
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Completing and Predicting Internet Traffic Matrices Using Adversarial Autoencoders and Hidden Markov Models / Sacco,
Alessio; Esposito, Flavio; Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 20:3(2023), pp. 2244-2258. [10.1109/TNSM.2023.3270166]

Original

Completing and Predicting Internet Traffic Matrices Using Adversarial Autoencoders and Hidden Markov
Models

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2023.3270166

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978359 since: 2023-10-11T08:27:43Z

IEEE

1

Completing and Predicting Internet Traffic Matrices
Using Adversarial Autoencoders and Hidden

Markov Models
Alessio Sacco, Member, IEEE, Flavio Esposito, Member, IEEE, and Guido Marchetto, Senior Member, IEEE

Abstract—Internet traffic matrices are used nowadays for a
variety of network management operations, from planning to
repairing. Despite years of research on the topic, obtaining a
global view of traffic is still challenging and error-prone. Due to
flaws in the measurement systems and possible failure in data
collection tools, missing values are unavoidable. It is thus helpful
for many network operators to recover the missing data from
the partial direct measurements. While some existing matrix
completion methods allowed this reconstruction, they do not
fully consider network traffic behavior and hidden traffic char-
acteristics, showing the inability to adapt to multiple scenarios.
Others instead make assumptions about the matrix structure
that may be invalid or impractical, curtailing the applicability.
In this paper, we propose Hide & Seek, a novel matrix completion
and prediction algorithm based on a combination of generative
autoencoders and Hidden Markov Models. After an extensive
experimental evaluation based on both real-world datasets and
on a testbed, we demonstrated how our algorithm can accurately
reconstruct missing values while also predicting their short-term
evolution.

Index Terms—traffic matrix, machine learning, inference

I. INTRODUCTION

A Traffic Matrix (TM), representing the volume of network
flows between all possible origin-destination (OD) pairs in
the network over a given time interval, is a critical input
for many distributed system management tasks, including
capacity planning, anomaly detection, and even business in-
telligence. For example, they can help with provider selection
in routing [1]–[3], network resources provisioning for highly-
demanding applications [4], network debugging [5], or even
with network anomaly detection and network security [6], [7].

Despite their importance, obtaining a complete TM at
any given time is a challenge. TM incompleteness may be
caused by measurement impracticality [1], (voluntary) data
amputations [8], or both. For example, mirroring an interface
with a fine-grain resolution can significantly impact the perfor-
mance of network elements, and the distributed nature of the
network infrastructure often hinders visibility. Despite several
years of research on this topic, operators still rely mostly on
low-resolution measurements such as SNMP messages, and
even excellent measurement systems suffer from errors and

This work has been partially supported by Comcast and by NSF awards
1647084, 1836906, and 2201536.

Alessio Sacco and Guido Marchetto are with DAUIN, Politec-
nico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

missing data [8], [9]. For this reason, TM is often required
to be complete or reconstructed before it can be used in any
application, or as an input of new Machine Learning (ML)
model utilized in network management operations, e.g., [10].

The TM estimation problem finds a foundation in statisti-
cal signal processing [11], where the community identified
sufficient conditions and algorithms to estimate the miss-
ing elements of a partially-observed matrix. The majority
of existing techniques to estimate a TM’s element given a
limited set of measurements rely on network inference and
network tomography methods, e.g., [12], [13]. In addition to
those methods, many other network inference problems are
formulated as an Under-Determined Linear Inverse (UDLI)
problem, but those solutions only work when the number
of measurements is sufficient to uniquely and accurately
determine the solution [14].

Other authors have studied how, in some cases, a TM can
be efficiently completed when at most some specific portions
are missing [15]–[17]. Such general approaches are based
on the assumption that traffic matrix elements show strong
statistical regularities and there are predictable relationships
between elements. In such a way, the missing elements can
often be cast in terms of linear functions of observable
elements, leveraging the presence of a low effective rank
that enables splitting the TM into smaller submatrices. Once
these conditions are verified, a statistical inference method is
applied, often based on signal processing, to infer the missing
elements of the TM. While these solutions are sound, they
only work on matrices that have low effective rank, see, e.g.,
[2]. Moreover, although the literature has already addressed
the problem from both spatial and temporal perspectives,
giving birth to Machine Learning (ML)-based methods as
in [18]–[20], a more general approach that can account
simultaneously for both space and time is still missing, i.e.,
a method that can both solve the matrix completion problem
and predict future values of such matrix elements.

To this aim, we propose Hide & Seek, a novel solution
that can complete the TM starting from hidden information
while also predicting the future values of these missing entries.
Our solution is based on an augmented Hidden Markov
Model (HMM), where the traditionally employed Viterbi al-
gorithm [21] is replaced with a more performant algorithm
based on Adversarial AutoEncoder (AAE) [22]. In particular,
the AAE-based encoding method is applied to complete the
matrix, while the more general HMM keeps track of the
evolution of the traffic data over time to predict the next value.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

2

The key to our matrix completion/prediction approach is
the ability to observe a sufficiently useful subset of the matrix
entries, which we denote as hidden information. We find this
piece of information both using the ability of AAE and with
the application of some eXplainable AI (XAI) techniques to
determine the more important features. The main advantage
of our method is that we do not rely on any statistical
assumptions about the rank of the traffic matrix. Conversely, in
our model, we convert the estimation problem into a process
aiming to learn the hidden relationship between the partial
traffic data, viewed as hidden information, and the missing
traffic value.

In particular, extending [23], our contribution in this paper is
two-folds. (i) We first propose a traffic matrix completion and
prediction algorithm built atop the traditional HMM. Given the
limited set of requirements and its learning-based nature, the
algorithm is applicable in a variety of contexts, within traffic
inference or outside network management. (ii) Then, we study
how to improve the reliability of a network analyzer tool in
terms of what information any solution using network data for
decisions should tolerate the absence. In particular, by using
XAI, we attempt to answer the question what is the piece of
information more crucial in matrix completion and what are
the data redundant, whose absence is tolerated?

We extensively evaluate our solution on (i) real-world
Internet traces, namely collections from the Abilene, GEANT,
and Mawi networks, and (ii) in an emulated SDN-based
testbed scenario over Mininet. We demonstrate how effective
our AAE-based model is in finding the hidden relationship
between the missing value and the observed traffic entries that
are adjacent in the TM. Besides, the results also confirm that
HMM can properly predict the evolution of these unknown
entries.

The rest of the paper is structured as follows. We discuss
in Section II the existing literature about TM completion
problem. Section III describes our model used and presents
the specific problems addressed by Hide & Seek (H&S in
short). We then present in Section IV the methods used in
the solution, highlighting how we combined AAE with HMM
in our algorithm. We present results in Section V, and finally,
we conclude our paper in Section VI.

II. RELATED WORK

Given the variety of fields where it finds applicability and
the importance in networking, the problem of traffic matrix
estimation has been well-studied and addressed from different
angles [24]. Common methods for matrix completion are
based on the incorporation of side information from different
sources, such as total incoming bytes and number of
customers [12]. For example, in [13] the proposed solution
takes advantage of using multiple readily available data
sources. In particular, the combination of flow measurement
and link load measurement is used to effectively identify and
remove dirty data, and this approach can reduce errors in
traffic matrix estimation. Similarly, side information can be
used for an active version of matrix completion, where queries
can be made to the true underlying matrix, as it has been

proposed in [2]. By unifying a matrix-completion approach
and a querying strategy into a single algorithm, their solution
is able to identify and alleviate insufficient information by
judiciously querying a small number of additional entries.

Another widely common approach is the low-rank matrix
completion, spanning a wide range of techniques, from norm
minimization [11], to singular value thresholding [25], to alter-
nating minimization [16], to mention a few. These approaches
share the assumption that the whole matrix has low rank,
posing an optimization to fit the entire matrix with a single
rank-r model.

At the same time, some studies have acknowledged some
spatial and temporal properties in the TM. Based on the
spatial traffic feature, in [26] TM is modeled as multi-Gaussian
models and then used to estimate the missing data. Using
the traffic spatial affinity feature, the TM is partitioned into
many clusters by spectral clustering, and then the subparts of
TM with similar behavior are identified to finish the matrix
completion process. To recover the missing entries in traffic
data, also spatio-temporal tensor completion methods have
been studied in the literature [8], [9], [27]. For example, [27]
introduces a tensor (a multidimensional array) to model a time
series of pure spatial traffic matrices. To extract this latent
structure of traffic using tensor factorization, the model takes
into account the lower-dimensional latent structure of network
traffic and hidden traffic characteristics.

Different from these solutions, we propose a learning-based
approach that combines statistical with ML features and takes
advantage of the concept of spatial affinity inside a smaller
submatrix, after having opportunely studied the decisions
taken with XAI. Recently, the application of ML-based
algorithms to restore missing information has appeared as a
viable approach. For example, in [28] a neural network solves
a regression problem to impute missing data that are sent
from IoT gateways to the cloud. In [29], a novel solution has
been presented to estimate traffic measurements and select the
most rewarding flows. Considering an SDN scenario and the
specific problem of partitioning Ternary Content Addressable
Memory (TCAM) entries of switches, this solution exploits
Compressed Sensing (CS) inference methods. A Multi-Armed
Bandit (MAB) based algorithm, then, can adaptively measure
the most rewarding flows. More recent deep learning-based
algorithms, e.g., RNN, LSTM, ConvLSTM, have been
presented in [18]–[20], respectively, to solve the traffic matrix
estimation process. While the design of these solutions is
sound, our H&S does not require any additional information,
e.g., link load, and is independent of specific matrix
assumptions, e.g., the assumption of a low-rank matrix.

III. PROBLEM DEFINITION

A traffic matrix, i.e., a matrix reporting the traffic volumes
between origin and destination in a network, has a potential
utility for network capacity planning and management oper-
ations [30], [31]. In large operational IP networks, however,
traffic matrices are often hard to measure directly, and it is
thus required to complete the matrix in the unknown cells.

In this paper, we analyze the problem of Traffic Matrix
(TM) estimation from two different perspectives: completing

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

3

?

?

?

t

t-1

t-2

Traffic
Matrices

Available
measurements

Data
pre-processing

Completion

Prediction

t+1

t

Fig. 1: System overview: we first identify the missing traffic
matrix elements, then we extract the information required by
our prediction model and finally, we restore the traffic matrix
values and predict future traffic demands.

the matrix and predicting future values. Although they differ
in model resolution, both problems, TM completion and
prediction, start with a partially-observed traffic matrix. Since
these two tasks share the same system model, we first describe
the details of our model and then we formally define the two
problems addressed by Hide & Seek.

A. System Model

In our model, we consider a network with n nodes, and we
denote with Ω the non-empty set of all sources and destinations
in a network, where |Ω| = n. Hence, the resulting Traffic
Matrix (TM) at time t is an n×n square matrix, whose element
represents the number of bytes sent from node i to node j
during the considered measurement interval.

We then consider the evolution of the sampling time, turning
the TM into a 3-dimensional array, Q ∈ IRn×n×m, where n
is the cardinality of the nodes, and there are m time intervals.
Its entry Q(i, j, t) denotes the traffic bytes at time t, i.e., in
the measurement interval [t − 1, t), of the origin-destination
pair i − j where i = 1, . . . n, j = 1, 2 . . . n, t = 1, 2 . . .m.
Therefore, the entries Q(i, j, :) represent the variation in the
number of traffic bytes along with the time for the Origin
and Destination (OD) pair (i, j). We model the TM entries as
continuous values, as we consider this assumption appropriate
for most traffic volumes [15].

In addition, we use a binary matrix Z ∈ IRn×n×m to
indicate whether entries of the TM Q are missing, defined
as follows:

Z(i, j, t) =

{
0 if Q(i, j, t) is missing,
1 otherwise

(1)

Consequently, the observed measurement matrix R ∈
IRn×n×m, which denotes the set of information that is avail-
able, is obtained as:

R = Z ·Q, (2)

where · represents the scalar product of two matrices, i.e.,
R(i, j, t) = Z(i, j, t) ·Q(i, j, t).

B. Solving the Matrix Completion and Inference Problems

Based on the foundations of the aforementioned traffic
model, we define two different yet related problems, namely

completion and prediction, where the latter is also referred to
as inference. The completion problem for traffic matrices is
defined as follows. Let Qt be the actual TM at time t, Rt

the observed TM, and D the set with all the entry points of
Rt whose measurement is missing. In matrix completion, a
mapping function F1 must be found to constitute Qt given
as input Rt and the set D. Conversely to other similar
studies [12], [27], in this paper, we do not limit this mapping
function to be linear, but we instead consider a model based
on neural networks, as described in Section IV-C.

Then, we define the TM prediction or inference problem as
follows. Given Rt as the observed TM at time t and D as
the set with all the entry points of Rt whose measurement is
missing, in matrix inference, a mapping function F2 must be
found to reconstruct the actual TM at time t+ 1, Qt+1, given
as input Rt and D.

In Fig. 1 we visualize the main steps of our solution along
with the defined notation. After pre-processing the information
from the collected TM, we solve the two problems. Although
the matrix prediction can potentially regard the entire TM,
in this paper we limit our attention to matrix entries whose
historical information is only partially available. Although a
large amount of literature has already addressed the problem of
predicting Internet traffic with excellent results [3], [32]–[34],
these solutions make predictions without considering missing
data. Therefore, we present a solution that is orthogonal to
these traffic prediction methods and that can be used in
conjunction with them to optimize network planning and
management.

From traffic theory, we know that some spatial and temporal
properties in the traffic matrices exist [8], [9], [27], and
therefore our model should guess missing values by leveraging
these similarities. More specifically, spatial properties of the
TMs refer to the statistical properties between the TM entries
at a fixed t, i.e., a snapshot Q(:, :, t), while temporal properties
refer to the statistical properties when varying with t, either
with fixed spatial indices, i.e., the process Q(i, j, :), or some
summary such as the total traffic S(t) =

∑
i,j Q(i, j, t) at

each time point t. We empirically evaluate how the spatial
correlation of TM cells (not necessarily geographical correla-
tion) can be exploited to reconstruct missing information (Sec-
tion V-G). In Hide & Seek, we rely on these assumptions to
estimate the missing entries of TMs, and we employ a general
Hidden Markov Model to understand traffic models and traffic
characteristics. Such a model is then opportunely empowered
with adversarial autoencoders to improve the resolution of both
completion and inference problems, as detailed in the next
section.

IV. PREDICTIVE MODEL DESIGN

This section describes the model used to estimate the miss-
ing values within a traffic matrix. Our estimator consists of
an HMM model that dictates the evolution over time of traffic
values and an autoencoder used to improve the performance
of the HMM. We show that performance of traditional HMM
can improve by making use of adversarial autoencoder as
an alternative method for the decoding problem. We start by

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

4

describing the Hidden Markov Model (HMM) framework and
its parameters, with particular focus on the decoding problem.
Then, we overview how the autoencoder is applied in the
general HMM model; we conclude detailing how we employ
the obtained model throughout the estimation process.

A. Hidden Markov Model Framework

Given their ability to capture important traffic statistical
characteristics with only a relatively small number of states,
Hidden Markov Models have received much attention for
traffic models [35], [36]. These studies have examined the
effectiveness of HMM in modeling the packet flow generated
by an individual application or the aggregate traffic on a single
channel. Alongside, [37], [38] suggest that an HMM model
may be effective in capturing the dynamic behavior of losses
and delays on end-to-end communication channels. In the
wake of this analysis, we model the traffic data exchanged
by a pair of nodes by means of the HMM.

Hidden Markov Models are widely used time invariant state-
space models defined as follows:

p(X,Y) = π(x0)

T∏
i=0

p(yi |xi)
T−1∏
i=0

p(xi+1 |xi), (3)

where xi is the hidden variable and yi is the observed vari-
able, p(xi+1 | xi) is the transition probability describing the
dynamic behavior of the system, and p(yi | xi) represents the
emission probability describing how the system generates the
observation based on the hidden variable. To start the process,
the model needs an initial state distribution, i.e., π(x0).

The main assumption in HMM is that the state evolves as
a Markov process, in which the probability distribution of the
current state depends only on the state of the previous epoch.
In other words, p(xi |xi−1, ..., x1) = p(xi |xi−1). It has been
shown that this first-order Markov process is sufficient for
modeling the temporal properties of networks [38], [39].

The state evolution over time is commonly described using a
transition probability matrix (PM), containing all the transition
probabilities p(xi+1 |xi),∀xi ∈ χ. It should be noted that,
despite the similarity, the PM matrix is completely different
from the traffic matrix (TM) that we consider in our model,
as the TM gives the number of bytes transmitted between a
source and a destination, while the PM contains the transition
probabilities between the states of the Hidden Markov Model.
A typical way to represent HMM is as λ = (A,B, π), where
A denotes the transition probability matrix, B refers to the
emission probability matrix, and π is the vector of initial states
probabilities.

PM, π(x0), and p(yi |xi = j) are generally unknown, so
we need to estimate them either using some parametric or
data-driven approaches. In fact, HMMs are characterized by
three basic problems: training, likelihood, and decoding. The
first problem, training, common to other ML algorithms, is
formally defined as: Given the observation sequence in time
Y , finding the model λ = (A,B, π) that maximizes the
probability of Y . The training problem is crucial for any HMM
applications, to find model parameters adapting to the training
observation sequence. The standard solution for this problem

is the Baum-Welch algorithm (forward-backward algorithm),
which is an instance of a general family of expectation-
maximization (EM) algorithms [40]. In such an algorithm,
there are two main steps: the E-step, which computes the
probabilities of being at state s at time t; and the M-step,
which fixes the model parameters maximizing the likelihood
of posteriors found in the E-step.

The second problem, the likelihood, can be described as
follows: Given the observation sequence over time Y and the
HMM model λ, determine the likelihood P (Y |λ), i.e., the
probability that the observed sequence was produced by the
model λ. This problem can be solved via the recursive forward
algorithm, responsible for computing the joint probability of
observing the sequence up to time t and the Markov process
being in state st. These probabilities are then used to obtain
the likelihood values P (Y |λ).

Similarly, the decoding phase attempts to find the most
likely hidden state sequence X given the observation sequence
over time Y and the HMM model λ. This problem is usually
solved by means of the Viterbi [21] algorithm for hidden
state estimation, which uses a dynamic programming approach
in order to maximize the likelihood of the whole generating
state sequence. In a first step, it gets the most likely state
st at time t through a γt parameter. In a second step, the
γ parameter can be calculated using the forward-backward
method. Namely, the problem of finding the most likely state
sequence can be summarized as follows: given a sequence of
observed values (ỹ0, ỹ1, ..., ỹn), we would like to infer the
corresponding hidden variable x̃t, i.e.,

x̃t ∼ p(xt | ỹt, ..., ỹ0). (4)

In H&S we design to replace the traditional Viterbi algo-
rithm with an AAE, described in the following. Given its
ability to encode and decode information between different
spaces, we observe how this learner can be helpful and
effective in empowering HMM (as demonstrated by results in
Section V). Combining a recent data-driven algorithm (AAE)
with the statistical approach imposed by HMM leads to an
optimized decoding procedure.

B. Learning with Adversarial Autoencoder

Adversarial AutoEncoder (AAE) has been firstly presented
in [22] as a model that can turn an autoencoder into a
generative model. Following the more general approach of
generative adversarial networks (GAN), AAE can perform
variational inference by matching the aggregated posterior of
the hidden code vector of the autoencoder with an arbitrary
prior distribution.

In recent years GAN has been at the basis of a variety of
alterations, giving rise to a large number of GAN-based mod-
els, such as CycleGAN [41], BiGAN [42], Super-Resolution
GAN [43], to cite a few. These variants are generally applied
to bits of an image, but any model consists of at least two
neural networks: a generator and a discriminator. The former
network receives as input a vector of randomly generated noise
and produces as output an “imitated” image that looks similar,
if not identical, to the authentic image. The latter network

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

5

attempts to determine whether a given image is “authentic”
or “fake”. Similarly, in AAE, an autoencoder is trained with
two objectives—a reconstruction error criterion (typical of
autoencoders) and an adversarial training criterion (typical of
GAN). AAE differs from the traditional autoencoder, i.e., the
Variational autoencoder (VAE), in that it has a discriminator
and a latent space as well as a different training procedure.

GAN-based models are often used to capture rich distri-
butions such as audio, images, or video, and to generate a
synthetic version. Following the recent and mostly unexplored
trend of applying these models in different domains [44],
[45], we consider this class of problems for Markovian en-
vironments. Specifically, as suggested in [45], we use the
autoencoder to map some of the available entries of the TM
(observed state of HMM) to the missing values (hidden state
of HMM).

After a necessary training phase, the encoder of AAE learns
to convert input data to an intermediate representation (latent
space), while the decoder learns a deep generative model that
maps this representation to a posterior data distribution (final
output). The adversarial network (generator + discriminator)
guides this matching. The generator is also an encoder that
draws samples aiming to create an aggregated posterior distri-
bution that can fool the discriminator network into believing
that the latent space comes from the true prior distribution.
The autoencoder (encoder + decoder), meanwhile, attempts
to minimize the reconstruction error so that once the training
procedure is done, the autoencoder is able to map the imposed
input to the desired data distribution. The input data of our
scenario represents the traffic data with partial information,
R, while the output data is the complete traffic matrix with
reconstructed values, Q.

C. H&S Procedure
Referring to the previous notations of HMM (Section IV-A),

we can now define variables’ meaning in our system and
map them to the HMM notations. For each missing value at
time t we define the current evidence yt as a square matrix
with dimension k×k. Such submatrix represents the elements
surrounding the missing value, located at (i, j), which we
are interested in estimating. The hidden state value xt is
instead the missing entry of TM at position (i, j). While
modeling a single hidden value is a standard procedure in
HMM-based algorithms [21], there is a tradeoff in choosing
the best matrix size k. Such submatrix dimension k affects the
cardinality of the observed states yt and is a crucial parameter
that must be specified when designing the model. On the
one hand, a smaller size implies a simpler model but may
yield an inadequate representation of the space of possible
behaviors, accounting for insufficient spatial similarities. On
the other hand, a large k leads to a more complex model
with more parameters but may, in turn, lead to overfitting. In
our validation, we used a 7 × 7 submatrix, which was the
result of a cross-validation study and was highlighted by the
saliency maps that showed the importance of neighboring cells
(Section V-G).
Pre-processing. As a best practice, before using the traffic
quantities in our model, or any ML model, they must be

prepared. Data preparation includes the use of normalization or
other standardization techniques to re-scale input and output
variables before training the ML model. Differences in the
scales of the input variables may increase the difficulty of
the problem being modeled [46]. For this reason, we apply a
standard normalization approach to scale the input values in
a range [1 − 10], making the model more general and trans-
ferable to different scenarios. Although input is traditionally
normalized over the interval [0− 1], we experienced how this
smaller interval can not capture the traffic diversity, leading to
a higher reconstruction error. Since our problem belongs to the
family of regression, a small range can simplify the training
but may lead to considerable differences when de-normalizing
the output values. This effect was particularly manifested when
data distributions were less uniform and the spectrum of values
was broad. Along with the normalization of input, we perform
an edge padding operation. As explained in previous sections,
to estimate the missing values, our solution is based on the
adjacent normal data to obtain the close submatrix. However,
specific locations, i.e., the edges of the TM, could have an
insufficient number of available adjacent data. To solve this
problem, the most direct and effective method is to arrange
some additional data on the edges. In particular, we apply the
notion of circularity so that the left edge and the right edge of
the matrix appear “adjacent”, as well as for the top and down
rows. Thus, we use data of the matrix itself as padding data.
Lastly, to inform the model of missing values, we apply the
concept of masking. Masking consists of marking the locations
of the input space to be ignored with an identifiable value, for
example −1. The AAE model, then, always expects the same
number of inputs (k×k) but can distinguish between measured
and missing values. This procedure can be easily generalized
when there exist multiple missing values to estimate, so we
mark all those values that the neural network must neglect for
the learning process.
HMM parameters. Although we set the number of hidden
states to 1, we must define how to model the evolution of
this value, reflected by the transition probability matrix (PM).
This design is made more difficult since we are dealing
with continuous values for the bytes of traffic, and we are
also interested in predicting future values when an entry is
missing. For this reason, we decide to use an approach where
the computation of the future value xt+1 is equivalent to
estimating the difference with respect to the last hidden state
xt. Since we have normalized values, this difference resides
within the interval [−9.9, 9.9]. Besides, since the PM must
be limited, we only consider 100 possible values inside this
interval so that the prediction is accurate, but the problem
is treatable. A higher number would increase the dimensions
of the PM, making the model intractable. In other words,
we compute the probability over a discrete set of possible
evolutions rather than predicting the future traffic directly. We
referred to this set as E, and the value at time t is et. Hence,
the PM reports the probabilities that the next hidden state is
obtained by adding et to the current state, where considered
traffic values have been opportunely normalized.
Matrix completion. In view of the foregoing, the traffic matrix
completion task in H&S is equivalent to the decoding problem

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

6

of HMM, where the objective is to find the value of a missing
entry (hidden state), given as input the adjacent submatrix
(observed matrix). Using the above notation, the problem is
as follows: Given the observation yt at time t, the traffic
matrix is completed by finding the hidden xt with the highest
probability. By using AAE to learn this mapping function,
H&S is also able to deal with non-linear relationships, which
allows generalization of our model over a broader range of
traffic conditions.
Future traffic prediction. Along with the matrix completion
problem at time t, it may be necessary to predict the future
state at time t+1. This case is equivalent to the HMM task of
computing posterior distribution over the future states given
the current TM and the past evolution. The predicted next
hidden state is derived as the one with the highest probability,
according to:

et = arg max
et

p(et | ỹt, ..., ỹ0),

x̃t+1 = x̃t + et.
(5)

Since in our HMM model we consider the evolution of the
hidden states as a difference from the previous step, we must
first determine this difference, et, and then add this value
to the traffic value at time t, i.e., xt. We can summarize
the complete traffic matrix prediction procedure as follows:
Given the sequence of observations at time t, we decode them
into the hidden state using AAE and predict the next hidden
variable using maximization of posterior probabilities. Finally,
in this paper, we are interested in one-step ahead prediction,
since predicting for more steps ahead degrades the accuracy,
especially for HMMs, as suggested by other studies [47], [48].

V. EVALUATION RESULTS

In this section we quantify the benefits brought by our
Hide & Seek algorithm in the resolution of the traffic matrix
completion and prediction problem. Thus, separately for these
tasks, we present the results of experiments performed to
assess the effectiveness of the proposed approach.

A. Experimental Settings

Implementation. We implemented our AAE agent as an
application importing the Keras library [49], while the HMM
model is built upon the hmmlearn library [50]. We will
release our source code with an open-source license upon
manuscript acceptance.
Internet traffic traces. In our trace-driven evaluation we
used three publicly available datasets. The first was the
GEANT [51] dataset, consisting of 11460 traffic matrices built
using full routing information of 23 routers, sampled Netflow
data, and routing information of the European GEANT net-
work, with a sampling interval of 15 minutes and duration
of one week. The second set of traces was imported from
the Abilene traffic matrix dataset [52], a backbone network
consisting of 11 nodes of major cities in the USA. In this
case, we used one week of traffic collected with a granularity
of 10 minutes for a total of 48386 TMs. The third was
captured within the WIDE backbone network that connects

Japanese universities and research institutes to the Internet,
whose collection was made publicly available by the MAWI
group [53]. This archive is an ongoing collection of Internet
traffic traces, but we considered ten consecutive traces dated
2020, spanning over two hours and thirty minutes from
samplepoint-F. The result is a collection of 9010 24 × 24
matrices obtained by aggregating by IP address prefix, with
a granularity of 1 second, and by filtering smaller flows to
keep the matrices’ size at a reasonable level. While GEANT
and Abilene constitute two of the most used datasets in this
field, our MAWI dataset is a more recent collection that, being
sparse and highly varying, exposes different patterns of traffic
to learn during the estimation process.
Benchmark algorithms. To demonstrate the effectiveness of
our proposed H&S for matrix completion, we compare its per-
formance with the following algorithms, opportunely adapted
to our context. First, CCAE, an algorithm that transforms the
recovery problem to images inpainting [54], a computer vision
technique used to reconstruct missing segments in images.
In [55], the inpainting method reconstructs the missing values
using cascaded convolutional autoencoders, where matrices are
regarded as “generalized” images. In the paper, it has been
shown that inpainting enhances the robustness even in extreme
conditions, i.e., several missing values. We adapt it to our
network traffic matrix context.

The second benchmark algorithm is the Spatio-Temporal
Tensor Completion method, or STTC [27]. This method models
network traffic as a tensor pattern, projecting tensors into a
lower-dimensional latent space via tensor factorization, while
preserving the multi-way nature of the network traffic data.
The method, then, exploits the multidimensional structure
correlation properties of tensors to estimate the missing entries.
Tensor-based interpolation methods have been shown to cap-
ture more global information than matrix-based methods due
to the intrinsic multidimensional characteristics of the tensor
model [56], [57].

Third, we compare H&S with LMaFit, the Low-rank Matrix
Fitting (LMaFit) algorithm [16]. This predictor solves a low-
rank factorization model for matrix completion by applying a
successive nonlinear over-relaxation. It is one of the most com-
monly used methods since it can be applied in a wide range
of matrix completion or low-rank approximation problems.
Forth, we test H&S against the classical k nearest neighbors
or kNN, where we assume that the missing values of the TM
are predicted by local interpolation of the targets associated to
the nearest k neighbors [58]. Based on the similarity between
rows and columns, we use a weighted average with k = 7.
Fifth, we compare against ConvLTSM, a recent solution that
integrates a Convolutional Neural Network (CNN) model and
a Long Short-Term Memory (LSTM) network for spatiotem-
poral modeling and estimating the future network traffic [19].
This solution exploits a backward network to process the input
and correct the (usually inaccurate) previously predicted data
before feeding it into the predictive model.

Alongside, we consider the efficacy in traffic values fore-
casting and, to this end, we compare our estimator against
two other well-known regressor algorithms. (i) ARIMA, a time-
series approach that can model the evolution of data over time.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

7

TABLE I: Time required for the different solutions to be trained, complete, and predict the matrix over the three datasets.

GEANT Abilene MAWI

Training [s] Compl. [ms] Pred. [ms] Training [s] Compl. [ms] Pred. [ms] Training [s] Compl. [ms] Pred.[ms]

H&S 4857.32 1.3671e-01 2.7334e02 6669.86 7.5961e-02 1.1691e02 1673.19 4.4790e-01 1.5564e02
CCAE 9513.83 2.8152e-01 — 8545.44 1.1139 — 12150.23 7.4157 —
kNN 0.0030 1.2067e-01 — 0.0034 2.7166e-01 — 0.0045 2.7014e-01 —

STTC — 2.4552e02 4.2130e02 — 3.1745e02 6.7511e02 — 2.0548e02 4.5784e02
LMaFit — 2.9710e-01 — — 5.7675e-01 — — 7.3232 —
ARIMA 3925.16 — 6.6097e01 6228.44 — 6.2012e01 2297.80 — 4.3232e01

ConvLSTM 1522.94 — 8.9529e-01 2259.75 — 2.5503e-01 2272.37 — 1.8944
RFR 3032.49 — 5.2943e-01 7617.70 — 4.5876e-01 864.77 — 2.7903e-01

ARIMA is typically used to represent stationary time series in
almost all domains where a variable is measured at equidistant
times, such as in financial market data. (ii) RFR, Random
Forest Regression (RFR) is an additive model that predicts by
combining decisions from a sequence of base models, typically
a simple decision tree. This broad technique of using multiple
models to obtain better predictive performance is also known
as model ensembling and provides robustness to RFR.

B. Training and Prediction Time

We report in Table I the time required for all the methods
implemented to train the different traces and to complete and
predict the single TM. For LMaFit and STTC, we do not report
the training time since they are two statistical approaches
where the former only needs to set rank k, while the latter
the ρ parameter. We set both of them via cross-validation.
In kNN, the training is not to learn parameters but rather
to create the appropriate data structure to be used for the
search, i.e., completion process. CCAE and LMaFit are used
only in completion, and the prediction time is not reported
because not measurable. Similarly, the completion time is
absent for ARIMA, ConvLSTM, and RFR since these methods
are used to predict future values. First, we can observe that our
AAE-based method is faster than the other AE-based method,
CCAE. This time is also compatible with the other methods
and depends on the size of the training set and of the matrix.
Therefore, we can see how training on Abilene is generally
longer than others, given its major dimensionality.

Second, in the completion and prediction process, the time
of our solution is line with benchmarks and in the order of
milliseconds. This outcome makes H&S available to be used
in real-time systems where TM is updated frequently, and the
estimation cannot last long enough. We analyze this behavior
in detail in a prototype later in Section V-F.

C. Matrix Completion Performance on Random Loss Patterns

In this subsection, we study the performance of our traffic
matrix completion algorithm when varying the amount of
known information. To this end, we hide data points inde-
pendently at random to evaluate the completion performance.
The missing values range from 1 to 80 percent of the total
entries.

Starting with the Abilene network dataset, we compare our
solution against a similar approach also based on autoencoders,
as in the CCAE solution, and the traditional version of HMM
based on the Viterbi decoding algorithm. We quantify the

Mean Absolute Error (MAE), because this metric can deliver
the order of magnitude of error, along with 90% of confidence
intervals, and report the results in Fig. 2a. It can be observed
that our AAE-based method for completing the traffic matrix
outperforms the benchmark CCAE. The adversarial training
criterion of our AAE-based method is particularly effective in
strengthening the traditional reconstruction process and filling
the missing traffic matrix cells. In particular, our approach can
handle a significant percentage of missing entries, conversely
to CCAE. We have experienced how the performance of
CCAE largely depends on the position of the missing entries
in the matrix, and that its masking model poorly scales when
the majority of the elements is unknown. Moreover, we can
observe how traditional HMM hardly manages the missing
entries, and a few missing cells hinder the learning process.
The traditional statistical algorithm of Viterbi barely tolerates
the absence of input data, rapidly raising the MAE error
for all three datasets (Fig. 2a, Fig. 3a, Fig. 4a). On the
contrary, a data-driven approach as AAE can better learn the
correlations among input data and efficiently reconstruct the
missing data. Given this observation, in the following, we
ignore the traditional HMM procedure and focus on other
state-of-the-art algorithms.

To validate this result, we then consider all other benchmark
algorithms for matrix completion, reporting the results in
Fig. 2b. The MAE error of H&S is the lowest among all
the percentages of missing entries. The error achieved is also
marginal considering the traffic volumes present in the matri-
ces. This outcome is particularly important because it suggests
that this technique can be used in real-world deployments to
take network decisions even when the available information is
incomplete.

Besides these numerical values completion tasks, we also
analyze the accuracy when these values are then divided
into classes. In this case, we are interested in a discretized
classification that entails five value classes. More specifically,
using a bin discretizer, the continuous values are binned into
intervals by means of a quantile strategy, i.e., the bins have
a similar population. Such a classification is important as it
simplifies the problem while providing information that is still
important in network measurements [59], [60]. Fig. 2c displays
the accuracy score in such a multi-class classification problem
for a subset of approaches. While we note how our H&S
solution outperforms the benchmark, it can also be observed
how the advantages are more notable compared to the previous
graph. Nonetheless, this high accuracy is due to the limited

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

8

0 20 40 60 80
Percentage of missing entries (%)

0

10

20

30

40

50
M

A
E

(X
10
−

3)

H&S
CCAE
HMM

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

20

40

60

80

100

M
A

E
(X

10
−

3)

H&S
kNN
STTC
LMaFit

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

H&S
kNN

LMaFit
CCAE

(c)

Fig. 2: Abilene network. (a) MAE error for autoencoders methods and (b) other benchmark solutions in completing the traffic
matrix. (c) Accuracy for indicating the class of missing entries in the matrix.

0 20 40 60 80
Percentage of missing entries (%)

0

10

20

30

40

M
A

E
(X

10
3)

H&S
CCAE
HMM

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

10

20

30

40
M

A
E

(X
10

3)
H&S
kNN
STTC
LMaFit

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

H&S
kNN

LMaFit
CCAE

(c)

Fig. 3: GEANT network. (a) MAE error for autoencoders methods and (b) other benchmark solutions in completing the traffic
matrix. (c) Error in terms of accuracy (the higher the better) in completing the matrix by indicating the class.

0 20 40 60 80
Percentage of missing entries (%)

0

10

20

30

40

50

M
A

E
(X

10
5)

H&S
CCAE
HMM

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

10

20

30

40

50

M
A

E
(X

10
5)

H&S
kNN
STTC
LMaFit

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8
A

cc
ur

ac
y

H&S
kNN

LMaFit
CCAE

(c)

Fig. 4: MAWI network. (a) MAE error for autoencoders methods and (b) other benchmark solutions in completing the traffic
matrix. (c) Error in terms of accuracy (the higher the better) in completing the matrix by indicating the class.

error shown before, which causes the predicted value to fall
into the same class as the original traffic measurement.

To generalize these findings, we perform the same set of
experiments over the GEANT traffic data and compare the
ability of the two different autoencoders to complete the
traffic matrix (Fig. 3a). Although the error obtained for matrix
completion is higher compared to the Abilene use case, due
to the different order of magnitude of values themselves, our
adversarial autoencoder method is still more effective than
CCAE. Besides, H&S shows the same ability to handle a
considerable amount of missing data.

Similar considerations are valid when comparing our model
against other related benchmarks, as seen in Fig. 3b. Other
solutions, such as kNN and LMaFit, are able to provide a
limited error in either one or the other scenario, but not
consistently. In particular, when the percentage of missing

entries reaches 50%, the difference between ours and others
becomes more apparent.

Moreover, when analyzing the accuracy for predicting the
class of missing values (Fig. 3c), it is possible to observe
how H&S achieves the highest accuracy score. These results
confirm our hypothesis that a GAN -based model can learn
even when there are no guarantees of specific properties
between cells in the traffic matrix.

We then estimate the ability of H&S to complete the TM
over the MAWI traffic dataset. In MAWI traffic, we have
more sparse and highly varying values both in space and over
time. This makes the cell estimation process more difficult
because as the number of missing cells increases, so does
the likelihood that information important in the reconstruction
process will be lost. Consider for example Fig. 4a, reporting
the MAE of the two autoencoder-based models. The presence

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

9

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

600

M
A

E
(X

10
−

3)

H&S
ARIMA
RFR

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

600

M
A

E
(X

10
−

3)

H&S
ARIMA
STTC
ConvLSTM

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

H&S
ARIMA

STTC
ConvLSTM

(c)

Fig. 5: Abilene network. (a) MAE error for regressor methods and (b) other benchmark solutions achieved in predicting the
future missing values, i.e., for time t+1. (c) Accuracy score for prediction task to specify the class of missing entries of traffic
matrix.

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

600

M
A

E
(X

10
3)

H&S
ARIMA
RFR

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

600
M

A
E

(X
10

3)
H&S
ARIMA
STTC
ConvLSTM

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

H&S
ARIMA

STTC
ConvLSTM

(c)

Fig. 6: GEANT network. (a) MAE error for regressor methods and (b) other benchmark solutions for future values prediction.
(c) Accuracy in predicting future value class.

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

600

M
A

E
(X

10
5)

H&S
ARIMA
RFR

(a)

0 20 40 60 80
Percentage of missing entries (%)

0

200

400

M
A

E
(X

10
5)

H&S
ARIMA
STTC
ConvLSTM

(b)

0 20 40 60 80
Percentage of missing entries (%)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

H&S
ARIMA

STTC
ConvLSTM

(c)

Fig. 7: MAWI network. (a) MAE error for regressor methods and (b) other benchmark solutions for future values prediction.
(c) Accuracy in classifying future traffic.

of 20% of missing entries leads to an abrupt increase in the
error. However, despite these difficulties, H&S can achieve
acceptable errors, lower than alternatives, as confirmed in
Fig. 4b. If we consider the accuracy in Fig. 4c, it is clear that
this value is lower than for the Abilene and GEANT traces
due to the intrinsic absence of predictability in MAWI traffic.

D. Matrix Prediction Performance

Similar to previous experimental settings, we now consider
the capacity of Hide & Seek in predicting the future values
of missing entries. As described in Section IV, not only is
our solution able to complete the entries missing at timestamp
t, but it can also predict their future evolution in subsequent
timestamps. However, in light of the fact that the one-step
ahead prediction is one of the most common scenarios (see
Section IV), in the following, we limit our attention to this
condition.

Starting with the Abilene network traffic, in Fig. 5a we show
the MAE for H&S against the two forecasting algorithms, one
belonging to the time-series class, i.e., ARIMA, and one to the
ML regression class, i.e., RFR. While these two alternatives
can well predict when the percentage of known entries is
particularly high, they are clearly ineffective when the number
of missing entries increases. These results motivate the need
to define novel approaches in predicting traffic values given
the limited visibility of the network or the impossibility of
collecting all the metrics.

We hence consider more solutions to predicting future val-
ues. Among the previous benchmark algorithms, we consider
the approaches that are suited for this task, and results are
compared to ARIMA for a clear validation of the benefits.
In this task of predicting values, for spatio-temporal matrix
representations that consider multiple timestamps in only one
matrix as STTC, we set as unknown all the values for future
timestamps, i.e., all columns whose index is greater than t+1

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

10

0.0 0.2 0.4 0.6
Probability of missing future entries, pr

0

10

20

30

M
A

E
(X

10
3)

H&S
kNN
STTC
LMaFit

(a) Completion

0.0 0.2 0.4 0.6
Probability of missing future entries, pr

0

200

400

600

800

M
A

E
(X

10
3)

H&S
ARIMA
STTC
ConvLSTM

(b) Prediction

Fig. 8: MAE error over the GEANT dataset and structural loss
pattern for (a) the traffic matrix completion problem and (b)
the prediction problem.

when the prediction occurs at time t. Fig. 5b reports the MAE
error for our H&S, and the three alternatives. First, it can
be noted that prediction leads to higher errors compared to
the previous completion task, given the limited visibility of
the dataset for future forecasting. Second, our HMM model
can well mitigate the effect of data loss and, consequently,
minimize the error for the whole shown percentage range of
missing entries.

Moreover, we consider the accuracy when predicting the
class of future values, reporting the score in Fig. 5c. Predicting
the next class rather than the next real value limits the amount
of information, but is still a key parameter, as it indicates
whether the value is increasing or decreasing and approx-
imately to what amount. It can be noted how the benefits
brought by H&S are even more notable in this scenario w.r.t.
the completion task. This outcome stems from the ability
of HMM to appropriately model the evolution of traffic by
quantifying the increment or decrement of the traffic itself, and
from its interior design based on the concept of expectation
and probabilities.

Furthermore, we examine the performance of the prediction
task over the GEANT dataset. Starting from the comparison
with the two regressors, i.e., ARIMA and RFR, we can observe
in Fig. 6a how similar conclusions to the Abilene network
hold. Besides, even for a high percentage of data loss, around
50%, our method can provide a very limited MAE, which then
increases only when the percentage hits 80%.

Consider then the MAE for the other traffic matrix pre-
diction solutions shown in Fig. 6b. Although for 80% the
error of H&S starts rising rapidly, it must be noted that

this error is constantly modest compared to the benchmark
algorithms. We can still observe how ARIMA can well predict
the next class, but, given its forecasting nature, it is unable
to handle missing values. H&S, conversely, can consistently
provide high accuracy. Similarly, by looking at the accuracy
in predicting the next class (Fig. 6c), we can confirm the
efficacy of H&S in not only regression problems, but also
in the broader task of future value evolution.

In addition, we perform the prediction process over the
MAWI dataset and report results in Fig. 7. Starting from the
comparison with other regressors (Fig. 7a), passing from the
comparison with other matrix values predictors (Fig. 7b), and
concluding with the accuracy evaluation (Fig.7c), we have
conclusions similar to previous traces. Among the regressors,
ARIMA is more precise than RFR in this case because of
the variability of the traffic. Besides, the presence of missing
entries causes performance degradation from around 20%.
However, H&S can learn traffic patterns and mitigate the ef-
fects of such data loss. The accuracy obtained for benchmarks
(Fig.7c), decreases quickly for significant missing portions of
TM. We can thus conclude that our approach is stable in
providing excellent results among different conditions, e.g.,
in the percentage of missing entries and dataset.

E. Structural Loss Patterns
In this subsection, we carry out simulation experiments on

structural loss patterns. In practice, not all data loss is random,
and network traffic shows high structure loss due to software or
hardware reasons. We simulate one particular case of structural
loss pattern referred to as Synchronous Spatio-Temporal Loss
(SSTL). This simulates a loss event in a set of ODs that
undergoes synchronous loss because of systematic failure. To
simulate this scenario, we randomly chose a certain proportion
of OD whose statistics are lost over time with probability pr.
In particular, in our SSTL pattern, we re-create scatter holes by
assigning a loss percentage probability of 50% to cells adjacent
to a missing one, and cells are marked as lost until 25% of
the TM is reached. Then, for these cells, the loss probability
in subsequent time instants is chosen with probability pr from
0.02 to 0.68.

In Fig. 8 we quantify the error when the SSTL pattern is
applied over GEANT dataset. In particular, Fig. 8a measures
the error when completing the TM for some benchmarks. We
can first observe that the performance of LMaFit is generally
poor because the SSTL pattern does not meet the mathematical
conditions of its matrix completion approach based on a low-
rank structure. Compared to the random pattern, in this case,
the error of other methods (and H&S) is more stable for pr
up to 0.5 and then increases for higher pr. For the prediction
task, instead, we can observe a higher error (Fig. 8b). When
pr exceeds 0.4, the error rises significantly. The fact that only
some, but always the same, positions are missing makes the
learning process more difficult. The problem is exacerbated for
traditional algorithms such as ARIMA, which highly rely on
past data. In these extreme cases, however, we can observe
that H&S results the solution with the smallest error. In
conclusion, even for structural losses, Hide & Seek shows
ability to complete and predict a TM.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

11

5 10 15 20
Percentage of missing entries (%)

0

10

20

30

40

R
M

SE
(X

10
1)

H&S
kNN
STTC
LMaFit

(a) net utilization = 10 %

5 10 15 20
Percentage of missing entries (%)

0

20

40

60

80

R
M

SE
(X

10
1)

H&S
kNN
STTC
LMaFit

(b) net utilization = 30 %

5 10 15 20
Percentage of missing entries (%)

0

50

100

150

R
M

SE
(X

10
1)

H&S
kNN
STTC
LMaFit

(c) net utilization = 50 %

Fig. 9: Mininet prototype completion. RMSE for predicting the missing entry when the network is utilized at (a) 10 %, (b)
30 %, (c) 50 %.

5 10 15 20
Percentage of missing entries (%)

0

20

40

60

80

100

R
M

SE
(X

10
1)

H&S
ARIMA
STTC
ConvLSTM

(a) net utilization = 10 %

5 10 15 20
Percentage of missing entries (%)

0

100

200

300
R

M
SE

(X
10

1)
H&S
ARIMA
STTC
ConvLSTM

(b) net utilization = 30 %

5 10 15 20
Percentage of missing entries (%)

0

100

200

300

R
M

SE
(X

10
1)

H&S
ARIMA
STTC
ConvLSTM

(c) net utilization = 50 %

Fig. 10: Mininet prototype prediction. RMSE for predicting the missing entry when the network is utilized at (a) 10 %, (b)
30 %, (c) 50 %.

F. Real-time traffic prediction

In addition to trace-based evaluation, we now investigate
how effective our solution is when running in real time. To this
end, we deployed it over an SDN emulator, i.e., Mininet [61],
where switches interact with a centralized controller, imple-
mented in our prototype with Ryu [62]. While other solutions
are available for implementing the control plane logic, e.g.,
Floodlight, ONOS, and OpenDayLight, we chose the Ryu
language, given the easiness of prototyping and of collecting
switch/flow information with simple function calls. In addition,
Ryu is developed in Python, facilitating the integration with
H&S that was developed in Python as well, which would have
been more though with the other Java-based frameworks. We
set up a network with 10 hosts, which leads to a 10×10 matrix.
Since we are now interested in assessing performance in real-
time rather than over realistic traffic (analyzed with trace-based
experiments), we instruct the hosts to send traffic randomly
to another host present in the network for a period of time
chosen uniformly between 1 and 20 seconds. At the end of this
period, the host randomly selects a new host again and draws
the transmission time in the same way. We repeat the process
until the SDN controller has collected 5000 matrices, sampled
every 5-seconds. First, we pre-trained the model over the entire
dataset; then, we ran the real-time completion and prediction
of TM over our controller when the hosts communicate in
the same way but with different destinations and transmission
times (achieved by changing the seed).

We start analyzing the training, completion, and prediction
time in Table II. Given the minor number of samples and minor

TABLE II: Time required for the different solutions to com-
plete and predict the matrix.

Training [s] Completion [ms] Prediction [ms]

H&S 731.56 1.54e-01 2.75e01
CCAE 877.20 4.87e-01 —
kNN 0.0028 1.69e-01 —

STTC — 2.86e02 3.44e02
LMaFit — 5.34e-01 —
ARIMA 832.91 — 1.32

ConvLSTM 604.18 — 6.21e-01

TM size, the training time is generally lower than in trace-
driven experiments (Table I). These results induce us to design
an offline training process for all ML methods. However,
we can still observe how the completion and prediction time
of H&S is in the order of milliseconds and in line with
alternatives. This confirms our hypothesis that Hide & Seek
can find applicability in a variety of network management
applications, e.g., re-routing, network planning [3], [10]. For
example, in SDN architecture, where routing can be adaptive,
it can be convenient to predict future traffic value and steer the
traffic opportunely. Whereas, in flow consolidation, it can be
convenient to complete the TM and have a global view of the
current network status and take the more appropriate response.

We then show the Root Mean Square Error (RMSE) of
TM completion, to enrich the global solution evaluation, at
varying the volume of traffic in the network in Fig. 9. We
found confirmation to previous results: H&S has the ability
to complete the missing entries of TM for different loads
when running in real-time over synthetically generated traffic.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

12

(a) (11, 7) (b) (12, 18) (c) (1, 3)

Fig. 11: Saliency maps for GEANT traces for different missing positions in the traffic matrix. Missing location is marked in
white and centered in the final image.

(a) (6, 8) (b) (2, 8) (c) (3, 4)

Fig. 12: Saliency maps for Abilene traces for different missing positions in the traffic matrix. Missing location is marked in
white and centered in the final image.

(a) (11, 2) (b) (1, 8) (c) (6, 7)

Fig. 13: Saliency maps for MAWI traces for different missing positions in the traffic matrix. Missing location is marked in
white and centered in the final image.

In Fig. 10 we show the RMSE in predicting future entry
of TM. We can observe a similar behavior as in traces-
based experiments, where the error slightly increases from
the completion task. However, H&S still provides the lowest
error among alternatives. In light of these results, we can
finally conclude that our Hide & Seek algorithm is an effective
approach to both traffic matrix completion and future traffic
prediction.

G. Design Rationale: submatrix dimension

To obtain insights into how the input is used, with a
particular focus on the spatial correlation of matrix cells,
we use Saliency maps. Saliency maps, introduced in [63],
are a way to visualize classification models’ spatial support
for a given class in an image. The idea behind saliency is
to rank the influence of single pixels of an image over the
score function (of a class for classifiers or value variation in
our regression case). The saliency values for each pixel are
computed by differentiating the score function of choice with
respect to the input image. The result is a map that has the

same size as the original image, where each cell constitutes
the degree to which the corresponding pixel of the image is
influential in defining the score value. Continuing with the
analogy between an image and traffic matrix, we apply the
same model opportunely adapted, where the matrix cell is
equivalent to the image’s pixel.

In Fig. 11 we show the saliency maps obtained by our
method when completing the GEANT matrices, giving as input
to our model the entire matrix. We consider four different
missing locations, and we center the final results so as to have
a clear view of the importance of the cell. The central element
is marked in white for clarity, and colors in the blue-yellow
range indicate importance, with importance increasing toward
yellow. In other words, yellow means maximum importance,
and blue means no importance. It can be observed that the
most influential cells surround the missing element, with the
green and yellow cells in close proximity. The same behavior
can be observed in the Abilene dataset (Fig. 12) and the MAWI
dataset (Fig. 13). While for some locations (12c, 13c) the
cells dominating the estimation process are numerous, and

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

13

for others (11b, 12b, 13a, 13b) this number is limited, we
can still observe how yellow cells are in proximity of the
white cell. This result confirms our hypothesis that although
adjacent matrix cells are not necessarily topologically close
and statistically dependent, our ML model can use neighboring
cells to complete the matrix. Moreover, this also induced us
to wonder if all matrix cells must be used in the comple-
tion/prediction process or if it is convenient to discard part
of the information for a lighter process. Since we limit the
input to a k× k matrix as explained in Section IV-C, in what
follows we provide more evidence on the rationale behind the
dimension of the submatrix chosen in our algorithm.

We study the performance of H&S when changing the
dimension k of the submatrix used as observation (Section IV).
This matrix is used as evidence to reconstruct missing infor-
mation, and its dimension k is a crucial parameter obtained
after an ablation analysis—an analysis of the performance of
an AI system by removing certain components, to understand
the contribution of the component to the overall system.

To this end, we compute the accuracy of our model when
modifying the parameter k over the Abilene and GEANT
datasets, and report the results for a percentage of missing
entries to 5% in Fig. 14. First, for the matrix completion task
(Fig. 14a) and then for traffic prediction (Fig.14b), we observe
how a submatrix 7 × 7 allows to attain the highest accuracy
score. This parameter allows us to consider enough knowledge
and depart from two corner cases: limited ability to learn and
to generalize the training (for small k), and a slow training
phase (for large k). Clearly, the traffic submatrix dimension
parameter should be adapted to different datasets and traffic
matrices sizes, but our observed results motivate our choice of
having set k = 7 as the default size for our evaluation.

We believe that this result is important not only for esti-
mating traffic volumes, but also for developing future efficient
network measurement techniques that can focus only on the
most important cells. By knowing in advance the area of
attention in the input, network telemetry systems can be
designed to privilege the information that plays a critical role
in the decision process, to the detriment of other unnecessary
metrics. Therefore, this would also play a crucial role in the
feasibility of such telemetry systems.

VI. CONCLUSION

In this paper, we presented Hide & Seek, a method to
efficiently achieve traffic matrix completion and inference.
Hide & Seek is based on a novel HMM-based approach
in which the traditional encoding algorithm is replaced by
an Adversarial AutoEncoder (AAE). We used our algorithm
to estimate the missing entries in the traffic matrix and to
predict their values in the short horizon. Our evaluation, per-
formed over three publicly available real datasets, i.e., obtained
from Abilene, GEANT, and MAWI networks, validate the
performance of our approach, highlighting the efficacy of
AAE in computing the missing values starting from a limited
set of information. Results also showed that our solution
clearly outperforms the state-of-the-art, both in completing
and predicting matrix values. We also tested the generality

5 10 15 20
Submatrix dimension, k

0.4

0.6

0.8

A
cc

ur
ac

y

Abilene
GEANT

(a) Completion

5 10 15 20
Submatrix dimension, k

0.4

0.6

0.8

A
cc

ur
ac

y

Abilene
GEANT

(b) Prediction

Fig. 14: Accuracy analysis of increasing submatrix dimensions
for (a) the traffic matrix completion problem and (b) the
prediction problem. Both graphs suggest the default value of
k = 7.

of Hide & Seek in an emulated prototype, showing how our
implementation is practicable and efficient. Lastly, studying
the decision process of our ML-based model, we observed
how the spatial correlation hypothesis finds an empirical
foundation.

REFERENCES

[1] V. Bharti, P. Kankar, L. Setia, G. Gürsun, A. Lakhina, and M. Crovella,
“Inferring invisible traffic,” in Proceedings of the 6th International
Conference, 2010, pp. 1–12.

[2] N. Ruchansky, M. Crovella, and E. Terzi, “Matrix completion with
queries,” in Proceedings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining, 2015, pp. 1025–1034.

[3] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[4] A. Sacco, F. Esposito, P. Okorie, and G. Marchetto, “LiveMicro: An
Edge Computing System for Collaborative Telepathology,” in Proceed-
ings of the 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19), 2019.

[5] M. Mardani and G. B. Giannakis, “Estimating traffic and anomaly
maps via network tomography,” IEEE/ACM transactions on networking,
vol. 24, no. 3, pp. 1533–1547, 2015.

[6] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statis-
tical methods for anomaly detection,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement (IMC ’05), 2005, pp.
331–344.

[7] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” ACM SIGCOMM computer communication re-
view, vol. 35, no. 4, pp. 217–228, 2005.

[8] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices,” in Proceedings of
the ACM SIGCOMM 2009 conference on Data communication, 2009,
pp. 267–278.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

14

[9] M. Roughan, Y. Zhang, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices (extended version),”
IEEE/ACM Transactions on Networking, vol. 20, no. 3, pp. 662–676,
2011.

[10] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Supporting sus-
tainable virtual network mutations with mystique,” IEEE Transactions
on Network and Service Management, vol. 18, no. 3, pp. 2714–2727,
2021.

[11] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

[12] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,”
ACM SIGCOMM Computer Communication Review, vol. 32, no. 4, pp.
161–174, 2002.

[13] Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust traffic matrix estimation
with imperfect information: Making use of multiple data sources,” in
Proceedings of the joint international conference on Measurement and
modeling of computer systems (SIGMETRICS ’06), 2006, pp. 133–144.

[14] N. Benameur and J. Roberts, “Traffic matrix inference in ip networks,”
Networks and Spatial Economics, vol. 4, no. 1, pp. 103–114, 2004.

[15] P. Tune and M. Roughan, “Spatiotemporal traffic matrix synthesis,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’15), 2015, pp. 579–592.

[16] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Mathematical Programming Computation, vol. 4, no. 4, pp.
333–361, 2012.

[17] J. Zhao, H. Qu, J. Zhao, and D. Jiang, “Spatiotemporal traffic matrix
prediction: A deep learning approach with wavelet multiscale analysis,”
Transactions on Emerging Telecommunications Technologies, vol. 30,
no. 12, p. e3640, 2019.

[18] Z. Liu, Z. Wang, X. Yin, X. Shi, Y. Guo, and Y. Tian, “Traffic matrix
prediction based on deep learning for dynamic traffic engineering,” in
IEEE Symposium on Computers and Communications (ISCC). IEEE,
2019, pp. 1–7.

[19] P. Le Nguyen, Y. Ji et al., “Deep convolutional lstm network-based traffic
matrix prediction with partial information,” in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). IEEE, 2019, pp.
261–269.

[20] F. Xiao, L. Chen, H. Zhu, R. Hong, and R. Wang, “Anomaly-tolerant
network traffic estimation via noise-immune temporal matrix completion
model,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1192–1204, 2019.

[21] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[22] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[23] A. Sacco, F. Esposito, and G. Marchetto, “Hide & Seek: Traffic Matrix
Completion and Inference Using Hidden Information,” in IEEE 20th
Consumer Communications & Networking Conference (CCNC). IEEE,
2023, pp. 529–534.

[24] G. Gürsun and M. Crovella, “On traffic matrix completion in the
internet,” in Proceedings of the Internet Measurement Conference (IMC
’12), 2012, pp. 399–412.

[25] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[26] H. Zhou, D. Zhang, and K. Xie, “Accurate traffic matrix completion
based on multi-gaussian models,” Computer Communications, vol. 102,
pp. 165–176, 2017.

[27] H. Zhou, D. Zhang, K. Xie, and Y. Chen, “Spatio-temporal tensor
completion for imputing missing internet traffic data,” in Proceedings
of the 34th international performance computing and communications
conference (IPCCC). IEEE, 2015, pp. 1–7.

[28] C. M. França, R. S. Couto, and P. B. Velloso, “Data imputation on iot
gateways using machine learning,” in Proceedings of the Mediterranean
Communication and Computer Networking Conference (MedComNet
’21), 2021.

[29] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent sdn
based traffic (de) aggregation and measurement paradigm (istamp),” in
IEEE INFOCOM 2014-IEEE Conference on Computer Communications.
IEEE, 2014, pp. 934–942.

[30] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Owl: Congestion
control with partially invisible networks via reinforcement learning,” in

IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[31] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav, “Deepconf:
Automating data center network topologies management with machine
learning,” in Proceedings of the Workshop on Network Meets AI & ML
(NetAI ’18). ACM, 2018, pp. 8–14.

[32] L. Nie, D. Jiang, S. Yu, and H. Song, “Network traffic prediction based
on deep belief network in wireless mesh backbone networks,” in 2017
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2017, pp. 1–5.

[33] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying deep
learning approaches for network traffic prediction,” in International Con-
ference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE, 2017, pp. 2353–2358.

[34] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “A self-learning
strategy for task offloading in uav networks,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 4, pp. 4301–4311, 2022.

[35] K. Salamatian and S. Vaton, “Hidden markov modeling for network
communication channels,” ACM SIGMETRICS Performance Evaluation
Review, vol. 29, no. 1, pp. 92–101, 2001.

[36] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference on Data communication, 2016, pp. 272–
285.

[37] P. S. Rossi, G. Romano, F. Palmieri, and G. Iannello, “A hidden markov
model for internet channels,” in Proceedings of the 3rd IEEE Inter-
national Symposium on Signal Processing and Information Technology
(IEEE Cat. No. 03EX795). IEEE, 2003, pp. 50–53.

[38] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature
in a hybrid wired/wireless environment,” in WiOpt’03: Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2003, pp. 1–9.

[39] S. Tao and R. Guérin, “On-line estimation of internet path performance:
an application perspective,” in IEEE INFOCOM 2004-IEEE Conference
on Computer Communications, vol. 3. IEEE, 2004, pp. 1774–1785.

[40] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[41] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[42] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learn-
ing,” arXiv preprint arXiv:1605.09782, 2016.

[43] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[44] K.-Y. Chen, C.-P. Tsai, D.-R. Liu, H.-Y. Lee, and L.-s. Lee, “Com-
pletely unsupervised phoneme recognition by a generative adversarial
network harmonized with iteratively refined hidden markov models,” in
INTERSPEECH 2019 - Annual Conference of the International Speech
Communication Association, 2019, pp. 1856–1860.

[45] A. Sacco, F. Esposito, and G. Marchetto, “Restoring application traffic
of latency-sensitive networked systems using adversarial autoencoders,”
IEEE Transactions on Network and Service Management, vol. 19, no. 3,
pp. 2521–2535, 2022.

[46] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[47] M. Marcellino, J. H. Stock, and M. W. Watson, “A comparison of direct
and iterated multistep ar methods for forecasting macroeconomic time
series,” Journal of econometrics, vol. 135, no. 1-2, pp. 499–526, 2006.

[48] A. Bayati, K. K. Nguyen, and M. Cheriet, “Multiple-step-ahead traffic
prediction in high-speed networks,” IEEE Communications Letters,
vol. 22, no. 12, pp. 2447–2450, 2018.

[49] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

[50] HMM Learn library, 2021, https://github.com/hmmlearn/hmmlearn/.
[51] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public in-

tradomain traffic matrices to the research community,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 83–86, 2006.

[52] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan, “Network anomogra-
phy,” in Proceedings of the 5th ACM SIGCOMM conference on Internet
Measurement (IMC ’05), 2005, pp. 317–330.

[53] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the WIDE
project,” in USENIX Annual Technical Conference (USENIX ATC ’00).
USENIX Association, 2000.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

15

[54] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image in-
painting,” in Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’00), 2000, pp. 417–
424.

[55] X. Wang, Y. Chen, W. Ruan, Q. Gao, G. Ying, and L. Dong, “Intelligent
detection and recovery of missing electric load data based on cascaded
convolutional autoencoders,” Scientific Programming, vol. 2020, 2020.

[56] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[57] H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li, “A
tensor-based method for missing traffic data completion,” Transportation
Research Part C: Emerging Technologies, vol. 28, pp. 15–27, 2013.

[58] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[59] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic
classification by aggregating correlated naive bayes predictions,” IEEE
transactions on information forensics and security, vol. 8, no. 1, pp.
5–15, 2012.

[60] Y. L. Gwon and H. Kung, “Inferring origin flow patterns in wi-fi
with deep learning,” in 11th International Conference on Autonomic
Computing (ICAC 14). USENIX Association, 2014, pp. 73–83.

[61] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM). IEEE, 2014, pp. 1–6.

[62] Ryu controller. Accessed: 2023-2-7. [Online]. Available: https://ryu-
sdn.org/

[63] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

Alessio Sacco received the received the M.Sc. de-
gree (summa cum laude) and the Ph.D. degree
(summa cum laude) in computer engineering from
the Politecnico di Torino, Torino, Italy, in 2018
and 2022, respectively, His research interests include
architecture and protocols for network management;
implementation and design of cloud computing ap-
plications; algorithms and protocols for service-
based architecture, such as Software Defined Net-
works (SDN), used in conjunction with Machine
Learning algorithms.

Flavio Esposito is an Associate Professor with the
Department of Computer Science at Saint Louis
University (SLU). He received an M.Sc. degree in
Telecommunication Engineering from the University
of Florence, Italy, and a Ph.D. in computer science
from Boston University in 2013. Flavio’s main re-
search interests include network management, net-
work virtualization, and distributed systems. Flavio
is the recipient of several awards, including several
National Science Foundation awards and the Com-
cast Innovation Award in 2021.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3270166

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 05,2023 at 12:19:28 UTC from IEEE Xplore. Restrictions apply.

