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A Reconfigurable 2D-Convolution Accelerator
for DNNs Quantized with Mixed-Precision

Luca Urbinati and Mario R. Casu

Department of Electronics and Telecommunications, Politecnico di Torino, Italy
{luca.urbinati,mario.casu}@polito.it

Abstract. Mixed-precision uses in each layer of a Deep Neural Network
the minimum bit-width that preserves accuracy. In this context, our new
Reconfigurable 2D-Convolution Module (RCM) computes N=1, 2 or 4
Multiply-and-Accumulate operations in parallel with configurable preci-
sion from 1 to 16/N bits. With our design-space exploration via high-level
synthesis we found the best points in the latency vs area space, varying
the size of the tensor tile handled by our RCM and its parallelism. A com-
parison with a standard non-configurable module on a 28-nm technology
shows many reconfigurable Pareto points for low bit-width configura-
tions, making our RCM a promising mixed-precision accelerator.
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1 Introduction

Low bit-width quantization is used in Deep Neural Networks (DNNs) to sat-
isfy memory and latency constraints of embedded edge devices. Mixed-precision
aims to quantize each DNN layer with the minimum bit-width [1] that preserves
accuracy [2]. DNN accelerators started to support multiple precisions. For ex-
ample, UNPU [3] uses serial multipliers and supports from 1 to 16 bits; DNPU
[4] uses look-up table-based reconfigurable multipliers that support 4-/8-/16-bit
multiplication; Bit Fusion [5] supports multiple input/weight pairs bit precisions
(8/2, 4/4, 2/8 and 8/8) by composing and decomposing 2-bit multipliers.

In this context, our new Reconfigurable 2D-Convolution Module (RCM) uses
Multiply-and-Accumulate (MAC) units with Sum Together (ST) multipliers [6]
to process in one shot N (activations, weights) pairs with up to 16/N bits,
where N is 1, 2 or 4. Thus, N –1 MAC operations are saved compared to a non-
configurable 16-bit multiplier. We define the supported configurations as 16x,
8x and 4x. The same precisions are used by both Envision [7] and our previous
Reconfigurable Depth-wise Convolution accelerator [8]. However, Envision’s Sum
Separate (SS) multiplier requires an external partial product addition. Moreover,
our RCM supports a variable kernel size to satisfy many different convolution
layers, from the Point-wise layers of MobileNets to the first layer of ResNetV1.

We report the results of a Design-Space Exploration (DSE) of Latency vs
Area. We quickly explored sixty-four RCM variants with High-Level Synthe-
sis (HLS), varying the maximum number of supported input and output chan-
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Fig. 1: RCM MAC Unit array with reconfigurable multipliers.

Fig. 2: Overview of the RCM.

nels, and compared them with the corresponding non-configurable Standard 2D-
Convolution Module (SCM) designs in a CMOS FDSOI 28-nm technology.

2 Hardware Architecture

The RCM’s MAC Unit array, shown in Fig. 1, has as many ST reconfigurable
multipliers as the maximum number of output channels that the RCM can pro-
cess in parallel, OCmax. Each MAC receives op1 and op2 16-bit operands from
the input and weight buffers, respectively, unpacks them in four 4-bit values to
match the internal reconfigurable multiplier arrangement, and accumulates par-
tial results in a register. The table in Fig. 1 shows the three operations done by
one reconfigurable multiplier according to the CONFIG signal. When a convolu-
tion between a kernel and an input receptive field is completed, the accumulated
result is cast to 32-bit and stored in an output buffer for successive computations.

Fig. 2 is an overview of the RCM, which includes a memory with double
buffers made of four 4-bit SRAMs for input features and weights, each with size
(Wmax×Hmax×ICmax) and (KSmax

2×ICmax×OCmax), respectively. We refer to
these as AF , BF , CF andDF for features, and AW , BW , CW andDW for weights.
The output memory is a single 32-bit SRAM of size (Wmax×Hmax×OCmax).

The size of the feature-map and weight tensors of a layer can exceed the size
of the memory buffers of our RCM, which requires to iterate over multiple tiles.
Therefore, a wise selection of the buffers size is essential to strike the right bal-
ance between latency, which decreases with larger buffer size, and area. Toward
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Fig. 3: Memory addressing and concatenation of the input feature-map buffer.

this goal, we analyzed the layers of the most popular DNNs for classification and
object detection supported by multiple commercial edge devices and their devel-
opment platforms. These include ResNetV1/V2, MobileNetV1/V2 (and the SSD
and SSD-Lite versions), YOLO-V2/V3/V4/Tiny, and EfficientNet-B0. Based on
our survey, we set KSmax =7, because some networks require a 7x7 kernel (e.g.,
ResNetV1), and Wmax =18 (=Hmax), to limit the RCM iterations when com-
puting large layers and to limit the buffers area. For the parameters ICmax and
OCmax, we performed the DSE outlined in Sec. 3.

The RCM memories will be filled by an embedded processor or DMA engine
as follows. In the 16x case, the input feature and weight tiles are split into 4-bit
chunks and stored from the most to the least significant into AF -DF and AW -
DW , respectively. In the 8x case, the two 4-bit chunks and stored in CF -DF and
CW -DW . Finally, in the 4x case each element is stored in DF and DW .

Our RCM requires a particular memory addressing and concatenating logic
to feed all the MAC units in parallel. Let us refer to the toy example in Fig. 3.
Here, filters with shape 3×3×ICmax create a 3×3 receptive field on a feature-
map tile. Fig. 3 shows how a tile is read to obtain op1. Similarly, a weight tile
is read to get op2. The example refers to only one of the filters and one MAC
unit out of OCmax, but it applies of course to all filters and MAC units with
different weights. Index i ∈ {0, . . . , ICmax – 1} denotes the input channel, and
index k ∈ {0, . . . ,KS×KS– 1} the receptive field. The three configurations use
a different addressing scheme as indicated in the same figure.

In general, the number of MAC cycles to get OCmax output pixels is ICmax/N .
The theoretical speedup achievable by the RCM would be N , but due to the
control logic overhead the actual speedup s(N) is lower than N , as shown in
Fig. 4. OW (⩽Wmax), IC (⩽ ICmax) and KS (⩽KSmax) are three run-time, tile-
dependent configuration parameters that correspond to the output width, the
number of input channels and the kernel size of the tiles processed by the RCM,
respectively; IC/N × KS2 are the useful clock cycles, while o1 = 2 and o2 = 5
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Fig. 4: RCM speedup for OW=18.

are those responsible for the control logic overhead. The curves in Fig. 4 show
that the speedup tends to saturate as IC approaches 32. KS=1 is the worst case
because of the dominant contribution of the overheads.

3 Experimental Results

More than 90% of the analyzed 2D-convolution layers have input and output
channels multiple of 4, 8, 16 and 32. Therefore, we performed a DSE using Cat-
apult HLS by sweeping ICmax and OCmax in {4, 8, 16, 32} and the operating
clock frequency fclk from 400 to 1000MHz (200-MHz steps). To reduce latency,
at the expense of area, we used the HLS unrolling directive applied to the output
channels loop, and the memory interleave directive applied to the weight memo-
ries. We synthesized the RTL netlists generated by Catapult HLS with Synopsys
Design Compiler. We compared our RCM with an SCM based on standard 16-bit
multipliers, which extend the operands sign for low precision configurations.

We analyzed the performance of RCM and SCM over two different 2D-
convolution layers. The first is the most frequent layer among the selected DNNs:
(16×16×256) as feature-map tensor (padding included) and (3×3×256×256) as
weight tensor. The second is the last point-wise layer of MobileNetV1: (7×7×1024)
for inputs and (1×1×1024×1024) for weights. Since the results for both layers
are similar, due to space limitations we report the results of the DSE of Latency
vs Area for the first case only, in Fig. 5. The latency is the total number of clock
cycles multiplied by the clock period. The table adjacent to each plot contains
the sorted Pareto-points in ascending order of area and reports input and output
channels for each point. From Fig. 5 we observe:
– In the 16x case (Fig. 5a), as expected, all Pareto point are of SCM type,

because the RCM points suffer from the area overhead of a more complex
memory addressing logic and of the ST multipliers. Thus, in the following we
only consider the 8x (Fig. 5b) and 4x (Fig. 5c) cases.

– OCmax significantly affects area and latency: as OCmax increases, the size of
weight and output memories increase, but the number of MAC units grow
and more output channels can be computed in parallel. Indeed, all the points
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Fig. 5: Latency vs Area DSEs for CONFIG 16x (a), 8x (b) and 4x (c).
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with larger area and lower latency have a high value of OCmax.
– For area < 0.06mm2 increasing ICmax reduces latency more than increasing

OCmax for a given area increase. However, to reduce latency below 2-3ms (e.g.,
area ≥ 0.06mm2) OCmax must increase up to 32 and ICmax must saturate.

– The low frequency RCM solutions (fclk =400MHz) in the Pareto curve oc-
cur only for area < 0.03mm2 in the 4x case. However, they are not worth
when latency is the goal, as a higher clock frequency (⩾ 600MHz) leads to a
significant better latency for a marginal area increase.

– For 8x and 4x, 39% and 73% of Pareto points are reconfigurable, respectively.
Since 8-bit precision is enough for many DNNs and the trend is to go below 8-bit
[9], a designer willing to use our RCM can choose among many Pareto points,
as shown in Fig.5. For example, those marked with an arrow (→) are optimal in
the 8x and 4x case, and close enough to optimal in the 16x case, making them
suitable to DNNs requiring variable precision in their layers.

4 Conclusion

We presented a Reconfigurable 2D-Convolution Module for Heterogeneously
Quantized DNNs synthesized in a CMOS FDSOI 28-nm technology from a
high-level description. The results of the design-space exploration show many
Pareto points, especially for low-precision configurations, which dominate the
non-reconfigurable counterparts. In the future, we plan to combine this acceler-
ator and our previous Reconfigurable Depth-wise Module [8] into an SoC, hence
providing a complete solution to accelerate mixed-precision DNNs in hardware.
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