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Uncertainty in identifying contact stiffnesses in a
dovetail attachment for turbine blades

Daniele Bottoa,∗, Matteo Gloriosoa, Serena Occhipintia, Federica Cuccovilloa

aDepartment of Mechanical and Aerospace Engineering - Politecnico di Torino, 10129
Torino, Italy

Abstract

Designing bladed disks in turbo engines requires accurate dynamic models to

correctly estimate resonance frequencies and related stresses. These stresses are

of fundamental importance to assess the fatigue strength of blades. The contact

parameters - stiffness and damping in the blade attachments - are currently

among the most significant uncertainties of such models. Dry friction and alter-

nating relative motions between the contact interfaces determine the transition

between stick and slip that causes the nonlinear behavior of attachments. As

a consequence, the joint contact parameters depend on centrifugal loads and

amplitude vibration of blades. Commercial and in-house finite element software

make use of specific contact elements to simulate dry friction and the result-

ing nonlinear behavior. These elements require the friction coefficient as input

while the normal and tangential contact stiffness can be directly evaluated by

the software or set up by the user. Researchers have been working to evaluate

the contact parameters with theoretical models or to measure them with labo-

ratory apparatus or in the field. The main objective of the present research is to

discuss the uncertainty associated with identifying with experimental data the

normal and tangential stiffness in a dovetail coupling. In addition, the reliability

of available theoretical contact models will be addressed. A novel experimen-
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tal procedure was developed to evaluate the influence of an attachment on the

blade dynamics. The response of the blade/attachment system was measured

as a function of the axial load (simulating the centrifugal force) and of the

blade vibration amplitude. An identification procedure using a finite element

model was set up to identify the normal and tangential contact stiffness of the

attachment. These stiffnesses were compared with the values predicted by a

theoretical model. The comparison highlights a significant difference between

measured and predicted stiffness. The final discussion focuses on the significance

of theoretical contact stiffness and its use in finite element models.

Keywords: Contact stiffness, Contact model, Dovetail, Turbine blade

1. Introduction

1.1. Background

Mechanical design of bladed disks in aero-engines includes the assessment

of structural integrity against fatigue, be it high cycle, low cycle, or fretting

fatigue [1, 2]. To correctly predict stresses due to vibrations, accurate dynamic5

models are necessary. A complete resonance decoupling of such components is

not a viable design choice because of the high modal density of the disk and

the broad spectrum of the external loads. For this reason, damping introduced

by dry friction is one of the tools used to reduce the amplitude of vibration.

Friction damping develops at contact surfaces between shrouds, damper and10

under-platforms, disk slot and blade attachment, and more generally whenever

interfaces are present.

Numerical simulations of models with interfaces are challenging because the

tangential force in oscillating contacts is a piecewise function depending on the

state of the contact, stick, slip or even separation of the surfaces. Researchers15

have been working to develop efficient methods to solve the nonlinear equation

of motion of dynamic systems embedding friction contacts. A new method,

the harmonic balance technique, was proposed by in [3] to avoid the time do-

main solution of the dynamic equations of nonlinear circuits. This technique,
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known as Harmonic Balance Method (HBM), was widely used to determine20

the steady-state forced response of mechanical systems with nonlinear behavior

[4]. An incremental HBM method, named as Multi-Harmonic Balance Method

(MHBM), was developed in [5] for the analysis of damped systems with dry

friction. In [6] this method was enhanced using a Fast Fourier Transform algo-

rithm to transfer the equation of motion from time to frequency domain and25

vice versa. Nowadays, this technique is usually employed to study the dynamic

behavior of bladed disks in turbomachines [7]. The method was improved with

an analytical formulation of the contact forces [8] or by adding the static com-

ponent of the contact force [9, 10]. Time integration remains the most used tool

to evaluate transients and even more efficient methods were put forward, see for30

example the one proposed in [11]. The aforementioned techniques make use of

contact models based on Jenkins element in which the contact is composed by

a linear spring in series with a Coulomb slider. Contact models evolved from

the earlier one-dimensional [12] and two-dimensional [13] (2D) models to the

more complete three dimensional frictional contacts [14] with variable normal35

load [15].

These models require three parameters to define the contact properties: the

friction coefficient µ, the tangential and the normal contact stiffness, kt and kn

respectively. The normal contact stiffness kn for non-conforming geometries can

be calculated with the Hertz theory as reported in [16]. The normal contact40

deformation of cylinders, despite their simple geometry, is a challenging task

and several solutions are available in the literature [17–19]. The most reliable

solution, supported by experimental tests, is the one proposed in [20]. The

Hertz theory of contact was extended to account for friction forces and calcu-

late the tangential stiffness between spherical bodies [21, 22]. The solution for45

the contact of nonspherical bodies subjected to oblique loading was given in

[23]. Among conforming geometries the rigid punch with rounded edges has a

very important practical application in aero-engines because it is similar to the

contact between the lobes in the disk slot and in the blade root. The pressure

distribution was given in [24] for a friction-less rigid punch on an elastic half-50
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space, while the effect of a tangential force on the state of stress was studied

in [25]. The latter determined the boundary between stick and slip regions and

the traction distribution. The theory presented in [25] was developed for 2D

geometries and subsequently extended to three-dimensional (3D) contact bodies

in [26]. This paper presents a semi-analytical method to evaluate the tangen-55

tial force and displacements for a 3D punch with rounded edges. The contact

stiffness and the dissipated energy are determined from the hysteresis loop (the

friction force against the tangential displacement), provided the friction coeffi-

cient is known. The contact stiffness was also evaluated in its complex form by

using an harmonic balance so that the imaginary part of the complex stiffness,60

that is in phase with the velocity [27], represents the damping effect. Calcula-

tion of damping induced by dry friction at blade attachments is still an open

issue as evidenced by recent papers found in the literature [28, 29].

Several experimental works, belonging to the field of micro-scale investi-

gations, aimed at measuring the contact parameters for various geometries,65

materials and operating conditions. The first experimental investigations were

performed in [30] and [16] using point contacts geometries to measure the rela-

tionship between the tangential force and the micro-displacement. [31] measured

the hysteresis loop and the dissipated energy in the contact and underlined the

importance of friction damping and its dependency on normal load. The ex-70

perimental results were found to agree well with the previous analytical works

[16, 30]. The hysteresis loops for point contacts were also measured with a

more recent test apparatus [32] and at the high temperatures typical of the

aero-engine [33, 34]. Conformal frictional contacts, characteristic of shrouds

and disk-blade joints, were experimentally analyzed in [35] and [36] that inves-75

tigated a pair of flat contact surfaces for several materials. A test rig working at

high temperatures and capable to perform fretting test on flat-on-flat surfaces

was proposed in [37]. An original approach to model friction contacts was given

in [38] while several experimental tests were performed in [39–41].

Specific experimental campaigns were carried out to investigate the component-80

scale dynamic behavior of blades fixed with typical blade-disk joints. These cam-
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paigns provided a useful database for the validation of numerical simulations.

The free response of a pulled mock-blade fixed with dovetail and fir-tree joints at

its two ends was obtained in [42] and [43] . Damping and resonance frequencies

were extracted as functions of the amplitude of vibration for different centrifugal85

loads. the same test rig was used in [44] to measure the forced-response and

to collect a database of the frequency response with different normal contact

loads and varying the dynamic excitation. A similar test apparatus [45] was

used to measure the damping introduced by the blade-disk attachment. The

joint behavior was simulated with two different contact models, one considering90

only macroslip conditions the other based on microslip. Results showed that the

macroslip model was not suitable for accurate simulations. The damping ratio

and the natural frequency on a simple beam with dovetail root joint was also

measured in [46]. The centrifugal load was applied with a loading screw pushing

on the back of the dovetail while a vibration slip table provided the dynamic95

excitation of the whole system. The micro-slip characteristic and the tangential

contact stiffness were measured on the same material by using a fretting test

rig. The contact stiffness inferred from the dynamic test performed on the sim-

ple beam with dovetail was compared with the results from the fretting test.

Results showed that the tangential contact stiffness measured on the dovetail is100

smaller than the stiffness obtained by the fretting tests. The friction coefficient

was measured on a fir-tree attachment in [47], but the rig used in this work did

not allow measuring the contact stiffness.

1.2. Objective and workflow

Although the elastic properties of the contact in blade attachments are of105

great significance for engineers few works were devoted to measuring these pa-

rameters under dynamic conditions. The objective of the present work is to

evaluate the uncertainty associated to the experimental identification of the

contact stiffnesses kn and kt, along the normal and tangential direction, in a

dovetail attachment. Moreover, the contact stiffnesses are also evaluated with110

the semi-analytical models found in the literature and compared with the ex-
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perimental results. This comparison was aimed to asses if the elastic contact

parameters calculated with these models are feasible as contact elements in a

FE model during the design step of bladed disks. The objective is pursued by

collecting the dynamic response of a mock-blade with dovetail joints, as depicted115

in Fig. 1, and analyzing the results with the help of a FE model. The flow chart

Blade

Disk

A

Fax

kn

kt

Figure 1: sketch of the dovetail joint investigated in this paper. The contact stiffnesses are

highlighted in the panel.

in Fig. 2 shows the analysis procedure described in detail below.

� Section 2 reports the main findings of the method proposed in [48] to

identify the instantaneous natural frequency ωn(A) and the instantaneous

damping η(A) depending on the vibration amplitude A. More details on120

the method are given in [49] while properties and assumptions regarding

the Hilbert transform can be found in [50]. The reader familiar with the

method can skip this section.

� Section 3 describes the experimental apparatus used for the dynamic tests

on the mock-blade. This apparatus utilizes the rig described in [42] but in125

this work a different excitation system is used. The free decay of the mock-

blade is measured for different tensile axial forces Fax and then processed

to extract ωn and η of the nonlinear system.

� Section 4 illustrates the FE model of mock-blade and supports. Contact

elements containing the unknown stiffnesses kt and kn connect the corre-130

sponding contact nodes on the dovetail and on the slot. These elements

6
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implement only the stick state. This section also reports the method used

to obtain the reduced models of the mock-blade and supports, compre-

hensive of the stiffening effect due to the axial force.

� Section 5 describes how the theoretical contact stiffnesses in the attach-135

ment ktht and kthn can be calculated using the semi-analytical model of the

flat punch with rounded edges proposed in [26]. The theoretical and ex-

perimental results are compared to discuss the feasibility of the theoretical

model for the blade design.

� Section 6 documents the procedure to identify kn and kt for varying Fax.140

The experimentally determined natural frequencies are compared with

the frequencies computed by the FE model modal analysis. Appendix A

reports the uncertainty of the identified stiffness.

Throughout this paper boldface letters indicate vectors and matrices. Moreover,

the greek letter ω indicates frequencies in rad/s whereas f is the frequency145

expressed in Hz.

Dynamic 
Tests

Free 
decay

FE Model Contact
Elements

Modal
Analysis
∀Fa

Signal
Analysis

Comparing
Frequencies

∀Fa

Selection of ωn
stick contact state

Comparing
Stiffness

Analytical
Contact Model

kn(Fax)
kt(Fax)

ωn(A), η(A)
∀Fax

kthn(Fax)
ktht(Fax)

Figure 2: overview of the different phases of the activity.

2. Frequency and damping identification

The dependence of the natural frequency and damping on the amplitude of

vibration, typical of nonlinear behavior, can be obtained from a free decay test

with the method proposed in [48].This method works in the time domain and

is based on the analytic signal Y(t) corresponding to the real signal y(t)

Y (t) = y(t) + iỹ(t) = A(t) · eiϕ(t) (1)

7
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where ỹ(t)

ỹ(t) = H[y(t)] =
1

πt
∗ y(t) =

1

π

∫ +∞

−∞

y(t)

t− τ
dτ (2)

is the Hilbert transform of y(t). The terms A(t) and ϕ(t) in Eq. 1 are the

instantaneous amplitude and instantaneous phase of the analytic signal Y(t)

respectively.150

Dry friction is the dominant source of damping in blade attachments. Fric-

tion forces undergoing oscillating motion generate hysteresis loops as sketched

in Fig. 4b. Analysis of energy dissipation in hysteresis loops lead to the conclu-

sion that dry friction can be classified as a frequency-dependent damping. This

kind of damping is denoted to as hysteretic damping and in dynamic model it

is equivalent to an imaginary stiffness. The dynamic equation of motion with

hysteretic damping can be written as

mÿ + (k(A) + i h(A)) y = 0 (3)

In Eq. 3 the stiffness k(A) and the hysteretic damping h(A) are unknown

functions and, for non linear systems, depend on the amplitude of vibration

A. Applying the Hilbert transform to Eq. 3 the dynamic equation of motion

becomes

m ¨̃y + (k(A) + i h(A)) ỹ = 0 (4)

Multiplying each term of Eq. 4 by the imaginary unit i and adding it to the

corresponding term of Eq. 3 we obtain the analytic form of the equation of

motion

mŸ + (k(A) + i h(A))Y = 0 (5)

Equation 5 can be rewritten

Ÿ + ω2
n(A) (1 + i η(A))Y = 0 (6)

with

ω2
n(A) =

k(A)

m
(7a)

η(A) =
h(A)

k(A)
(7b)
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the instantaneous natural frequency and the loss factor respectively, also referred

to as modal parameters. The first and second derivative of the analytic signal

in Eq. (1) are

Ẏ = ẏ + i ˙̃y = (y + iỹ)

[
Ȧ

A
+ iω

]
(8a)

Ÿ = ÿ + i¨̃y = (y + iỹ)

[
Ä

A
− ω2 + i2ω

Ȧ

A
+ iω̇

]
(8b)

where ω = ϕ̇(t) is the instantaneous frequency of the signal. By substituting

Eq. (8b) into Eq. (5) the dynamic equation of motion becomes[
Ä

A
− ω2 + ω2

n + i

(
2ω
Ȧ

A
+ ω̇ + ω2

nη

)]
Y = 0 (9)

By solving two equation for the real and imaginary parts of Eq. (9) we obtain

the expression for the two unknown parameters

ω2
n(A) = ω2 − Ä

A
(10a)

η(A) = − 1

ω2
n

(
2ω
Ȧ

A
+ ω̇

)
(10b)

The terms on the right-hand side of Eqs. (10) can be evaluated using the

measured signal y(t) and its Hilbert trasform ỹ(t). The first derivative (Eq. 8a)

gives the free vibration frequency ω and the ratio Ȧ/A

ω(t) =
1

A2

(
y ˙̃y − ẏỹ

)
(11a)

Ȧ

A
(t) =

1

A2

(
yẏ + ỹ ˙̃y

)
(11b)

while the second derivative (Eq. 8b) gives the variation of free vibration fre-

quency ω̇ and the ratio Ä/A

ω̇(t) =
y ¨̃y − ỹÿ
A2

− 2ω
Ȧ

A
(12a)

Ä

A
(t) =

yÿ + ỹ ¨̃y

A2
+ ω2 (12b)

The right-hand side in Eqs. 11 and 12 depends on the Amplitude A(t) that can

be evaluated as

A(t) =
√
y2 + ỹ2 (13)
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3. Experimental measurements

3.1. Test Rig

Figure 3 depicts the working scheme of the test rig used in the present work.

The complexity of generating the centrifugal load through a rotating rig led to

the development of a static loading technique. The unfeasibility of statically155

pulling a real blade without introducing additional damping is the reason of the

symmetry of the rig, in which a dovetail type attachment is machined at both

ends of a beam with constant rectangular cross-section to create the mock-blade.

The equivalence of loads and joint kinematics makes the results obtained on this

rig comparable with those on a real disk. More detailed considerations on the160

design principle of the rig can be found in [42].

The attachments are fitted into the slots machined in two supports. These

supports are integral with two crossbars: one crossbar is fixed while the other

is free to move if loaded with an axial force. The axial force Fax is exerted

through a hydraulic cylinder operated by a manual pump. The axial force is165

measured with two independent systems. A pressure gauge is connected to the

hydraulic cylinder and its value is read directly by the operator. A full-bridge

strain gauge is attached with adhesive to the mock-blade and it is read by a

signal conditioning card and stored by the Data AcQuisition (DAQ) system.

The dynamic excitation system is composed by an electrodynamic shaker and170

its power amplifier. This amplifier is fed with a signal produced by a wave form

generator. The drive rod of the shaker is not fixed to the mock-blade but it

can be brought into contact or released by displacing the moving coil of the

shaker. Beforehand, the drive rod is displaced by a wave form consisting of

a ramp followed by a positive constant value. A proper choice of the initial175

gap between the drive rod and the mock-blade together with the value of the

constant signal allows the drive rod to preload the mock-blade. The preload is

followed by a sinusoidal wave whose frequency is chosen as close as possible to

the resonance of the modal shape under investigation. If the preload has been

properly defined the drive rod remains in contact with the mock-blade during180
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the sinusoidal excitation period. At the end of the excitation period the drive

rod is suddenly detached, with a negative wave form signal, from the mock-

blade that from this point on is free to oscillate so that no additional damping

injected by the shaker. This method will be referred to as the Detached Drive

Rod Method (DDRM). The excitation system used in this work differs from the185

one used in [42] in which the mock-blade was loaded with a non-contact exciter

based on electromagnets. The main objective of both systems is the same:

to uncouple the mock-blade from the exciter so that no additional damping is

injected during the free decay. With the non-contact exciter this objective is

achieved by stopping the current in the coil whereas with the DDRM the drive190

rod is physically detached from the contact point. The main advantage of using

the DDRM is that the excitation force is applied at a specific point and can

be measured with a load cell if the forced-response is needed. The non-contact

exciter needs a complex calibration process to measure the transfer function

between the force measured on the electromagnet and the true force applied to195

the mock-blade, as well explained in [44].

A Laser Doppler Vibrometer together with its controller measures the veloc-

ity of one reference point at time on the mock-blade. The DAQ system collects

and records point velocity and strain gauge signals. The wave form is created

with a in-house code with a sampling rate of 10 kHz and stored on file. This200

file is then read by the wave form generator that provides the output voltage

signal.

3.2. Testing procedure

Experiments were focused on the free decay of oscillations of the first and

second bending mode of the mock-blade. Velocity was measured at the antinode205

of the modal shape under investigation. For both modes a set of measurements

at different axial loads Fax was carried out. The testing procedure for each

measurement is described in the following.

1. The mock-blade is pulled with the axial load Fax, which is evaluated with

11
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Figure 3: Test Rig scheme

the pressure gauge and strain gauges through the formulae

Fax = Acyl p (14a)

Fax = Abeam σ = Abeam Est ε (14b)

where Acyl = 1790 mm 2 is the effective area of the hydraulic cylinder,

p is the measured pressure, Abeam = 26 x 10 mm 2 is the rectangular210

cross-section of the mock-blade, Est = 200.3 GPa the Young Modulus of

the blade material (steal) and ε the measured strain. The total length

of the blade is 325.7mm, comprehensive of the dovetail extremities, see

Fig. 9a. As reported in [42], on real engines in cruise condition a typical

centrifugal load on blades is about 50 kN. The minimum load, during the215

flight descent phase when the engine runs at idle speed, is about 2.5 kN.

In the present work measurements were performed with tensile loads up

to 25 kN, a value that is representative of the real operating condition.
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2. A preliminary hammer test is performed on the loaded mock-blade to

obtain a first estimate of the natural frequencies of the first two bending220

modes.

3. The loaded mock-blade is excited by using the DDRM with an oscillating

force whose frequency was estimated as in point 2. The free vibrations is

obtained once the drive rod is detached from the excitation point.

4. The useful portion of the velocity v(t) is limited to the time interval of225

free decay. This portion of the signal is filtered with a bandpass Parks-

McClellan FIR filter, centered on the frequency of the examined mode, to

reduce noise and other undesired signals.

5. The measured signal is then processed with the method described in Sect.

2. In the present work, the measured signal is the velocity v(t) = ẏ(t).230

Thus, displacement y(t) and acceleration ÿ(t) were computed by numerical

integration and differentiation of v(t) respectively.

3.3. Test Results

Figures 5 and 6 show the instantaneous frequency and loss factor of the first

and second bending mode respectively. These dynamic parameters are evaluated235

with Eqs. 10. Results are shown as functions of the displacement amplitude A

of the antinode. In both modes frequency and loss factor are constant for small

vibration amplitudes, see the detail in Fig. 5b, thus revealing a linear behavior

of the system. For small amplitudes slip is negligible whereas slip occurs for

higher amplitudes. The loss factor shows a maximum, clearly visible in Fig.240

5b, at an optimal amplitude Aopt: before Aopt the loss factor increases whereas

after Aopt it decreases. This maximum is not visible for the second mode, Fig.

6b, because the output force available at the shaker was not able to displace

the second mode up to the optimal amplitude. Oscillating displacements under

slip condition lead to the formation of hysteresis loops as shown in Fig. 4b.245

Friction at interfaces dissipates energy, the amount of which is related to the

loop area that varies with the amplitude A. The maximum loss factor is found

at the optimal amplitude that is not the maximum amplitude.
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A2B

A1B

T

N x

(a) First (1B) and second (2B) Bending modes of

the mock-blade. A1B and A2B are the displacement

amplitude of their respective antinodes. In the de-

tail the tangential T and normal N contact force

and the relative displacement x at interfaces.

gross slip

microslip

stick

full stick

T

x
-x0

μN

xcr

kt

x0

(b) Scheme of the Hysteresis loop be-

tween tangential force T and relative

displacement x at contact interfaces. N :

normal load; x0: maximum amplitude

of vibrating displacement x ; kt: contact

tangential stiffness.

Figure 4

(a) natural Frequency. (b) Loss factor

Figure 5: modal parameters for the first bending mode (1B).
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(a) Natural Frequency. (b) Loss factor

Figure 6: modal parameters for the second bending mode (2B).

The loss factor, see Figs. 5b and 6b, decreases with increasing axial loads

Fax, provided the amplitude is the same. This behavior is due to the increasing250

contact normal load N which reduces the gross-slip displacement range in the

hysteresis loop, thus decreasing the dissipated energy. The natural frequency

increases with axial loads Fax, as reported in Figs. 5a and 6a. This increment is

caused by two factors. First, the axial stress along the beam produces a moment

opposing the bending deformation. This effect was considered with an analytical255

model [51] in which the Euler-Bernoulli beam model was modified to introduce a

second order deformation effects. The effect of Fax on the frequencies, evaluated

with this analytical model, is depicted in Fig. 7. The second effect is related to

the increasing contact normal load N that increases the stiffness of the contacts.

This phenomenon will be further discussed in Sect. 6. Figure 7 also shows the260

natural frequencies measured in stick condition, taken as the mean value in the

small amplitudes range. The measured frequency is lower than the predicted

because the contact stiffness at the interfaces is in series with the mock-blade

stiffness and then reduces the global stiffness. For axial loads greater than 12

kN the frequencies increase with a slope slightly higher than that predicted265

by the analytical model. For axial loads lower than 12 kN the experimental

frequencies diverge from the theoretical ones because the interface tends to slip

and the contact stiffness decreases, thus reducing the natural frequency of the
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Figure 7: stiffening effect due to the axial load Fax. The increase of the frequency predicted

by the analytical model is compared with the experimental results.

4. Finite Element model270

A commercial Finite Element (FE) model was used in the procedure to

identify the normal and tangential contact stiffnesses. The mock-blade and

the slots, depicted in Fig. 8, were modeled as separate bodies. The material

properties of the mock-blade were evaluated with a hammer modal test in free-

free condition. The measured modulus of elasticity and density were E = 200.3275

GPa and ρ = 7592 kg/m3 respectively. The contact surface on the root blade

and the matching surface on the slot were discretized with the same number of

nodes. These nodes have coincident coordinates, see the detail in Fig. 8, so that

node-to-node contact element is allowed. These contact elements are assembled

during the identification procedure.280
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Figure 8: Finite Element model and detail of contact nodes.

4.1. Tensile force stiffening effect

The stiffening effect induced by the axial load Fax was considered introducing

the so-called geometrical stiffness matrix ∆KG

K = K0 + ∆KG,Fax
(15)

This matrix depends on the state of stress in the beam, and it was evaluated

through a FE preliminary static analysis of the mock-blade for each Fax applied

in the experiments

∆KG,Fax =

∫
V

STg σSgdV (16)

In Eq. 16 Sg is the matrix of the shape functions derivatives while σ is the stress

state matrix. The stress stiffening effect is only significant in slender bodies,

then it was calculated for the mock-blade but not for the supports.

The preliminary static analysis was performed by applying to the dovetails

contact surfaces the normal forces N balancing the axial load Fax

N =
Fax

2 sinβ
(17)

with β = 45° as sketched in Fig. 9a. Since results are little affected by con-285

tact tangential forces T these forces were neglected. The mock-blade must be

properly constrained during the preliminary analysis to avoid kinematic indeter-

minacy that would not allow solving the static problem. Since these constraints
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are embedded in the stiffness matrix in Eq. 15 they could invalidate the identifi-

cation procedure of kn and kt. To avoid this issue the FE model was constrained290

with node-to-ground elastic springs with a very small stiffness k = 1·10 -4 N/mm

so that they have no effect on the mock-blade dynamics in the frequency range

of interest. Three nodes for each dovetail were constrained along the transverse

directions, see Fig. 9b, while the center node of the mock-blade was constrained

along the axial direction as in Fig. 9c. The rigid motion of the mock-blade295

is canceled with a minimum number of constraints and complying with the

symmetry of the first two modal shapes.

Fax

N

N



T

T

10

325.7

(a) Reaction forces N on the

dovetail contact interfaces.

(b) Soft spring at the mock-

blade ends.

(c) Soft spring in the cen-

ter cross-section of the mock-

blade.

Figure 9: boundary conditions for the preliminary FE static analysis of the mock-blade.

4.2. CMS reduction

The identification of the contact stiffness was performed with a purposely

developed in-house code. This code utilizes the stiffness and mass matrix gen-

erated by the FE commercial software. To decrease the computational cost and

speed up the identification process the Degrees of Freedom (DoF) of the models

were reduced using the tool built in the FE software. Then the reduced matrices

were exported in a suitable format and read by the in-house code. The reduc-

tion was performed with the Component Mode Synthesis (CMS), a technique

developed in [52] for sub-structuring, and summarized in the following. The

dynamic equations in physical coordinates u is

Mü + Ku = 0 (18)
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The physical DoFs are divided in active ua and omitted uo

u =

 ua

uo

 (19)

so that Eq. 18 can be rearranged asMaa Mao

Moa Moo

 üa

üo

+

Kaa Kao

Koa Koo

 ua

uo

 = 0 (20)

According to the CMS method, only the physical displacement ua of the active

nodes are retained in the equation. The omitted DoFs are approximated with

a linear combination of the active DoFs and normal modes Φoo

u =

 um

us

 =

 I 0

K−1
oo Koa Φoo

 ua

ηo

 = Tq (21)

The normal modes Φoo are solution to the eigenproblem of the sub-system

composed of the omitted DoFs with proper boundary conditions. Φoo is a

subset of Φoo while ηo are the modal DoFs. The number of active and modal

DoFs defines the degree of reduction. The dynamic equation 18 becomes

Mq̈ + Kq = 0 (22)

with q generalized DoFs and

K = TTKT (23a)

M = TTMT (23b)

are the reduced stiffness and mass matrices. The reduction was performed

separately for the mock-blade and the two supports. The mock-blade stiffness300

matrix is actually a set of matrices, one for each axial load Fax, according to

what reported in Sect. 4.1. The active nodes on the mock-blade comprise

33 nodes on each contact interface and two line of 21 nodes each along the

axial direction. These nodes allow visualizing the modal shapes during post

processing of the results. One of these latter nodes coincides with the spot on305

which the velocity is measured, another one with the excitation point. The
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subset Φoo is composed by the first 100 modal shapes (corresponding to the

lowest frequencies) which brings the total number of generalized DoFs to 622.

The active nodes on the support are the nodes on the contact interfaces and 117

nodes on the base. The latter nodes allow a static analysis of the reduced model310

of the support. This analysis was not performed in the present work and these

DoFs were constrained. Also for the support 100 modal shapes were chosen so

that the number of generalized DoFs amounts to 322.

4.3. Contact element

The mock-blade roots and the supports are connected by node-to-node con-315

tact elements, namely springs acting along the normal and tangential directions

of the contact surface. The stiffness of these nodal springs k̃n and k̃t are ob-

tained by uniformly distributing the contact stiffness of the attachment kn and

kt on the nodes of each interface. The contact element and its stiffness matrix

and DoFs in the Local coordinate system are visible in Fig. 10.320
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Figure 10: node-to-node contact element. k̃n and k̃t are the nodal stiffnesses.

5. Semi-analytical contact model

The unknown contact stiffnesses kn and kt were identified following the pro-

cedure described in Sect. 6. Nevertheless, the contact stiffness can be also

estimated by using the semi-analytical solution of the contact between a flat

punch on an infinite half-plane, as shown in Fig. 11a. These stiffnesses are re-

ferred to as theoretical contact stiffnesses kthn and ktht . The pressure distribution

20
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p on a punch with rounded edges

bp(φ)

P
=

2/π

π − 2φ0 − sin 2φ0

[
(π − 2φ0) cosφ+ sinφ ln

∣∣∣∣ sin(φ+ φ0)

sin(φ− φ0)

∣∣∣∣+ sinφ0 ln

∣∣∣∣tan
φ+ φ0

2
tan

φ− φ0

2

∣∣∣∣]
(24)

was first found in [24] and also recalculated in [25]. Equation 24 is given in

dimensionless form in which b is the contact half-width and P the normal load

per unit length. Figure 11a sketches the analogy between the punch geometry

and the contact region in the attachment. The auxiliary angle φ is defined as

sinφ = x/b and the angle φ0 implicitly specifies the half-width b = a/sinφ0.

The angle φ0 can be found by solving the equation

nPR

a2E∗
=
π − 2φ0

2 sin2 φ0

− cotφ0 (25)

where 2a = 2.57 mm and 1/E∗ =
∑
i=1,2(1 − ν2

i )/Ei with Ei = 200.3 GPa

and νi = 0.3 the Young’s modulus and the Poisson’s ratio of the i -body. The

contact length is L=26mm while the curvature radius of the rounded edges

is R=2.50mm (considering a symmetrical punch geometry). Because the real325

profile is not symmetric R was chosen as the maximum between the two radius

(1.25 and 2.50 mm) corresponding to the higher values of the contact stiffnesses

kthn and ktht . However, the variation of the theoretical contact stiffness with the

radius R in the above-mentioned range is negligible.

A discrepancy was found about the coefficient n in Eq. 25: according to330

[24] n=2 whereas [25] reports a coefficient n=4. Figure 11b shows the pressure

distribution calculated with the two different coefficients and compares it with

the results of a FE analysis. The coefficient n=4 overestimate the contact half-

width and coherently underestimate the pressure peak. For this reason, this

work utilizes the formulation proposed in [24].335
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edges.
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Figure 11: the punch with rounded edges and its pressure distribution.

The results obtained in [24] were extended in [25] in the case of contacts

experiencing also a tangential force T. The shear stress was calculated as the

sum of the stress in full slip condition µp(x ) (µ being the friction coefficient)

and a corrective shear stress q*(x ) in the stick region

q(x) = µp(x)− q∗(x) (26)

The corrective shear stress distribution q*(θ) is

cq∗(θ)

µP −Q
= − 2/π

π − 2θ0 − sin 2θ0

[
(π − 2θ0) cos θ + sin θ ln

∣∣∣∣ sin(θ + θ0)

sin(θ − θ0)

∣∣∣∣+ sin θ0 ln

∣∣∣∣tan
θ + θ0

2
tan

θ − θ0

2

∣∣∣∣]
(27)

where sin θ = x/c, P=N /L and Q=T/L. The half-width of the stick region c

= a/sin θ0, see Fig. 11a, is computed solving for θ0 in the equation

nPR

a2E∗

(
1− Q

µP

)
=
π − 2θ0

2 sin2 θ0

− cot θ0 (28)

The tangential displacement δx was found in [26]

δx = ux1 − ux2 =
2

πE∗

[
−
∫ b

−b
qx(r) ln

∣∣∣r
b

∣∣∣ dr +Q

(
ln

∣∣∣∣Lb
∣∣∣∣+

ν

1− ν

)]
(29)

through the elastic potential theory of Boussinesq-Cerruti as reported in [53].

Hence, the stiffness is calculated as the first derivative of the tangential force at
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the onset of the tangential displacement for a given normal force N

ktht (N) =

(
∂T

∂δx

)
δx=0

=
1(

∂δx(N)
∂T

)
T=0

(30)

Similarly, the normal displacement of each body is

|uzi |=
1− ν2

i

πEi

∫ b

−b
p(r)

(∫ L/2

−L/2

1√
r2 + s2

ds

)
dr =

1− ν2
i

πEi

∫ b

−b
p(r)2 sinh−1

(
L/2

|r|

)
dr

(31)

thus the relative normal displacement δz is

δz = uz1 − uz2 =
2

πE∗

∫ b

−b
p(r) sinh−1

(
L/2

|r|

)
dr (32)

and the normal contact stiffness can be written as

kthn (N) =
∂N

∂δz
=

1
∂δz
∂N

(33)

For a given axial force Fax the corresponding normal load N ranges from a

minimum Nmin (corresponding to full slip T=µN ) and a maximum value Nmax

(corresponding to a friction-less contact T=0)

Fax
2 (sinβ + µ cosβ)

≤ N ≤ Fax
2 sinβ

(34)

as visualized in Fig. 9a, Figure 13b shows that the theoretical contact stiffness

are weakly affected by the tangential force T with µ=0.4.

6. Contact stiffness Identification

The unknown contact stiffnesses kn and kt were indirectly estimated through

their influence on the natural frequencies calculated by the reduced FE model.

These frequencies, calculated for both the first (1B) and second (2B) bending

mode, were compared with the measured frequencies. This comparison was

carried out for each axial load Fax with which experiments were performed.

The analysis was achieved for small vibration amplitudes in which gross slip

does not occur. In this condition the frequency remains constant, as shown in

Fig. 6a, and the system exhibits a linear behavior. Microslip is always present
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but its influence is significant only for axial loads less than 12 kN, as reported

in Fig. 7. For this reason, only results obtained with axial loads greater than

12 kN were employed in the comparison. The unknown stiffnesses kn and kt can

be determined by solving at each axial load Fax the nonlinear system fFEn,1B(kn, kt)− f mn,1B
fFEn,2B(kn, kt)− f mn,2B

 =

 ∆fn,1B

∆fn,2B

 =

 0

0

 (35)

where fFEn and f mn are the computed and measured natural frequencies respec-

tively. The natural frequencies of the first bending mode as a function of the

contact stiffness are shown in Fig. 12a. Equation 35 is solved by finding the lo-

cus of the minima of the residual norm g := ||∆fn||. This locus is characterized

by a minimum gradient ||∇g|| on the level curves of the residual norm surface
∂
∂n ||∇g||= 0

∂2

∂n2 ||∇g||> 0

(36)

where direction n defines the level curve as ∇g · n = 0. Together with Eq.

36 a further limit is set on the value of the norm that must be less than a340

selected tolerance g < tollg. The locus of the minima can be visualized as the

path followed by a sphere free to roll on the residual norm surface. This path

is visualized by the solid line marked in Fig. 12b. This locus represents the

feasible solutions and is reported in Fig. 12c for different axial loads. Once the

loci are defined a single solution must be selected. In this work the following345

three criteria were considered.

� The most intuitive criterion is to find the global minimum of ||∆fn|| on

the minima locus. The drawback of this criterion is the low accuracy with

which the stiffness is determined. The errors on the stiffness, computed

with the procedure described in Appendix A, is about 55% and makes this350

solution less reliable. The reason for this large error is that the solution

(kn, kt) ' (1, 7) kN/µm belongs to the region in which the sensitivity

of the contact stiffness to the frequency variation is high, and a small
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uncertainty on the measured frequencies propagates dramatically on the

stiffness value.355

� Uncertainty on the identified stiffness also suggests a different criterion:

selecting the solution (kn, kt) with the minimum error (according to the

procedure described in Appendix A). This solution is denoted to as the

“optimal solution pair”.

� The theoretical contact stiffnesses were calculated in Sect. 5 and their360

values can guide the selection procedure. A third option is to choose the

pair (kn, kt) with the minimum distance from theoretical stiffness.

480
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(a) Natural frequency as a function of
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Figure 12: variation of frequency (a) and residual norm (b) with contact stiffness. Loci of the

minima with optimal and minimum distance solutions for different axial loads.

Figure 12c reports the solution determined with the last two criteria: these so-

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



lutions are close to each other and almost equivalent. In this work, the optimal

solution criterion was adopted and Table 1 reports the numerical results with365

their accuracy. The ratio of tangential to normal stiffness remains almost con-

stant, kt/kn ' 1.37. This result differs from what reported in [54] in which this

ratio slowly increases with normal loading.

Figure 13a compares the optimal and the theoretical solution and points out

that the difference between the two results is very high. Taking the theoretical370

stiffness as reference, the difference in the worst case is about 82% and 164% for

kn and kt respectively. Furthermore, the trend of the two solutions at varying

axial loads is very different. The optimal solution shows a slope of about 73

and 95 mm-1 for kn and kt respectively, whereas the theoretical values remains

almost constant at varying axial load as emphasized in Fig. 13b.375

Most of this discrepancy is due to the slightly different meaning that the

term “contact stiffness” takes on in the numerical and analytical models. In the

numerical model, the optimal contact stiffness represents the local connection

between the two bodies through the interface that breaks off the continuum. The

flexibility of the bulk, here the lobes on root and slots, is considered in the finite380

element model. The global stiffness is given by the series of the optimal and bulk

stiffness. On the contrary, the analytical model calculates the displacements,

from which the theoretical stiffness are deduced, considering the elastic half-

space. The comparison should be made between global and theoretical stiffness

rather than optimal and theoretical stiffness, but this comparison is by no means385

an easy task.

Furthermore, the assumption of elastic half-space is valid only if the size 2b of

the contact region is much smaller than the curvature radius R [26], hypothesis

not strictly fulfilled in the real contact geometry of the examined joint.

Moreover, the blade deformation and the lobe flexibility induce rotation of390

the contact surfaces. This rotation generates an asymmetric pressure distribu-

tion, whereas the theoretical model assumes that the loads and the pressure

distribution are symmetric. Since the contact problem is nonlinear asymmet-

ric pressure distributions result in different stiffness even for the same normal
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load. An analytical model comprehensive of the moment and asymmetry of395

the contact patch was put forward in [55]. This model delivers the pressure

and tangential distribution, but the displacement field from which the contact

stiffness is derived is not ready yet. Furthermore, it is not easy to evaluate

the moment at the root when the blade is oscillating also considering that this

moment varies during a cycle.400

Fax kn σnn/kn kt σtt/kt

kN kN/µm % kN/µm %

12 1.59 15 2.15 12

14 1.68 17 2.38 15

16 1.82 21 2.57 18

18 2.01 26 2.76 22

20 2.15 27 2.99 25

22 2.34 31 3.04 26

Table 1: normal and tangential contact stiffness with their estimated errors for different axial

loads.
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Figure 13: Comparison between the optimal contact stiffness resulting from the identification

procedure and the theoretical values obtained with the semi-analytical model.
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7. Conclusions

This paper has presented a novel procedure to experimentally investigate

normal and tangential contact stiffness in dovetail attachments. Experimental

data were collected on a mock-blade with a dovetail at both ends. With this

symmetric configuration it is possible to apply the load simulating the centrifu-405

gal force without adding undesirable damping or stiffness. In our experiment,

a shaker excited the mock-blade whose free decay was measured with a laser

Doppler velocimeter. The Detached Drive Rod Method was developed to ensure

that the free decay was not affected by any coupling with the excitation system.

The measured response was transformed into an analytic signal and processed410

to determine the instantaneous modal parameters, namely natural frequency

and loss factor. Results substantiate the dependency of the modal parameters

on the vibration amplitude, a behavior typical of nonlinear systems. Results

also show that the loss factor reaches a maximum at an optimal amplitude, as

predicted by theoretical models.415

In order to determine the normal and tangential contact stiffness, part of

the interval of the free decay was utilized. This part of the interval was chosen

because the system behaves linearly and the natural frequencies are constant.

An FE model of the mock-blade and its supports was built within a commercial

software. The stiffness and mass matrices of this model were reduced using the420

component mode synthesis method and imported in an in-house code. This

code identifies the contact stiffness by comparing the natural frequencies of the

first and second bending modes computed by the numerical model with the

corresponding measured frequencies. The presence of two parameters, namely

normal and tangential stiffness, generates a multi-objective optimization prob-425

lem. The contact stiffness pair with minimum uncertainty was chosen among

the feasible solutions and named “optimal stiffness pair”. This optimal stiff-

ness pair was also compared with the theoretical stiffness pair calculated with

a semi-analytical solution. It was found that the optimal pair also minimizes

the distance between optimal and theoretical stiffness. The difference between430
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the optimal and theoretical results was very high, reaching 82% and 164% in

the worst case for kt and kn respectively. The trend of the contact stiffness at

varying axial loads was also very different. The optimal stiffness showed a slope

of about 73 and 95 mm-1 for kt and kn respectively, whereas the theoretical

values remained almost constant.435

This disagreement can be explained considering the meaning of the term

”contact stiffness”. In the numerical model, contact stiffness represents the

connection between two bodies through the interface. The flexibility of the

bulk, represented by the lobes on the root and the slot, is considered in the fi-

nite element model. Instead, the theoretical model calculates the displacements440

and then the stiffness, considering the elastic half-space. When the theoreti-

cal stiffnesses are assembled in the FE model it is as if the bulk flexibility is

considered twice.

Moreover, when contact surfaces are loaded they deform because of the flex-

ibility of the lobes. The pressure distribution becomes asymmetric, whereas the445

theoretical model assumes that the loads and the pressure distribution are sym-

metric. Since the contact problem is nonlinear, different pressure distributions

result in different stiffness even if the total loads are the same. Currently, no

theoretical models are available which consider the moment at the interface and

asymmetric pressure distribution.450

From the previous observations, it is clear that measured and theoretical

contact stiffnesses are not interchangeable. This work shows that computing

contact stiffnesses with a theoretical model, such as the one presented in the

paper, and substituting them in a finite element model underestimates the stiff-

ness of the whole system. Designers should be aware that in this case the modal455

analysis and the forced response will be inaccurate.

Appendix A. Contact stiffness accuracy

Uncertainties on contact stiffness were estimated through the procedure

shown in [56]. The numerical frequencies as a function of the contact stiffness
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can be approximated by a first order Taylor expansion

f(kn, kt) =

 fFEn,1B(kn, kt)

fFEn,2B(kn, kt)

 ' f0 + J (k− k0) (A.1)

with

k =

 kn

kt

 (A.2)

and

J =

 ∂fn,1B

∂kn

∂fn,1B

∂kt
∂fn,2B

∂kn

∂fn,2B

∂kt

 (A.3)

Vector k0 contains a pair of trail solutions and f0 its corresponding frequencies.

The uncertainties δfn,1B and δfn,2B on the frequencies for the first and second

bending mode were obtained from the the uncertainty on the measured axial

load Fax due to pressure gauge accuracy (δp/p = δFax/Fax = 1%).

δfn =
∂fn
∂Fax

δFax (A.4)

Fax δfmn,1B δfmn,2B

kN Hz Hz

12 0.23 0.40

14 0.25 0.45

16 0.29 0.50

18 0.33 0.55

20 0.33 0.54

22 0.35 0.55

Table A.2: measured natural frequencies uncertainties due to uncertainties on measured axial

load Fax

Sensitivity of the natural frequency fn on axial load Fax was estimated

by using the FE model with the identified contact stiffnesses kn and kt. The
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frequency covariance matrix is

σ2 := 〈δfδfT 〉 =

 σ2
1B 0

0 σ2
2B

 =

 δf2
n,1B 0

0 δf2
n,2B

 (A.5)

with 〈·〉 the expected value. In Eq. A.5 the standard deviations σ1B and σ2B are

approximated with the uncertainties δfn,1B and δfn,2B . Thus, the covariance

matrix of contact stiffness at k0 is

σ2
k =

 σ2
nn σ2

nt

σ2
tn σ2

tt

 = 〈δkδkT 〉 = J−1〈δfδfT 〉(J−1)T = J−1σ2(J−1)T (A.6)

with δf = Jδk. The solution (named as optimal stiffness pair) was selected

as the stiffness pair - on the minima locus - with the minimum 2norm of the

stiffness covariance matrix. Standard deviations of kn and kt were computed

from the covariance matrix

kopt =

 koptn

koptt

 : min||σ2
k||2 ⇒

kn = koptn ± σnn

kt = koptt ± σtt
(A.7)
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