (5.4) 7.3 (8.1) 53.0 (19.0)
100 5 10 1074.4 (64.6) 67.8 (6.3) 10.7 (10.6) 60.0 (43.9)
125 5 10 1235.7 (91.3) 62.9 (6.5) 11.3 (12.1) 78.6 (43.8)
150 5 10 1384.9 (111.9) 60.9 (5.2) 3.1 (5.8) 53.2 (18.9)
50 10 5 5.0 (3.2) 97.1 (1.3) 26.3 (17.3) 126.3 (74.3)
75 10 5 10.2 (4.2) 84.3 (6.4) 18.9 (15.9) 129.5 (60.8)
100 10 5 14.3 (5.6) 81.3 (5.8) 15.9 (14.0) 116.5 (55.9)
125 10 5 86.5 (11.2) 80.3 (4.3) 16.8 (12.4) 76.5 (27.5)
150 10 5 446.8 (23.7) 77.8 (7.2) 12.6 (11.5) 72.7 (32.0)
50 10 10 50.5 (9.2) 91.8 (2.2) 10.2 (10.2) 53.6 (39.1)
75 10 10 274.7 (15.6) 80.0 (5.1) 10.5 (11.3) 85.8 (56.4)
100 10 10 2028.1 (129.9) 77.5 (5.9) 11.4 (11.0) 60.9 (31.5)
125 10 10 2828.2 (213.5) 67.4 (6.8) 8.6 (7.9) 55.0 (19.8)
150 10 10 3755.0 (401.3) 66.2 (6.6) 9.0 (9.1) 54.2 (20.1)
while 𝐸𝑉 𝑃𝐼 is always lower than 30%, the 𝑉 𝑆𝑆 lowest value is
48.5%, which generates poor performance in the application. This poor
performance is also due to the definition of the 𝐸𝑉 𝑃𝐼 for a problem in
which uncertainty affects the second-stage sets (𝑠 and 𝑠). Since an
ad-hoc discussion of this topic is beyond the scope of the present paper,
we will address it in future work.

5.4. Machine learning heuristic

In this section, we explore different configurations for the ML
heuristic. We considered 12 different classification approaches for the
ML heuristic and compared their performances during the experimental
phase. The considered classifiers are as follows:

• KNN: The K neighbors classifier checks the distance of the new
data from the so called centroid. Then the new data is associated
to the closest centroids.

• L_SVM: The support vector machine with a linear kernel is a well-
known robust classification method, the intuition behind it is to
draw a hyper-plane in the data space to maximize the distance
between points belonging to different classes identified by this
hyper-plane. The standard version of the distance measure is the
linear kernel.

• RBF_SVM: The support vector machine with a radial basis func-
tion (RBF) kernel ia a more sophisticated version of the SVM that
uses the kernel trick to identify the distance through the RBF
function.

• GP: The Gaussian process classifier with an RBF kernel offers the
great potential of GP regression adaptability and a closed-form
solution.

• DT: The decision tree classifier divides a dataset into smaller
subsets based on the chosen criteria. The current approach uses
the entropy criteria for randomly splitting the data.

• RF: The random forest classifier consists of multiple random DT
classifiers linked together, which means that RF is an ensemble
learning method. Hence, the final class is assigned by the majority
of the trees, which preserves the method from overfitting.

• NN_1l: The multi-layer perceptron (MLP) classifier with 1 hidden
layer of 100 neurons. The number of features defines the input
layer size, and the output neuron provides the class identification.

• NN_ml: A convolutional neural network (CNN) consisting of 3
hidden layers with a size of 25, 50, 15 neurons, respectively. The
8

input layer is defined by the number of features for all the feed-
forward CNN. This structure of CNN is classified as a deep neural
network and can construct more complex functions.

• AB The AdaBoost classifier is a meta-estimator, obtained by fit-
ting a chosen classifier (DT in this case) and then making addi-
tional copies of one on the same dataset, but with the additional
adjustment of the weights for incorrectly classified instances.

• LR: Logistic regression is a classifier built on statistical regression,
where the output is categorized with a 0 or 1 label, depending on
the probability of belonging to a specific class.

• LDA: Linear discriminant analysis is represented by the projection
of all data points into a line, with the further combination of
them into classes based on their distance from a chosen point
or centroid. This classifier has the advantage of dimensionality
reduction but is best fitted for the linear relations in the data.

• LSTM: The long short-term memory network-based classifier is
based on recent advancements in the recurrent NN structure,
which provides us with short-term memory. A very basic version
of LSTM with 1 hidden layer of 50 neurons is applied.

All the outlined approaches were implemented with the help of the
Scikit-learn library (Pedregosa et al., 2011) and we set all the methods
to return a 0–1 label. In fact, several ML techniques may produce results
between 0 and 1 instead of pure 0–1 label. Such algorithms’ results
can be associated with the probability of a given item being selected in
the optimal solution. In such a case, it is possible to obtain a solution
to the problem by fixing a threshold on that probability. Nevertheless,
this threshold is a hyper-parameter of the algorithm requiring ad-hoc
tuning. Thus, for the sake of simplicity, we just consider ML algorithms
that return a label postponing the investigation of more general ML
techniques to future study.

The training set for the classifiers is generated by solving multiple
benchmark problems with the exact solver and using the optimal solu-
tions as labels. The training set used for the experiments includes 400
solved instances, for a total of 4000 records (each benchmark instance
has 10 first-stage bins).

Let us consider some visual examples to straighten the classifier
application logic and better explain the heuristic. To do so, we pick 200
random samples of training data collected, and we show two feature
diagrams in Fig. 5. Each point of the two graphs represents two features
related to a first-stage variable 𝑦𝑗 , 𝑗 ∈  , and it is colored in blue if, in
the optimal solution, 𝑦𝑗 = 1 and in red if 𝑦𝑗 = 0.

In Fig. 5(a), the considered features are reduced costs and
unitary cost. If the reduced costs are zero or close to zero (the
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Fig. 5. Feature graphs. Reduced costs vs. unitary cost on the left; relative capacity sum vs. relative cost sum on the right.
bottom part of the graph), there are more points with 𝑦𝑗 = 1. By moving
from the bottom of the graph up to the top (i.e., considering the greater
reduced cost), the density of 𝑦𝑗 = 1 decreases while the density of 𝑦𝑗 = 0
increases. There are a few points with high reduced costs and 𝑦𝑗 = 1
(near the point (0.2, 0.8) in Fig. 5(a)). This is due to a particular lower
unitary cost for those bins. The behavior with respect to the unitary
costs is peculiar: there are several points with low unitary costs with
𝑦𝑗 = 0 and a consistent number of points with high unitary costs with
𝑦𝑗 = 1. This is due to the fact that we are not considering several other
features that can better characterize the bins on the two-dimensional
graphs.

Fig. 5(b) shows the 2D scatter plot of the relative capacity
sum and relative cost sum features. There are two regions of the
plane almost linearly separable in which the lower part (high cost and
low capacity) is characterized by variables with an optimal value of 0
and an upper part (low cost and high capacity) in which the optimal
value is 1.

In conclusion, it is important to stress that these graphs are just
graphical examples to better explain the intuition behind the ML heuris-
tic and have no other goal.

5.5. Features analysis with SHAP

In this section, we analyze the set of features defined in Section 5.1
to select the most significant ones. To do so, we use the SHapley
Additive exPlanations (SHAP) values proposed by Lundberg and Lee
(2017). SHAP is a widely used approach for explaining machine learn-
ing models based on cooperative game theory. The feature values act
as players in a coalition, and Shapley values represent the weights of
a fair distribution of the ‘‘payout’’ between them. In other words, it
is a measure of the contribution of each of the features to receiving
a targeted class. Hence, the mean of SHAP values is essential for
this work, as it represents the total contribution to the bin selection,
regardless of whether it is positive or negative. Fig. 6 shows the ordered
mean SHAP values for each of the introduced features.

This result shows that the decision value of continuous relaxation is
an essential feature in our approach, but not the only one contributing
to the final outcome. Furthermore, the reduced costs and bin charac-
teristic features provide important information. In contrast, the second
stage estimates are the least important in this model, and the Items
placed min has no impact on the decision. Therefore, in the following
experiments, we consider the 5 features with the greatest SHAP value:
Continuous relaxation, Reduced cost, Relative cost max,
Relative cost sum, and Items capacity quant. It is worth
noting that some of the most important features are the same used for
other heuristics (Maggioni and Wallace, 2010). Nevertheless, using the
proposed methodology can produce the same results without any prior
experience, looking only at the data. Thus, it can be extended to other
optimization problems characterized by binary variables.
9

Fig. 6. Mean of the SHAP values for each of the features.

5.6. Heuristics comparison

In this section, we test the performance of the proposed heuristic
and the one of the PH, against the commercial solver Gurobi (Gurobi
Optimization, LLC, 2021). The results are described in Table 4. All
the values are averaged over 500 benchmark instances. The first two
columns represent the average computational time and its standard
deviation. The second and third columns report the average gap with
respect to the optimal solution computed by using 1000 out-of-sample
scenarios and their standard deviations. Finally, the last two columns
represent the average and standard deviation of the gap with respect
to the optimal solution in the first-stage costs.

Both the ML heuristic and the PH significantly decrease the compu-
tational time needed in exchange for a reasonable gap. In particular,
the ML heuristic is the fastest heuristic method, with an average time
of around 4.5 s. The RBF_SVM classifier provides the best gap, with
an average of 3.87% and a standard deviation of 3.15%. The L_SVM
classifier performs poorly with optimality gaps greater than 20%. This
is because the investments in the first stage are too small (23% less than
the optimal solution), which leads to a strategy that books the majority
of bins in the spot market, leading to the worst average performance
and very high variance. This high variance is due to both the lucky
case in which a book in the spot market is cheap and the unlucky case
in which booking beforehand at a lower price is the optimal strategy.
The PH has an average gap lower than the ML, but it took double
the time. Other methods that have good performance are the DT and
the RF. Both methods achieve reasonable results. Moreover, they are
human-readable, making them attractive in the application. To better
understand the solution structure, the averaged 𝑙1 distance between
the exact first-stage decision variables and the one computed by all
heuristic approaches is highlighted in Table 5.

All the heuristics return solutions close to the optimal ones in terms
of first-stage solutions, which is an important outcome that validates
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Table 4
Comparison of exact and heuristic solutions.
Model Computing time [s] Computing time 𝜎 [s] Gap [%] Gap 𝜎[%] Gap f.s. [%] Gap f.s. 𝜎 [%]

Exact 1829 2560 – – – –
PH 9.86 2.15 1.75 2.94 4.36 23.67
KNN 4.47 0.81 5.91 7.05 7.49 23.62
L_SVM 4.43 0.76 28.68 56.38 −23.97 38.54
RBF_SVM 4.44 0.74 3.87 3.18 1.48 15.71
GP 5.59 1.14 4.88 4.90 7.71 21.39
DT 4.46 0.76 4.15 3.46 5.00 20.86
RF 4.45 0.80 5.29 5.99 2.93 18.20
NN_1l 4.49 0.88 6.13 10.36 2.69 23.44
NN_ml 4.45 0.80 6.44 12.41 7.96 24.25
AB 4.46 0.79 7.80 13.73 −1.19 23.51
LR 4.44 0.81 6.31 7.08 −11.80 21.56
LDA 4.45 0.82 6.31 7.08 −11.80 21.56
LSTM 4.74 0.82 4.03 7.96 −10.93 21.18
Table 5
Solution structure.

Solution PH KNN L_SVM RBF_SVM GP DT RF NN_1l NN_ml AB LR LDA LSTM

Distance to exact solution 0.646 0.375 1.167 0.438 0.479 0.458 0.396 0.500 0.417 0.417 0.667 0.667 0.646
2
C
(
t
5
t
p
f

these approaches. Nonetheless, a difference in the first-stage solution
equal to 1.16 causes the 𝐿_𝑆𝑉𝑀 method to have 28.68% higher
costs in the out-of-sample simulation. Thus, even a small error in the
first-stage solution may lead to bad out-of-sample performance.

5.7. ML and PH heuristic comparison

Since the exact solver is not able to solve realistic instances, in this
section, we compare the performance of the PH and the ML heuristic.
Since the PH was shown to achieve lower gaps in the previous section,
we compute the gaps with respect to its performance. Moreover, to
better quantify the algorithm performance in the various application
domains, we present the results for the three types of instances (small,
medium, and large). The results are reported in Table 6, with each
value being averaged over 100 runs. The first three columns represent
the average computational time of the two methods. The second three
columns show the out-of-sample gap calculated on 1000 scenarios,
and the last three columns show the average 𝑙1 norm of the distance
between the first-stage solutions.

It is important to notice that the computational time increases from
small to large instances. This is due to the fact that large instances
consider a greater number of items and bins than the other types (
Table 2). This leads both the PH and the ML heuristic to take more
time (the PH must solve bigger sub-problems, while the ML heuristic
must solve larger, continuous problems).

The ML approach generally takes from 5 to 75 times less computa-
tional time than the PH. In particular, the ML heuristic takes 5 times less
for small instances, 15 times less for medium instances, and 75 times
less for large instances. Thus, the proposed methodology provides
more advantages if the bins are large with respect to the item size.
This means that this heuristic is handy if large vans and containers are
considered.

The gaps also depend on the instance type. For small instances,
the best results are achieved by the GP; for medium instances, the
LDA classifier is best; for large instances, the best classifier is the
LSTM. By considering their definition, it is clear that classifiers with
more expressive power are required if the complexity of the problem in-
creases. By considering all types of instances, the GP classifiers achieve
the best performance in terms of gap and computational time. However,
the difference in accuracy for almost all classification approaches lies
in the boundaries of 2%. Therefore, in practice, when choosing a
classifier, other parameters, such as the interpretability of the decisions,
the transparency of the algorithm (as for the decision trees), or the
robustness of the application with respect to the industrial setting, may
be considered.
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FInally, the 𝑙1 distance between the PH and the ML first-stage solu-
tions does not differ by more than 10%. In particular, among the best
classifiers, this difference is less than 4%, meaning that the two heuris-
tics compute highly similar solutions. Nevertheless, as stated above,
these small differences in solutions may lead to strikingly different
performances in the second stage.

In summary, the proposed ML approach showed to be very promis-
ing, not only in terms of computational time but also in terms of the
optimality gap.

6. Case study and managerial insights

In this section, we analyze the potential impact of the usage of the
VCSBPPSI solved via the ML heuristic and present relevant managerial
insights on a case study coming from recent industrial and institutional
collaborations. We opted for a last-mile application due to its increasing
importance in terms of economic value and number of orders. In fact,
the rapid increase of e-commerce is making last-mile delivery one of the
most challenging fields of development and research in transportation.
This research is part of the new Logistics and Mobility Plan to be acti-
vated in 2025 and considers the effect of same-day deliveries (Perboli
et al., 2021a,b). Sensitive data for the involved e-commence and parcel
delivery companies have been anonymized and normalized by means
of the data-fusion tool provided in Perboli et al. (2018b).

The case study tackles a set of deliveries (characterized by delivery
locations and parcel volumes) within the Turin city center area (2.805×
.447 km2), using a heterogeneous fleet of three types of vehicles:
argo-Bikes (CBs), Electric Vehicles (EVs), and Light Duty vehicles
LDs). Fig. 7 displays the service area (red square) and an example of
he location of customers (blue circles). We consider 40 instances with
00 deliveries each. Since these deliveries have no information related
o their delivery time, we generate the second-stage orders by randomly
icking a percentage of deliveries that we interpret to be originated
rom same-day orders. More in detail, we call this percentage 𝛼 and

we consider 𝛼 ∈ {10%, 30%, 50%, 70%, 100%}. Scenarios are generated
by applying the same process used for instance generation. For each
one of the 40 instances and each value of 𝛼, 10, instances are generated
for a total of 40 × 5 × 10 = 2000 instances.

We compare the operational costs (i.e., the total cost of satisfy-
ing all the deliveries) of the consolidation strategy considered in the
VCSBPPSI, solved by the ML heuristic using GP classifier, against a
single-echelon approach, which adopts the state-of-the-art stochastic
vehicle routing problem by Saint-Guillain et al. (2015), where a fleet of
LD vehicles is used. The parameters for the two models are taken from
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Table 6
Resulting computational time, percentage gap, and the 𝑙1 distance to the PH solution of the real scale problem test.
Instance Computational time [s] Gap to PH solution 𝑙1 distance to PH solution

small medium large small medium large small medium large

PH 177.1 2276 26076 – – – – – –
KNN 34.00 147.06 344.33 1.22% 1.99% 4.73% 1.227 2.063 3.800
L_SVM 34.03 146.89 348.11 2.16% 2.50% 6.87% 1.600 2.125 3.400
RBF_SVM 33.91 146.33 348.06 3.09% 1.84% 5.35% 3.727 3.813 8.100
GP 35.07 147.01 344.53 0.03% 2.20% 4.73% 1.200 2.125 3.800
DT 33.93 146.25 340.57 1.57% 2.01% 4.73% 1.273 2.063 3.800
RF 33.84 146.10 341.53 0.42% 2.01% 4.73% 1.545 2.063 3.800
NN_1l 33.85 146.35 353.53 1.22% 2.20% 6.12% 1.227 2.125 3.700
NN_ml 33.96 146.62 345.46 1.22% 1.99% 4.73% 1.227 2.063 3.800
AB 33.89 146.08 347.38 4.06% 2.68% 6.45% 4.391 4.325 9.700
LR 33.88 143.75 340.09 0.91% 2.07% 5.00% 1.045 2.375 3.000
LDA 33.88 142.89 341.93 0.91% 1.69% 5.53% 1.045 2.313 3.100
LSTM 34.34 147.92 347.68 1.02% 2.53% 4.61% 0.818 2.188 3.400
Fig. 7. Service area in the case study.

previous works and are summarized in Table 7. It is worth noting that
we compare two different models: the VCSBPPSI, which considers only
consolidation and a single-echelon routing problem. This comparison
makes sense in an urban environment since, due to the small dis-
tances, routing has a limited effect on the final solution (Perboli et al.,
2021a). In other words, in city logistic capacitated routing problems,
capacity constraints are the binding ones. Therefore, the comparison
of the solutions of these two models enables us to quantify the gain of
consolidation against standard routing strategies often used in practice.
Moreover, the results that we provide are lower bounds on the real
efficiency of consolidation since the VCSBPPSI does not address routing
and better solutions can be obtained by merging the two problems.

The comparison of the solution provided by the two problems is
performed by a Monte Carlo-based simulation framework which is
made by a module for simulating the instance, one for georeferencing
the data and one for simulating the given routes with real traffic
data gathered by the network of sensors of the Municipality of Turin
provided by the company 5T (5T Web Site, 2019). The proposed Monte
Carlo-based simulation algorithm runs the following steps 10 times (see
Fig. 8 for a depiction of the overall system):

1. Generate the instance by setting 𝛼 and all the aforementioned
parameters.

2. Solve the first stage problem:
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• run it and compute the mix of vehicles for the first stage
fleet, if the VCSBPPSI is considered

• consider a fixed fleet of LD vehicles if the single-echelon
problem is considered

3. Given the first stage solution, solve the related second stage by
adjusting the fleet according to the new deliveries and compute
the route running:

• the heuristic in Saint-Guillain et al. (2015) applied to
several TSP problems, if the VCSBPPSI is considered

• the stochastic VRP heuristic in Saint-Guillain et al. (2015),
if the single-echelon problem is consider

4. Compute the Key Performance Indicators related to the quality
of service (in terms of the number of parcels per hour, 𝑛𝐷∕ℎ)
and the environmental cost (in terms of CO2 emissions of the
overall last-mile chain) for each route. In particular, according to
the latest regulation, the ISO/TS 14067:2013 ’’Greenhouse gases
- Carbon footprint of product - Requirements and guidelines
for quantification and communication’’, we consider the sum
of direct emissions from the fuel combustion process, indirect
emissions, emitted by the fuel production process and the long-
haul shipment of the fuel, CO2 equivalent to including other
pollutants (e.g., NOx).

Considering the computational effort, each run of the Monte Carlo
requires about 40 minutes when we solve the optimization problem
by the dynamic and stochastic vehicle routing algorithm by Saint-
Guillain et al. (2015), while about 1 minute in the case of the ML
approach. Notice that the computational time also accounts for data
fusion and post-optimization modules. Thus, our ML approach has a
significant advantage over the classic dynamic and stochastic vehicle
routing problem. This issue becomes more relevant if larger instances
are considered.

Table 8 reports the average percentage gap between the total cost of
the single-echelon policy versus the consolidation for different values
of 𝛼. The gap is defined by (𝑆𝐸−𝑆𝐴𝑇 )∕𝑆𝐸, where 𝑆𝐸 and 𝑆𝐴𝑇 are the
expected costs computed by the Monte Carlo simulation of the single-
echelon policy and of the consolidation, respectively. Thus, a positive
value means a gain in the percentage of the consolidation policy with
respect to the single-echelon one. It is worth noting that a consolidation
policy always has better performance than a single-echelon one (up to
67% of cost saving). This is further evidence that at the urban level,
routing is less important than consolidation (Perboli et al., 2021a).

In Table 9 we illustrate the effect of same-day deliveries on the
total expected cost computed with the Monte Carlo simulation. With
this aim, we simulate the behavior of the VCSBPPSI model, solved
considering all deterministic deliveries (𝛼 = 0), and in each column,
we report the average increase cost with respect to the case with 𝛼 = 0
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Fig. 8. Monte Carlo simulation–optimization.
Table 7
Monte Carlo simulation-optimization architecture.
Data type Source

Satellite localization Municipality of Turin (2018), Perboli et al. (2018b)
Orders data Brotcorne et al. (2019), Crainic et al. (2011)
Spatial data of demand De Marco et al. (2017)
Time distribution of the orders De Marco et al. (2017)
Vehicles characteristics and
vehicle booking costs

Perboli et al. (2018b), Perboli and Rosano (2019)

Road network OpenStreet, 5T Road Sensors’ data (5T Web Site, 2019)
Time-dependent travel times Maggioni et al. (2014)
Environmental costs Brotcorne et al. (2019), Giusti et al. (2019)
Table 8
Percentage gain of the consolidation policy with respect to the
single-echelon one.
𝛼: 10% 30% 50% 70% 100%
𝑆𝐸−𝑆𝐴𝑇

𝑆𝐸
: 3.5 23.2 31.7 50.2 67.6

Table 9
Cost increase due to a lack of customers’ preferences analysis.
𝛼: 10% 30% 50% 70% 100%

𝐸𝑉 𝑃𝐼𝛼 : 13.4 47.2 61.4 87.4 137.9

computed in percentage. Noticing that with 𝛼 = 0 the model has perfect
information, thus we call the average percentage gap 𝐸𝑉 𝑃𝐼𝛼 . Having
perfect knowledge about the deliveries can decrease the delivery costs
up to 137% (𝛼 = 100%). This justifies investments in methods able to
forecasts deliveries or in business models, which reduces the impact
of uncertainty. Nevertheless, even with a rather limited impact of
same-day delivery (𝛼 = 30%), the cost increment can be sufficiently
high to require a specific redesign of the business model towards the
integration of big data and prescriptive analytics. As shown in Perboli
and Rosano (2019), allowing full freedom to the customers without
any prevision on the customers’ preferences may cost the e-commerce
company between 0.7 and 1.2 million euros per year in the case of
a medium-sized city such as Turin. While such inefficiency can still
be accepted in the present situation, where the e-commerce market is
growing by two digits per year, this becomes unacceptable in a more
saturated market situation, where the innovation curve moves towards
the full competition phase and efficiency becomes a key factor for a
company to be in the business.

Table 10 shows the usage of the vehicle for different values of 𝛼.
Each row reports the average number of vehicles of each type for the
first stage, second stage, and the total. Notice that, being the averages
of the values, they can be fractional.
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If same-day delivery is limited (𝛼 ≤ 50%), a larger portion of CBs
is used in the second stage. This is not due to the unitary cost per
volume (which is larger for the greater impact of the freight dispersion
and the consequent under-usage of the volume), but to the flexibility
of CBs, able to better absorb the effects of the first-stage decisions.
This explains the high investments of Venture Capital in alternative
and small-sized delivery options, such as drones, small robots, cargo
bikes, and other similar options. Instead, when 𝛼 > 50%, the number
of first-stage LDs and EVs booked increases, since booking big vehicles
in the first stage is cheaper, and with a large number of second-stage
deliveries, the probability of filling them is high. This characteristic
of hedging against uncertainty makes the investment in LDs and EVs
attractive for the management of the increasing impact of customers’
preferences.

Finally, we analyze the two paradigms in terms of sustainability.
The sustainability of the service is computed as a mix of environmental,
social, and operational impacts. We consider the case of three different
scenarios, according to the Moore technology adoption curve (Moore,
2014):

• Early phase of the penetration of the same-day delivery ser-
vice. It corresponds to the middle of the ‘‘scale-up’’ phase of the
innovation sigmoid, which corresponds to 𝛼 = 10%;

• Market penetration of the same-day delivery service. It corre-
sponds to the beginning of the ‘‘compete’’ phase of the innovation
sigmoid, which corresponds to 𝛼 = 50%;

• Maturity of the same-day delivery service. It corresponds to the
end of the ‘‘compete’’ phase of the innovation sigmoid, which
corresponds to 𝛼 = 70%.

For each scenario we consider three market situations:

• Current situation: the instances described above;
• Downturn: the market is contracting up to 30% (only 70% of the

whole set of delivery is considered);
• Growth: the market is increasing up to 30% (the new delivery are

randomly generated as in Perboli and Rosano, 2019).
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Table 10
Effect of the customers’ choices over vehicle usage.

Stage 10% 30% 50% 70% 100%

CB EV LD CB EV LD CB EV LD CB EV LD CB EV LD

1 stage 0.01 1.29 7.17 0.01 1.26 7.21 0.04 1.68 7.83 0.04 2.94 13.09 0.11 4.27 15.86
2 stage 26.40 0.00 0.00 26.43 0.00 0.00 26.50 0.00 0.00 14.93 0.00 0.00 7.95 0.00 0.00
Total 26.41 1.29 7.17 26.44 1.26 7.21 26.54 1.68 7.83 14.96 2.94 13.09 8.06 4.27 15.86
t
p
r

Table 11
Sustainability analysis.

𝛼 = 10%

Market condition CO2 savings [ton (%)] 𝑛𝐷∕ℎ [%]

Current situation 18 (−21%) 11%
Downturn 13 (−18%) 5%
Growth 19 (−36%) 19%

𝛼 = 50%

Market condition 𝐶𝑂2 savings [ton (%)] 𝑛𝐷∕ℎ [%]

Current situation 22 (−34%) 12%
Downturn 16 (−24%) 9%
Growth 24 (−38%) 14%

𝛼 = 70%

Market condition 𝐶𝑂2 savings [ton (%)] 𝑛𝐷∕ℎ [%]

Current situation 26 (−30%) 15%
Downturn 24 (−21%) 11%
Growth 36 (−40%) 18%

Table 11 reports the results of the sustainability analysis in terms
f CO2 savings (Column 2) and 𝑛𝐷∕ℎ (Column 3). All the savings are
eported in terms of percentage gap with respect to the single-echelon
cenario. For both indicators, the savings are computed by considering
60 working days. For CO2 we also report the tons gained by the mix
f technology.

Generally speaking, the adoption of the VCSBPPSI leads to a con-
istent decrease of CO2 compared to the traditional delivery, with a
ain up to 40% in the case of the largest diffusion of the service.
otice that, being this phase associated with the ‘‘compete’’ phase of

echnological penetration, this reduction becomes more crucial since
t gives the companies adopting such a scheme in the early phase of
heir life, a competitive advantage in terms of value proposition, with
more environmental-friendly impact. The 𝑛𝐷∕ℎ increases, in line with

he results by Perboli and Rosano (2019), with an efficiency gain that
s quite constant. Finally, we can notice how the need for more flexible
olutions is in line with the increasing adoption of more eco-friendly
olutions, such as cargo bikes and electric vans in the present, drones,
mall automatic vehicles, and automated mobile lockers in the near
uture.

. Conclusions and future work

This paper introduces a new general ML heuristic for solving the
CSBPPSI. By carefully defining a set of features, it can compute good
olutions in a significantly shorter time than the off-the-shelf solvers
nd other state-of-the-art heuristics such as the PH. This result shows
hat it is possible to mimic the behavior of the VCSBPPSI with an ML
lgorithm that behaves similarly to a complex decision rule. This paves
he way to the interesting research question of generalizing the good
esults obtained by the precedence rule in scheduling problems for
ther classes of problems with more complex decision tools.

Moreover, the proposed heuristic can achieve good performance and
ncrease the maximum size of instances that can be considered, with an
mpact also in real-world applications.

Finally, the easy application of the proposed heuristic enables it to
e used in other problems characterized by binary decision variables.

As a final contribution, we can claim that the proposed technique
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nables daily managerial decision support for companies engaged in
he modern trends of consolidated logistics. In future studies, the
erformance of the outlined approach can be improved by introducing
eal data features for each of the vehicles, e.g., CO2 emissions and

the time of delivery. Moreover, in future studies we will consider
further improving the proposed methodology. Other interesting lines
of research can be to add into the model other realistic issues such
as 3D constraints, weight restrictions, as well as discounts and tariffs
definition.
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