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A B S T R A C T

Designing bladed disks in turbo engines requires accurate dynamic models to correctly estimate
resonance frequencies and related stresses. The contact parameters – stiffness and damping in
the blade attachments – are currently among the most significant uncertainties of such models.
Dry friction and alternating relative motions between the contact interfaces determine the
transition between stick and slip that causes the nonlinear behavior of attachments. Commercial
and in-house finite element software make use of specific contact elements to simulate dry
friction and the resulting nonlinear behavior. These elements require the friction coefficient as
input while the normal and tangential contact stiffness can be directly evaluated by the software
or set up by the user. The main objective of the present research is to discuss the uncertainty
associated with identifying with experimental data the normal and tangential stiffness in a
dovetail coupling. In addition, the reliability of available theoretical contact models will be
addressed. The response of the blade/attachment system was measured as a function of the axial
load (simulating the centrifugal force) and of the blade vibration amplitude. An identification
procedure using a finite element model was set up to identify the normal and tangential contact
stiffness of the attachment. These stiffnesses were compared with the values predicted by a
theoretical model. The comparison highlights a significant difference between measured and
predicted stiffness. The final discussion focuses on the significance of theoretical contact stiffness
and its use in finite element models.

. Introduction

.1. Background

Mechanical design of bladed disks in aero-engines includes the assessment of structural integrity against fatigue, be it high
ycle, low cycle, or fretting fatigue [1–3]. To correctly predict stresses due to vibrations, accurate dynamic models are necessary. A
omplete resonance decoupling of such components is not a viable design choice because of the high modal density of the disk and
he broad spectrum of the external loads. For this reason, damping introduced by dry friction is one of the tools used to reduce the
mplitude of vibration. Friction damping develops at contact surfaces between shrouds, damper and under-platforms, disk slot and
lade attachment, and more generally whenever interfaces are present.

Numerical simulations of models with interfaces are challenging because the tangential force in oscillating contacts is a piecewise
unction depending on the state of the contact, stick, slip or even separation of the surfaces. Researchers have been working
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to develop efficient methods to solve the nonlinear equation of motion of dynamic systems embedding friction contacts. A new
method, the harmonic balance technique, was proposed by in [4] to avoid the time domain solution of the dynamic equations
of nonlinear circuits. This technique, known as Harmonic Balance Method (HBM), was widely used to determine the steady-state
forced response of mechanical systems with nonlinear behavior [5]. An incremental HBM method, named as Multi-Harmonic Balance
Method (MHBM), was developed in [6] for the analysis of damped systems with dry friction. In [7] this method was enhanced using
a Fast Fourier Transform algorithm to transfer the equation of motion from time to frequency domain and vice versa. Nowadays, this
technique is usually employed to study the dynamic behavior of bladed disks in turbomachines [8]. The method was improved with
an analytical formulation of the contact forces [9] or by adding the static component of the contact force [10,11]. Time integration
remains the most used tool to evaluate transients and even more efficient methods were put forward, see for example the one
proposed in [12]. The aforementioned techniques make use of contact models based on Jenkins element in which the contact is
composed by a linear spring in series with a Coulomb slider. Contact models evolved from the earlier one-dimensional [13] and
two-dimensional [14] (2D) models to the more complete three dimensional frictional contacts [15] with variable normal load [16].

These models require three parameters to define the contact properties: the friction coefficient 𝜇, the tangential and the normal
ontact stiffness, kt and kn respectively. The normal contact stiffness kn for non-conforming geometries can be calculated with the
ertz theory as reported in [17]. The normal contact deformation of cylinders, despite their simple geometry, is a challenging

ask and several solutions are available in the literature [18–20]. The most reliable solution, supported by experimental tests, is
he one proposed in [21]. The Hertz theory of contact was extended to account for friction forces and calculate the tangential
tiffness between spherical bodies [22,23]. The solution for the contact of nonspherical bodies subjected to oblique loading was
iven in [24]. Among conforming geometries the rigid punch with rounded edges has a very important practical application in
ero-engines because it is similar to the contact between the lobes in the disk slot and in the blade root. The pressure distribution
as given in [25] for a friction-less rigid punch on an elastic half-space, while the effect of a tangential force on the state of stress
as studied in [26]. The latter determined the boundary between stick and slip regions and the traction distribution. The theory
resented in [26] was developed for 2D geometries and subsequently extended to three-dimensional (3D) contact bodies in [27]. This
aper presents a semi-analytical method to evaluate the tangential force and displacements for a 3D punch with rounded edges.
he contact stiffness and the dissipated energy are determined from the hysteresis loop (the friction force against the tangential
isplacement), provided the friction coefficient is known. The contact stiffness was also evaluated in its complex form by using an
armonic balance so that the imaginary part of the complex stiffness, that is in phase with the velocity [28], represents the damping
ffect. Calculation of damping induced by dry friction at blade attachments is still an open issue as evidenced by recent papers found
n the literature [29,30].

Several experimental works, belonging to the field of micro-scale investigations, aimed at measuring the contact parameters
or various geometries, materials and operating conditions. The first experimental investigations were performed in [17,31] using
oint contacts geometries to measure the relationship between the tangential force and the micro-displacement. [32] measured the
ysteresis loop and the dissipated energy in the contact and underlined the importance of friction damping and its dependency
n normal load. The experimental results were found to agree well with the previous analytical works [17,31]. The hysteresis
oops for point contacts were also measured with a more recent test apparatus [33] and at the high temperatures typical of the
ero-engine [34,35]. Conformal frictional contacts, characteristic of shrouds and disk-blade joints, were experimentally analyzed
n [36,37] that investigated a pair of flat contact surfaces for several materials. A test rig working at high temperatures and capable
o perform fretting test on flat-on-flat surfaces was proposed in [38]. An original approach to model friction contacts was given
n [39] while several experimental tests were performed in [40–42].

Specific experimental campaigns were carried out to investigate the component-scale dynamic behavior of blades fixed with
ypical blade-disk joints. These campaigns provided a useful database for the validation of numerical simulations. The free response
f a pulled mock-blade fixed with dovetail and fir-tree joints at its two ends was obtained in [43,44] . Damping and resonance
requencies were extracted as functions of the amplitude of vibration for different centrifugal loads. The same test rig was used
n [45] to measure the forced-response and to collect a database of the frequency response with different normal contact loads
nd varying the dynamic excitation. A similar test apparatus [46] was used to measure the damping introduced by the blade-disk
ttachment. The joint behavior was simulated with two different contact models, one considering only macroslip conditions the
ther based on microslip. Results showed that the macroslip model was not suitable for accurate simulations. The damping ratio
nd the natural frequency on a simple beam with dovetail root joint was also measured in [47]. The centrifugal load was applied
ith a loading screw pushing on the back of the dovetail while a vibration slip table provided the dynamic excitation of the whole

ystem. The micro-slip characteristic and the tangential contact stiffness were measured on the same material by using a fretting test
ig. The contact stiffness inferred from the dynamic test performed on the simple beam with dovetail was compared with the results
rom the fretting test. Results showed that the tangential contact stiffness measured on the dovetail is smaller than the stiffness
btained by the fretting tests. The friction coefficient was measured on a fir-tree attachment in [48], but the rig used in this work
id not allow measuring the contact stiffness.

.2. Objective and workflow

Although the elastic properties of the contact in blade attachments are of great significance for engineers few works were
evoted to measuring these parameters under dynamic conditions. The objective of the present work is to evaluate the uncertainty
ssociated to the experimental identification of the contact stiffnesses kn and kt, along the normal and tangential direction, in a
2

ovetail attachment. Moreover, the contact stiffnesses are also evaluated with the semi-analytical models found in the literature
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Fig. 1. Sketch of the dovetail joint investigated in this paper. The contact stiffnesses are highlighted in the panel.

Fig. 2. Overview of the different phases of the activity.

and compared with the experimental results. This comparison was aimed to asses if the elastic contact parameters calculated with
these models are feasible as contact elements in a FE model during the design step of bladed disks. The objective is pursued by
collecting the dynamic response of a mock-blade with dovetail joints, as depicted in Fig. 1, and analyzing the results with the help
of a FE model. The flow chart in Fig. 2 shows the analysis procedure described in detail below.

• Section 2 reports the main findings of the method proposed in [49] to identify the instantaneous natural frequency 𝜔𝑛(𝐴) and
the instantaneous damping 𝜂(𝐴) depending on the vibration amplitude A. More details on the method are given in [50] while
properties and assumptions regarding the Hilbert transform can be found in [51]. The reader familiar with the method can
skip this section.

• Section 3 describes the experimental apparatus used for the dynamic tests on the mock-blade. This apparatus utilizes the rig
described in [43] but in this work a different excitation system is used. The free decay of the mock-blade is measured for
different tensile axial forces Fax and then processed to extract 𝜔𝑛 and 𝜂 of the nonlinear system.

• Section 4 illustrates the FE model of mock-blade and supports. Contact elements containing the unknown stiffnesses kt and
kn connect the corresponding contact nodes on the dovetail and on the slot. These elements implement only the stick state.
This section also reports the method used to obtain the reduced models of the mock-blade and supports, comprehensive of the
stiffening effect due to the axial force.

• Section 5 describes how the theoretical contact stiffnesses in the attachment 𝑘𝑡ℎ𝑡 and 𝑘𝑡ℎ𝑛 can be calculated using the semi-
analytical model of the flat punch with rounded edges proposed in [27]. The theoretical and experimental results are compared
to discuss the feasibility of the theoretical model for the blade design.

• Section 6 documents the procedure to identify kn and kt for varying Fax. The experimentally determined natural frequencies are
compared with the frequencies computed by the FE model modal analysis. Appendix reports the uncertainty of the identified
stiffness.

Throughout this paper boldface letters indicate vectors and matrices. Moreover, the greek letter 𝜔 indicates frequencies in rad/s
whereas f is the frequency expressed in Hz.
3
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2. Frequency and damping identification

The dependence of the natural frequency and damping on the amplitude of vibration, typical of nonlinear behavior, can be
btained from a free decay test with the method proposed in [49]. This method works in the time domain and is based on the
nalytic signal Y(t) corresponding to the real signal y(t)

𝑌 (𝑡) = 𝑦(𝑡) + 𝑖�̃�(𝑡) = 𝐴(𝑡) ⋅ 𝑒𝑖𝜑(𝑡) (1)

where �̃�(𝑡)

�̃�(𝑡) = 𝐻[𝑦(𝑡)] = 1
𝜋𝑡

∗ 𝑦(𝑡) = 1
𝜋 ∫

+∞

−∞

𝑦(𝑡)
𝑡 − 𝜏

𝑑𝜏 (2)

is the Hilbert transform of y(t). The terms A(t) and 𝛷(𝑡) in Eq. (1) are the instantaneous amplitude and instantaneous phase of the
analytic signal Y(t) respectively.

Dry friction is the dominant source of damping in blade attachments. Friction forces undergoing oscillating motion generate
hysteresis loops as sketched in Fig. 4(b). Analysis of energy dissipation in hysteresis loops lead to the conclusion that dry friction
can be classified as a frequency-dependent damping. This kind of damping is denoted to as hysteretic damping and in dynamic
model it is equivalent to an imaginary stiffness. The dynamic equation of motion with hysteretic damping can be written as

𝑚 �̈� + (𝑘(𝐴) + 𝑖 ℎ(𝐴)) 𝑦 = 0 (3)

In Eq. (3) the stiffness k(A) and the hysteretic damping h(A) are unknown functions and, for nonlinear systems, depend on the
amplitude of vibration A. Applying the Hilbert transform to Eq. (3) the dynamic equation of motion becomes

𝑚 ̈̃𝑦 + (𝑘(𝐴) + 𝑖 ℎ(𝐴)) �̃� = 0 (4)

Multiplying each term of Eq. (4) by the imaginary unit i and adding it to the corresponding term of Eq. (3) we obtain the analytic
form of the equation of motion

𝑚𝑌 + (𝑘(𝐴) + 𝑖 ℎ(𝐴)) 𝑌 = 0 (5)

Eq. (5) can be rewritten

𝑌 + 𝜔2
𝑛(𝐴) (1 + 𝑖 𝜂(𝐴)) 𝑌 = 0 (6)

with

𝜔2
𝑛(𝐴) =

𝑘(𝐴)
𝑚

(7a)

𝜂(𝐴) =
ℎ(𝐴)
𝑘(𝐴)

(7b)

the instantaneous natural frequency and the loss factor respectively, also referred to as modal parameters. The first and second
derivative of the analytic signal in Eq. (1) are

�̇� = �̇� + 𝑖 ̇̃𝑦 = (𝑦 + 𝑖�̃�)
[

�̇�
𝐴

+ 𝑖𝜔
]

(8a)

𝑌 = �̈� + 𝑖 ̈̃𝑦 = (𝑦 + 𝑖�̃�)
[

�̈�
𝐴

− 𝜔2 + 𝑖2𝜔�̇�
𝐴

+ 𝑖�̇�
]

(8b)

where 𝜔 = �̇�(𝑡) is the instantaneous frequency of the signal. By substituting Eq. (8b) into Eq. (5) the dynamic equation of motion
becomes

[

�̈�
𝐴

− 𝜔2 + 𝜔2
𝑛 + 𝑖

(

2𝜔�̇�
𝐴

+ �̇� + 𝜔2
𝑛𝜂
)]

𝑌 = 0 (9)

By solving two equation for the real and imaginary parts of Eq. (9) we obtain the expression for the two unknown parameters

𝜔2
𝑛(𝐴) = 𝜔2 − �̈�

𝐴
(10a)

𝜂(𝐴) = − 1
𝜔2
𝑛

(

2𝜔�̇�
𝐴

+ �̇�
)

(10b)

he terms on the right-hand side of Eqs. (10) can be evaluated using the measured signal y(t) and its Hilbert transform �̃�(𝑡). The
irst derivative (Eq. (8a)) gives the free vibration frequency 𝜔 and the ratio �̇�∕𝐴

𝜔(𝑡) = 1
𝐴2

(

𝑦 ̇̃𝑦 − �̇��̃�
)

(11a)

�̇�
𝐴
(𝑡) = 1

𝐴2

(

𝑦�̇� + �̃� ̇̃𝑦
)

(11b)
4
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while the second derivative (Eq. (8b)) gives the variation of free vibration frequency �̇� and the ratio �̈�∕𝐴

�̇�(𝑡) =
𝑦 ̈̃𝑦 − �̃��̈�
𝐴2

− 2𝜔�̇�
𝐴

(12a)

�̈�
𝐴
(𝑡) =

𝑦�̈� + �̃� ̈̃𝑦
𝐴2

+ 𝜔2 (12b)

he right-hand side in Eqs. (11) and (12) depends on the Amplitude A(t) that can be evaluated as

𝐴(𝑡) =
√

𝑦2 + �̃�2 (13)

3. Experimental measurements

3.1. Test rig

Fig. 3 depicts the working scheme of the test rig used in the present work. The complexity of generating the centrifugal load
through a rotating rig led to the development of a static loading technique. The unfeasibility of statically pulling a real blade without
introducing additional damping is the reason of the symmetry of the rig, in which a dovetail type attachment is machined at both
ends of a beam with constant rectangular cross-section to create the mock-blade. The equivalence of loads and joint kinematics
makes the results obtained on this rig comparable with those on a real disk. More detailed considerations on the design principle
of the rig can be found in [43].

The attachments are fitted into the slots machined in two supports. These supports are integral with two crossbars: one crossbar
is fixed while the other is free to move if loaded with an axial force. The axial force Fax is exerted through a hydraulic cylinder
operated by a manual pump. The axial force is measured with two independent systems. A pressure gauge is connected to the
hydraulic cylinder and its value is read directly by the operator. A full-bridge strain gauge is attached with adhesive to the mock-
blade and it is read by a signal conditioning card and stored by the Data AcQuisition (DAQ) system. The dynamic excitation system
is composed by an electrodynamic shaker and its power amplifier. This amplifier is fed with a signal produced by a wave form
generator. The drive rod of the shaker is not fixed to the mock-blade but it can be brought into contact or released by displacing
the moving coil of the shaker. Beforehand, the drive rod is displaced by a wave form consisting of a ramp followed by a positive
constant value. A proper choice of the initial gap between the drive rod and the mock-blade together with the value of the constant
signal allows the drive rod to preload the mock-blade. The preload is followed by a sinusoidal wave whose frequency is chosen as
close as possible to the resonance of the modal shape under investigation. If the preload has been properly defined the drive rod
remains in contact with the mock-blade during the sinusoidal excitation period. At the end of the excitation period the drive rod
is suddenly detached, with a negative wave form signal, from the mock-blade that from this point on is free to oscillate so that
no additional damping injected by the shaker. This method will be referred to as the Detached Drive Rod Method (DDRM). The
excitation system used in this work differs from the one used in [43] in which the mock-blade was loaded with a non-contact exciter
based on electromagnets. The main objective of both systems is the same: to uncouple the mock-blade from the exciter so that no
additional damping is injected during the free decay. With the non-contact exciter this objective is achieved by stopping the current
in the coil whereas with the DDRM the drive rod is physically detached from the contact point. The main advantage of using the
DDRM is that the excitation force is applied at a specific point and can be measured with a load cell if the forced-response is needed.
The non-contact exciter needs a complex calibration process to measure the transfer function between the force measured on the
electromagnet and the true force applied to the mock-blade, as well explained in [45].

A Laser Doppler Vibrometer together with its controller measures the velocity of one reference point at time on the mock-blade.
The DAQ system collects and records point velocity and strain gauge signals. The wave form is created with a in-house code with
a sampling rate of 10 kHz and stored on file. This file is then read by the wave form generator that provides the output voltage
signal.

3.2. Testing procedure

Experiments were focused on the free decay of oscillations of the first and second bending mode of the mock-blade. Velocity was
measured at the antinode of the modal shape under investigation. For both modes a set of measurements at different axial loads Fax
was carried out. The testing procedure for each measurement is described in the following.

1. The mock-blade is pulled with the axial load Fax, which is evaluated with the pressure gauge and strain gauges through the
formulae

𝐹𝑎𝑥 = 𝐴𝑐𝑦𝑙 𝑝 (14a)

𝐹𝑎𝑥 = 𝐴𝑏𝑒𝑎𝑚 𝜎 = 𝐴𝑏𝑒𝑎𝑚 𝐸𝑠𝑡 𝜀 (14b)

where Acyl = 1790 mm2 is the effective area of the hydraulic cylinder, p is the measured pressure, Abeam = 26 × 10 mm2

is the rectangular cross-section of the mock-blade, Est = 200.3 GPa the Young Modulus of the blade material (steal) and 𝜖
the measured strain. The total length of the blade is 325.7 mm, comprehensive of the dovetail extremities, see Fig. 9(a). As
reported in [43], on real engines in cruise condition a typical centrifugal load on blades is about 50 kN. The minimum load,
during the flight descent phase when the engine runs at idle speed, is about 2.5 kN. In the present work measurements were
performed with tensile loads up to 25 kN, a value that is representative of the real operating condition.
5
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Fig. 3. Test Rig scheme.

2. A preliminary hammer test is performed on the loaded mock-blade to obtain a first estimate of the natural frequencies of the
first two bending modes.

3. The loaded mock-blade is excited by using the DDRM with an oscillating force whose frequency was estimated as in point
List 2. The free vibrations is obtained once the drive rod is detached from the excitation point.

4. The useful portion of the velocity v(t) is limited to the time interval of free decay. This portion of the signal is filtered with a
bandpass Parks–McClellan FIR filter, centered on the frequency of the examined mode, to reduce noise and other undesired
signals.

5. The measured signal is then processed with the method described in Section 2. In the present work, the measured signal is the
velocity 𝑣(𝑡) = �̇�(𝑡). Thus, displacement 𝑦(𝑡) and acceleration �̈�(𝑡) were computed by numerical integration and differentiation
of v(t) respectively.

3.3. Test results

Figs. 5 and 6 show the instantaneous frequency and loss factor of the first and second bending mode respectively. These dynamic
parameters are evaluated with Eq. (10). Results are shown as functions of the displacement amplitude A of the antinode. In both
modes frequency and loss factor are constant for small vibration amplitudes, see the detail in Fig. 5(b), thus revealing a linear
behavior of the system. For small amplitudes slip is negligible whereas slip occurs for higher amplitudes. The loss factor shows
a maximum, clearly visible in Fig. 5(b), at an optimal amplitude Aopt: before Aopt the loss factor increases whereas after Aopt it
decreases. This maximum is not visible for the second mode, Fig. 6(b), because the output force available at the shaker was not able
to displace the second mode up to the optimal amplitude. Oscillating displacements under slip condition lead to the formation of
hysteresis loops as shown in Fig. 4(b). Friction at interfaces dissipates energy, the amount of which is related to the loop area that
varies with the amplitude A. The maximum loss factor is found at the optimal amplitude that is not the maximum amplitude.

The loss factor, see Figs. 5(b) and 6(b), decreases with increasing axial loads Fax, provided the amplitude is the same. This
behavior is due to the increasing contact normal load N which reduces the gross-slip displacement range in the hysteresis loop,
thus decreasing the dissipated energy. The natural frequency increases with axial loads F , as reported in Figs. 5(a) and 6(a). This
6
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Fig. 4. Scheme of the first and second bending modes of the mock-blade, of the contact forces and hysteresis loop.

Fig. 5. Modal parameters for the first bending mode (1B).

Fig. 6. Modal parameters for the second bending mode (2B).
7
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Fig. 7. Stiffening effect due to the axial load Fax. The increase of the frequency predicted by the analytical model is compared with the experimental results.

Fig. 8. Finite Element model and detail of contact nodes.

increment is caused by two factors. First, the axial stress along the beam produces a moment opposing the bending deformation.
This effect was considered with an analytical model [52] in which the Euler–Bernoulli beam model was modified to introduce a
second order deformation effects. The effect of Fax on the frequencies, evaluated with this analytical model, is depicted in Fig. 7.
The second effect is related to the increasing contact normal load N that increases the stiffness of the contacts. This phenomenon
will be further discussed in Section 6. Fig. 7 also shows the natural frequencies measured in stick condition, taken as the mean value
in the small amplitudes range. The measured frequency is lower than the predicted because the contact stiffness at the interfaces
is in series with the mock-blade stiffness and then reduces the global stiffness. For axial loads greater than 12 kN the frequencies
increase with a slope slightly higher than that predicted by the analytical model. For axial loads lower than 12 kN the experimental
frequencies diverge from the theoretical ones because the interface tends to slip and the contact stiffness decreases, thus reducing
the natural frequency of the entire system.

4. Finite element model

A commercial Finite Element (FE) model was used in the procedure to identify the normal and tangential contact stiffnesses.
The mock-blade and the slots, depicted in Fig. 8, were modeled as separate bodies. The material properties of the mock-blade were
evaluated with a hammer modal test in free-free condition. The measured modulus of elasticity and density were E = 200.3 GPa
and 𝜌 = 7592 kg/m3 respectively. The contact surface on the root blade and the matching surface on the slot were discretized with
the same number of nodes. These nodes have coincident coordinates, see the detail in Fig. 8, so that node-to-node contact element
is allowed. These contact elements are assembled during the identification procedure.
8
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Fig. 9. Boundary conditions for the preliminary FE static analysis of the mock-blade.

4.1. Tensile force stiffening effect

The stiffening effect induced by the axial load Fax was considered introducing the so-called geometrical stiffness matrix 𝛥 KG

𝐊 = 𝐊0 + 𝛥𝐊𝐺,𝐹𝑎𝑥 (15)

This matrix depends on the state of stress in the beam, and it was evaluated through a FE preliminary static analysis of the mock-blade
for each Fax applied in the experiments

𝛥𝐊𝐺,𝐹𝑎𝑥 = ∫𝑉
𝐒𝑇𝑔 𝝈𝐒𝑔𝑑𝑉 (16)

In Eq. (16) Sg is the matrix of the shape functions derivatives while 𝜎 is the stress state matrix. The stress stiffening effect is only
significant in slender bodies, then it was calculated for the mock-blade but not for the supports.

The preliminary static analysis was performed by applying to the dovetails contact surfaces the normal forces N balancing the
axial load Fax

𝑁 =
𝐹𝑎𝑥

2 sin 𝛽
(17)

with 𝛽 = 45◦as sketched in Fig. 9(a). Since results are little affected by contact tangential forces T these forces were neglected.
The mock-blade must be properly constrained during the preliminary analysis to avoid kinematic indeterminacy that would not
allow solving the static problem. Since these constraints are embedded in the stiffness matrix in Eq. (15) they could invalidate
the identification procedure of kn and kt. To avoid this issue the FE model was constrained with node-to-ground elastic springs
with a very small stiffness k = 1·10−4 N/mm so that they have no effect on the mock-blade dynamics in the frequency range of
interest. Three nodes for each dovetail were constrained along the transverse directions, see Fig. 9(b), while the center node of
the mock-blade was constrained along the axial direction as in Fig. 9(c). The rigid motion of the mock-blade is canceled with a
minimum number of constraints and complying with the symmetry of the first two modal shapes.

4.2. CMS reduction

The identification of the contact stiffness was performed with a purposely developed in-house code. This code utilizes the stiffness
and mass matrix generated by the FE commercial software. To decrease the computational cost and speed up the identification
process the Degrees of Freedom (DoF) of the models were reduced using the tool built in the FE software. Then the reduced
matrices were exported in a suitable format and read by the in-house code. The reduction was performed with the Component
Mode Synthesis (CMS), a technique developed in [53] for sub-structuring, and summarized in the following. The dynamic equations
in physical coordinates u is

𝐌�̈� +𝐊𝐮 = 𝟎 (18)

The physical DoFs are divided in active ua and omitted uo

𝐮 =
{

𝐮𝑎
𝐮𝑜

}

(19)

so that Eq. (18) can be rearranged as
[

𝐌𝑎𝑎 𝐌𝑎𝑜
]{

�̈�𝑎
}

+
[

𝐊𝑎𝑎 𝐊𝑎𝑜
]{

𝐮𝑎
}

= 𝟎 (20)
9
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Fig. 10. Node-to-node contact element. k̃n and k̃t are the nodal stiffnesses.

According to the CMS method, only the physical displacement ua of the active nodes are retained in the equation. The omitted DoFs
re approximated with a linear combination of the active DoFs and normal modes 𝚽𝑜𝑜

𝐮 =
{

𝐮𝑚
𝐮𝑠

}

=
[

𝐈 𝟎
𝐊−1

𝑜𝑜 𝐊𝑜𝑎 Φ𝑜𝑜

]{

𝐮𝑎
𝜼𝑜

}

= 𝐓𝐪 (21)

The normal modes Φ𝑜𝑜 are solution to the eigenproblem of the sub-system composed of the omitted DoFs with proper boundary
conditions. Φ𝑜𝑜 is a subset of Φ𝑜𝑜 while 𝜼𝑜 are the modal DoFs. The number of active and modal DoFs defines the degree of reduction.
The dynamic Eq. (18) becomes

𝐌�̈� +𝐊𝐪 = 𝟎 (22)

with q generalized DoFs and

𝐊 = 𝐓𝑇𝐊𝐓 (23a)

𝐌 = 𝐓𝑇𝐌𝐓 (23b)

are the reduced stiffness and mass matrices. The reduction was performed separately for the mock-blade and the two supports. The
mock-blade stiffness matrix is actually a set of matrices, one for each axial load Fax, according to what reported in Section 4.1.
The active nodes on the mock-blade comprise 33 nodes on each contact interface and two line of 21 nodes each along the axial
direction. These nodes allow visualizing the modal shapes during post processing of the results. One of these latter nodes coincides
with the spot on which the velocity is measured, another one with the excitation point. The subset Φ𝑜𝑜 is composed by the first
100 modal shapes (corresponding to the lowest frequencies) which brings the total number of generalized DoFs to 622. The active
nodes on the support are the nodes on the contact interfaces and 117 nodes on the base. The latter nodes allow a static analysis of
the reduced model of the support. This analysis was not performed in the present work and these DoFs were constrained. Also for
the support 100 modal shapes were chosen so that the number of generalized DoFs amounts to 322.

4.3. Contact element

The mock-blade roots and the supports are connected by node-to-node contact elements, namely springs acting along the normal
and tangential directions of the contact surface. The stiffness of these nodal springs k̃n and k̃t are obtained by uniformly distributing
the contact stiffness of the attachment kn and kt on the nodes of each interface. The contact element and its stiffness matrix and

oFs in the Local coordinate system are visible in Fig. 10.

. Semi-analytical contact model

The unknown contact stiffnesses kn and kt were identified following the procedure described in Section 6. Nevertheless, the
ontact stiffness can be also estimated by using the semi-analytical solution of the contact between a flat punch on an infinite half-
lane, as shown in Fig. 11(a). These stiffnesses are referred to as theoretical contact stiffnesses 𝑘𝑡ℎ𝑛 and 𝑘𝑡ℎ𝑡 . The pressure distribution

p on a punch with rounded edges

𝑏𝑝(𝜙)
𝑃

=
2∕𝜋

𝜋 − 2𝜙0 − sin 2𝜙0

[

(𝜋 − 2𝜙0) cos𝜙 + sin𝜙 ln
|

|

|

|

sin(𝜙 + 𝜙0)
sin(𝜙 − 𝜙0)

|

|

|

|

+ sin𝜙0 ln
|

|

|

|

tan
𝜙 + 𝜙0

2
tan

𝜙 − 𝜙0
2

|

|

|

|

]

(24)

was first found in [25] and also recalculated in [26]. Eq. (24) is given in dimensionless form in which b is the contact half-width
10

and P the normal load per unit length. Fig. 11(a) sketches the analogy between the punch geometry and the contact region in the
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Fig. 11. The punch with rounded edges and its pressure distribution.

attachment. The auxiliary angle 𝜙 is defined as sin𝜙 = 𝑥∕𝑏 and the angle 𝜙0 implicitly specifies the half-width 𝑏 = 𝑎∕ sin𝜙0. The
angle 𝜙0 can be found by solving the equation

𝑛𝑃𝑅
𝑎2𝐸∗

=
𝜋 − 2𝜙0

2 sin2 𝜙0
− cot 𝜙0 (25)

where 2a = 2.57 mm and 1∕𝐸∗ =
∑

𝑖=1,2(1 − 𝜈2𝑖 )∕𝐸𝑖 with Ei = 200.3 GPa and 𝜈𝑖 = 0.3 the Young’s modulus and the Poisson’s ratio
of the i-body. The contact length is L = 26 mm while the curvature radius of the rounded edges is R = 2.50 mm (considering a
symmetrical punch geometry). Because the real profile is not symmetric R was chosen as the maximum between the two radius (1.25
and 2.50 mm) corresponding to the higher values of the contact stiffnesses 𝑘𝑡ℎ𝑛 and 𝑘𝑡ℎ𝑡 . However, the variation of the theoretical
contact stiffness with the radius R in the above-mentioned range is negligible.

A discrepancy was found about the coefficient n in Eq. (25): according to [25] n = 2 whereas [26] reports a coefficient n = 4.
Fig. 11(b) shows the pressure distribution calculated with the two different coefficients and compares it with the results of a FE
analysis. The coefficient n = 4 overestimate the contact half-width and coherently underestimate the pressure peak. For this reason,
this work utilizes the formulation proposed in [25].

The results obtained in [25] were extended in [26] in the case of contacts experiencing also a tangential force T. The shear stress
was calculated as the sum of the stress in full slip condition 𝜇p(x) (𝜇 being the friction coefficient) and a corrective shear stress
q*(x) in the stick region

𝑞(𝑥) = 𝜇𝑝(𝑥) − 𝑞∗(𝑥) (26)

The corrective shear stress distribution q*(𝜃) is

𝑐𝑞∗(𝜃)
𝜇𝑃 −𝑄

= −
2∕𝜋

𝜋 − 2𝜃0 − sin 2𝜃0

[

(𝜋 − 2𝜃0) cos 𝜃 + sin 𝜃 ln
|

|

|

|

sin(𝜃 + 𝜃0)
sin(𝜃 − 𝜃0)

|

|

|

|

+ sin 𝜃0 ln
|

|

|

|

tan
𝜃 + 𝜃0

2
tan

𝜃 − 𝜃0
2

|

|

|

|

]

(27)

where sin 𝜃 = x/c, P = N/L and Q = T/L. The half-width of the stick region c = a/sin 𝜃0, see Fig. 11(a), is computed solving for 𝜃0
in the equation

𝑛𝑃𝑅
𝑎2𝐸∗

(

1 − 𝑄
𝜇𝑃

)

=
𝜋 − 2𝜃0
2 sin2 𝜃0

− cot 𝜃0 (28)

The tangential displacement 𝛿𝑥 was found in [27]

𝛿𝑥 = 𝑢𝑥1 − 𝑢𝑥2 =
2

𝜋𝐸∗

[

−∫

𝑏

−𝑏
𝑞𝑥(𝑟) ln

|

|

|

|

𝑟
𝑏
|

|

|

|

𝑑𝑟 +𝑄
(

ln
|

|

|

|

𝐿
𝑏
|

|

|

|

+ 𝜈
1 − 𝜈

)]

(29)

through the elastic potential theory of Boussinesq–Cerruti as reported in [54]. Hence, the stiffness is calculated as the first derivative
of the tangential force at the onset of the tangential displacement for a given normal force N

𝑘𝑡ℎ𝑡 (𝑁) =
(

𝜕𝑇
𝜕𝛿𝑥

)

𝛿𝑥=0
= 1

(

𝜕𝛿𝑥(𝑁)
𝜕𝑇

)

𝑇=0

(30)

Similarly, the normal displacement of each body is

|𝑢𝑧𝑖 | =
1 − 𝜈2𝑖

∫

𝑏
𝑝(𝑟)

(

∫

𝐿∕2 1
√

𝑑𝑠

)

𝑑𝑟 =
1 − 𝜈2𝑖

∫

𝑏
𝑝(𝑟)2 sinh−1

(

𝐿∕2
)

𝑑𝑟 (31)
11
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thus the relative normal displacement 𝛿𝑧 is

𝛿𝑧 = 𝑢𝑧1 − 𝑢𝑧2 =
2

𝜋𝐸∗ ∫

𝑏

−𝑏
𝑝(𝑟) sinh−1

(

𝐿∕2
|𝑟|

)

𝑑𝑟 (32)

nd the normal contact stiffness can be written as

𝑘𝑡ℎ𝑛 (𝑁) = 𝜕𝑁
𝜕𝛿𝑧

= 1
𝜕𝛿𝑧
𝜕𝑁

(33)

For a given axial force Fax the corresponding normal load N ranges from a minimum 𝑁min (corresponding to full slip T = 𝜇N) and
a maximum value 𝑁max (corresponding to a friction-less contact T = 0)

𝐹𝑎𝑥
2 (sin 𝛽 + 𝜇 cos 𝛽)

≤ 𝑁 ≤
𝐹𝑎𝑥

2 sin 𝛽
(34)

s visualized in Figs. 9(a), 13(b) shows that the theoretical contact stiffness are weakly affected by the tangential force T with 𝜇 =
0.4.

6. Contact stiffness identification

The unknown contact stiffnesses kn and kt were indirectly estimated through their influence on the natural frequencies calculated
y the reduced FE model. These frequencies, calculated for both the first (1B) and second (2B) bending mode, were compared with
he measured frequencies. This comparison was carried out for each axial load Fax with which experiments were performed. The
nalysis was achieved for small vibration amplitudes in which gross slip does not occur. In this condition the frequency remains
onstant, as shown in Fig. 6(a), and the system exhibits a linear behavior. Microslip is always present but its influence is significant
nly for axial loads less than 12 kN, as reported in Fig. 7. For this reason, only results obtained with axial loads greater than 12
N were employed in the comparison. The unknown stiffnesses kn and kt can be determined by solving at each axial load Fax the
onlinear system

{

𝑓𝐹𝐸
𝑛,1𝐵(𝑘𝑛, 𝑘𝑡) − 𝑓 𝑚

𝑛,1𝐵

𝑓𝐹𝐸
𝑛,2𝐵(𝑘𝑛, 𝑘𝑡) − 𝑓 𝑚

𝑛,2𝐵

}

=
{

𝛥𝑓𝑛,1𝐵
𝛥𝑓𝑛,2𝐵

}

=
{

0
0

}

(35)

here 𝒇𝐹𝐸
𝑛 and 𝒇 𝑚

𝑛 are the computed and measured natural frequencies respectively. The natural frequencies of the first bending
ode as a function of the contact stiffness are shown in Fig. 12(a). Eq. (35) is solved by finding the locus of the minima of the

esidual norm 𝑔 ∶= ‖𝛥𝒇 𝑛‖. This locus is characterized by a minimum gradient ‖∇𝑔‖ on the level curves of the residual norm surface

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝑛‖∇𝑔‖ = 0
𝜕2

𝜕𝑛2
‖∇𝑔‖ > 0

(36)

here direction n defines the level curve as ∇𝑔 ⋅ 𝒏 = 0. Together with Eq. (36) a further limit is set on the value of the norm that
ust be less than a selected tolerance g <tollg. The locus of the minima can be visualized as the path followed by a sphere free to

oll on the residual norm surface. This path is visualized by the solid line marked in Fig. 12(b). This locus represents the feasible
olutions and is reported in Fig. 12(c) for different axial loads. Once the loci are defined a single solution must be selected. In this
ork the following three criteria were considered.

• The most intuitive criterion is to find the global minimum of ‖𝛥𝒇 𝑛‖ on the minima locus. The drawback of this criterion is the
low accuracy with which the stiffness is determined. The errors on the stiffness, computed with the procedure described in
Appendix, is about 55% and makes this solution less reliable. The reason for this large error is that the solution (𝑘𝑛, 𝑘𝑡) ≃ (1, 7)
kN/μm belongs to the region in which the sensitivity of the contact stiffness to the frequency variation is high, and a small
uncertainty on the measured frequencies propagates dramatically on the stiffness value.

• Uncertainty on the identified stiffness also suggests a different criterion: selecting the solution (𝑘𝑛, 𝑘𝑡) with the minimum error
(according to the procedure described in Appendix). This solution is denoted to as the ‘‘optimal solution pair’’.

• The theoretical contact stiffnesses were calculated in Section 5 and their values can guide the selection procedure. A third
option is to choose the pair (kn, kt) with the minimum distance from theoretical stiffness.

Fig. 12(c) reports the solution determined with the last two criteria: these solutions are close to each other and almost equivalent.
n this work, the optimal solution criterion was adopted and Table 1 reports the numerical results with their accuracy. The ratio
f tangential to normal stiffness remains almost constant, 𝑘𝑡∕𝑘𝑛 ≃ 1.37. This result differs from what reported in [55] in which this
atio slowly increases with normal loading.

Fig. 13(a) compares the optimal and the theoretical solution and points out that the difference between the two results is very
igh. Taking the theoretical stiffness as reference, the difference in the worst case is about 82% and 164% for kn and kt respectively.
urthermore, the trend of the two solutions at varying axial loads is very different. The optimal solution shows a slope of about
3 and 95 Nmm−1/N for kn and kt respectively, whereas the theoretical values remains almost constant at varying axial load as
12

mphasized in Fig. 13(b).
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Fig. 12. Variation of frequency (a) and residual norm (b) with contact stiffness. Loci of the minima with optimal and minimum distance solutions for different
axial loads.

Table 1
Normal and tangential contact stiffness with their estimated errors for different axial loads.
𝐹𝑎𝑥 𝑘𝑛 𝜎𝑛𝑛∕𝑘𝑛 𝑘𝑡 𝜎𝑡𝑡∕𝑘𝑡
kN kN/μm % kN/μm %

12 1.59 15 2.15 12
14 1.68 17 2.38 15
16 1.82 21 2.57 18
18 2.01 26 2.76 22
20 2.15 27 2.99 25
22 2.34 31 3.04 26

Most of this discrepancy is due to the slightly different meaning that the term ‘‘contact stiffness’’ takes on in the numerical and
analytical models. In the numerical model, the optimal contact stiffness represents the local connection between the two bodies
through the interface that breaks off the continuum. The flexibility of the bulk, here the lobes on root and slots, is considered in the
finite element model. The global stiffness is given by the series of the optimal and bulk stiffness. On the contrary, the analytical model
calculates the displacements, from which the theoretical stiffness are deduced, considering the elastic half-space. The comparison
should be made between global and theoretical stiffness rather than optimal and theoretical stiffness, but this comparison is by no
means an easy task.

Furthermore, the assumption of elastic half-space is valid only if the size 2b of the contact region is much smaller than the
curvature radius R [27], hypothesis not strictly fulfilled in the real contact geometry of the examined joint.

Moreover, the blade deformation and the lobe flexibility induce rotation of the contact surfaces. This rotation generates an
asymmetric pressure distribution, whereas the theoretical model assumes that the loads and the pressure distribution are symmetric.
Since the contact problem is nonlinear asymmetric pressure distributions result in different stiffness even for the same normal load.
An analytical model comprehensive of the moment and asymmetry of the contact patch was put forward in [56]. This model delivers
the pressure and tangential distribution, but the displacement field from which the contact stiffness is derived is not ready yet.
Furthermore, it is not easy to evaluate the moment at the root when the blade is oscillating also considering that this moment
varies during a cycle.
13
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Fig. 13. Comparison between the optimal contact stiffness resulting from the identification procedure and the theoretical values obtained with the semi-analytical
odel.

. Conclusions

This paper has presented a novel procedure to experimentally investigate modal parameters, namely natural frequency and loss
actor, in blade attachments. Experimental data were collected on a mock-blade with a dovetail at both ends. In our experiment, a
haker excited the mock-blade whose free decay was measured with a laser Doppler velocimeter. The Detached Drive Rod Method
as developed to ensure that the free decay was not affected by any coupling with the excitation system. Results substantiate the
ependency of the modal parameters on the vibration amplitude, a behavior typical of nonlinear systems. Results also show that
he loss factor reaches a maximum, at an optimal amplitude, as predicted by theoretical models.

An in-house code was also developed to identify contact stiffness. The identification procedure was performed by comparing
irst- and second-mode natural frequencies calculated from an FE model with experimentally measured frequencies. The presence
f two variables, namely normal and tangential stiffness, generates a multi-objective optimization problem. The main findings of
he analysis are reported below.

• The objective function does not have a unique minimum but a locus of minima that does not allow a pair stiffness kt and kn to
be uniquely identified. This result is reasonable, because these stiffnesses affect the first and second bending mode similarly
and their effect on these modes cannot be clearly separated. With an arbitrary choice, the contact stiffness pair with minimum
uncertainty was chosen among the feasible solutions and named ‘‘optimal stiffness pair’’.

• Better identification could be made by taking advantage of a theoretical contact model to guide the analysis. To this end the
optimal stiffness pair was also compared with the theoretical stiffness calculated with a semi-analytical solution. The difference
between the optimal and theoretical results is very high, reaching 82% and 164% in the worst case for kt and kn respectively.
The trend of the contact stiffness at varying axial loads is also very different. The optimal stiffness showed a slope of about
73 and 95 Nmm−1/N for kt and kn respectively, whereas the theoretical values remained almost constant.
These results show that using the available semi-analytical contact model to identify contact stiffness in an FE model is
unsuccessful.

• The disagreement highlighted in the analysis can be partly explained by considering the meaning of the term ’’contact stiffness’’.
In a numerical FE model, the contact stiffness represents the connection between two bodies through the nodes at the interfaces.
The flexibility of the bulk, represented by the lobes on the root and the slot, is already considered in the finite element model.
The semi-analytical model calculates the displacements and the stiffness, considering the elastic half-space. When theoretical
stiffness is assembled in the FE model it is as if the bulk flexibility is considered twice.

• Moreover, when contact surfaces are loaded they deform because of the flexibility of the lobes. The pressure distribution
becomes asymmetric, whereas the theoretical model assumes that the loads and the pressure distribution are symmetric. Since
the contact problem is nonlinear, different pressure distributions result in different stiffness even if the total loads are the
same. Currently, no theoretical models are available which consider the moment at the interface and asymmetric pressure
distribution.

This work has shown that computing contact stiffnesses with a theoretical model, such as the one presented in the paper, and
ubstituting them in a FE model underestimates the stiffness of the whole system. Designers should be aware that in this case the
odal analysis and the forced response will be inaccurate. Quantifying this inaccuracy is a difficult task, as the results are highly
ependent on the specific problem and its discretization. In the test case presented in this paper, the error on the frequency of the
irst and second mode ranged around 12 and 25%.
14
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Table A.2
Measured natural frequencies uncertainties due
to uncertainties on measured axial load 𝐹𝑎𝑥.
𝐹𝑎𝑥 𝛿𝑓𝑚

𝑛,1𝐵 𝛿𝑓𝑚
𝑛,2𝐵

kN Hz Hz

12 0.23 0.40
14 0.25 0.45
16 0.29 0.50
18 0.33 0.55
20 0.33 0.54
22 0.35 0.55
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ppendix. Contact stiffness accuracy

Uncertainties on contact stiffness were estimated through the procedure shown in [57]. The numerical frequencies as a function
f the contact stiffness can be approximated by a first order Taylor expansion

𝐟 (𝑘𝑛, 𝑘𝑡) =
{

𝑓𝐹𝐸
𝑛,1𝐵(𝑘𝑛, 𝑘𝑡)

𝑓𝐹𝐸
𝑛,2𝐵(𝑘𝑛, 𝑘𝑡)

}

≃ 𝐟𝟎 + 𝐉
(

𝐤 − 𝐤𝟎
)

(A.1)

with

𝐤 =
{

𝑘𝑛
𝑘𝑡

}

(A.2)

and

𝐉 =
⎡

⎢

⎢

⎣

𝜕𝑓𝑛,1𝐵
𝜕𝑘𝑛

𝜕𝑓𝑛,1𝐵
𝜕𝑘𝑡

𝜕𝑓𝑛,2𝐵
𝜕𝑘𝑛

𝜕𝑓𝑛,2𝐵
𝜕𝑘𝑡

⎤

⎥

⎥

⎦

(A.3)

Vector 𝐤𝟎 contains a pair of trail solutions and 𝐟𝟎 its corresponding frequencies. The uncertainties 𝛿𝑓𝑛,1𝐵 and 𝛿𝑓𝑛,2𝐵 on the frequencies
for the first and second bending mode were obtained from the uncertainty on the measured axial load 𝐹𝑎𝑥 due to pressure gauge
accuracy (𝛿𝑝∕𝑝 = 𝛿𝐹𝑎𝑥∕𝐹𝑎𝑥 = 1%).

𝛿𝑓𝑛 =
𝜕𝑓𝑛
𝜕𝐹𝑎𝑥

𝛿𝐹𝑎𝑥 (A.4)

See Table A.2.
Sensitivity of the natural frequency 𝑓𝑛 on axial load 𝐹𝑎𝑥 was estimated by using the FE model with the identified contact stiffnesses

𝑘𝑛 and 𝑘𝑡. The frequency covariance matrix is

𝝈2 ∶= ⟨𝛿𝐟𝛿𝐟𝑇 ⟩ =
[

𝜎21𝐵 0

0 𝜎22𝐵

]

=

[

𝛿𝑓 2
𝑛,1𝐵 0
0 𝛿𝑓 2

𝑛,2𝐵

]

(A.5)

with ⟨⋅⟩ the expected value. In Eq. (A.5) the standard deviations 𝜎1𝐵 and 𝜎2𝐵 are approximated with the uncertainties 𝛿𝑓𝑛,1𝐵 and
𝛿𝑓𝑛,2𝐵 . Thus, the covariance matrix of contact stiffness at 𝐤𝟎 is

𝜎2𝐤 =

[

𝜎2𝑛𝑛 𝜎2𝑛𝑡
𝜎2𝑡𝑛 𝜎2𝑡𝑡

]

= ⟨𝛿𝐤𝛿𝐤𝑇 ⟩ = 𝐉−1⟨𝛿𝐟𝛿𝐟𝑇 ⟩(𝐉−1)𝑇 = 𝐉−1𝝈2(𝐉−1)𝑇 (A.6)

with 𝛿𝐟 = 𝐉𝛿𝐤. The solution (named as optimal stiffness pair) was selected as the stiffness pair – on the minima locus – with the
minimum 2-norm of the stiffness covariance matrix. Standard deviations of 𝑘𝑛 and 𝑘𝑡 were computed from the covariance matrix

𝐤𝑜𝑝𝑡 =
{

𝑘𝑜𝑝𝑡𝑛
𝑜𝑝𝑡

}

∶ min ‖𝜎2𝐤‖2 ⇒

{

𝑘𝑛 = 𝑘𝑜𝑝𝑡𝑛 ± 𝜎𝑛𝑛
𝑜𝑝𝑡 (A.7)
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