
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Gateway-based MUD Architecture to Enhance Smart Home Security / Corno, Fulvio; Mannella, Luca. -
ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al  convegno 8th International Conference on Smart and
Sustainable Technologies (SpliTech 2023) tenutosi a Split/Bol (HR) nel June 20-23, 2023)
[10.23919/SpliTech58164.2023.10193747].

Original

A Gateway-based MUD Architecture to Enhance Smart Home Security

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/SpliTech58164.2023.10193747

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978408 since: 2023-08-03T14:11:58Z

Institute of Electrical and Electronics Engineers (IEEE)



A Gateway-based MUD Architecture
to Enhance Smart Home Security

Fulvio Corno
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

fulvio.corno@polito.it

Luca Mannella
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

luca.mannella@polito.it

Abstract—Smart home systems, including consumer-grade In-
ternet of Things (IoT) devices, are in a dangerous situation. On
the one hand, the number of smart homes is increasing. On
the other hand, the devices in these dwellings are often affected
by vulnerabilities that could be exploited to generate massive
(distributed) attacks. To mitigate the issue of having compromised
devices involved in such attacks, the Internet Engineering Task
Force (IETF) recently proposed a new standard: the Manufac-
turer Usage Description (MUD).

The main contribution of this paper is to propose a slightly
extended version of the MUD architecture. This architecture
is centered around a smart home gateway (SHG) that can
be extended through the contributions of plug-in developers.
Indeed, our proposed approach allows developers to specify
which endpoints their plug-ins need to reach. These requirements
will then be processed to generate a consolidated gateway-
level MUD file exposed by the SHG itself. Thus, thanks to
this solution and developers’ intervention, even devices that are
not natively “MUD-enabled” would be protected by the MUD
standard if integrated through a proper plug-in. Moreover, these
requirements are transparent for the device itself.

To demonstrate the feasibility of this approach, we realized
a proof-of-concept for a widespread open-source smart home
gateway: Home Assistant.

Index Terms—Cybersecurity, Gateways, Home Assistant, In-
ternet of Things, Manufacturer Usage Description, Smart Home

I. INTRODUCTION

According to the recent report published by IoT Analytics
[1], despite the chip shortage in recent months, the Internet of
Things (IoT) domain continues to grow. In 2021, they counted
12.2 billion active endpoints, and they forecast that in 2025
there will be approximately 27 billion connected IoT devices.

Within the IoT domains, in the last years, many researchers
started to study smart homes. Nonetheless, they used different
definitions of this concept in their work [2]. In one of the first
surveys on smart home (SH) research [3], a SH was defined
as “a dwelling incorporating a communications network that
connects the key electrical appliances and services, and allows
them to be remotely controlled, monitored or accessed”.

This work was partially supported by Fondazione CRT (Cassa di Risparmio
di Torino) and by project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union - NextGenera-
tionEU.

However, even if this environment was studied, analyzed,
and deployed for many years, SH systems are still in a critical
situation. Indeed, while these systems are becoming more and
more widespread, the IoT devices part of SHs are still affected
by security vulnerabilities. To have an objective view of this
situation, Kumar et al. [4] analyzed a considerable number
of real-world houses (around 16 million dwellings from all
around the world). Their research discovered that more than
40% of global houses have at least one IoT device (the
number rises around 70% considering only North American
homes). Analyzing the data collected from these devices, the
authors disclosed that a significant percentage of the involved
dwellings have an IoT device affected by at least one known
vulnerability. Reasonably, the number of vulnerable devices
increases if we consider that many vulnerabilities are yet to
be discovered (or discovered and not revealed to producers).
Furthermore, it is noteworthy that a compromised device could
impact all the other machines connected to the same network
[5] or could be involved in massive Distributed Denial of
Service (DDoS) attacks like the famous Mirai Botnet [6].

To mitigate the issue of involving devices in such attacks,
the Internet Engineering Task Force (IETF) recently proposed
a new standard: the Manufacturer Usage Description (MUD)
[7]. This standard is essentially based on a white-listing
approach. It defines an architecture and a data model to restrict
communication to/from IoT objects. In line with the standard’s
name, the device manufacturer has to specify the expected use
of its device in a dedicated file (the MUD file). Unfortunately,
even if this standard is considered promising by ENISA [8]
and NIST [9], it is currently not yet widely deployed in
real-world scenarios [10]. Indeed, many manufacturers do not
produce MUD files yet. For this reason, many researchers
proposed to introduce a third party able to generate such files
in place of the manufacturers [10]. Among them, a smart home
gateway (SHG) could be suitable to carry out this job.

SHGs are software solutions designed to manage and coor-
dinate many smart homes’ devices. Thanks to their privileged
position, SHGs can even implement some additional security
features for the home network [5], [11]. Indeed, they can
add a further layer between the object and the network. The
integration of each device with the SHG has to be developed
by one of these three entities: the SHG development team,



the devices’ manufacturers, or a programmer interested in
using a particular object in its SH. The more devices and
functionalities an SHG integrates, the more the community
is interested in the project. Hence, to help developers and
manufacturers to incorporate more smart objects possible, it
is quite common for SHG teams to create gateways that
are extensible through plug-ins (e.g., Home Assistant [12],
OpenHAB [13], WebThings [14], etc.).

Considering what we discussed so far, the goal of this paper
is to propose a slightly extended MUD architecture for allow-
ing plug-in programmers to specify a set of MUD-compliant
requirements. The SHG will then use these requirements to
automatically generate a gateway-level MUD file in place of
the original ones from the manufacturers.

To demonstrate the feasibility of this solution, we realized
a proof-of-concept (PoC) for a widespread open-source SHG:
Home Assistant (HAss). Currently, HAss does not handle the
MUD standard at all. Therefore, we realized a HAss plug-in
able to create the MUD file starting from a template (provided
together with the proposed plug-in). To enforce the MUD
policies, it is required the deployment of a MUD manager
in the same network where the HAss instance is deployed.

The rest of the paper is structured as follows: Section II
analyzes some related work on SH security and MUD. Section
III provides more details about the MUD architecture and data
model. Then, Section IV presents our proposed SHG-based
architecture and the implemented PoC, while Section V dis-
cusses their possible limitations. Finally, Section VI concludes
the paper and proposes insights into future activities.

II. RELATED WORK

Several researchers have demonstrated how a compromised
device could be used to affect others. For example, Kafle et al.
[5] executed a lateral privilege escalation attack for disabling
a Google’s Nest Security Camera via a compromised Philips
Hue. Moreover, a compromised object can even try to attack
endpoints very far from its location. The massive Distributed
Denial of Service (DDoS) attacks executed through botnets
[15] are a perfect example of this possibility. Among them,
we can not ignore the relevant impact of the famous Mirai
Botnet, and all the other botnets related to it [6].

In addition, the code to deploy these objects in smart homes
is often developed by hobbyist programmers. Their projects
could present security issues that could affect the whole smart
home [16]. This is also stressed by a recently published threat
model for extensible smart home gateways (SHG), which
highlights how dangerous undesired (or unpredicted) interac-
tion among components can be [17]. However, since an SHG
interacts with almost all the devices in a dwelling’s network,
it can be the perfect point for introducing an additional line
of defense. For instance, Yang et Al. [18] proposed an SHG
able to use onion routing to transmit IoT data streams, while
Gajewski et al. [11] empowered a gateway with an Intrusion
Detection System (IDS).

However, even if many ways to detect malicious traffic from
IoT devices exist (e.g., using machine learning techniques

[19]), a standardized approach to control these objects’ be-
haviors can promote a secure and automated deployment (and
management) of secure IoT solutions. In line with this concept,
IETF proposed in 2019 the Manufacturer Usage Description
(MUD) standard [7]. Thanks to this standard, manufacturers
can define for their device the allowed endpoints for estab-
lishing or receiving communications. To achieve this goal,
manufacturers have to write in a specific file (the MUD file)
a list of policies (also called Access Control Lists). These
policies declare a set of endpoints that the device must be able
to reach to carry on its regular activities. The MUD files must
be securely stored in a server under the manufacturer’s control.
By reading and processing these MUD files, a dedicated
component on the home network (called MUD manager)
can configure the network to enforce the specified MUD
policies. Once the policies are active, only a certain number
of connections is allowed for each IoT device compliant with
such a standard. Reducing the allowed communications, MUD
automatically reduced the possible attack surface.

In the last years, MUD has attracted many researchers
[10]. It was considered a promising solution even by the
National Institute of Standards and Technology (NIST) [9]
— to mitigate security threats and to cope with Denial of
Service (DoS) attacks — and by the European Union Agency
for Cybersecurity (ENISA) — including MUD in their “Good
practices for security of IoT” [8]. Moreover, some scholars
proposed to expand or modify the MUD standard. For in-
stance, Jin et al. [20] have filed a patent that extends MUD by
considering some dynamic security aspects of smart buildings.
Instead, Sajjad et al. [21] proposed enhancements to MUD
architecture for identifying (and eliminating) the configuration
vulnerabilities before creating the devices’ MUD profiles.

A very comprehensive survey on the MUD was written
by Hernández-Ramos et al. [10]. In their paper, the authors
provide an accurate description of the MUD standard, a
complete overview of the state-of-the-art, and some attractive
research directions. They classified the research activities on
the MUD into four different macro-areas: MUD profile gener-
ation, MUD profile obtaining, MUD profile enforcement, and
MUD-based application. Our proposed approach can be placed
inside the first category. Indeed, our method is an automatic
generation (and exposure) of a MUD file that requires manual
plug-in developers’ intervention.

III. MANUFACTURER USAGE DESCRIPTION (MUD)

The Request for Comments (RFC) of the Manufacturer Us-
age Description (MUD) [7] defines the following architectural
components (graphically represented in Figure 1):

• The MUD file: a file describing a Thing and speci-
fying which are the allowed endpoints for establishing
communications (in both directions). It is written using
JavaScript Object Notation (JSON) [22] and describes a
set of policies. These policies are expressed using the
YANG (Yet Another Next Generation) standard [23].

• The MUD file server: a server hosting the MUD files.



Fig. 1. Workflow of a standard MUD architecture.

• The MUD manager: a system that requests and receives
the MUD file from the MUD server. After it has pro-
cessed a MUD file, it directs operational or configuration
changes to relevant network elements.

• The MUD URL: a URL used by the MUD manager to
receive the MUD file.

• The Thing: an IoT device emitting a MUD URL.
• The manufacturer: an entity that configures the Thing to

emit the MUD URL. It also asserts the recommendations
in the MUD file. It might not always be the entity
that constructs the device. E.g., it could be a systems
integrator or a component provider.

Notably, the MUD file of a specific IoT device is not stored
on the device itself. Instead, the device must inform the MUD
manager where the MUD file can be retrieved. To provide
this information, the Thing provides the MUD manager with
a URL. This information can be spread using one of these
protocols: DHCP [24], LLDP [25], or 802.1AR [26]. Via
this URL, the MUD manager retrieves the MUD file through
HTTPS [27] and communicate with the router (or with the
proper network element) to enforce the enclosed policies.

How the policies are instantiated is not strictly described in
the standard, but it depends on the implementation of the MUD
manager and on the local network administrator. To provide
some examples, the open source MUD Manager (osMUD)
[28] enforces the policies through iptables [10] (a program
able to configure the packet filter rules of the Linux kernel
firewall [29]), while the NIST MUD manager [10] relies on
Software Defined Networking (SDN) [30] (involving switches
and controllers that observe the OpenFlow protocol [31]).

It is even possible that the MUD manager and the router (or
whatever element has to enforce the policies) are embedded
on the same physical device. Figure 1 visually describes the
workflow of the previously described architecture.

The introduction of this standard aims to achieve a set of
improvements in IoT security [7]. The first one is to reduce
the device’s threat surface. Indeed, only the endpoints specified
by the manufacturer can communicate with the related device.
The second one is to reduce the reaction time when particular
vulnerabilities are discovered. Creating and deploying a patch
for software running on many constrained IoT devices could
be difficult [32]. Updating a single file stored in a single place
under the complete control of the manufacturer would grant
to act promptly for many devices. However, MUD should not
be considered a replacement for traditional patches; it is only

a tool to quickly create a countermeasure (while the patch is
under development). Moreover, by reading the MUD file, it is
easy to understand what are the endpoints with which a device
needs to communicate (without the necessity of conducting a
network traffic analysis to discover them).

IV. PROPOSED APPROACH

Considering that the MUD standard is not widely deployed
yet, many scholars proposed different approaches to generate,
obtain, and enforce the rules described in a MUD file [10].
Specifically, our paper proposes a new MUD semi-automatic
generation methodology. Our proposal is based on the assump-
tion that every smart home gateway (SHG) plug-in can benefit
from the MUD (either in the case the plug-in integrates only
new software functionalities) increasing the overall security of
the SHG and, consequently, the whole smart home’s security.
Moreover, offering plug-in developers the chance to act in
place of device manufacturers can increase the number of
devices supported by the MUD standard inside a smart home.

To demonstrate the feasibility of the described architecture,
we realized a proof-of-concept (PoC) based on an open-source
implementation of the MUD architecture, suitably extended
with our proposed functionality. The main components of this
architecture (and their interactions) are represented in Figure
2. In detail, they are the following:

• OpenWrt [33]: an open-source Linux embedded system
designed for routers;

• osMUD [28]: an open-source MUD manager designed to
be installed on an OpenWrt-based router;

• Home Assistant [12]: an open-source Python-based ex-
tensible smart home gateway;

• HAss MUD Integration: a Home Assistant integration
designed to create and expose a gateway-level MUD file;

• The local gateway-level generated MUD file: a MUD file
obtained blending together all the requirements specified
by each integration;

• The MUD policies: a set of requirements specified by
the plug-in developer in a MUD-compliant way (the file
containing these policies is also called MUD snippet).

Home Assistant can be extended through two different types
of plug-in: integrations and add-ons. Integrations are more
similar to traditional plug-ins (indeed, they are installed in
HAss’s core). On the contrary, add-ons are basically Docker
containers. Therefore, in our PoC, to prove the feasibility of
the approach, we considered only the first ones.



Fig. 2. A schema of the implemented proof-of-concept architecture.

When Home Assistant is started, it executes all the config-
ured integrations and add-ons. At that moment, even the MUD
integration starts and queries all the other integrations looking
for the developers’ requirements. Each integration have to
specify its requirements in a dedicated JSON file. Once all
the requirements are collected, the MUD integration unites
them in a local MUD file (created starting from a predefined
template). Then, the generated MUD file is signed using the
SHG’s private key. Once signed, the MUD integration stores
that file in a dedicated folder (exposed by the Home Assistant
web server) and informs the MUD manager (step 1).

In our PoC, we used an OpenWrt router [33] enabled to
execute an open-source MUD manager called osMUD [28].
Among the notification approaches defined in MUD RFC [7],
osMUD currently supports the Dynamic Host Configuration
Protocol (DHCP) [24] only. Therefore, our HAss integration
exposes the MUD file sending a DHCP Request to the router,
including the proper MUD URL (step 2). This URL points to
the HAss instance, which has, by default, a web server able to
expose the generated file (the same web server also exposes
the HAss dashboard). Once osMUD retrieves the MUD file
(step 4), it verifies the associated signature and starts enforcing
the enclosed policies. These policies are implemented by
configuring the firewall of OpenWrt, iptables (step 5).

When users add new integrations to Home Assistant, to start
them, they are forced to restart the SHG. Therefore, every time
a new integration is added, the previously described process
it is re-executed to keep the MUD file updated with all the
available MUD-enabled integrations. When osMUD retrieves
the new MUD file, it removes the old associated firewall rules
and instantiates the new policies.

Unfortunately, when we started the implementation of our
PoC, osMUD did not manage the DHCP requests that arrived
from already known devices (they were simply ignored). In
other words, the process of retrieving and enforcing the MUD
policies of a device was started only if the MUD URL was
stored in the first DHCP message sent to the MUD manager
by that specific device. Hence, we extended osMUD’s source
code to properly process every request sent by each device.

In our modified version, if osMUD receives a request from
a device already known, it verifies if the associated MUD
file was changed in the elapsed time. If so, it removes the
old policies and enforces the new ones. We plan to open
a pull request on the repository of osMUD to include our
improvement in the MUD manager’s default version.

To work properly, our architecture needs developers’ contri-
butions. Indeed, developers have to specify the endpoints their
integrations want to reach (or to allow to be reached). This has
to be done by writing a MUD-like file for each integration.
Specifically, in this file, developers must write the objects
from-device-policy, to-device-policy according
to the MUD [7] and YANG standards [23]. Developers without
a deep knowledge of the previously cited standards can use a
MUD generation tool to have help in creating their snippets.
For instance, they can use MUD Maker1.

A. Experimental Results

To test our proof-of-concept (PoC), we created a dedicated
local network inside our laboratory based on the schema
reported in Figure 2. In this network, we deployed on two
different Raspberry Pi 3B2 the MUD manager (osMUD) and
the smart home gateway (Home Assistant).

The Raspberry hosting the MUD manager has an OpenWrt
operating system (OS), a Linux-based OS designed for routers.
We used the version suggested by osMUD (17.01.6). As
previously discussed, to interact correctly with our Home As-
sistant integration, we extended the original osMUD software.
Specifically, we had to add the feature of processing MUD files
even if they come from devices that already exposed them.

The Raspberry hosting the SHG was equipped with Home
Assistant OS (version 9.2), a Linux-based operating system
optimized to host HAss and its add-ons, and our HAss MUD
integration. Then, we extended three installed integrations by
providing them with a MUD snippet file:

• A weather integration: that requires reaching the website
offering the weather’s information.

• A custom emulated temperature sensor integration: that
can store on a remote server the recorded value (and
retrieve the last stored value).

• A custom emulated switch integration: that needs to reach
a server to be remotely controlled.

These integrations require, in their MUD snippets, to ac-
cess an endpoint in both directions. Once started, our HAss
MUD integration collected the requirements and created a
consolidated gateway-level MUD file. Whenever this MUD
file is generated, the integration stores it in a dedicated folder
(overriding the old version, if present) publicly exposed by the
default HAss web server.

In our PoC, the generated MUD file contains eight policies
(two policies for each involved integration, plus two stored
in the template used as the starting point for forging the file).

1https://mudmaker.org, last visited on March 17th, 2023.
2https://www.raspberrypi.com/products/raspberry-pi-3-model-b/, last vis-

ited on March 17th, 2023.



These policies are then enforced into ten firewall rules (one for
each MUD policy, plus two for blocking all the other TCP/IP
flows in both directions).

We observed that the HAss MUD integration correctly
generated, signed, and exposed the gateway-level MUD file.
Then, the contained policies were successfully instantiated
by osMUD. To verify the capability of the MUD integration
to regenerate and re-expose the MUD file, we executed the
process after adding one by one each of the previously cited
integrations. Firstly, we verified that the integrations were
still working correctly after the enforcement of the MUD
policies. Then, we changed the target endpoints of the custom
integrations, and we observed that the endpoints specified in
the MUD files were properly reachable by these integrations,
while other URLs were not.

To conclude, our PoC demonstrates that it is possible
to automatically generate a MUD file at run-time and that
our solution is perfectly compatible with a traditional MUD
infrastructure.

V. DISCUSSION AND LIMITATIONS

The presented architecture can improve the security of
every house equipped with an extensible smart home gateway
(SHG). Indeed, allowing developers to specify requirements
in place of the original manufacturer can increase the number
of IoT devices covered by this standard. Besides, having an
additional layer of protection for every SHG plug-in (even
for plug-ins introducing new software functionalities only) can
enhance the overall gateway security. Furthermore, having a
global MUD file locally stored in the SHG can guarantee
the enforcement of the MUD policies even if manufacturers’
servers are unreachable (even in case devices or plug-ins are
no longer supported).

The reported implementation and its experimental results
proved the feasibility of the approach. However, in the current
prototypical state, we may still identify the following limita-
tions. Considering that our proof-of-concept (PoC) is based
on the MUD architecture, it inherits all this standard’s issues.
For instance, malicious users could tamper with the deployed
MUD policies on the OpenWrt router. Anyone having access
to the router could compromise these policies; therefore,
it must be adequately protected. Another possible issue is
tampering with the MUD URL. If malicious users compromise
that URL, they can decide what policies will be enforced on
the network. If the reader wants to go deeper into the limits
of the “plain MUD”, we suggest reading [10].

Discussing the proposed PoC’s specific limitation, the fol-
lowing are the most relevant. Firstly, it is essential to detect
conflicts in user-defined policies. Suppose some integration
developers decide to explicitly forbid access to a specific
endpoint necessary for the execution of another integration.
In that case, our HAss MUD integration has to decide which
policy must be enforced. It is also important to establish how
to manage integrations that do not have any explicit policy.
Moreover, some developers could describe the same policy or

declare overlapping policies. These issues were left out of this
paper’s scope and will be addressed in future work.

Another critical issue is the impact of the “MUD snippets”
in our HAss integration. Anyone accessing the integrations
source code could alter it (and alter the snippets). To mitigate
this issue, following the approach of different stores, Home
Assistant should force developers to sign their plug-ins (and
executes only signed integrations and add-ons). A proposal
restricted to our proposed architecture, could be to have a list
of “authorized HAss-MUD developers”. Through such a list,
our integration could process only the MUD policies specified
by “trusted” developers.

Moreover, once the MUD file is composed, to send the
MUD URL, our HAss MUD integration uses DHCP over
Internet Protocol (IP) v4. At the current time, this is the only
protocol supported by osMUD for obtaining the MUD URL.
We expect that osMUD will support more robust protocols in
the following versions (i.e., the possibility of embedding the
URL in an X.509 certificate [26]).

VI. CONCLUSIONS

This paper’s main contribution is to present a slightly
extended version of the conventional MUD architecture appli-
cable to systems managed by a smart home gateway (SHG).
Specifically, the proposed approach aims to reach three goals.
The first one is to extend the MUD concept, including the
possibility of managing whole smart homes handled by SHGs.
The second goal is to protect SHGs and their plug-ins with the
MUD standard. The third purpose is to protect every kind of
plug-in. I.e., in this solution, MUD is not protecting physical
devices but plug-ins (regardless of the functionality they offer).

To achieve these goals, we offer developers the opportunity
of declaring the network resources required by their plug-ins.
When the integrating objects are not equipped with MUD
files, developers can provide MUD specifications instead of
the device’s manufacturer. Indeed, thanks to this solution and
the developers’ intervention, even devices that are not natively
“MUD-enabled”, if integrated into the SHG through a proper
plug-in, could be protected via the MUD standard.

To process these requirements, we developed a dedicated
plug-in for a widespread open-source python-based SHG:
Home Assistant [12]. To be part of our proposed solution, each
plug-in must specify its requirements in a MUD-compliant
way. After merging these requirements, our solution generates
a gateway-level MUD file. Then, the generated MUD file is
exposed, allowing the network to enforce these policies.

Currently, Home Assistant does not handle the MUD stan-
dard at all. Therefore, we realized a HAss plug-in able to create
the MUD file starting from a template (provided together with
the proposed plug-in itself). In addition, to enforce the MUD
policies, the proposed solution requires the cooperation of a
MUD manager located in the same network where the HAss
instance is deployed. In the developed proof-of-concept, we
adopted osMUD [28], an open-source MUD manager designed
to run in an OpenWrt router [33].



Preliminary results gathered with a small set of integrations
confirm that the network permissions of the HAss gateway
and its plug-in are dynamically and automatically enforced
according to the developers’ declarative MUD policies.

A. Future Work

In Section V, the paper exposes some limitations of the
MUD standard and the proposed architecture. Indeed, some
solutions to face them are currently under study.

Specifically, concerning the process of blending the policies
the developers created, we spot three issues to address in
future work. First of all, detecting errors in developers’ re-
quirements is crucial. If some requirement is not well-formed,
the proposed solution must ignore it (or find a way to fix that
requirement). Secondly, future implementation of the proposed
proof-of-concept will be able to understand if there are MUD
snippets overriding others (conflict detection). In that case, the
implemented solution must be able to decide how to manage
such a conflict. Lastly, if some policies properly overlap, it
could be reasonable to merge them into a unique policy. This
operation would optimize the policy enforcement phase.

Another point to consider is the reliability of the MUD
snippets. Even if the SHG signs the generated MUD file, there
is no guarantee about the snippets’ integrity in this preliminary
implementation. Considering this issue, we plan to design a
more secure way to build the gateway-level MUD file.

REFERENCES

[1] K. Lasse Lueth, M. Hasan, S. Sinha, S. Annaswamy, P. Wegner,
F. Bruegge, and M. Kulezak, “State of IoT—spring 2022,” IoT
Analytics, Tech. Rep., May 2022. [Online]. Available: https://
iot-analytics.com/product/state-of-iot-spring-2022/

[2] M. Schiefer, “Smart home definition and security threats,” in 2015 Ninth
International Conference on IT Security Incident Management & IT
Forensics, 2015, pp. 114–118.

[3] L. Jiang, D.-Y. Liu, and B. Yang, “Smart home research,” in Proceedings
of 2004 International Conference on Machine Learning and Cybernetics
(IEEE Cat. No.04EX826), vol. 2. IEEE, Aug 2004, pp. 659–663.

[4] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things considered:
an analysis of IoT devices on home networks,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp.
1169–1185. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/kumar-deepak

[5] K. Kafle, K. Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk,
“Security in centralized data store-based home automation platforms:
A systematic analysis of nest and hue,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, no. 1, dec 2021.

[6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[7] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage
Description Specification,” RFC 8520, Mar. 2019. [Online]. Available:
https://www.rfc-editor.org/info/rfc8520

[8] E. U. A. for Cybersecurity, Good practices for security of
IoT: secure software development lifecycle. European Network
and Information Security Agency, nov 2019. [Online]. Available:
https://doi.org/10.2824/742784

[9] D. Dodson, D. Montgomery, W. Polk, M. Ranganathan, M. Souppaya,
S. Johnson, A. Kadam, C. Pratt, D. Thakore, M. Walker et al.,
“Securing small-business and home internet of things (IoT) devices:
Mitigating network-based attacks using manufacturer usage description
(MUD),” National Institute of Standards and Technology, Tech. Rep.,
2021. [Online]. Available: https://doi.org/10.6028/NIST.SP.1800-15

[10] J. L. Hernández-Ramos, S. N. Matheu, A. Feraudo, G. Baldini, J. B.
Bernabe, P. Yadav, A. Skarmeta, and P. Bellavista, “Defining the
behavior of IoT devices through the MUD standard: Review, challenges,
and research directions,” IEEE Access, vol. 9, pp. 126 265–126 285,
2021.

[11] M. Gajewski, J. M. Batalla, G. Mastorakis, and C. X. Mavromoustakis,
“A distributed IDS architecture model for smart home systems,” Cluster
Computing, vol. 22, no. 1, pp. 1739–1749, 2019.

[12] Nabu Casa Inc., “Home assistant,” 2023, [accessed 05-may-2022].
[Online]. Available: https://www.home-assistant.io/

[13] openHAB Foundation, “openhab,” 2023, [accessed 05-may-2022].
[Online]. Available: https://www.openhab.org/

[14] Krellian Ltd., “Webthings,” 2023, [accessed 05-may-2022]. [Online].
Available: https://webthings.io/

[15] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, 2017.

[16] F. Corno and L. Mannella, “Security evaluation of arduino projects
developed by hobbyist IoT programmers,” Sensors, vol. 23, no. 5, 2023.

[17] ——, “A threat model for extensible smart home gateways,” in 2022
7th International Conference on Smart and Sustainable Technologies
(SpliTech). IEEE, July 2022, pp. 1–6.

[18] L. Yang, C. Seasholtz, B. Luo, and F. Li, “Hide your hackable smart
home from remote attacks: The multipath onion IoT gateways,” in
Computer Security, J. Lopez, J. Zhou, and M. Soriano, Eds. Cham:
Springer International Publishing, 2018, pp. 575–594.

[19] K. A. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and
V. H. C. de Albuquerque, “Internet of things: A survey on
machine learning-based intrusion detection approaches,” Computer
Networks, vol. 151, pp. 147–157, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128618308739

[20] Z. Jin, Y. M. Lee, C. H. Copass, and Y. Park, “Building system with
dynamic manufacturer usage description (MUD) files based on building
model queries,” aug 2022, uS Patent 11,411,999.

[21] S. M. Sajjad, M. Yousaf, H. Afzal, and M. R. Mufti, “eMUD: Enhanced
manufacturer usage description for iot botnets prevention on home wifi
routers,” IEEE Access, vol. 8, pp. 164 200–164 213, 2020.

[22] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format,” RFC 8259, Dec. 2017. [Online]. Available: https://www.
rfc-editor.org/info/rfc8259

[23] M. Björklund, “The YANG 1.1 Data Modeling Language,” RFC 7950,
Aug. 2016. [Online]. Available: https://www.rfc-editor.org/info/rfc7950

[24] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, Mar.
1997. [Online]. Available: https://www.rfc-editor.org/info/rfc2131

[25] “Ieee standard for local and metropolitan area networks - station and
media access control connectivity discovery,” IEEE Std 802.1AB-2016
(Revision of IEEE Std 802.1AB-2009), pp. 1–146, March 2016.

[26] IEEE, “Ieee standard for local and metropolitan area networks - se-
cure device identity,” IEEE Std 802.1AR-2018 (Revision of IEEE Std
802.1AR-2009), pp. 1–73, Aug 2018.

[27] E. Rescorla, “HTTP Over TLS,” RFC 2818, May 2000. [Online].
Available: https://www.rfc-editor.org/info/rfc2818

[28] K. Yeich and D. Weller, “Open Source Manufacture Usage Description,”
2022, [accessed 10-Oct-2022]. [Online]. Available: https://osmud.org

[29] R. Zalenski, “Firewall technologies,” IEEE potentials, vol. 21, no. 1, pp.
24–29, Feb 2002.

[30] F. Hu, Q. Hao, and K. Bao, “A survey on Software-Defined Network and
OpenFlow: From concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, Fourthquarter 2014.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, p. 69–74, mar 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[32] A. Langiu, C. A. Boano, M. Schuß, and K. Römer, “UpKit: An open-
source, portable, and lightweight update framework for constrained IoT
devices,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, July 2019, pp. 2101–2112.
[Online]. Available: https://doi.org/10.1109/ICDCS.2019.00207

[33] A. Holt and C.-Y. Huang, OpenWrt. Cham: Springer International
Publishing, 2018, pp. 195–217. [Online]. Available: https://doi.org/10.
1007/978-3-319-72977-0 9


