
19 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Image Test Libraries for the on-line self-test of functional units in GPUs running CNNs / Ruospo, Annachiara; Gavarini,
Gabriele; Porsia, Antonio; Sonza Reorda, Matteo; Sanchez, Ernesto; Mariani, Riccardo; Aribido, Joseph; Athavale,
Jyotika. - (2023), pp. 1-6. (Intervento presentato al convegno 28th IEEE European Test Symposium 2023 tenutosi a
Venice (Italy) nel May 22 - 26, 2023) [10.1109/ETS56758.2023.10174176].

Original

Image Test Libraries for the on-line self-test of functional units in GPUs running CNNs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ETS56758.2023.10174176

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978413 since: 2023-05-09T13:23:04Z

IEEE

Image Test Libraries for the on-line self-test of
functional units in GPUs running CNNs

A. Ruospo∗, G. Gavarini∗, A. Porsia∗, M. Sonza Reorda∗, E. Sanchez∗, R. Mariani†, J. Aribido† and J. Athavale†
∗Politecnico di Torino, DAUIN, Torino, Italy

†NVIDIA, US

Abstract—The widespread use of artificial intelligence (AI)-
based systems has raised several concerns about their deployment
in safety-critical systems. Industry standards, such as ISO26262
for automotive, require detecting hardware faults during the
mission of the device. Similarly, new standards are being released
concerning the functional safety of AI systems (e.g., ISO/IEC CD
TR 5469). Hardware solutions have been proposed for the in-
field testing of the hardware executing AI applications; however,
when used in applications such as Convolutional Neural Networks
(CNNs) in image processing tasks, their usage may increase
the hardware cost and affect the application performances. In
this paper, for the very first time, a methodology to develop
high-quality test images, to be interleaved with the normal
inference process of the CNN application is proposed. An Image
Test Library (ITL) is developed targeting the on-line test of
GPU functional units. The proposed approach does not require
changing the actual CNN (thus incurring in costly memory
loading operations) since it is able to exploit the actual CNN
structure. Experimental results show that a 6-image ITL is able
to achieve about 95% of stuck-at test coverage on the floating-
point multipliers in a GPU. The obtained ITL requires a very
low test application time, as well as a very low memory space
for storing the test images and the golden test responses.

Index Terms—Deep Neural Networks, Reliability, On-line Self-
test, Fault Injection, Functional Safety

I. INTRODUCTION

The ever-increasing adoption of AI-based solutions in modern
systems labeled as safety-critical is requiring the academic and
industrial communities to increase their efforts to guarantee higher
reliability for these products. Among the AI-systems, those based
on Convolutional Neural Networks (CNNs) are among the most
used for their outstanding capabilities in tasks like image pro-
cessing and classification. In the last years, many standards have
been proposed to guide the adoption of different mechanisms to
face reliability issues. For example, the ISO 26262 standard is
commonly followed in the automotive industry. Similarly, new
standards are being released concerning the functional safety of
AI systems (e.g., ISO/IEC CD TR 5469). Among the possible
solutions adopted in the different fields, on-line testing strategies
based on functional methods have been incorporated as a common
solution by industry sectors such as the automotive one [1]. In
these cases, the on-line test of the processor core and the re-
lated peripherals is performed through the periodic execution of
Software Test Libraries (STLs) composed of a set of assembly
programs able to thoroughly excite the processor core and detect
possible permanent faults. Adopting STL solutions allows the
system to perform the test on-line, and does not require any

hardware overhead since it only needs a suitable memory space
for saving the test libraries.

In the literature, STLs have been proposed as an effective safety
mechanism to test in the field systems such as Graphics Processing
Units (GPUs), widely used to accelerate AI applications [2], [3].
However, devising an STL requires a large amount of manual and
semi-automatic work, since no EDA tools are available for their
generation. In particular, the execution of specific STLs interleav-
ing CNN inferences may jeopardize the strive for performance
maximization [4].

Recently, an in-field testing solution for testing deep learning
(DL) accelerators has been suggested by [5]. As a case study,
they exploit NVDLA, an open-source Nvidia’s DL accelerator.
Their technique resorts to combinational Automatic Test Pattern
Generation (ATPG) to generate functional test patterns to detect
permanent faults in both computational and logic units. These
patterns consist of sets of {input, weight} pairs and are mapped to
DNN test programs depending on the specific dataflow algorithm.
For each ATPG pattern, a single DNN is created. However, the
execution of specific DNN test programs (e.g., that can be more
than 6k only for the computational units) involves a non-negligible
time for memory transfers, and, above all, can be performed only
during dead times of the systems, i.e., boot or reset. Additionally,
the total test storage can require, in some cases, up to 600 MB only
for the computational units.

This research work describes a method to develop high-quality
test stimuli in the form of test images to be used during the normal
CNN inference process. This requires finding a set of input pixels
that, convolved with a set of fixed/known CNN weights, can detect
with high test coverage (TC) permanent faults affecting the target
hardware unit. The idea comes mainly from the following obser-
vation: when a CNN is deployed in the field, the trained version
is loaded, and the weights never change. The same CNN can be
exploited to periodically process carefully-developed test images
to test on-line specific hardware units. A comparison mechanism
is then adopted to possibly alert for the presence of a fault.

In this work, we describe a method to generate a set of images
for the on-line test of the multipliers in a GPU, which have a
relevant role in convolutional operations, and convolutional layers
in CNNs account for more than 90% of the total operations [6].
This set of images constitutes the Image Test Library (ITL). Ex-
perimental results reveal that with a reduced set of test images, our
technique achieves about 95% single stuck-at test coverage for all
GPU multipliers. As a case study, two ITLs have been developed
for two CNNs: ResNet20 and DenseNet121. In addition, we exper-

imentally demonstrate that the developed ITLs can propagate the
effect of the faults up to the software level. Although the current
paper focuses on NVIDIA GPUs, the method can be extended to
other GPU architectures as well. The rest of the paper is organized
as follows: section II provides the reader with some background
knowledge about convolutional operations in GPUs. Section III
describes the proposed approach. Next, Section IV reports on the
experimental results. Finally, Section V draws conclusions and
future directions.

II. BACKGROUND

A. NVIDIA’s Graphics Processing Units
Among all the hardware accelerators used for efficiently run-

ning CNNs, GPUs are one of the most popular choices. Recent
NVIDIA’s GPUs feature a number of Graphics Processing Clus-
ters (GPCs), each composed of multiple Streaming Multiproces-
sors (SMs). The SMs constitute the core of the accelerator, as
they are in charge of most of the operations performed by the
device. A single SM is composed by a group of processing blocks,
each with a dedicated warp scheduler. Typically, a processing
block is composed of multiple CUDA cores. At the software
level, a GPU needs to handle hundreds of threads concurrently.
For this reason, GPUs use a Single-Instruction, Multiple-Threads
(SIMT) execution model. Each group of processes, namely a
thread block, is assigned to an SM and is then partitioned in
groups of parallel threads called warps. Subsequently, as an SM
executes a thread block, each of its warps is dispatched to a warp
scheduler, which issues instructions to the CUDA cores of the
corresponding processing block in a SIMT fashion. While the
mappings between thread blocks, warps and threads depend on
the software implementation (with some hardware constraints), the
mapping between threads and CUDA cores depends exclusively on
the device.

B. Scheduling a convolutional algorithm
The core operation of CNNs is the convolution, corresponding

to a function that, given an input tensor I ∈ RHI×WI×C and
a weight tensor K ∈ RHk×Wk×C×N returns an output tensor
O ∈ RHO×WO×N . Input and output tensors are also referred to as
Input Feature Map (IFMAP) and Output Feature Map (OFMAP),
respectively. This operation is often not executed directly: mod-
ern libraries use equivalent algorithms to efficiently implement
the convolution operation, such as General Matrix Multiplication
(GEMM), Winograd or Fast Fourier Transform (FFT). The most
efficient algorithm for convolution, especially for large inputs, is
GEMM. In GEMM, a convolution is reduced to a matrix multipli-
cation, as show in figure Fig. 1a.

Understanding how GEMM works is crucial to correlate an
element of the OFMAP with the specific core that computes its
value. This correlation depends on two levels of scheduling:

• Thread-core mapping: the mapping between a software
thread and a hardware core. It depends on the architecture
of the device.

• Workload-thread mapping: the mapping between an element
of the OFMAP and a software thread. It depends on the
software implementation of the GEMM algorithm. NVIDIA’s
cuDNN and CUTLASS are two libraries that offer different
implementations and, possibly, different mappings.

(a) Threadblock (b) Warp (c) Thread

Fig. 1: CUTLASS implementation of GEMM algorithm

In this paper, we refer to the dataflow algorithm as the ensemble
of the convolutional algorithm, the thread-core mapping and the
workload-thread mapping. While cuDNN and CUTLASS differ in
their workload-thread mapping, they have a similar approach: they
both split the computation of the output matrix into products of
sub-matrices called tiles. Hence, knowing to which thread a certain
tile is assigned means knowing the workload-thread mapping.
Unfortunately, details about the implementation of the mapping
between threads and tiles is not publicly available for the cuDNN
version of GEMM. However, for CUTLASS, it is known [7]:

• Threadblock-level GEMM: Each threadblock computes a tile
Hblock ×Wblock of the output matrix (Fig. 1a);

• Warp-level GEMM: To each warp inside a block a portion
Hwarp × Wwarp of a threadblock-level tile (Fig. 1b) is
assigned;

• Thread-level GEMM: Each thread computes a certain number
of elements of the warp-level tile. In particular, to take
advantage of the SIMT architecture, the elements within a
thread are tiled in a 2D structure, as shown in Fig. 1c

III. PROPOSED ILT GENERATION METHOD

This research work presents a method to develop test images for
the on-line self test of multipliers in GPUs. The overall idea relies
first on an ATPG-based approach (highly effective for regular
structures like GPU functional units) to find out a set of suitable
input values at the functional unit level, and then on transforming
them into a test image. By processing these images using the
CNN architecture and its weights (in particular, those of the first
convolutional layer), it is possible to obtain a high fault coverage
for the targeted unit. This methodology is described in details in
Section III-A. Therefore, the produced test images can be executed
in the field, by leveraging the same CNN, and by alternating ”nor-
mal” inferences with the ITL self-test images (without moving or
loading new weights in memory). In Section III-B, a methodology
to validate the effectiveness of the test images is presented.

A. Image Test Library (ITL) Generation

The overall idea behind the generation of test images is illus-
trated in Fig. 2 and follows three stages: (i) dataflow algorithm
extraction, (ii) ATPG-based patterns generations, and (iii) self-test
images generation.

(i) Dataflow algorithm extraction: The goal of this phase is
to derive how the different operations are scheduled on a specific
GPU architecture, and how convolutions are performed. In other
words, to find a correlation between input pixels, CNN weights,
and individual multipliers. In GPUs, the dataflow algorithm is
fixed in the architectural specification: it can be accessed by
profiling the execution of the software and by tracking operations.

Fig. 2: Graphic representation of the proposed method to
generate ITLs.

This correlation is necessary to find out the set of fundamental op-
erations that each multiplier executes. The reader should note that
by knowing the workload-thread mapping, the proposed solution
can generate ITLs for every module for which we know the thread-
core mapping. Details and exact figures on the specific software
and device-dependent implementation are given in Section IV.

(ii) ATPG-based pattern generation: Once the dataflow algo-
rithm is known, an ATPG process is set up to find out the collection
Pc of input-weight pairs ⟨i, w⟩ that maximize the test coverage
of the multipliers of a core c. The parameter w corresponds to
the real trained weights W of the CNN. To this end, they are
put as constraints for the ATPG generation. So, the resulting test
patterns depend on both the actual CNN’s weights and input values
generated by the ATPG. For the on-line testing, such carefully-
crafted ⟨i, w⟩ values are fed to the multiplier unit by means of
suitable images composing the ITL. It is worth underlining that
the ATPG process is executed only on the targeted module, and
the obtained test patterns only relate to its inputs.

(iii) Self-test images generation: After the ATPG process, the
ITL is built using the process described in Algorithm 1. The
first step (line 3) is to reverse the mappings described in stage
(i), associating each core with pairs of indices ⟨iidx, widx⟩ of
elements processed by that core. Here, iidx is the index of an
element of the input feature map I (i.e., I(iidx) = i), while
widx is the index of an element of the weight tensor W (i.e.,
W (widx) = w). When dealing with a convolution, a core reuses
the same weight for different inputs. For this reason, given a
weight indexwidx and a core c, a list of the associated input feature
map indices Iidx(widx|c) is built (line 4).

Given the list of suitable input positions for each core and
weight, it is possible to reconstruct the images. The general
algorithm consists of two nested loops: the outermost one cycles
over the available cores, while the innermost one operates on the
ATPG-generated pairs ⟨i, w⟩ associated to a specific core c. For
each ⟨i, w⟩ pair, a list of input feature map indices Iidx(widx|c)
associated to the weight index widx of the element w of the weight
tensor W is selected (lines 7-8). The result of this process is a
collection of suitable positions where to put the inputs i, associated
with weight w, returned by the ATPG processes. In line 9, the
index of position is selected among all the free positions (i.e.,
not occupied by another pattern), across all the already-generated
images. If a free space is not found, a new image is generated and
a new position is chosen (lines 10-13). Finally, the input value i is
assigned to the selected position (line 14).

Algorithm 1 Self-test Image Generation

Inputs: ATPG-patterns - Patterns for each core
Outputs: ITL - List of test images [Ifmap ∈ RHI×WI×C]

1: ITL← []
2: for core← 0 to ncores do
3: inputs← MAP-CORE-TO-INPUTS(core)
4: GROUP-BY-WEIGHT(inputs)
5: patterns← ATPG-patterns[core]
6: for pattern, weight in patterns do
7: widx ← GET-WEIGHT-INDEX(weight)
8: positions ← inputs[widx]
9: Ifmap, ifree ← FIND-EMPTY-POS(ITL, positions)

10: if Ifmap = nil then
11: Ifmap ← APPEND-NEW-IMAGE(ITL)
12: ifree ← positions[0]
13: end if
14: Ifmap[ifree] ← pattern
15: end for
16: end for
17: return ITL

B. ITL Validation

To validate the adoption of ITLs for on-line testing, it is funda-
mental to highlight their ability to (i) excite hardware faults of the
targeted functional module, and (ii) let the faults propagate at the
software level (where their occurrence is checked).

To study the cross-level propagation of hardware faults of a
target unit, it is necessary to perform architectural-level fault simu-
lations and, for each injected fault, check if the fault is propagated
to the software level. In the literature, many FI tools perform
architectural-level injections, by instrumenting the source code
to corrupt all instruction set architecture registers (e.g., SASSIFI
[8]), or by performing dynamic and selective code instrumentation
(e.g., NVBinFI [9]), or with hybrid SASSIFI/Tensorflow solutions
(i.e., CLASSES [10]). They all consider only the registers, PIs,
and POs of functional units. To the best of our knowledge, only
[11] propagates at the software level the impact of permanent
faults in functional units, and not only registers, PIs and POs.
They combine software profiling with gate-level microarchitec-
tural fault simulation to build syndrome tables, a collection of fault
syndromes. These are used during the execution of the CNN to
support the code instrumentation and to propagate the error effects.
However, one single hardware fault may produce multiple error
syndromes during the CNN execution, and therefore the size of
syndrome tables may be non-negligible.

The proposed idea stems from a mathematical observation. Let
us consider the inputs (I and W) and the output (O) of a multiplier.
In the presence of a fault affecting it, the product IxW may yield a
faulty output Ô, that is: I ∗W = Ô

However, this fault can also be thought of as a faulty input
(Î or Ŵ) entering a golden multiplier and producing the same
faulty output Ô. Knowing the value of Ô that derives from a fault
affecting the multiplier, it is possible to obtain the respective faulty
input (Î or Ŵ), that corresponds to the same fault without injecting

it. Assuming a golden multiplier, the same fault can be seen as:

Î =
Ô

W
, or Ŵ =

Ô

I
(1)

Furthermore, if a faulty multiplier performs J multiplications,
there will be J corrupted outputs Ôj for j ∈ [1, .., J]. This
is equivalent to having J multiplications executed by a golden
multiplier with a set of corrupted inputs Îj (or weights Ŵj), for
j ∈ [1, .., J].

In this work, we propose a methodology to perform very accu-
rate software FIs by applying faulty inputs Î to the CNN which ex-
actly correspond to specific hardware faults internal to the targeted
functional unit. This approach has two main advantages: it com-
bines the accuracy of the gate-level microarchitectural simulation
with the speed of software FIs, and it allows us to experimentally
demonstrate that the proposed self-test images (ITLs) can excite
permanent faults inside functional units while propagating the
effects up to the OFMAP of the first CNN’s layer. The impact
of hardware faults is not simulated by performing complex and
costly multi-level simulation environments, but only launching the
inference of faulty images that exactly reflect a precise hardware
fault within the first layer.

The generation of faulty images that corresponds to injecting a
specific fault within a multiplier is described in Algorithm 2. First,
the fault is injected at low level in the multiplier (line 2). Then, for
each operation performed by the multiplier during the convolution,
its input weight W [op] and the low-level faulty output Ô are
collected (line 4-5). These values are used to compute the faulty
input Î[op] (line 6). Finally, the list of all the input elements (one
for each operation) is converted to images following the same logic
of Algorithm 1 (line 8).

To inject faults at application-level using the images generated
in Algorithm 2, it is necessary to combine the information of the
list of images in a single faulty OFMAP. Therefore, given a fault
fc affecting core c, the first step to fault simulate a layer l, is to
generate the set of faulty images Ifc as described in Algorithm 2.

Algorithm 2 Faulty Images for a fault in an HW multiplier.

Inputs:
• MULx - Selected multiplier;
• fault - A stuck-at fault of MULx;
• ITL - Image test library for a specific CNN;
• Operations - Pairs of ⟨input,weight⟩ multiplications

performed by MULx during the convolution.
• n op - Number of Operations

Outputs: FImg - List of faulty images for a single HW fault.
1: FImg← []; Î ← []; W← [];
2: MULX-INJECT(fault)
3: for op← 0 to n op do
4: Ô ← MULX-MULTIPLY(Operations[op])
5: W[op]← GET-WEIGHT(Operations[op])
6: Î[op]← Ô

W
7: end for
8: FImg[fault]← PATCH-ITL(Î , W, ITL)
9: MULX-CLEAN(fault)

10: return FImg

The reader should note that the OFMAP of the first layer contains
values that are not only computed by core c. For this reason, the
application of a mask M(c) (that depends only on the core c) to
the output of the layer is required. An element of this mask is set
to 1 if the corresponding element in the OFMAP is computed by
core c, 0 otherwise. As such, the faulty output of the layer l(i), for
a clean input image i can be computed as the sum of element-wise
multiplications:

lfc(i) = l(i) · (1−M(c)) +

∈Ifc∑
ifc

l(ifc) ·M(c) (2)

a) Software-level Observability: With the developed ITL,
the TC achieved by executing the test images is observed at the
output of the single multipliers. However, during the on-line self
test, we want to fix the observability point at the software level.
As a consequence, for each self-test image, the respective golden
OFMAP of the first layer is stored (we refer to as signature-
ofmap), and it is compared to the actual one on-line: if they differ,
a warning is raised.

IV. EXPERIMENTAL SETUP AND RESULTS

The effectiveness of the approach has been experimentally
validated by using the scheduler and the architectural details of
the NVIDIA Jetson Nano, which includes a 128-core NVIDIA
Maxwell GPU. The proposed ITLs have been developed to detect
permanent faults affecting the multipliers of the targeted GPU.
This work does not take into account neither hardware-level
mechanisms [12] nor OS-level mechanisms [13] used to guarantee
the safety of the GPUs. For the sake of reproducibility, an open
source unit from OpenCores was exploited [14]. This unit is a
IEEE-754 compliant, single-precision, and signed 32-bit floating-
point (FP32) multiplier. The RTL design has been synthetized with
the 45nm NangateOpenCell Library [15] and a frequency of 50
MHz. The Synopsys TetraMAX tool has been used for the ATPG
process. The synthetized gate-level unit features a total of 12,510
stuck-at faults.

We developed two ITLs, for two different CNNs (ResNet20 and
DenseNet121) trained and tested on CIFAR-10 by using PyTorch.
The ResNet20’s first layer performs a convolution of stride 1
between a 32x32x3 input image and 16 filter weights of size
3x3x3, for a total of 432 FP32 weights. On the other side, the first
convolutional layer of DenseNet121 has stride 2 and convolves a
32x32x3 input image with 64 filter weights of size 7x7x3 (9,408
FP32 weights).

a) ITL generation: The first step of the proposed method
corresponds to extracting, for each GPU core, a list of all the
weight-input pairs processed by every multiplier. This is possible
by extracting the dataflow algorithm, as explained in Section III.
In our case, we fixed the convolutional algorithm to be GEMM,
and we observed the thread-core mapping through tracking oper-
ations. Note that changing this mapping could change the fault
propagation and affect the TC of the targeted units. To have a
knowledge of the workload-thread mapping, we added a PyTorch
function to force the usage of the GEMM implementation provided
by CUTLASS, since it is publicly available. Furthermore, we
extended this implementation to (i) at the warp level, have output
tiles with the same width as the weight matrix (i.e., the number of

TABLE I: Details about the ATPG process.

CNN Num. of
weights

Selected
Weights

Num. ATPG
patterns

Test
Coverage

ResNet-20 432 144 128 93.58
DenseNet-121 9,408 576 135 94.28

filters/output channels N) and (ii) at the thread-level, force each
thread to compute a whole output row (i.e., N output elements, 1
for each output channel). For ResNet20, with a threadblock size
of 128 threads, given an input matrix of size 1024 × 27 and a
weight matrix of size 27 × 16, we obtain 8 threadblock tiles of
size 128 × 16, warp tiles of size 32 × 16, and thread tiles of size
1 × 16. This means that a single core is in charge of computing
16 · 8 elements of the OFMAP, performing 3, 456 multiplications.

The modified workload-thread mapping guarantees that each
core processes all the weights at least once: since the constraints
are the same, it is possible to launch one ATPG process for all
the cores. Depending on convolution parameters, the convolution
algorithm and the GPU architecture, some cores may always multi-
ply some weights by 0-padding inputs. As we have no control over
padding values, we should select only weights that are multiplied
by a non-padding input element at least one time by each core.
That is, we must exclude from the list every pair containing a
weight that in at least one core is only multiplied by padding.

Details about the ATPG process are given in Table I. The second
column reports the total number of weights used to perform the
convolution of the first layer. For both CNNs, each core uses
all the weights at least once during the first convolution. As for
DenseNet121, since the amount of weights is substantial, we kept
only 32 filters instead of 64 and selected a 3x3 region around the
central element of each channel, to keep the process as close to
ResNet20 as possible. By removing weights that in some cores
are exclusively multiplied by the 0-padding (23 of all weights for
ResNet20, 1

3 of reduced weights for DenseNet121), we obtained
the final list of candidate weights (Column 3rd, Table I). An ATPG
process was set up by putting as constraints the selected weights,
and, for every one, a single ATPG pattern was found. Some
weights did not originate patterns able to increase the TC. The
TetraMAX process took about 0.17s of CPU time to find a single
pattern. The number of final ATPG patterns is given in Column 4th,
and the final TC was equal to 93.58% for ResNet20, and 94.28%
for DenseNet-121. Due to the constrained weights, the 3.89% and
4.01% were classified as ATPG Untestable, respectively. Clearly,
these percentages are lower than the ones achieved in [5] on
NVDLA’s computational units. Indeed, their ATPG process did
not place any constraints, modifying not only the input values
but also the actual weights of the NN. For this reason, it is
not suitable for on-line testing (we intentionally use real CNN’s
weights to alternate on-line inferences of ”normal” images with
self-test ones).

The ATPG patterns are then used to reconstruct the self-test
images, as described in Algorithm 1. The reconstruction process
requires knowing which pixel in the input image are processed
by which core: this information is retrieved during the dataflow
algorithm extraction. At the end of this procedure, we obtained
6 self-test images for ResNet20 and 8 for DenseNet121. Samples
from the real ITLs are illustrated in Fig. 3a and Fig. 3b.

Next, starting from these ITLs, we performed a logic simulation
resorting to Modelsim® HDL Simulation, by simulating the exact
{input, weight} pairs of the obtained images entering into each of
the core’s multipliers. For each test image, 128 (the total number of
multipliers) value change dump (VCD) files have been collected.
These VCDs have been used to run gate-level fault simulations
with TetraMAX, to compute the exact TC that each self-test image
achieves on each core’s multipliers. We observed that the actual
TC was always higher than the one computed at the end of the
ATPG process. Indeed, apart from the selected weights (Column
3rd, Table I), each core executes more operations, including dif-
ferent multiplications by zero (the 0-padding). It means that the
proposed ITL generation guarantees a minimum TC value among
all the GPU cores (the exclusion of those weights that, in some
cores, multiply the 0-padding, avoid penalising individual cores).

Table II reports details of the two ITLs, in terms of (i) number of
images, (ii) average TC over all the 128 cores, (iii) time required
to run the ITLs and compare the golden signature-ofmap with the
computed one, and the (iv) total storage required to support our
self-test approach. As for the self-test time, it is worth underlining
that the time required to run the inference of 6 CIFAR10 images
is 0.35 ms for ResNet20, and 0.36 ms for DenseNet121 (images
are run in a batch of 8 images: batches are always a power of 2).
Furthermore, considering the memory space needed to store the
ITLs, we sum up the space to store the self-test images (e.g., for
ResNet20, 6 test images multiplied by 32x32x3x4 bytes), together
with the space needed to store the golden test responses, i.e., the
signature-ofmap for each image (e.g., 6 test images multiplied
by 32x32x16x4 bytes). For the sake of completeness, Tables III
and IV compare the TC of the proposed ITLs (in each warp)
with the ones obtained by running the inference of checkerboard
images, random images, and CIFAR10 images. An example of
checkerboard images is given in Fig 3c; they seek to reproduce the
well-known testing technique of applying specific checkerboard
test patterns in assembly programs (e.g., 0xa5a5a5a5). Then, the
same quantity of test images was selected for each type of ITL
(the proposed, checkerboard, random, and CIFAR10), and gate-
level fault simulations for each core in each warp have been
performed. Each test image was fault simulated separately, and at
the end, the 6 or 8 fault lists have been merged through TetraMAX.
The final value is reported as the average over the 32 CUDA
cores’ multipliers in each warp. As emerging, TC values oscillate
depending on the amount of 0-padding assigned to each core, but
it is interesting to note that the proposed ITL’s values are always
higher than ones obtained at the end of the ATPG process (Table
I). As shown in Tables III and IV, the main advantage of the
proposed test images consists in the achieved test coverage: it is
∼13%, ∼9%, and ∼10% higher than the checkerboard, random,
and CIFAR10 ITLs, respectively. It means that with a very low
number of inferences, it is possible to cover about the 95% of
stuck-at faults of the GPU’s multipliers, without modifying the
current CNN or undertaking costly memory load operations.

b) ITL Validation: Instead of performing low-level fault
injections and propagating faulty values at the software level, we
propose to inject hardware faults affecting the multipliers as a set
of carefully modified images which mimic the same faulty output
of the multiplier (without injecting it at gate level). Permanent
faults affecting MUL0 have been considered, and the faulty images

TABLE II: Details of the ITLs developed for testing on-line
the FP32 multiplier.

Proposed ITLs Num. of
images

Avg.
TC [%]

Self-test
time [ms]

Memory Space
for storing

the ITL [kB]

ResNet-20 6 94.74 0.35 467
DenseNet-121 8 95.46 0.36 623

TABLE III: ResNet-20: comparing the proposed ITL with
Checkerboard, Random, and CIFAR10 images.

ITL type Num. of
images

Avg. Test Coverage on FP32 mul. [%]
warp0 warp1 warp2 warp3

Proposed ITL 6 94.72 94.76 94.76 94.72
Checkerboard ITL 6 81.37 81.12 81.12 81.46
Random ITL 6 85.23 84.73 85.01 85.13
CIFAR10 ITL 6 84.42 84.85 84.56 84.61

have been created by following Algorithm 2 for ResNet20. MUL0

executes a total of 3,456 multiplications by using all weights more
than once. Of all the weights in the first layer (16 filters of size
3x3x3), MUL0 is responsible for performing 216 multiplications
per filter. This means that in total, we get 16 patches (3,456/216)
containing faulty values for the first layer only. These patches must
be overlaid on each of the ITL images. Therefore, in total, each
individual stuck-at fault corresponds to 6*16 faulty images.

To compute the Ô and the Î , a Modelsim HDL simulation
was performed by injecting the stuck-at faults that have been
marked as detected at the end of the gate-level fault simulation.
Then, given Î and the respective ITL, the faulty images have been
created (Algorithm 2). Finally, inferences on the faulty images
have been performed with a PyTorch simulation, without changing
the ResNet20 CNN model. To verify that the faulty ITLs can prop-
agate the multiplier’s faults up to the first convolution OFMAP,
Eq. 2 was used to check for differences between tensors. They all
produced a difference in the OFMAPs: all the detected faults (after
the gate level simulation) are propagated and observed through the
tensors (OFMAPs) of the first convolutional layer.

(a) (b) (c)

Fig. 3: Samples from the final ITLs: DenseNet121 (3a),
ResNet20 (3b), and checkerboard (3c).

V. CONCLUSIONS AND FUTURE WORKS

This paper describes a method to develop test images able to de-
tect on-line the occurrence of stuck-at faults in GPU’s multipliers.
We showed that with a very reduced set of images it is possible to
cover about 95% of permanent stuck-at faults at the cost of a very
low self-test time and a very low memory space for storing the
ITLs. Future work will include the extension of the method to other
units of a GPU. The main remark the reader may raise is that, in
GPUs, thread-core and workload-thread mappings are not always
publicly available. Extracting the dataflow algorithm can be done

TABLE IV: DenseNet-121: comparing the proposed ITL with
Checkerboard, Random, and CIFAR10 images.

ITL type Num. of
images

Avg. TC on FP32 mul. [%]
warp0 warp1 warp2 warp3

Proposed ITL 8 95.45 95.47 95.47 95.45
Checkerboard ITL 8 81.69 81.58 81.22 81.68
Random ITL 8 86.01 85.38 85.4 85.91
CIFAR10 ITL 8 84.88 85.39 85.53 85.07

in specific cases (e.g., CUTLASS) and by performing profiling
steps. Moreover, in this work, the developed ITLs are specific to
multiplier units. In the future, we plan to extend the technique
to other computational and logic units. A final consideration is
related to the observability point: comparing the ofmaps within
the CNN (after the first layer in our case), require considering the
CNN as a white box. The best solution might be to consider the
CNN as a black box (i.e. fix the observability point at the output),
but, in this case, a thorough study of fault propagation must be
carried out to take into account the CNN’s intrinsic masking
ability. We intend to follow this direction in delivering ITLs.

REFERENCES

[1] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez, and A. Sansonetti,
“Development flow for on-line core self-test of automotive microcon-
trollers,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 744–754,
2016.

[2] S. Di Carlo et al., “A software-based self test of cuda fermi gpus,” in
2013 18th IEEE European Test Symposium (ETS), 2013, pp. 1–6.

[3] J. E. Rodriguez Condia et al., “Using STLs for effective in-field test of
GPUs,” IEEE Design Test, pp. 1–1, 2022.

[4] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez, “A suitability
analysis of software based testing strategies for the on-line testing of
artificial neural networks applications in embedded devices,” in 2021
IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS), 2021, pp. 1–6.

[5] Y. He, T. Uezono, and Y. Li, “Efficient functional in-field self-test for
deep learning accelerators,” in 2021 IEEE International Test Conference
(ITC), 2021, pp. 93–102.

[6] G. Desoli et al., “14.1 a 2.9tops/w deep convolutional neural network
soc in fd-soi 28nm for intelligent embedded systems,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC), 2017, pp. 238–
239.

[7] “Cutlass,” https://github.com/NVIDIA/cutlass, accessed: 2022-12-15.
[8] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,

“Sassifi: An architecture-level fault injection tool for GPU application
resilience evaluation,” in 2017 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2017, pp. 249–258.

[9] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler, “Nvbitfi:
Dynamic fault injection for GPUs,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 284–291.

[10] C. Bolchini, L. Cassano, A. Miele, and A. Toschi, “Fast and accurate
error simulation for CNNs against soft errors,” IEEE Transactions on
Computers, pp. 1–14, 2022.

[11] J. E. R. Condia et al., “A multi-level approach to evaluate the impact of
GPU permanent faults on CNN’s reliability,” in 2022 IEEE International
Test Conference (ITC), 2022, pp. 278–287.

[12] “NVIDIA Xavier Achieves Industry First with Expert Safety
Assessment,” https://blogs.nvidia.com/blog/2020/05/20/xavier-achieves-
industry-first-safety-assessment/, [Online; accessed 23-December-2022].

[13] “Safe Travels: NVIDIA DRIVE OS Receives Premier Safety Certifica-
tion,” https://blogs.nvidia.com/blog/2022/12/16/nvidia-drive-os-tuv-sud-
safety-certification/, [Online; accessed 23-December-2022].

[14] “Opencores, floating point adder and multiplier,”
https://opencores.org/projects/fpuvhdl, accessed: 2022-12-15.

[15] “Open-cell library,” https://si2.org/open-cell-library/, accessed: 2022-12-
22.

