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A recent reduction technique for the nonlinear forced response analysis of structures with contact interfaces

is upgraded. The evaluations of the existing method (Dual formulation), which is based on dual Craig–Bampton

method, show its considerable off-line computational time saving because of no matrix manipulation, whereas the

resulting reducedmodel is less accurate than Rubin’s in approximating the full finite element model. The accuracy

of this formulation is significantly improved with a low additional computational cost in the proposed upgraded

formulation. That is obtained by consistent projection of all structuralmatrices on a reduction basismade up of two

sets of vectors: free-interface normal modes and residual flexibility attachment modes. Assembly approach can be

considered as dual because the interface forces are kept as generalized coordinates in opposition to primal

methods, where interface displacements are retained. To reduce the computational cost, the nonlinear

governing equations are also solved in frequency domain using the multiharmonic balance method and

alternating frequency time method. Contact elements are introduced between adjacent interface nodes to find

the nonlinear contact forces. The performance of the new formulation is demonstrated through two numerical

models with friction contact.

Nomenclature

C = viscous damping matrix of a substructure
E = Young’s modulus
F = vector of substructure forces
Fc = vector of substructure state-dependent nonlinear contact

forces
Fe = vector of a substructure external periodic excitation
�F�h� = vector of the hth Fourier coefficients of substructure

forces
Fm = set of a substructure forcevector related tomaster degrees

of freedom
Fs = set of a substructure force vector related to slave degrees

of freedom
G = flexibility matrix of a substructure
K = stiffness matrix of a substructure
M = mass matrix of a substructure
n = number of substructure degrees of freedom
nmd = number of static modes
nnd = number of nonlinear degrees of freedom
nnm = number of normal modes kept in the projection basis
q = modal amplitude vector
U = vector of relative displacements at substructure

interfaces
X = vector of substructure displacements
�X�h� = vector of the hth Fourier coefficients of substructure

displacements

Xm = set ofmaster degrees of freedomof substructure displace-
ment vector

Xs = set of slave degrees of freedom of substructure displace-
ment vector

α = mass proportional damping coefficient
ζp = damping ratio associated with the pth free-interface

normal mode
μ = friction coefficient
ν = Poisson’s ratio
ρ = density
Φ = n × nnm free-interface normal mode matrix
ϕp = mode shape associatedwith thepth free-interface normal

mode
Ψ = n × nmd residual flexibility attachment mode matrix
ω = frequency of the external excitation force
ωp = natural frequency associated with the pth free-interface

normal mode, rad∕s

I. Introduction

L OCAL nonlinearity can significantly influence the dynamic
behavior of a structure that arises in many applications. In a

structure with localized nonlinearity, the restoring force of a portion
of the structure depends nonlinearly on the system state due to the
presence of cases like local buckling [1], joints [2,3], friction dampers
[4,5], and cracks [6,7]. Unfortunately, to capture the dynamic charac-
teristics of such structures, the nonlinear dynamic analysis of a refined
finite element (FE) model is required, which is computationally cum-
bersome.Therefore,model order reduction techniques are of particular
interest to speed up the analysis despite the growing capabilities of
computers. Friction contact is a common source of local nonlinearity.
In addition to frictional interfaces of assembled components, friction
dampers are designed frequently to dissipate vibration energy [8].
Load-dependent state of friction contact and slip–stick phenomenon
lead to the nonlinear vibration of these structures. Given the complex-
ity of these nonlinear behaviors, several computational methods have
been suggested for solution of the resulting nonlinear equations.Direct
time integration methods are mainly used to determine the response
of systems subjected to transient loads [9]. Numerical integration
demands high computational cost for large FE models. When the
steady-state response of the system is of interest, frequency-domain
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methods canbe applied, allowing for considerable time saving.Among
these approximate methods, harmonic balance method (HBM) is
one of the extensively used frequency-domain methods [10–13].
Although the HBM reduces the computational effort for large FE
models, the computational cost is still expensive because of the large
size of the model involved.
Reduced-order models (ROMs) can be employed to reduce the

number of governing equations. Primarily developed for linear struc-
tures, ROMs are obtained by transforming the physical coordinate
system to a generalized coordinate system. Component mode synthe-
sis (CMS) [14] is a very well-known reduction technique involving
three steps: decomposing structure into nonoverlapping components,
reducing the size of each component by projective reduction, and
assembling the ROMs of the components. Component mode synthe-
sis methods, in which the nonlinear degrees of freedom (DOF) (i.e.,
DOF where friction forces are applied on) can be retained in reduced
model, while other DOF can be replaced by generalized coordinates,
seem a natural choice for model order reduction of structures with
local nonlinearity [2,15–17]. In this way, the CMS-reduced model is
able to correctly simulate the different boundary conditions at the
contact interfaces (i.e., full stick, gross slip, microslip, lift off, etc.).
When the number of interface DOF is large, further reduction can be
achieved by means of different approaches: nodeless formulation
[18], trial vector derivatives [19], generalized coordinates [20], and
adaptive formulation [21].
The CMS methods can be classified depending on the underlying

projectionbasis and assembly techniques.A free-interfacebasemethod
is proposed in this paper, in which free-interface normal modes and
residual flexibility attachment modes constitute the reduced subspace.
MacNeal, for the first time, used this subspace as reduction basis and
built a ROM [22]. Amore accuratemodel was later proposed by Rubin
[23,24]. Rixen also introduced dual Craig–Bampton (DCB) method
with free-interface-based modes and a new assembly technique [25].
The assembly of the first two methods, which means that the sub-
structures are assembled using interface displacements and the inter-
face compatibility condition (displacement equality) is a priori satisfied
by choosing a unique set of substructure interface DOF. In dual
assembly employed in DCB, the substructures are assembled using
the interface forces, and the compatibility condition is present explicitly
in the assembled equations of motion.
For model order reduction of structures with friction interfaces,

Petrov proposed a formulation extracted from the frequency response
function (FRF) modification [26]. In this study, an expression is
considered for the FRF matrix consisted of a reference FRF matrix
and a term describing the FRF matrix variation over the frequency
range. A formulation (referred to as Dual formulation in this paper)
is also presented in [27], where the formulation is extracted from
component-mode synthesis strategy. The comparison of this method
with the other free-interface-basedmethods illustrated its significantly
low off-line computational cost corresponding to building the ROM
and a higher level of accuracy with respect to conventional modal
truncation method. However, the resulting ROM proved [28,29] to be
less accurate than Rubin’s, which showed the best performances in the
case of complex dynamic behavior.
Based on Dual formulation, a new free-interface-based formulation

is proposed in this paper for nonlinear forced response analysis
of structures with friction contact and referred to as upgraded hybrid
reduction (UHR). This formulation allows the same accuracy as
Rubin’s one,while theoff-line computational cost is still low (although
higher than the cost of the original dual formulation). The decrease
of the computation time necessary to build the ROM is critical in
the design iterations of a high-fidelity industrial model, in which
ROMsmust be generated multiple times, one per each set of structural
parameters.
The UHR formulation is described and compared with Rubin’s

and Dual formulations. Its efficiency and accuracy are demonstrated
by forced response analysis of two structures with friction contact
in frequency domain using HBM. State-of-the-art contact model
is used to model the interface friction behavior, and alternating
frequency time (AFT) method is applied to find the Fourier coef-
ficients of nonlinear forces in frequency domain [30]. In Sec. II, these

model order reduction techniques are described as well as the non-

linear forced response of structures with friction contacts and the

corresponding computational time. In Sec. III, results are presented

and discussed.

II. Methodology

All the steps necessary to obtain the ROM of a structure with

friction contact for nonlinear forced response analysis are described

in this section. The algebraic governing equations are first presented in

frequency domain (Sec. II.A). Then, the ROMs of locally nonlinear

structures aregeneratedwithdifferent reduction techniques (Sec. II.B).

Finally, the nonlinear forced response analysis and the computational

time of a reduced system analysis are described (Secs. II.B and

II.C).

A. Background

1. Governing Equations

A structure, modeled with FE method, is divided into Ns nonover-

lapping substructures such that every node belongs to only one sub-

structure and there is friction contact between substructure interfaces.

The dynamic equations of motion of a substructure in time domain are

as follows:

M �X�t� � C _X�t� � KX�t� � F�U; _U; t�
F�U; _U; t� � Fe�t� � Fc�U; _U� (1)

where vectorsF andX are n × 1 nodal force and displacement vectors

of a substructure with n DOF, respectively; vector U is the relative

displacement at the substructure interfaces. Excitation force vector Fe

and contact force vector Fc (nonlinearly dependent on the relative

displacement and velocity at the interfaces) are both included in nodal

force vectorF. Then × nmatricesM,C, andK represent the structural

mass, viscous damping, and stiffness of the substructure, respectively.

The mass proportional damping is also considered asC � αM, where

α is a constant. The dots refer to time derivatives.

2. Multiharmonic Balance Method

Multiharmonic balance (MHB)method is a useful tool in the forced

vibration analysis, where the steady-state part of the solution is of

interest. The MHB method turns the differential equations in time

domain to a set of algebraic equations in frequencydomain. To do this,

periodic quantities are approximated by their truncated Fourier series,

and then the equilibrium of the Fourier coefficients of each retained

harmonic is enforced. Applying the MHB method on the governing

equations of motion [Eq. (1)] results in (H� 1) sets of equations at a
frequency ω:

�−�hω�2M� ihωC� K� �X�h� � �F�h�� �U�; h � 0;1;...; H (2)

where h is the harmonic index; �X�h� and �F�h� are the vectors of hth
complex Fourier coefficients of X and F, respectively. The n�H�
1� × 1 vectors of displacements and forces Fourier coefficients, �X

and �F, include all Fourier coefficients of X and F, respectively.

Similarly, �U is the vector of Fourier coefficients of the relative

displacements U.

B. Model Order Reduction

In this section, three different ROMs, based on the same CMS-

based reduction basis, are described: 1) Rubin’s method [24], 2) Dual

formulation [27], and 3) UHR (the main subject of this paper).
The first step in the CMS model order reduction techniques, as

those described in this paper, consists in the definition of two sets of

DOF, namedmaster (m) and slave (s) DOF, resulting in a correspond-
ing partition of vectors X and F as
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F �
"
Fm

Fs

#
; X �

"
Xm

Xs

#
(3)

where master DOF are the only physical DOF retained in ROM and
slave DOF are projected to reduction basis.
For theROMs to be suitable for nonlinear forced response analysis,

master DOFmust include contact DOF, hence referred to as nonlinear
(N). In addition, master DOf can also include other DOF, hence
referred to as linear (L), corresponding to points of application of
the external forces andoutputDOFatwhich the response is computed.
It should be noted that for structures with contact interfaces, the

relative displacement vector at contact surfaces U can be easily
obtained after model order reduction because nonlinear DOF of each
substructure are retained in its CMS-reduced model.
The projection basis of free-interface reduction techniques consists

in free-interface normal modes, residual flexibility attachment modes,
and rigid-bodymodes.Because thevibrationbehavior of unconstrained
substructures is not under investigation, rigid-body modes are not
included here. Therefore, the displacement vector can be expressed as

X�t� � ΨFm�U; _U; t� �Φq�t� � �
Ψ Φ

�(Fm�U; _U; t�
q�t�

)
(4)

whereΨ andΦ are, respectively,n × nmdmatrixof the so-called residual
flexibility attachmentmodesandn × nnmmatrixof free-interfacenormal
modes. The nmd and nnm indicate the number of static modes corre-
sponding to thenumber ofmasterDOFand the number of normalmodes
kept in the projection basis, respectively. Vector q contains modal
amplitudes.
Equation (4) is referred to as reduction equation in this paper

because it represents the relation between physical DOF and gener-
alized coordinates.Beforemoving to the next step, it isworth recalling
the physicalmeaning of the set ofmodes inΦ andΨ for the reduction.
The free-interface modesΦ retained in the projection basis are, in

our case, a subset ofmass-normalizedmodes of the substructurewhen
linear DOF are kept free and contact pairs (nonlinear DOF) are not
engaged (fully separate interfaces). The set of modes to be retained
in the analysis is usually selected in away that all themodes thatmight
contribute to the dynamics of the system in the frequency range of
interest are included in the model.
Attachment modes are the substructure static deformed shapes due

to unit forces applied at master DOF and correspond to the columns of
flexibilitymatrixG (i.e., the inverse ofK) related tomaster coordinates
Gm. The residual flexibility attachmentmodesΨ (master coordinates-
related columns of residual flexibilitymatrix) are obtained from the set
of attachment mode matrix Gm by removing the contribution of the
retained free-interface modes as

Ψ � Gm −
Xnnm
p�1

ϕpϕT
p;m

ω2
p

(5)

where ωp and ϕp;m are the pth free-interface normal mode natural

frequency and mode shape at master DOF. Considering residual flexi-
bility attachment modes, the reduction basis provides two sets of spec-
trallyorthogonalvectorsΦ andΨ, and therefore, as shown in [27],Eq. (4)
can be directly used for forced response analysis, while this equation can
be transformed to frequency domain using the MHB method because
periodic displacements and forces are assumed, resulting in

�X�h� � Ψ �F�h�
m � �U� �Φ �q�h� � �Ψ Φ �

�
�F�h�
m � �U�
�q�h�

�
(6)

The set of static and normalmodematrices can also be partitioned into
two submatrices related to deflection at master and slave DOF:

Φ �
"
Φm

Φs

#
; Ψ �

"
Ψm

Ψs

#
(7)

allowing for efficient partitioning of the reduction equation,whichwill be
exploited in the next sections.
In the following, the aforementioned reduction techniques are

described, where Eqs. (1) and (4) are used to start the matrix projec-
tion and derivation of reduced equations.

1. Rubin’s Method

Rubin’s method [24] is used as a reference in this paper due to
its high accuracy [29] when used to generate ROMs for the nonlinear
forced response of structures with friction contacts, and due to its
popularity, which makes it one of the CMS-based reduction methods
available in all the commercial FE packages. According to Rubin’s
method, the governing equations of the system are projected on the
subspace spanned by the columns of the reduction matrix defined in
Eq. (4). As a result, the following reduced equations are obtained:

�−�hω�2m� ihωc� k� �x�h� � �f �h�; h � 0; 1; : : : ; H (8)

where the ROM matrices and vectors are defined as m � RTMR,
c � RTCR, k � RTKR, x � RTX, and f � RTF with

R �
"

I 0

ΨsΨ−1
m Φs −ΨsΨ−1

m Φm

#

2. Dual Formulation for Structures with Friction Contact

A ROM suitable for nonlinear dynamic analysis of structures with
contacts was presented recently in [27], where the idea of keeping
interface forces inROM is used. In this free-interface-based reduction
technique, no reduced matrices are generated. To derive the reduced
governing equations, the partition of Eq. (6) related to master DOF is
extracted:

�X�h�
m � Ψm

�F�h�
m � �U� �Φm �q�h� (9)

The modal coordinates �q�h� can be expressed as the following
in frequency domain when a mass proportional damping C � αM
is assumed:

�q�h� � diag

�
1

ω2
p − κ2

�
ΦT

m
�F�h�
m � �U�; h � 0;1;...; H (10)

The variable κ is defined as κ2 � �hω�2 − i2ζpωphω � �hω�2−
iαhω, where ωp and ζp � α∕�2ωp� are, respectively, the natural

frequency and the damping ratio associatedwith thepth free-interface
mode ϕp. Equation (10) is obtained by turning Eq. (2) into modal

coordinates by writing the physical DOF as a linear combination of
free-interface mode shapes X � Φq and by projecting the equations

to the modal space premultiplying byΦT.
Finally, the response of the system is found by replacing �q�h� in

Eq. (10):

�X�h�
m � Ψm

�F�h�
m � �U� �Φmdiag

�
1

ω2
p − κ2

�
ΦT

m
�F�h�
m � �U�;

h � 0; 1 : : : ; H (11)

Because, similar to the DCB method that the forces for master
DOF are kept as generalized coordinates and are not replaced by the
displacements of master DOF, this formulation is referred to as Dual
formulation. The two parts on the right side of this equation will be
referred to as static and dynamic parts, respectively. It is notable that in
the DCB method originally proposed for linear substructuring, com-
patibility constraints are explicitly expressed by an equality between
corresponding DOF on the interfaces, while the resulting equations
do not hold for substructures with friction interfaces because there
is relative displacement between adjacent substructures. Therefore, in
Dual formulation, on the contrary to the DCB method, the redundant
constraint equations are not considered. Dual formulation is equal
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to the one obtained by Petrov in [26]when the reference FRFmatrix is
calculated at zero frequency, although obtained via completely differ-
ent approaches.
It is worth noting that the partition of residual flexibility attachment

modes corresponding to master DOFΨm can be obtained by import-
ing master-related entries of free-interface normal modes and attach-
ment modes from an FE software and computed as

Ψm � Gm
m −Φmdiag

�
1

ω2
p

�
ΦT

m (12)

One drawback of the Dual formulation is neglecting the dynamic
effects of residual flexibility attachment modes in the ROM, that is,
the projection of mass and damping matrices on residual flexibility
attachment modes is ignored. This stems from the projection of
dynamic equation of motions [Eq. (1)] only on free-interface normal
modes [Eq. (10)]. In other words, only stiffness matrix is projected on
both sets of reduction basis that leads to nonconsistent projection. So,
although the accuracy of this method is better than modal truncation
method, as shown in [26], it is less accurate than other CMS reduction
methods, and a larger ROM is usually required to predict the accurate
response of the full structure [28].

3. UHR Method

The aim of this method is to take advantage of the positive
features of all methods, including the small computational effort of
Dual formulation aswell as the accuracy of Rubin’s ROM.Therefore,
Galerkin projection of the dynamic equations of motion in frequency
domain [Eq. (2)] is performed using reduction equation in frequency
domain (Eq. (6) is replaced inEq. (2), and then the resulting equations
are premultiplied by �Ψ Φ�T.), which leads to

ΨTD�h�Ψ �F�h�
m � ΨT �F�h�

ΦTD�h�Φ �q�h� � ΦT �F�h� (13)

where D�h� � −�hω�2M� ihωC� K is the dynamic stiffness
matrix of the full-order system corresponding to the hth harmonic.
The orthogonal properties of normal modes and residual flexibility
attachment modes result in the following equations by assuming a
mass proportional damping C � αM:

�−κ2ΨTMΨ�Ψm� �F�h�
m � ΨT �F�h�

diag�ω2
p − κ2� �q�h� � ΦT

m
�F�h�
m (14)

In this step, the Fourier coefficients of forces at master DOF
�F�h�
m and modal coordinate �q�h� can be computed using two sets of

Eq. (13) as a function of projected dynamic stiffness matrix on
reduction basis. To this end, the inverses of their coefficients on the
left side of the two sets of equations are premultiplied in two sides of
these equations, resulting in

�F�h�
m � �−κ2ΨTMΨ�Ψm�−1ΨT �F�h� (15)

�q�h� � diag

�
1

ω2
p − κ2

�
ΦT

m
�F�h�
m (16)

These two terms can be entered in Eq. (6) to obtain the final
reduced governing equations. Thus, the displacement Fourier coef-
ficients at master DOF are obtained as follows by considering that the
entries of forces vector related to slave DOF are zero Fs � 0:

�X�h�
m � Ψm�−κ2ΨTMΨ�Ψm�−1ΨmF

�h�
m � �U�

�Φmdiag

�
1

ω2
p − κ2

�
ΦT

m
�F�h�
m � �U� (17)

This formulation consists in two terms as Dual formulation
[Eq. (11)], which are called again static and dynamic parts. The

comparison of this upgraded formulation with the Dual formulation
shows that the dynamic parts related to the projection of dynamic
stiffness matrix on free-interface normal modes are identical. But, the
static parts include two more terms, corresponding to the mass and
damping matrix projection on static modes. As a consequence, the
UHRisexpected toperformbetter than theDual formulation.The result
of accuracy investigation is presented in Sec. III.A.1.
It is noteworthy that the dynamic effects of static modes are

also included in the formulation obtained by Petrov in [26] when
the reference FRF matrix is not calculated at zero frequency. The
main difference of these two formulations is in the static part of UHR
formulation, updated at each frequency, and the corresponding terms
in Petrov formulation that are constant (calculated at a chosen fre-
quency) over the frequency range. As a result, the Petrov formulation
is exact at a given frequency and highly accurate in the frequency
range close to that frequency.
Previous studies [28,31] have shown that Rubin’s method

performs better than other free-interface reduction techniques over
a wide range of contact configurations, ranging from fully open to
fully stuck contacts. TheUHR formulation provides the same level of
accuracy as Rubin’smethod by the consistent projection of equations
of motion, while its off-line cost is smaller because of the decreased
required computations. The result of accuracy investigation is pre-
sented in Secs. III.A.1 and III.B.

C. Nonlinear Forced Response Analysis

To find the nonlinear forced response of a structure with friction
contact, the governing equations obtained by the MHB method and
model order reduction techniques should be solved. These reduced
equations in frequency domain are nonlinear because of the presence
of nonlinear friction forces between the substructures. Therefore,
an iterative solution method based either on the classic Newton–
Raphson method [32] or on more advanced continuation algorithms
is required.
Newton–Raphsonmethod is used in this study, inwhich the Fourier

coefficients of the displacements are the unknowns and are used to
compute the Fourier coefficients of the contact forces at each iteration.
Then, both sets of Fourier coefficients are introduced into the reduced
set of nonlinear equations. This process is repeated until the equilib-
rium equations are satisfied and the residual r lies within a specified
tolerance. The following relations are used for each reductionmethod
to obtain the residual:

Dual: r�h� � �X�h�
N −ΨNF

�h�
m � �U� �ΦNdiag� 1

ω2
p−κ2

�ΦT
m
�F�h�
m � �U�

UHR: r�h� � �X�h�
N −ΨN�−κ2ΨTMΨ�Ψm�−1ΨmF

�h�
m � �U��ΦNdiag

� 1
ω2
p−κ2

�ΦT
m
�F�h�
m � �U�

Rubin’s: r�h� � �x�h�N −�D�h�
NN−D�h�

NLD
�h�−1
LL D�h�

ln �−1� �f �h�
N −D�h�

NLD
�h�−1
LL

�f �h�
L � [27]

whereD�h� � −�hω�2m� ihωc� k.
The part of equations related to nonlinear DOF is solved in non-

linear solver, and then its response is used to find the displacements at
linear DOF.
To compute the Fourier coefficients of contact forces from the

Fourier coefficients of contact displacements, it is necessary to alter-
nate from frequency to time and vice versa, via the AFT method
proposed by Cameron and Griffin [30]. In detail, within the Newton–
Raphson scheme, Fourier coefficients of displacements are used to
compute periodic displacements in time domain by inverse discrete
Fourier transform; then the periodic contact forces are computed by
means of an appropriate contact model; and finally, the Fourier
coefficients of the contact forces are computed by discrete Fourier
transform (Fig. 1) and are injected in the nonlinear equations, casted
in the frequency domain.
The core of the AFT method is a node-to-node contact model

[33,34] to compute the contact forces (fx, fy, and fz) at each contact
node pair of the contact area for a given periodic relative displacement
(ux, uy, and uz). The contact models, available in the literature, rely

on the use of either the penalty function method [35] or the Lagrange
multipliers [36] in identifying the contact surface and imposing the
kinematic contact constraints. These models assume that
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1) Contact area mesh is small enough to have an adequate number
of contact pairs that guarantee the accurate representation of dynamic
behavior.
2) In the case of two bodies in contact, there are perfectly over-

lapped meshes on the contact surfaces so that node-to-node contact
elements can be used.
A model based on penalty approach is used in this study, in which

the contact interactions are split geometrically tonormal and tangential
directions where springs and Coulomb friction law are used to com-
pute contact forces in alternate slip–stick–separation contact states.
A 3-D coupled contactmodel, addressed byGu et al. [34] andAfzal

et al. [37], is employed in this paper, which allows a coupled 2-D
relative dimensional motion over the contact plane and a relative
normal motion. Two tangential springs kx and ky and a normal spring
kz (Fig. 1) are defined to model the contact compliance. A friction
coefficient μ is also assumed between the contact surfaces.

D. Computational Time

The computational time for forced response analysis of a reduced
system can be divided into off-line time and online time.
Off-line time includes the time devoted to the generation of the

ROM, and it is split into the time for 1) reduction basis computation
and 2) reduced matrices generation (if needed). Reduction basis
computation consists in four parts: 1) importation or construction
of the full structural matrices, 2) solution of an eigenvalue problem
to find themodal properties of full model, 3) a series of static analysis
to find attachment modes, and 4) computation of residual flexibility
attachment modes using Eq. (5).
The online time includes the solution time, including the iterative

solution and the computation of harmonic components of friction
forces through the AFT method. This cost is scaled by the number of
nonlinear DOF (nnd) [38]. The number of normal modes and the
ability of the reduced model to reproduce the full system can also
affect the online time. In detail, the online cost of the forced response
analysis of a structure with distinct reduction methods, when the
number of normal modes and nonlinear DOF are identical, is differ-
ent, considering the ROM accuracy and the computation time of the
residual in nonlinear solver for each reduction method.
For the dynamic analysis of industrial structures, a conventional FE

analysis software is used as mesh generator. So, the modal properties
(Φ, Λ) and attachment modes (Gm) of the substructures necessary in
all the free-interface reduction methods analyzed in this paper can be
computed in the FE software and exported for matrix manipulation
and forced response analysis. The matrices of these FE models are
very large, and exporting these models is time consuming.
InFig. 2, a schematic of the three reduction processes is shown.The

classical CMSmethods, asRubin’s, require the fullM andKmatrices
to be exported to compute the reduced matrices by projection, using
the full vectors of attachment and normal modes. On the other side,

the Dual formulation only requires master DOF entries of attachment
and normal modes to define the balance equations of the ROM
for nonlinear forced response. Finally, the UHR formulation lies in
between the two aforementioned methods, because, although fullM
matrix and full attachment modes are needed, only master DOF
entries of normal modes are necessary. As a result, the UHR formu-
lation off-line cost is higher than the cost of Dual, but it is still smaller
than Rubin’s in both parts related to importing and computing the
required elements. This formulation can be promising for the analysis
of structure, in which the stiffness matrix is perturbed and the effects
of perturbation are considered on the reduction basis used in the
formulation. The computational efforts corresponding to the elements
that are computed in the programare investigated for a case study, and
the results are presented in Sec. III.A.2.

III. Application of the UHR Method

In Methodology (Sec. II), Rubin’s, Dual, and UHR formulations
for model order reduction of structures with friction contact are
described. To assess the accuracy and the computational cost of the
UHR formulation, it has been applied to two test cases, by usingDual
and Rubin’s formulations as references for efficiency and accuracy.
A simple two-rod model is first used to compare how the off-line

costs of the three methods scale with respect to the size of the model
and to the number of nonlinear DOF. In addition, a simplified
shrouded bladed disk model (with cyclic symmetry boundary con-
ditions) is employed to investigate the accuracy of the UHR formu-
lation, proposed in this paper, and to compare it with the two
reference methods.
When checking the performances of ROMs for nonlinear forced

response analysis, thevalue of the contact stiffness plays an important

Fig. 1 Forced response analysis of two bodies with one contact surface, where 1 and 2 refer to body number.

Fig. 2 Ingredients of the different reduction methods required for the
generation of reduced nonlinear equations, which are imported to the
program or computed in it.
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role. On one side, too soft contacts do not allow to challenge free-

interface reductionmethods, as those described in this paper, because

the mode shapes of structures with fully stuck contacts resemble

those of the structures with open contacts. On the other hand, a too

large value of contact stiffness affects the numerical convergence of

the nonlinear solver. For the aforementioned reasons, in this paper, a

tradeoff configuration was chosen: values of contact stiffness large

enough to modify the mode shapes of the fully stuck system, without

affecting the numerical convergence of the solution algorithm.
The performance of theROMs is investigated in terms of resonance

frequency andmaximumvibration amplitude, using as a reference the

full system response. In each analysis, a convergence analysis of the

full system was performed to define the number of harmonicsH. As

an example, for the two-rod model (see Fig. 3) with N0∕F � 20
(stick-dominated regime), the convergence of the solution occurs

when H � 7.

A. Two-Rod Model

The two-rodmodel (Fig. 4) corresponds to a structurewith an inner

contact. The structure is made of two rods, fixed at one end and in

contact at the free end. Both rods use an isotropic linear elastic

material model with properties given in Table 1.
Because the nodes in contact only experience tangential oscillation

in axial direction, normal load (N0) is constant, and consequently, the

described 3-D coupled contact model is reduced to a 1-D contact

model with constant normal load, as depicted in Fig. 4. So, a tangen-

tial contact stiffness k � 2 × 106 N∕m is used to model the local

contact stiffness, and a coefficient of friction μ � 0.5 is assumed.
As shown in Fig. 4, the first rod length is 2l and the second rod

length is l with l � 1 m. The cross-sectional area of both rods is

A � 10 mm2. A periodic external force is also applied onmidspan of

the rod with length 2l.
The forced response analysis of the two-rod model performed

around the first resonance mode is shown in Fig. 5 for different

N0∕F values,with the excitationF � 100 N and one contact element

between the free ends of the rods.
Figure 5 shows the effects of contact condition on the forced

response of structure with friction interfaces. This includes variations

in resonance frequency and amplitude.With thehighest valueofN0∕F
ratio, the system is in fully stuck condition, where bodies experience

no slip and they behave linearly with an added stiffness between

contact pairs. Decreasing theN0∕F ratio will change the contact state
from full-stick condition toward stick-dominated regime, and then
gross slip and eventually full separation. In stick-dominated regime,
the contact node pair is mainly stuck during a period of vibration, but
slip also occurs when friction force exceeds the limiting value. So, the
resonance frequency is close to full-stick resonance frequency, but the
peak amplitude is reduced due to energy dissipation during slip.
The studies about the accuracy and computational cost of the two-

rod model are performed in stick-dominated regime contact condi-
tion. The reason is that this contact condition is usually considered as
the design point of friction dampers because the response amplitude is
lower than in the linear system and the resonance frequency has
already stabilized. In addition, the nonlinear behavior of the structure
in this condition seems as a severe case to capture for free-interface-
based reduction methods that reduction basis includes the fully
separate system modes [28,29].
This forced response analysis is performed with seven harmonics

in Fourier series approximation of the periodic quantities. Higher
harmonic components of friction forces can result in excitation of
higher modes, and internal resonances can occur. Indeed, the energy
transfer to higher modes (internal resonance) is the reason ofmultiple
peaks that appeared in the forced response of the rod (Fig. 5). This can
bewell observed in this figure forN0∕F � 1when the contact spends
the largest amount of time in slip (slip-dominated regime) and non-
linearity is strong enough to generate large higher harmonic compo-
nents of friction forces that can excite higher modes.

1. Accuracy

To assess the accuracy of the proposed reduction technique, the
number of normal modes in the reduction basis is progressively
increased. The convergence rate of the different ROMs is checked
in the stick-dominated regime (N0∕F � 20) and shown in Fig. 6,
in which the response curves are plotted, and in Fig. 7, in which the
percentage errors of the ROM resonance frequency (εf � 100×
jfROM − fFullj∕fFull) and amplitude (εA � 100 × jAROM − AFullj∕
AFull) with respect to the full system response are plotted.
Figure 7 shows that the UHR and Rubin’s formulations exhibit a

more accurate prediction thanDual formulation, and a smaller reduced

Fig. 3 Resonance amplitude error vs the number of harmonics (two-rod
model; stick-dominated contact condition).

Fig. 4 Two-rod model test case with inner friction contact.

Table 1 Material properties of the rod model

Property Value

Young’s modulus E 70 GPa

Poisson’s ratio ν 0.3

Density ρ 1000 kg=m3

Mass proportional damping coefficient α 501∕s

Fig. 5 Forced response of the rode with different values of static
preload.
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model is required with these formulations. As explained in the Intro-
duction, the reason of their better performance is the consistent pro-
jection, that is, all structural matrices are projected on the same basis;
however, the projection of mass and damping matrices on the residual
flexibility attachment modes is neglected in Dual formulation.
To better understand the free-interface normal mode effects on

ROM convergence behavior in Fig. 7, the natural frequencies of the
full-stick system (FS-f) are provided in Table 2 because the full-stuck
system stiffness resembles the system stiffness in stick-dominated
regime.
Table 2 shows that three mode natural frequencies are multiples of

the firstmode frequency that canbe excitedby internal resonancewhen
the first mode is externally excited. However, the study of higher
harmonic components of friction forces demonstrates that their even
components are zero. Consequently, only the fifth mode can be inter-
nally excited.

2. Off-Line Cost

The capability of the UHR formulation to accurately predict the

forced response was shown in the previous section. To demonstrate

the effectiveness of the UHRmethod, the computational effort is also

evaluated by analyzing different FE models of the two-rod system,

characterized by an increasing number of DOF. The evaluation is

performed in terms of the off-line time. All FE models are reduced to

ROMswith the same size. (The size of a reduced model is dependent

on the number of normal modes and master DOF.)

As already mentioned in Sec. II.B, FE model generation as well

as static and modal analyses necessary to obtain attachment and

normal modes, needed in all the approaches analyzed in this paper,

are computed in an FE commercial software in real applications. For

these reasons, the computational cost related to those steps is not

considered in the off-line cost comparison performed in this section.

As a result, with reference to Fig. 2, the off-line costs only include

time necessary to assemble the ROM vectors and matrices, which

correspond to 1) Dual:Ψm, 2) UHR:Ψ andΨTMΨ, and 3) Rubin’s:

Ψ, RTMR and RTKR.
To assess the effect of the number of nonlinear DOF (nnd)

on off-line time, the analysis is performed first with one contact

pair and increasing number of linear DOF, and then the number of

nonlinear DOF is scaled proportionally with the number of linear

DOF. The results are shown in Fig. 8, in which the time is normal-

ized with respect to the off-line time of Rubin’s method obtained by

the largest model (total DOF � 35;000; nnd � 350). In this figure,

the off-line computing time of one rod vs the size of its FE model is

depicted.

Fig. 6 Nonlinear response amplitude of the midlength DOF of rod 1: right, Dual; left, UHR and Rubin’s.

UHR and Rubin

Fig. 7 Error of resonance frequency and amplitude obtained by ROMs with different numbers of normal modes.

Table 2 Resonance frequencies of two-rod model in fully stuck
contact condition (k � 2 × 106 N∕m)

MN FS-f, Hz FS-f/1357.5

1 1,357.5 1.0
2 2,706.2 2.0
3 3,793.6 2.8
4 5,488.8 4.0
5 6,787.9 5.0
6 7,808.6 5.8
7 9,778.5 7.2
8 10,941.0 8.1
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It can be seen in Fig. 8 that the computational cost of Dual
formulation is minimum. This time saving in addition to the low

effort needed to only import master-DOF-related parts of static and
dynamicmodes is very importantwhen the size of the FEmodel of the
structure is considerably large and when the reduced model must be

generated multiple times because of the variation of a structure
parameter in design phase. This feature is significantly beneficial

when the influence of the variation of this parameter can be directly
applied to the Ψm.
Figure 8 also illustrates the high dependency of the computational

time of Rubin’s method on the size of the model. The UHR off-line

time is considerably smaller than Rubin’s, although it is still higher
than that of Dual. Regarding the UHR level of accuracy, this method

can be particularly suitable in statistical analyses or optimization
problems of high-fidelity FE models when more accuracy than Dual

formulation is requested.
The significant effect of the nnd can also be seen in Fig. 8 by

comparing the left and right figures. The reason is that the nnd in each
model determines the number of attachment modes and the size of

subsequent matrix multiplications.
The online cost associated to the frequency response analysis of

the two-rodmodel is also shown inTable 3. This analysis is performed
in stick-dominated contact condition described in Sec. III.A.1

(N0∕F � 20). Ten normal modes are kept in reduced model, while
the analysis is once performed with one nonlinear DOF in a rod, and
then with 10 nonlinear DOF to see the effects of nnd on online time.

The time shown in Table 3 is normalized with respect to the online
time of the analysis with Rubin’s reduced model and 10 nonlin-

ear DOF.
Table 3 shows that the online time of the forced response analysis

with Rubin’s reduced model is higher than the time of analysis
with UHR and Dual formulations when the size of the model is

identical. This difference is related to the computational effort
required to obtain the residual in nonlinear solver. The computation

of the complement �D�h�
NN −D�h�

NLD
�h�−1
LL D�h�

ln �−1 of the dynamics stiff-
nessmatrix either at each frequency (if the Newton–Raphsonmethod

is used) or at each iteration (if a continuation method is used) is
very costly. The additional complement of the UHR formulation

ΨN�−κ2ΨTMΨ�Ψm�−1ΨN compared to Dual formulation makes
the cost of computing of UHR residual higher than that of Dual. But,

the overall online time of UHR is a bit smaller than that of Dual in this
study due to its higher accuracy and the consequent faster conver-
gence of the nonlinear solver.

B. Simplified Shrouded Blisk

An academic integrated turbine bladed disk (blisk) with friction
contact between adjacent blade shrouds is considered as a second
test case. This model, shown in Fig. 9, has 27 sectors with 17,268
DOF at each sector. Bladed disk material properties are Young’s
modulus E � 200 GPa, density ρ � 7800 kg∕m3, and Poisson’s
ratio of ν � 0.3. Internal structural damping is introduced as mass
proportional viscous damping,whereα � 201∕s. The shroud contact
nodes are in contact with adjacent blades; the nominal contact stiff-

ness is k � 5 × 105 N∕m (kx � ky � kz � k) and the friction coef-

ficient is μ � 0.5. The sectors are supposed to be identical, and
therefore, cyclic symmetry boundary conditions are used.
With respect to the previous one, this test case represents a more

realistic model with a more complicated dynamics. Each contact
surface at the shroud comprises nine nonlinear contact nodes (54
nonlinear DOF). The forced response analysis is performed around
the first resonance, corresponding to the first blade bending mode.
The value of theN0∕F ratio is such that contact nodes are inmicroslip
contact condition, the typical operating condition of shrouded bladed
disk. Periodic external forces are modeled by a traveling-wave-type
excitation with engine order 2.
In this analysis, the frequency responses are obtained for ROMs

with different numbers of normal modes in reduction basis (Fig. 10).
Five harmonics are retained in the Fourier expansion of periodic
quantities.
The resonance amplitude and frequency are compared with the

exact response, and the errors are depicted in Fig. 11.
Figure 11 shows that, in agreement with the rod model results, the

UHR formulation provides much better performance. The Dual
model needs more normal modes included in reduction basis to
predict the response accurately due to ignorance of inertia and damp-
ing effects of residual flexibility attachment modes.
Table4providesmoredetails about theconvergenceplotsofFig. 11.

These resonance frequencies of the system show that the fourth mode
can be excited by higher harmonic components of friction forceswhen
the first mode is excited by external forces.
To better understand the nonlinear dynamics of this FE model and

the convergence rate in Fig. 11, modal assurance criteria (MAC) plot
of the first and fourth fully stuck modes with respect to the free-
interface modes is shown in Fig. 12. This figure depicts that the first
free-interface mode is very similar to the first full-stuck mode. More-
over, it is observed that the first four free-interfacemodes look similar
to the fourth fully stuck modes, and the effect of these modes on the
accuracy of the ROMs is clearly seen in Fig. 11. Because the first free-
interfacemode is similar to both the first and fourth fully stuckmodes,
UHRandRubin’s ROMsare able to give the exact valuewith only one
mode in the reduced model.
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Fig. 8 ROM off-line computing time for models with different sizes when the number of nonlinear DOF is scaled (left) and constant (right).

Table 3 Normalized online time of the frequency
response analysis of the two-rodmodel in stick-dominated

regime (N0∕F � 20)

Reduction method

nnd Dual UHR Rubin’s

1 0.0328 0.0309 0.0328
10 0.7358 0.7311 1
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The computational cost of the analysis is also shown inTable 5.The
off-line computing time is calculated, as stated in Sec. III.A.2. The

online time refers to the forced response analysis of the reduced blisk

model with 12 normal modes in microslip contact condition.
Both online and off-line times in Table 5 are normalized to the

corresponding time obtained by Rubin’s reduced model. This table

demonstrates the effectiveness of the UHR formulation, because its

computing time is considerably smaller than the time of Rubin’s with

the same level of accuracy as UHR.

IV. Conclusions

An upgraded reduced-order modeling technique for nonlinear
forced response of a structure with friction contact is developed in
this study. The method makes use of orthogonal properties of the
residual flexibility attachment modes and of the free-interface modes.
By the consistent projection of the structural matrices, the best accu-
racy is provided with low computational cost. The capabilities of this
method in terms of accuracy and efficiency have been demonstrated
on two test cases.

Fig. 9 FE model of the bladed disk and the single sector model.
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Fig. 10 Nonlinear response amplitude.

UHR and Rubin

Fig. 11 Resonance frequency and amplitude error obtained by ROMs with different numbers of normal modes.
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Because the derivedmodel order reduction technique has small off-
line computational cost and there is no need to full stiffness matrix, it
is an interesting candidate for large industrial models, like mistuned
bladed disk. This method can be especially beneficial for the statis-
tical analysis of bladed disk with stiffness mistuning. The application
of the proposed method for these cases can be further studied.
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