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A B S T R A C T

Retail inventory management of perishable items, like fresh food, is a relevant and complex problem. It is
relevant in the light of trends towards the reduction of food waste, and because of potential cross-sales
interaction with other item categories. It is complex, because of multiple sources of uncertainty in supply,
demand, and quality, and other complicating factors like seasonality within the week, FIFO/LIFO consumer
behavior, and potential substitutions between items, possibly because of a stockout. Similar items may be
vertically differentiated due to intrinsic quality, which is also related with item age, or brand image, as it
could be the case when a retail chain stocks both a brand item and a private label one. In the paper, we
adapt a simple discrete choice model to represent consumers’ heterogeneity and different tradeoffs between
price and quality, and apply simulation-based optimization to learn simple ordering rules for two vertically
differentiated items, adapted to a seasonal case, in order to maximize long-term average profit under a lost
sales assumption. While well-known constant and base-stock policies need not be optimal, they are simple
to communicate and apply. We explore combinations of such rules for the two items, obtaining some useful
managerial insights.
1. Introduction and motivation

Inventory management of food, and more generally perishable
items, is gaining importance due to the increased attention paid to
food waste and its implications for environmental footprint and so-
cial responsibility. Supermarkets deal with substantial losses due to
moisture loss, spoilage, and other causes (Buzby et al., 2009), and
a better understanding of how to manage perishable products may
reduce the amount of waste, while improving profits at the same time.
A detailed timeline of the recent major institutional efforts aimed at
reducing food waste is available in Akkaş and Gaur (2022), where
they identify the perishable inventory management problem as an
active research opportunity to achieve more acceptable sustainability,
especially because of the new types of data, technologies, and business
models available nowadays.

Since the literature on inventory management of perishable items
is quite vast, a common preliminary way to navigate deteriorating
inventory issues concerns a classification through the shelf-life charac-
teristics. The classification proposed by Goyal and Giri (2001), and then
adopted by Bakker et al. (2012) and Janssen et al. (2016), distinguishes
between:

• items where deterioration occurs in continuous time, at a given
rate;
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E-mail addresses: daniele.gioia@polito.it (D.G. Gioia), leonardo.kanashiro@polito.it (L.K. Felizardo), paolo.brandimarte@polito.it (P. Brandimarte).

• items with a predetermined fixed shelf-life, so that items become
unfit for sales at a given time instant;

• items with a probabilistically distributed shelf-life.

In this paper we assume a discrete-time inventory model with a single re-
tailer and a multi-product setup, where a fixed shelf-life hypothesis holds,
together with deterministic lead-times for each product. The assumption
of deterministic lead-times and shelf-lives may be more or less realistic,
depending on the specific case, but it is not necessarily a simplifica-
tion. Indeed, it prevents the application of renewal theory (Karaesmen
et al., 2011), which would otherwise be possible with exponentially
distributed characteristics. Moreover, when we consider multiple prod-
ucts, featuring different ages on the shelves and different times to
delivery, the dimensionality of the state space makes the problem
analytically prohibitive. Because of that, simulation-based optimization
may provide insightful results (Deng et al., 2023; Haijema and Minner,
2016; Jalali and van Nieuwenhuyse, 2015). In the model, we consider
only uncertainty on the consumer’s side, related to demand, which
is modeled as a discrete random variable, and to the random utility
associated with different available products.

The standard multi-product inventory management problem is a
well-debated topic in the production research community, but the
vailable online 6 May 2023
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literature on multiple deteriorating items is scarce (Janssen et al.,
2016), even though the practical benefits of a control strategy relying
on substitutable products are well known (Fisher and Raman, 2010).
Actually, the substitution between similar perishable products regularly
happens, especially during a stock-out (Van Woensel et al., 2007),
providing a promising way to reduce the waste of food with a short
shelf-life (van Donselaar et al., 2006). Investigating further the multi-
product perishable inventory problem would concretely benefit the way
the issue is addressed by exploring management policies that take into
account the joint effects of different items. In particular, the multi-
product setting may also apply to a single product, if we consider the
availability of items with different residual shelf-life and its impact on
consumers’ behavior (Tsiros and Heilman, 2005). The central focus of
our endeavors is on the construction of a flexible model relying on
utility-based preferences for each client, leading to a discrete choice
model (Train, 2009) in a perishable setting, which enables modeling
endogenous substitution rates between and within products. We pursue
this goal by adopting a linear discrete choice model, widely used for
vertically differentiated products (Transchel, 2017; Pan and Honhon,
2012; Transchel et al., 2021). This flexible framework can be also
applied to deal with deteriorating items, where age has an impact on
the perceived utility and may be used to model age-based substitution
in a multi-item setting.

The use of an approach based on discrete choice models also im-
plicitly addresses another standard feature of deteriorating inventories,
i.e., the inventory depletion mechanism. Extreme assumptions are ei-
ther a pure Last-In–First-Out (LIFO) or a pure First-In–First-Out (FIFO),
or a prespecified hybrid. When the inventory issuing is under the
control of an inventory manager, as is the case of blood platelets in
hospitals (Haijema et al., 2005; Nahmias and Pierskalla, 1976), a FIFO
pattern may be expected, whereas when consumers make the choice
themselves, one could expect a pattern leaning towards LIFO. In the
multichannel case described in Deng et al. (2023), a hybrid case is
obtained due to the presence of an online channel, where an inventory
manager is in charge of picking the item, and a physical channel,
where consumers pick the selected item. Also in a case where the
consumer is in charge of picking, a mixed LIFO/FIFO or possibly a
purely random selection may be observed, as some environmentally
conscious consumers may behave according to a FIFO mechanism.
In this paper, we consider a case in which heterogeneous consumers
can choose between vertically differentiated items, featuring different
stock ages and, possibly, discounted prices. Hence, we cannot assume
a mechanism fixed ex ante, and the LIFO/FIFO behavior must be made
endogenous. Dynamics are complex and call for a simulation-based
approach to tune the parameters of standard replenishment policies.

In this paper we do not deal with assortment and pricing decisions
explicitly. We refer to Transchel (2017) or Ferguson and Koenigsberg
(2007) for examples of investigations on these problems by linear
price-based utility models. When optimizing the parameters of the
replenishment policies, prices are given. Nevertheless, since they are
included in the choice models, the approach can be used to explore the
impact of different prespecified pricing policies.

1.1. Contributions of the paper

The parameterized replenishment policies that we apply in the
paper are not optimal, but their performance has been compared with
exact stochastic dynamic programming in Haijema and Minner (2019),
where it is shown that they can achieve a performance not too far
from the optimal one. Moreover, they are more easily accepted by
practitioners. Simulation-based optimization is a widely used approach
to fine tune such policies (Haijema and Minner, 2016), and we use
standard search algorithms in this paper. So, we do not claim to provide
any methodological contribution in this respect. Our contribution is
in the application of these policies within a more complicated en-
2

vironment, featuring seasonality, vertically differentiated items, and a
heterogeneous consumers trading off perceived quality (which is both
product- and age-dependent) and price. We stress the fact that the
interaction between these factors and a non-zero delivery lead time
increases state dimensionality, precluding not only the application of
exact dynamic programming, but also the search for a large number
of parameters of more sophisticated replenishment rules. We also pay
attention to practically relevant issues, like order size variability, which
may create difficulties with suppliers. We consider strategies by which
two substitute items may help in managing seasonality. To the best of
our knowledge, this combination of factors has not been investigated,
but it represents a useful step towards interesting applications.

It is also worth noting that the developed simulation-based frame-
work is publicly available and may be employed as an experimental
search tool for optimal pricing and optimal assortment problems as
well, filling the lack of open-source libraries in the perishable inventory
literature.1

1.2. Plan of the paper

The paper is organized as follows. In Section 2 we discuss the
literature related to this work. In Section 3 we illustrate the simulation
framework, the selected discrete choice model, and the role of uncer-
tainty in our simulation experiments. Section 4 connects the simulation
framework with sequential optimization concepts and introduces the
heuristic replenishment policies. In Section 5 we present the experi-
mental results and provide some managerial insights obtained through
the selected price/quality business scenarios. Section 6 concludes with
some final remarks and topics for future research.

2. Literature review

The literature about inventory management problems is massive
and, although focusing on perishable products reduces its size, we still
have to deal with a huge amount of studies. To provide a readable
literature overview, we start by narrowing down the list of topics to
better fit our specific research aim. In particular, we will concentrate
on models where the inventory is controlled over a horizon, products
have a fixed shelf life without obsolescence risk (e.g., abrupt reduction
in value due to market competition reasons), and there is a single retail
point, under the assumption of an efficient supply chain so that fixed
ordering charges are shared among several items and are negligible
at the single item level. It follows that we will treat neither single-
period models, commonly tackled by newsvendor-based approaches,
nor multi-echelon systems. We refer to Goyal and Giri (2001), Bakker
et al. (2012), Janssen et al. (2016) and Karaesmen et al. (2011) for
a detailed review and additional references for models on perishable
products under alternative hypotheses.

We assume a discrete-time model with periodic review and focus
on parameterized replenishment policies that are tuned by simulation-
based optimization. However, continuous review models are common
as well. A significant contribution in this area is due to the work of
Perry (see, e.g., Perry and Stadje, 2000), which is also discussed in
detail by Karaesmen et al. (2011). Another example of a continuous
review approach based on a Markovian renewal model is Kalpakam and
Shanthi (2001).

Some analytical approaches under discrete-time review hypotheses
rely on stochastic modeling (Ishii and Nose, 1996) or MILP model-
ing (Pauls-Worm et al., 2014). Nevertheless, our work is closer to
dynamic programming and heuristic approaches like (Hendrix et al.,
2019; Haijema and Minner, 2019). In this context, assumptions on
the lead-time and the shelf-life are essential features that affect the

1 The code of the simulation environment and the related dynamic setting
re freely available at https://github.com/DanieleGioia/PerishableDCM.
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complexity of the problem, quickly creating unmanageable state spaces
of the system because of an increase in problem dimensionality.

Early examples of state aggregation, oriented to develop a tractable
approximation, solve dynamic programming problems of reduced di-
mension (Nahmias, 1977), where they collapse the state vector noticing
that the ordering function is more sensitive to changes in newer in-
ventory than older inventory. However, it is important to observe that
they assume a FIFO depletion mechanism, which supports such an
observation. Similarly, Brodheim et al. (1975) adopts a Markov chain
model with a manageable number of states by making a decision only
based on the number of new items of the system, again assuming a
FIFO issuing policy in a blood inventory management application. The
effect of a dimensionality reduction on the performance of a dynamic
programming approach has been recently explored by Haijema and
Minner (2019), where they investigate the value of stock-age informa-
tion through a simulation-based optimization procedure, following a
stream of research based on traditional stock-level dependent ordering
policies and optimal disposal policies for perishables (Haijema and
Minner, 2016; Haijema, 2014).

The presence of more than one product definitely increases the
complexity of the model, making it really hard to investigate analyti-
cally. The research on perishable inventories has largely been confined
to single product contexts (Karaesmen et al., 2011), especially when
non-zero lead times or seasonality are involved.

As the foremost characteristics of a multi-item setting in inven-
tory decisions, we can identify the actor in charge of the substitution
between items and the substitution direction (Shin et al., 2015). If
the substitution is supplier-driven, the supplier decides what to offer
to the consumers, providing suitable models for blood oriented stud-
ies (Haijema et al., 2005; Nahmias and Pierskalla, 1976). Specifically,
in Nahmias and Pierskalla (1976), only one of the available products is
subject to deterioration in a blood-related application. On the contrary,
we address a grocery oriented multi-product setting, closer to Hendrix
et al. (2019) and Buisman et al. (2020), where the substitution is
customer-driven and it is up to the client to decide what to buy.
However, the aforementioned works assume an exogenous substitution
between the available products, whereas we develop a utility-based
endogenous one. Moreover, Hendrix et al. (2019) deal with a dynamic
programming formulation that suffers from the curse of dimensionality,
limiting the analysis to inventories where a small number of items
is held. Similarly to us, Buisman et al. (2020) rely on simulation-
based optimization and study Order-Up-To policies, with and without
consideration of stock-out based substitutions. Nonetheless, they have
to fix an issuing policy (LIFO/FIFO) and they operate by batches of
clients rather than by single customers. As far as the direction of
substitution is concerned, it can be managed by a model based on
consumers’ utility.

Our framework represents consumer behavior by a Discrete Choice
Model (DCM), which describes their preferences among a set of alter-
natives and may be estimated by consolidated statistical methodolo-
gies (McFadden, 1973). However, since different assumptions may lead
to distinct models (Train, 2009), the characteristics of the problem
must be accurately considered. We preliminary distinguish between
horizontally and vertically differentiated items. Horizontal differenti-
ation allows for idiosyncratic preferences that are not purely based on
a quality–price ranking (Transchel et al., 2021), whereas the vertical
one considers cases where the choice would be driven only by quality,
if the price of the products were the same. Vertical differentiation fits
well our grocery application, where we are interested in the effect
of substitution for very similar products, especially in the event that
products only differ in their Residual Shelf-Life (RSL) or, for example,
when private labels coexist with external brands. To this aim we
employ a linear DCM, extensively studied in Pan and Honhon (2012)
and Transchel (2017), and then (Transchel et al., 2021) from an an-
alytic point of view, giving us several advantages in our simulations.
3

Specifically: w
• Despite the absence of an optimal policy benchmark, due to the
model complexity and generality, we can obtain an essential
understanding of the resulting performance.

• Even though we have no real data currently, it is possible to
set meaningful parameters, identifying practical insight by the
comparison of what we expect and what we get.

However, in contrast to our focus on replenishment policies for
perishable items, the aforementioned papers also investigate pricing
and assortment problems and their applications do not consider dete-
rioration. Furthermore, seasonality and significant lead times are not
dealt with in the former analytical works, because they would make
the exact computation prohibitive.

3. The simulation framework

We have developed an open-source flexible simulation-based envi-
ronment that models a single retailer who has to make daily decisions
on the quantity to order of 𝐽 vertically differentiated perishable prod-
ucts. Each product 𝑗 ∈  = {1,… , 𝐽} is characterized by the following
features:

• 𝖫𝖳𝑗 : fixed discrete delivery lead time.
• 𝖲𝖫𝑗 : fixed discrete shelf-life (at the time of delivery).
• The market economics of the product, i.e., selling price (𝑝𝑑𝑗 ),

purchase cost (𝑐𝑗), perceived quality (𝑞𝑑𝑗 ) and implied margin
(𝑝𝑑𝑗 − 𝑐𝑗 = 𝑚𝑑

𝑗 ). Some of these features explicitly depend on the
residual life of each item on-hand of that product 𝑑 ∈ {1,… , 𝖲𝖫𝗃}.

Each simulation step 𝑡 corresponds to a day and is subject to weekly
easonality, under which the uncertainty on demand depends only on
= (𝑡 + 1)mod7. At the beginning of each day, after the respective

ead time has elapsed, incoming orders are handed over to the store
nd inventory is updated accordingly. After delivery, the business day
tarts and we sample the total number of clients that will interact with
he store by a loop that simulates their individual utility, according to
iven discrete choice model. If a consumer has a positive utility for any
roduct among those available, she will pick one item, choosing the
ne maximizing her utility and removing that particular item from the
nventory. When the business day ends, the retailer checks if any item
as reached the end of the shelf-life and scraps it accordingly. Finally,
he state of the system is observed to determine the next order size
er product, according to the specified ordering policy, completing the
imulation step for the day.

.1. Demand simulation

The model allows for any kind of distribution to sample the number
f consumers visiting the store per day. It is worth stressing again
hat their behavior will be simulated individually in sequence, on the
asis of the discrete choice model and the available inventory. As to
easonality, we adapt it to a Poisson distribution, which is characterized
y its first moment. Specifically, we define a multiplicative seasonality
actor 𝜂𝑘, such that the expected number of consumers for day 𝑘 is

𝑘 = 𝜂𝑘𝜇, 𝑘 ∈ 0,… , 6, (1)

or a selected value of 𝜇.

.2. The discrete choice model

After sampling the number of consumers 𝑁 for the present day,
he simulation processes each consumer 𝑛 ∈ {1,…𝑁} by sampling its
andom utility 𝐔𝑛 for each of the available products (as we specify later
n this section, the utility for each consumer depends on a random coef-
icient associated to that individual consumer). Practically speaking, we
ould think that the inventory is updated like a shelf of a supermarket,

here several products are available for the consumer, who associates
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a utility with each of them: 𝐔𝑛 = {𝑈𝑛𝑗 , 𝑗 ∈  ∪ 0}. We also fictitiously
et to 0 the utility for the products currently unavailable and include a
ummy product 𝑗 = 0 that serves as a no-choice option when the utility
s negative for all the other possibilities. Theoretically, the framework
llows for any discrete choice model and we refer to Train (2009)
or a complete overview. However, we are especially interested in the
ubstitution effects of similar products on grocery applications, where
he vertical differentiation hypothesis is a sensible assumption.

For each consumer 𝑛, we compute a linear utility, widely used
o model vertically differentiated non-perishable products (Pan and
onhon, 2012; Transchel, 2017; Transchel et al., 2021). To adapt the

dea to perishable items, we treat items with different age as different
nes, enlarging the set of available products  = {1,… , 𝐽} to J =
1,… , 𝐽𝖯}, where:

𝖯 =
𝐽
∑

𝑗=1
𝖲𝖫𝗃. (2)

or instance, if we consider a scenario with two products (A and B) with
ifferent shelf life of 4 and 2 periods, respectively, the original number
f possible choices would be 𝐽 = 2, and a non-perishable utility model
ould allow for A, B, or nothing. By applying this stock-age adjustment,

he dimensionality increases to 𝐽𝖯 = 4+2, where both products A and B
may be chosen with different residual shelf-lives, where the depreciated
qualities may be counterbalanced by discounts on the respective price.
We may consider each product at different stock age as a specific item
of that product. Analytically, according to the linear discrete choice
model, consumer 𝑛 evaluates the utilities

𝑈𝑛𝑗 = 𝜃𝑛𝑞𝑗 − 𝑝𝑗 , ∀𝑗 ∈ J ∪ {0}, (3)

where 𝑞𝑗 is the perceived quality of item 𝑗, 𝑝𝑗 is its selling price,
nd 𝜃𝑛 is a stochastic factor accounting for how consumer 𝑛 trades
ff quality and price, which we model by a beta random variable.
t follows that we allow for heterogeneous agents with a individual
uantitative evaluation of the price–quality (𝑝𝑗∕𝑞𝑗) ratio of the available
roducts, implying an age-based substitution that interacts with the
tock-out based one. In particular, the age-based substitution is a well-
nown issue in deteriorating inventories, especially studied in pricing
roblems (Ferguson and Koenigsberg, 2007). Hence, our model is a
ealistic generalization.

. Dynamics of the policy and sequential decisions

After specifying the demand model, we aim to develop a policy
hat makes (near-)optimal decisions for each simulation step. Following
he typical paradigms of dynamic programming (Powell, 2021; Brandi-
arte, 2021), we first define a sequential decision framework based

n the observed state of the system, the immediate rewards, and the
onsequent actions. Then we select and optimize alternative heuristic
olicies by a simulation-based strategy.

.1. State, actions and reward of the sequential approach

tate variables. When a business day ends, the decision-maker observes
he state of the system, which depends on the on-hand inventory
nd the in-transit orders. Specifically, we can formally define it by
ntroducing the following quantities for the products in  (i.e., the
ctual set of products, without accounting for age):

• 𝑂𝑙
𝑡,𝑗 : number of items of product 𝑗 ∈  to be delivered in 𝑙 ∈

{0,… ,𝖫𝖳𝗃 − 1} days at time 𝑡.
• 𝐼𝑑𝑡,𝑗 : on-hand inventory of product 𝑗 ∈  with a residual life of
𝑑 ∈ {1,… , 𝖲𝖫𝗃} days at time 𝑡.

• Day 𝑘 ∈ {0,… , 𝐾 = 6}.
4

he observed state variable at time 𝑡 for each product 𝑗 ∈  will be:

𝑡,𝑗 =
[

𝑂
𝖫𝖳𝗃−1
𝑡,𝑗 ,… , 𝑂0

𝑡,𝑗 |𝐼
𝖲𝖫𝗃
𝑡,𝑗 ,… , 𝐼1𝑡,𝑗

]

. (4)

ence, the complete state variable in our simulations will be

𝑡 =
[

𝑆𝑡,1|… |𝑆𝑡,𝐽 |𝑘
]

.

he dimension of the state space is ∑

𝑗 ((𝖲𝖫𝑗 − 1) + 𝖫𝖳𝑗 ) + 1, because
when the state is observed, the expired items with zero residual life
have been already scrapped and the time to delivery of the most recent
order is reduced by 1 to 𝖫𝖳𝗃 − 1, for each item 𝑗.

Action space. For each product, the decision-maker must decide the
order size, so that the control action is an array that determines the
next shipments of goods. When the order is placed, it is subject to the
full lead time, thus we define the time 𝑡 action as:

𝑥𝑡 =
[

𝑂𝖫𝖳1
𝑡,1 |… |𝑂𝖫𝖳𝐽

𝑡,𝐽
]

. (5)

To optimize the replenishment, we would like to design a policy 𝜋 such
that, for each observed state 𝑆𝑡,

𝑡 = 𝑋𝜋 (𝑆𝑡). (6)

e provide an overview of the complete dynamics of the simulation
ramework in Fig. 1, where the state variable and the actions are
mphasized.

eward function. Our simulation environment implements an offline
earning approach. Moreover, the immediate reward is myopic due
o the gap between the moment when the items are purchased and
he one where they are actually sold. In fact, the further complexity
ntroduced by seasonality produces an additional gap between what
s sold on a day and what is bought to be ready for the next days.
ractically speaking, this generates significant negative rewards when
he seasonality factor is low and substantially favorable ones during
eaks of the weekly demand.

On the one hand, the retailer pays
𝐽

𝑗=1
𝑐𝑗𝑂

𝖫𝖳𝑗
𝑡,𝑗 (7)

hen a replenishment order is issued. On the other hand, she earns a
evenue from items sold during a business day,

𝐽

𝑗=1

𝖲𝖫𝑗
∑

𝑑=1
𝑝𝑑𝑗 𝐿

𝑑
𝑡,𝑗 (𝑆𝑡,𝑗 ), (8)

where 𝐿𝑑
𝑡,𝑗 (𝑆𝑡,𝑗 ) denotes the sold items of product 𝑗 at time 𝑡 with

residual shelf-life 𝑑, subject to inventory availability and demand un-
certainty.2 It follows that the reward on day 𝑡 is:

𝐶(𝑥𝑡, 𝐿𝑡) =
𝐽
∑

𝑗=1

⎛

⎜

⎜

⎝

−𝑐𝑗𝑂
𝖫𝖳𝑗
𝑡,𝑗 +

𝖲𝖫𝑗
∑

𝑑=1
𝑝𝑑𝑗 𝐿

𝑑
𝑡,𝑗 (𝑆𝑡,𝑗 )

⎞

⎟

⎟

⎠

. (9)

4.2. Implemented policies

Exact solution approaches that consider the entire state space by dy-
namic programming and explicitly represent a value function by lookup
tables suffer from the curse of dimensionality. Hence, the complexity of
the problem requires using approximated methods and heuristics, often
based on a direct approximation of the policy function, rather than a
value function.

2 The residual shelf-life superscript 𝑑 can be avoided by modifying the set
of on which the index 𝑗 ranges from  to J. We use this explicit notation for
the sake of clarity.
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Fig. 1. Simulation framework and interaction with the ordering policy.
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Base-stock policy. Under the hypotheses of a periodic review and dis-
crete shelf-life, the classical heuristic approach to discrete-time in-
ventory management of perishable items relies on Base-Stock policies
(also known as order-up-to rules). Various examples include applica-
tions to single-product settings (Haijema and Minner, 2019, 2016) and
multi-product ones (Buisman et al., 2020).

In this paper, we employ a Base-Stock Policy (BSP) by defining,
similarly to (Gioia et al., 2022),

𝑋𝙱𝚂𝙿
𝑗 (𝑆𝑡|𝐳) =

⎛

⎜

⎜

⎝

𝑧𝑗,𝑘 −
(𝖫𝖳𝑗
∑

𝑙=1
𝑂𝑙
𝑡,𝑗 +

𝖲𝖫𝑗
∑

𝑑=1
𝐼𝑑𝑡,𝑗

)

⎞

⎟

⎟

⎠

+

, 𝑗 ∈  . (10)

The policy depends on the observed state of the system and reduces
the state dimension by aggregating items across their stock age. The
BSP policy, as well as the alternative ones that we will investigate
hereafter, is a parametric Policy Function Approximation (PFA) (Powell,
2021), which depends on 𝑧𝑗,𝑘. This vector is optimized by a simulation-
based approach and it has a dimension of 𝐽 × (𝐾 + 1). For example,
if there are two products, since we have a 7-days based seasonality,
𝐽 ×(𝐾 +1) = 2×7 = 14. Notice that, since we can only order brand new
items, the stock-age adjustment of (2) is only considered in the discrete
choice model, whereas it is not in the replenishment policies.

Constant order policy. The simplest way to generate meaningful orders
and to take the seasonality pattern into account is a weekly Constant
Order Policy (COP). Unlike the BSP policy, it relies on a smaller vector
of parameters, 𝐳 ∈ R𝐽×(𝐾+1), since replenishment orders are issued
without evaluating the state of the system, but we may choose a differ-
ent order size for each day of the week. Haijema and Minner (2016)
examine several examples of constant order policies in a perishable
setting. Formally:

𝑋𝙲𝙾𝙿
𝑗 (𝐳) = 𝑧𝑗,𝑘, 𝑗 ∈  . (11)

Correlated base-stock policy. The presence of substitutions between sim-
ilar products in our model calls for a modification of the traditional
base-stock policies, where the interaction among items is entirely dis-
regarded. In order to keep complexity to a manageable level, we can
define a parameter vector 𝐳, similarly to the BSP case, by aggregating
the state components for all of the products subject to substitution. In
our specific case, since all of them are vertically differentiated, we shall
compute:

𝑋𝙱𝚂𝙿𝙲
𝑗 (𝑆𝑡|𝐳) =

(

𝑧𝑗,𝑘 −
𝐽
∑

𝑟=1

(𝖫𝖳𝑟
∑

𝑙=1
𝑂𝑙
𝑡,𝑟 +

𝖲𝖫𝑟
∑

𝑑=1
𝐼𝑑𝑡,𝑟

)

)+

, 𝑗 ∈  , (12)

where 𝑟 ∈ {1,… , 𝐽} =  ranges over products that can be substitutes
5

of each other. o
Semi-seasonal policies. In the preliminary work reported in Gioia et al.
(2022), a Soft Actor-Critic technique (Haarnoja et al., 2018) is adopted,
based on artificial neural networks to approximate both a greedy value
function and a direct policy. A policy was obtained, achieving similar
performance as the BSP policy, even though it tracked seasonality with
only one product out of two, keeping the order quantity for the other
one constant. Based on this finding, we suggest here a similar idea,
based on a simple parameterized ordering policy, which is computa-
tionally much cheaper to fine tune. At present, the approach has only
been implemented for the case of two products (A and B), but it can be
generalized when it is only possible to manage seasonality by a single
product, whereas others arrive in fixed batches due to specific contracts
or constraints on the supply chain. Note that, unlike the COP policy,

single order size is applied across the days of the week, for items
hose supply is inflexible, disregarding seasonality. Indeed, it is worth
oting that an understudied research problem in the inventory of per-
shable items literature concerns contracting (Karaesmen et al., 2011).
pecifically, in the case in which an easily controllable private label
oexists with an externally supplied alternative, a constant quantity for
contract with the supplier would be easier to manage, especially when
continuous sharing of information about the observed state of the

ystem is not feasible. In our setting, featuring two products A and B,
e will consider a first case in which orders for A can be adapted to

he seasonal pattern, wheres product B is supplied by an external pro-
ucer with constant order sizes (CB_BSPA), which suggests a possible
nterpretation of A as a private label item. Symmetrically, and for the
urpose of studying business scenarios featuring different margins for
he product replenished by seasonally adapted orders, we next consider
he case where orders for B are seasonally adapted, whereas A can
nly be ordered according to a constant policy (CA_BSPB). In order
o specify the CB_BSPA policy, we define:

𝙲𝙱_𝙱𝚂𝙿𝙰
𝑗 (𝑆𝑡|𝐳) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝐵 , 𝑗 = B

(

𝑧𝐴,𝑘 −
(

(
∑

𝑙 𝑂
𝑙
𝑡,𝐴 +

∑

𝑑 𝐼
𝑑
𝑡,𝐴

)

+
∑

𝑑 𝐼
𝑑
𝑡,𝐵

))+
, 𝑗 = A.

(13)

The dimension of the vector 𝐳 is further reduced and it now only
akes into account:

• a single constant value for the each product ordered in constant
quantities, regardless of the day of the week;

• 𝐾 + 1 values for the each product that allows for seasonally
adapted orders.

ence, a policy where one item is seasonally managed and the other
𝐽+(𝐾+1)
nes are not, involves a parameter vector 𝐳 ∈ R .
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Table 1
Weekly seasonality pattern employed.

Weekday Mon Tue Wed Thr Fri Sat Sun
𝑘 0 1 2 3 4 5 6

Seasonality
Factor (𝜂𝑘) 0.68 0.76 0.76 0.76 0.99 1.52 1.52

When B allows for seasonally adapted orders and A does not, the
ymmetric policy is:

𝙲𝙰_𝙱𝚂𝙿𝙱
𝑗 (𝑆𝑡|𝐳) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑧𝐵,𝑘 −
(

(
∑

𝑙 𝑂
𝑙
𝑡,𝐵 +

∑

𝑑 𝐼
𝑑
𝑡,𝐵

)

+
∑

𝑑 𝐼
𝑑
𝑡,𝐴

))+
, 𝑗 = B.

𝑧𝐴, 𝑗 = A

(14)

.3. Optimization of policy parameters

All of the policies we presented so far depend on a vector of policy
arameters 𝐳, whose dimension depends on the complexity of the
ssociate observed state. We aim to maximize the average daily reward
9) for a determined time horizon, where we simulate the inventory
eplenishment policy. In practice, whatever the parametric policy is,
e aim at solving the maximization problem

max
𝑧

E

{

1
𝑇

𝑇
∑

𝑡=1
𝐶(𝑋𝜋

1 (𝑆𝑡|𝐳),… , 𝑋𝜋
𝐽 (𝑆𝑡|𝐳), 𝐿𝑡)

}

. (15)

Note that, unlike other model formulations, there is no discount factor
involved, as we consider average reward. We leave the time horizon 𝑇
unspecified, as we will rely on sample averages over some suitably long
horizon. A thorough comparison of alternative computation strategies
to optimize (15) is not the focus of this work. Instead, we selected an
off-the-shelf global optimization solver implemented by Eriksson et al.
(2019), based on a stochastic surrogate optimization method proposed
by Regis and Shoemaker (2007), relying on radial basis functions.

5. Simulation experiments

The experimental section of this work will focus on a particular
case study that concerns only two products. However, the open-source
framework may handle as many products as desired. The design of
experiments relies on the four business scenarios specified in Table 2,
where we divide the features into those related to market economics
and those concerning lead-time and shelf-life. We keep a fixed set-
ting for the distribution of demand and the stochastic parameter 𝜃
in the discrete choice model, while varying the market economics of
the products, following some theoretical insights that hold in a non-
perishable context (Pan and Honhon, 2012; Transchel et al., 2021) and
help us to test meaningful configurations. We elaborate on this topic
in Section 5.1, to justify our experimental design in terms of business
and market settings. As to demand uncertainty, recalling the seasonality
transformation (1), we assume a Poisson distributed demand for each
day 𝑘 within the week:

𝐷𝑘 ∼ Poiss(𝜇𝑘), 𝑘 ∈ {0, 1,… , 6},

where we set 𝜇 = 300 for the whole simulation, applying the seasonality
factors 𝜂𝑘 of Table 1. Concerning the random utility, the distribution of
the stochastic parameter 𝜃𝑛 is beta,

𝜃𝑛 ∼ Beta(2, 3),

where 𝑛 refers to the 𝑛th simulated consumer visiting the store in the
simulated time horizon. These random variables are independent and
identically distributed across consumers.
6

t

Table 2
Design of experiments. For each product, a shelf life 𝖲𝖫 and a lead time 𝖫𝖳 are set.
Furthermore, the market economics are selected (purchase cost 𝑐, selling price 𝑝, and
corresponding margin 𝑚). The perceived quality 𝑞 is also specified, for each value of
remaining shelf-life. The first scenario has the same margin for fresh items of both
products, while the other ones are more favorable to product A.

Scenario Product Market economics Other features

1
A 𝑝 = [6,6,6,6] 𝑞 = [22.5,23,23.5,24] 𝖲𝖫 = 𝟦

𝑐 = 4 𝑚 = [2,2,2,2] 𝖫𝖳 = 𝟥

B 𝑝 = [4,4] 𝑞 = [18,20] 𝖲𝖫 = 𝟤

𝑐 = 2 𝑚 = [2,2] 𝖫𝖳 = 𝟤

2
A 𝑝 = [6,6,6,6] 𝑞 = [22.5,23,23.5,24] 𝖲𝖫 = 𝟦

𝑐 = 3 𝑚 = [3,3,3,3] 𝖫𝖳 = 𝟥

B 𝑝 = [4,4] 𝑞 = [18,20] 𝖲𝖫 = 𝟤

𝑐 = 2 𝑚 = [2,2] 𝖫𝖳 = 𝟤

3
A 𝑝 = [6,6,6,6] 𝑞 = [22.5,23,23.5,24] 𝖲𝖫 = 𝟦

𝑐 = 3 𝑚 = [3,3,3,3] 𝖫𝖳 = 𝟥

B 𝑝 = [3.3,4] 𝑞 = [18,20] 𝖲𝖫 = 𝟤

𝑐 = 2 𝑚 = [1.3,2] 𝖫𝖳 = 𝟤

4
A 𝑝 = [5,6,6,6] 𝑞 = [22.5,23,23.5,24] 𝖲𝖫 = 𝟦

𝑐 = 3 𝑚 = [2,3,3,3] 𝖫𝖳 = 𝟥

B 𝑝 = [3.3,4] 𝑞 = [18,20] 𝖲𝖫 = 𝟤

𝑐 = 2 𝑚 = [1.3,2] 𝖫𝖳 = 𝟤

5.1. Insights on the selected business scenarios

The purpose of this section is twofold: on the one hand, we want
to shed more light on consumer behavior under the specified discrete
choice model of Section 3.2; on the other one, we want to justify the
selection of numerical parameters in our simulation experiments.

The selected business scenarios are outlined in Table 2, where we
report the shelf life 𝖲𝖫 and the lead time 𝖫𝖳, alongside with purchase
cost 𝑐, selling price 𝑝, and the resulting margin 𝑚. Of particular interest
is the perceived quality 𝑞, which decays with age. In business scenarios
1 and 2, the decay is not compensated by a reduction in price. On
the contrary, discounts are offered in business scenarios 3 and 4.
Though our aim is neither optimal pricing nor assortment planning,
it is important to explore the effect of a discount by varying prices.
Furthermore, we set the margin of the products to the same value as
the first business scenario, while modifying the cost of product A in the
other ones to make it the most economically profitable one.

No-discount business scenarios. Taking advantage of the linearity of the
discrete choice model, it is possible to visualize the interaction of the
price and the perceived quality of each product with the consumer’s
random utility coefficient 𝜃. In particular, in Fig. 2(a) we illustrate
graphically business scenarios 1 and 2, which differ in the cost of
product A, but are identical from the consumers’ viewpoint. We plot
utility as a function of 𝜃, and observe a reduction in the slope of the
utility for each product when the Residual Shelf Life (RSL) decreases.
There are four red lines for product A and two blue lines for product
B. Specifically, product A will have an initial perceived quality value
of 𝑞𝖲𝖫𝖠𝐴 = 24, which gradually decreases to 22.5 as the remaining
life decreases. On the other hand, B, being a lower margin and lower
quality product, has an initial value of 20, which reaches 18 before it
is discarded. If we disregard the stock-age adjustment, by considering
only brand new items and the two lines with the largest slope for each
product, the linear utilities for products A and B are

𝑈𝐴 = 24𝜃 − 6, and 𝑈𝐵 = 20𝜃 − 4,

respectively. These two lines intersect for 𝜃 = 0.5, where a consumer
s indifferent between the two alternatives. Moreover, the utility for
roduct B is zero when 𝜃 = 0.2; hence, the consumer will not buy
nything when 𝜃 < 0.2. Therefore, we may represent areas correspond-
ng to each choice, under the probability density function (PDF) of

he stochastic parameter 𝜃 (which is beta distributed, with support
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Fig. 2. Linear interactions between available products and the utilities of the consumers sampled from a Beta distribution. (a) no discount strategies (scenario 1 and 2); (b)
discount on B (scenario 3); (c) discount on both A and B (scenario 4); (d) legend of the plot.
0

on the interval [0, 1]): in the red area, product A dominates B, and
oles are reversed in the blue area. The blank area corresponds to
he no-purchase region, where both products have negative utility. If
e still disregard deterioration, it is possible to compute the choice
robabilities analytically (Pan and Honhon, 2012):

(Choose B) = 𝐹𝜃

(

𝑝𝖲𝖫𝐴𝐴 − 𝑝𝖲𝖫𝐵𝐵

𝑞𝖲𝖫𝐴𝐴 − 𝑞𝖲𝖫𝐵𝐵

)

− 𝐹𝜃

(

𝑝𝖲𝖫𝐵𝐵

𝑞𝖲𝖫𝐵𝐵

)

= 𝐹𝜃(0.5) − 𝐹𝜃(0.2) ≈ 50%,

(Choose A) = 1 − 𝐹𝜃

(

𝑝𝖲𝖫𝐴𝐴 − 𝑝𝖲𝖫𝐵𝐵

𝑞𝖲𝖫𝐴𝐴 − 𝑞𝖲𝖫𝐵𝐵

)

= 1 − 𝐹𝜃(0.5) ≈ 30%,

(No purchase) ≈ 20%,

here 𝐹𝜃(𝑥) ≐ P(𝜃 ≤ 𝑥) denotes the cumulative distribution function
CDF) of the selected beta distribution for the random coefficient 𝜃. A
imilar calculation can be carried out when the stock-age adjustment
s accounted for and products are not necessarily brand new. The
rocedure should consider all of the intersections of the linear utilities,
ut it is also worth noting that, unless a discount policy is applied, the
onsumer will always choose the freshest item, if available.

In Pan and Honhon (2012, Lemma 1), the authors present the
onditions under which products may be included in an optimal as-
ortment, for preferences described by a linear discrete choice model
nd assuming no deterioration in items. In a case with two items, these
onditions are:

𝑝𝖲𝖫𝐵 < 𝑝𝖲𝖫𝐴 , (16)
7

𝐵 𝐴
≤
𝑝𝖲𝖫𝐵𝐵

𝑞𝖲𝖫𝐵𝐵

<
𝑝𝖲𝖫𝐴𝐴

𝑞𝖲𝖫𝐴𝐴

< 1, (17)

𝑚𝖲𝖫𝐵
𝐵 ≤ 𝑚𝖲𝖫𝐴

𝐴 . (18)

Although we satisfy conditions (16)–(18) when deterioration is disre-
garded, we relax them when adjusting for perishability. One reasonable
assumption that we follow is a non-dominance condition within the
prices of a single product, i.e.,

𝑝1𝑗 ≤ ⋯ ≤ 𝑝
𝖲𝖫𝑗
𝑗 , 𝑗 ∈  . (19)

However, due to discount strategies on aged items, product prices
can now intersect according to complex patterns, making analytical
conclusions more difficult to state.

When deterioration is considered, analytical conditions on optimal
assortment may be difficult to meet, due to the possible inability to get
rid of aged items in a profitable way. Furthermore, the interaction with
demand seasonality, delivery lead times, and possible stockouts make
the overall picture complex, calling for a simulation-based optimization
approach. For example, the value of the flexibility of a product with
a shorter lead-time and the adverse effect of a shorter shelf-life are
extremely difficult quantities to assess.

Discount business scenarios. The third and the fourth business scenarios
assume discount policies when the quality of the products deteriorates
because of the ageing process. When no discounts are applied, as
shown in Fig. 2(a), preferences are not so different from those of a
LIFO consumer behavior within each product category, except for the
interaction with other products (Gioia et al., 2022). On the contrary, if
we apply a discount, we split the preference regions between new and

old items within the same product.
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In scenario 3, we only discount product B, and we can graphically
appreciate the consequent effects in Fig. 2(b). In particular, we set:

𝑝1𝐵 = 4 → 𝑝1,𝖽𝗂𝗌𝖼𝐵 = 3.3,

splitting the choice regions between the two possible residual shelf-
lives of the items within product B. The new linear utility for the aged
product B is now subject to an upward shift, together with the slope
variation due to the deterioration, which leads to a different interaction
with the beta sampled consumers’ utility. The discounted product B
in the third scenario eliminates the utility domination of the freshest
product B over the aged one. We also notice that, thanks to the discount
strategy, the optimal assortment conditions (16)–(18) now hold within
the B product:

𝑝1,𝖽𝗂𝗌𝖼𝐵 < 𝑝2𝐵 ,

0 ≤
𝑝1,𝖽𝗂𝗌𝖼𝐵

𝑞1𝐵
<

𝑝2𝐵
𝑞2𝐵

< 1,

𝑚1,𝖽𝗂𝗌𝖼
𝐵 ≤ 𝑚2

𝐵 .

The overall effect resembles a half-FIFO/half-LIFO mixture, but we
ave to bear in mind the interaction effect with other products, which
enerates new substitution patterns. In Fig. 2(b), we divide the original
lue area of Fig. 2(a) into two new regions, where either the 1-RSL
r the 2-RSL item corresponding to product B (i.e., product B with
residual shelf-life of 1 and 2 days, respectively) now dominates.

nalytically, we can compute the new area (which is related with
hoice probabilities) just like before:

(Choose B/2-RSL) = 𝐹𝜃

(

𝑝𝖲𝖫𝐴𝐴 − 𝑝2𝐵
𝑞𝖲𝖫𝐴𝐴 − 𝑞2𝐵

)

− 𝐹𝜃

(

𝑝2𝐵 − 𝑝1𝐵
𝑞2𝐵 − 𝑞1𝐵

)

= 𝐹𝜃

( 1
2

)

− 𝐹𝜃

( 0.7
2

)

≈ 25%,

(Choose B/1-RSL) = 𝐹𝜃

(

𝑝2𝐵 − 𝑝1𝐵
𝑞2𝐵 − 𝑞1𝐵

)

− 𝐹𝜃

(

𝑝1𝐵
𝑞1𝐵

)

= 𝐹𝜃

( 0.7
2

)

− 𝐹𝜃

( 3.3
18

)

≈ 25%.

Hence, this choice of values allows us to study the effects of dis-
ounting for product B, when the two demand fractions are roughly
qual and sufficiently large to have an impact on the adopted replenish-
ent policies. It should also be pointed out that, from a practical point

f view, it is quite complex to estimate the parameters of the discrete
hoice models accurately. This difficulty questions the validity of the
ulti-product intersected areas when they are too small (e.g., really

low quality deterioration) and the consumers’ choices depend on very
mall differences in utility. Possible approaches to deal with unreliable
ata and parameters have been discussed in Gioia et al. (2022). Here,
e assume reliable data and, in the simulations, consumers’ choices are
ade according to the exact utility values of available items.

In business scenario 4, we consider the application of a discount
or both products. We apply a reduced price to the oldest items of
roduct A as well, affecting B in the green areas of Fig. 2(c). The aged
, when available, dominates the freshest B in a new portion of the
tility distribution, accounting for roughly an additional 16% of the
emand. However, such an aged item of product A cannot be ordered
y the retailer, since only fresh items are delivered by the suppliers,
ccording to our assumptions. As we will see later in the experimental
esults, the most significant effect is the creation of a lower threshold
n the minimum positive utility (i.e., the smallest value of 𝜃 for which
he consumer purchases something):

min

{

𝑝𝑑𝑗
𝑞𝑑𝑗

≥ 0 s.t. 𝑑 ∈ {1,… , 𝖲𝖫𝗃}, 𝑗 = 𝐴

}

=∶ 𝜃𝐴min =
6
24

= 0.25 →
5

22.5
≈ 0.22

In particular, since the consumer buys an item when its utility is
positive, the substitution between similar products can occur as long as
8

u

there exists an item that has a positive utility for the consumer, if her
preferred item is not available. If the zero-utility crossing thresholds
of the products are closer (the one of product B is 4∕20 = 0.20), the
retailer can force the substitution more easily, to the point of generating
an artificial modification of the assortment. Once the lost demand
diminishes due to possible substitutions, it is conceivable to reduce the
ordered amount of B, being the low-profitable (but easy to substitute)
product. Despite that, all these observations are subject to complex
interactions with lead-time, shelf-life, and seasonality, so that assessing
the performance of replenishment policies requires a careful simulation
experiment.

5.2. Performance of the replenishment policies

We have evaluated all of the policies presented in Section 4.2,
solving problem (15) by simulation-based optimization. In order to
tune the decision parameters in each policy, we adopted a simulation
horizon of 60 weeks (420 steps), setting five different seeds for pseudo-
random number generation for each business scenario of Table 2. Then,
we tested each optimized policy out of sample, on a much longer
horizon of 600 weeks (4200 steps). The key performance measures are:

• The Average profit per day (Avg.Profit), computed by averaging
the cumulative profit of Eq. (9) over the test horizon.

• The Average waste per day (Avg.Waste), computed by averaging
the number of scrapped items per day over the test horizon.

• The cumulative Unmet Demand, computed by summing the num-
ber of clients to whom nothing was offered over the test horizon.

As far as unmet demand is concerned, we must point out that it is
something different from a common lost sale variable. Many discrete
choice models allow for a no-purchase option that may be selected
when all the available options feature a negative utility. Here, unmet
demand only records when the inventory is empty and no choice can be
made at all. It can be considered as a metric of how much is available
on the shelves, and a lower value would suggest an higher number
of stored items. Since well-replenished shelves can be considered as
standard of quality for some firms (Akkaş and Gaur, 2022), getting a
glimpse about such stock-outs may be insightful.

We provide the mean value and the standard deviation for all the
selected metrics, computed with respect to the five replications for all
of the policies and all of the business scenarios in Table 3. We also plot
the size of the orders issued by the policies on each business scenario for
the same three weeks (11–14 out of 600), on the same test conditions
in Fig. 3. The solid line is the mean across the five seeds, while the area
identifies the 95% confidence interval.3

The case of identical margins. In the first business scenario, gathering
more detailed state information (however aggregate) does not seem to
provide any advantage with respect to an open-loop, constant ordering
policy. The best rule in terms of average profit (Table 3) and average
waste is the constant policy COP, suggesting that the using knowledge
about state of the system, as done in BSP, could even have an adverse
effect on the replenishment choices in some settings. The order sizes
for the COP policy (Fig. 3) resemble what we would expect from the
analytical insights. Orders follow the seasonal pattern and cover about
50% of the demand with product B, while the rest is met with A. The
analysis of the number of peaks and their size is less straightforward
because they are subject to the joint effects of lead-time and shelf-life.

Concerning the other policies, BSPC is the best in terms of unmet
demand. This follows from a better information about what is available
in all of the inventories. CA_BSPB, since seasonality is ignored when

3 Since these confidence intervals are obtained with five replications, they
hould be taken with care and are presented just to provide a glimpse of the
nderlying uncertainty.
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Fig. 3. Size of the orders issued by different policies on the four investigated business scenarios. Product A is colored in blue, product B in orange.
Table 3
Quantitative results of the heuristic policies on the four investigated scenarios. For each metric, we report the mean value and the standard deviation computed on five different
seeds.

Scenario BSP COP BSPC CB_BSPA CA_BSPB

Same initial margin 1
Avg.Profit 452.53 ± 4.86 466.36 ± 2.34 457.12 ± 2.91 450.34 ± 10.04 450.18 ± 2.38
Avg.Waste 5.27 ± 1.51 4.77 ± 0.92 4.49 ± 1.29 5.12 ± 3.20 8.53 ± 2.04
Unmet demand 18592 ± 3638 18414 ± 4810 16448 ± 4074 32617 ± 14726 34573 ± 9210

Different initial margin

2
Avg.Profit 583.17 ± 14.23 618.88 ± 4.61 627.64 ± 7.42 623.61 ± 8 587.15 ± 10.24
Avg.Waste 4.34 ± 2.21 3.35 ± 0.9 4.03 ± 0.82 1.47 ± 0.33 7.15 ± 2.64
Unmet demand 25442 ± 6955 19382.4 ± 6328 18423 ± 4824 51283 ± 8747 14835 ± 5017

3
Avg.Profit 575.29 ± 6.98 623.28 ± 4.84 625.78 ± 9.98 623.28 ± 9.17 592.35 ± 10.14
Avg.Waste 2.96 ± 1.16 3.27 ± 0.41 3.24 ± 0.77 2.31 ± 1.47 3.91 ± 1.67
Unmet demand 26543 ± 11050 17641 ± 3036 21614 ± 4625 37059 ± 9856 20219 ± 9478

4
Avg.Profit 592.86 ± 4.56 625.6 ± 7.57 640.47 ± 2.22 629.65 ± 11.46 609.54 ± 9.99
Avg.Waste 0.06 ± 0.03 0.06 ± 0.04 0.04 ± 0.02 0.98 ± 1.15 0. ± 0.
Unmet demand 15210 ± 1748 8960 ± 1530 6037 ± 2784 10634 ± 5034 4808 ± 2546
ordering product A and the lead time of product B is shorter, prefers to
force a substitution in favor of product B by more nervous and numer-
ous peaks, but it produces the highest amount of waste. Furthermore,
both CA_BSPB and CB_BSPA tend to miss the peaks of demand of the
9

product whose orders they cannot adapt to the seasonal pattern, due to
a limited supply, thus generating the highest values of unmet demand.

A final comment regards the true average optimal profit, whose
evaluation would require a computationally expensive dynamic pro-
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gramming approach. To get a feeling for the quality of the proposed
policies, we can use a simple back-of-the-envelope calculation. We
adapt a Poisson distribution to reflect seasonality, but since the season-
ality factors add up to 7, the average number of consumers per week is
the same as in a week with no seasonality, which implies an average of
300 consumers per day. Of these, 20% have no positive utility from any
item, so 300.8 = 240 consumers should buy an item. Since the margin
s 2 for both items, this suggests that, on average, we should expect

daily profit of no more than 480. Clearly, this is just a rough-cut
alculation, but a comparison with the results in Table 3 for business
cenario 1 provides a glimpse about the quality of the adopted policies
n the simulated setting.4

he case of different margins. When the cost of product A drops by one
nit, as is the case in business scenarios 2, 3, and 4, it becomes the
ore profitable for the retailer. We can therefore expect that ordering
olicies will try to enforce the substitution of B with A whenever
ossible. In Fig. 3, the last three scenarios emphasize this effect and
ts interaction with each ordering policy. However, discounts in the
hird and fourth scenarios have more significant consequences on the
erformance (see Table 3).

The policies where the order size of one product is fixed (CB_BSPA
nd CA_BSPB) must rely on the other one to deal with seasonality.
ince product A is the most profitable one, when its order sizes are
lexible, the product B almost disappears in the second and the fourth
cenario, having a larger but still marginal role in the second scenario,
here it is the only one discounted. It is also worth noticing that,

n the fourth scenario, product B has a reduced price, but the effect
n A makes it a minor advantage. On the one hand, due to the full
eliance on product A, CB_BSPA does not care about the consumers
hat are not willing to substitute A in the place of B. This generates

limited supply of the latter product that entails very high values
f unmet demand, reducing the average waste though. On the other
and, CA_BSPB produces opposite results in terms of waste and unmet
emand in the second and third scenarios, maintaining a large supply
f A to encourage a substitution effect, but being forced to handle the
easonality only through B. It follows that waste increases and unmet
emand decreases. The fourth scenario is somehow different, because
f the discount on A that completely compensates the oversupply of
, reducing to basically zero the number of scrapped items per day.
verall, the discount strategy on product A does significantly affect

he performance, especially in reducing waste, but also in boosting the
verage profit as well.

The Correlated Base-Stock Policy (BSPC) yields the best average
rofit in all of the scenarios where the margins are different. In par-
icular, we immediately notice that this is the only policy where a
easonal pattern is not evident in B (for business scenarios 2–4). It
ather appears to meet a fraction of demand for B that cannot be
ubstituted by A, when needed, in the second and third scenarios,
hile removing the less profitable product from the assortment in the

ourth scenario. Unlike COP and BSP, which do not consider a detailed
nformation about inventories, it is better able to take advantage of
ossible substitutions, revealing a fundamental feature that was not
oticeable in the first business scenario. Specifically, in these three
cenarios, the BSP policy does an even worse job with average profit,
hile COP seems to be still a reasonable approach, which improves
hen the substitution opportunity diminishes (third scenario, due to
iscount on B), reducing the gap with BSPC.

Similarly to the first scenario, we can estimate an upper bound on
he average performance by a simplified calculation. However, we have
o bear in mind that the discount strategies produce more intricate ef-
ects. Considering 300 consumers a day on average, we assume that the

4 A careful comparison with dynamic programming has been reported, in
simpler setting, by Haijema and Minner (2019).
10
retailer is able to force them to buy the product with the highest margin
in the subset of products for which they have a positive utility. In our
two products case, this means that the retailer can force consumers
who are willing to buy A, since they this has positive utility for them,
to buy this higher margin product, even though they might prefer B.
Clearly, this is an idealization, as a physical retailer cannot personalize
the assortment for each specific consumer. In the case of consumers
that have negative utility for A, but positive for B, the retailer might
offer B, which yields a lower margin but covers an additional demand
portion. To quantify the profit in this setting, let us observe that product
A crosses the zero-utility line at point

𝜃1 =
𝑝𝖲𝖫𝐴𝐴

𝑞𝖲𝖫𝐴𝐴

= 6
24

= 0.25.

Hence, the retailer would like to force all consumers with 𝜃 ≥ 0.25
to buy A. The demand portion corresponding to consumers who have
positive utility from B but not A features a value of 𝜃 between this
critical value 𝜃1 and value of 𝜃 where B crosses the zero-utility, i.e.,

𝜃2 =
𝑝𝖲𝖫𝐵𝐵

𝑞𝖲𝖫𝐵𝐵

= 4
20

= 0.2.

ence, the retailer would like to offer only 𝐵 to consumers with
𝜃 ∈ [0.2, 0.25). Given the cumulative distribution function of the beta
distribution 𝐹𝜃 of the random coefficient 𝜃, the ideal average profit in
scenario 2, assuming again an average of 300 consumers per day, is

300 ⋅
[

3 ⋅
(

1 − 𝐹𝜃(0.25)
)

+ 2 ⋅
(

𝐹𝜃(0.25) − 𝐹𝜃(0.2)
)]

≈ 712.

In business scenarios 3 and 4, we should consider consumers who are
only willing to buy an aged but discounted item. In scenario 3, a
discount in offered on aged items of B, and the retailer is able to cover
an additional portion of demand, consisting of consumers who are not
willing to buy either A or fresh and more expensive items of B, but
have positive utility from discounted B. The value of 𝜃 where utility
from discounted B crosses the zero-utility line is

𝜃3 =
𝑝1,disc
𝐵

𝑞1𝐵
= 3.3

18
≈ 0.1833.

Hence, the retailer can collect a margin of 1.3 from consumers featuring
𝜃 ∈ [0.1833, 0.2), yielding an upper bound of

300 ⋅ 1.3 ⋅
(

𝐹𝜃(0.2) − 𝐹𝜃(0.1833)
)

+ 712 ≈ 722.

In scenario 4, a discount is also offered on aged items of A but, since
their margin is the same as fresh items of B, the analysis of scenario
3 can be applied to scenario 4 as well, from the retailer’s point of
view. These upper bounds can be compared with the performance
of replenishment policies in Table 3, and we may observe a larger
gap than in scenario 1. However, we should observe that here the
assumption of a retailer able to customize assortment for each specific
consumer is strongly idealized, and the interaction with seasonality
and delivery lead time, as well as demand variability, makes this ideal
target very hard to achieve.

6. Conclusions and directions for further research

In this paper we have considered parameterized ordering policies
for a rather stylized inventory control problem with two vertically
differentiated items, under a choice model based on a simple lin-
ear utility. Despite this simplicity, the model deals with complicating
factors like demand seasonality, inventory deterioration, discounted
prices, delivery lead times, and consumer heterogeneity. The ensuing
complexity does not make the problem amenable to elegant analytical
modeling, and we have pursued a simulation-based approach, relying
on standard surrogate models. The aim is to gain managerial insight
and to check the behavior of alternative ordering policies, rather than
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actually providing decision support. Nevertheless, the accompanying
software allows for a far more general analysis.

The adoption of simple parameterized policies may be justified on
the ground of managerial acceptance. Furthermore, variability in order
sizes may be a source of concern when interacting with a supplier,
especially in a setting with demand seasonality and short shelf-life.
Indeed, a retailer may have to deal with items provided by outside
suppliers as well as private label items, featuring different degrees
of ordering flexibility. The analysis of the proposed rules suggests a
potential approach to cope with seasonality by taking advantage of
product substitutions.

The simulations rely on a discrete choice model based on a linear
utility trading off price and quality. Whatever choice model we adopt,
there are two sources of modeling errors:

1. Model misspecification, i.e., the model is not able to capture actual
consumer behavior.

2. Estimation errors, i.e., the parameters characterizing the model
are not quantified correctly.

he proposed approach is clearly subject to both sources of difficulty,
hich may be even more relevant when discounts are used to counter

he LIFO consumer behavior in the face of deteriorating items. How-
ver, we do not have a descriptive aim, but rather a prescriptive one.
he investigated approach is parsimonious and, hopefully, accurate
nough to derive a satisfactory ordering policy. A fundamental step for
urther investigation should be a check of robustness against model er-
ors. Furthermore, we have assumed given prices, but the model could
e used for pricing purposes as well (Pan and Honhon, 2012). Since the
nteraction between complex problem features and joint ordering and
ricing policies is not easy to analyze, a simulation-based optimization
pproach would be a useful tool. The shared code accompanying the
aper may also be useful to pursue such an investigation.
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