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ABSTRACT

In this paper, we investigate the interplay between early exit mech-
anisms in deep neural networks and privacy preservation in the
context of federated learning. Our primary objective is to assess how
early exits impact privacy during the learning and inference phases.
Through experiments, we demonstrate that models equipped with
early exits perceivably boost privacy against membership inference
attacks. Our findings suggest that the inclusion of early exits in
neural models can serve as a valuable tool in mitigating privacy
risks while, at the same time, retaining their original advantages of
fast inference.
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1 INTRODUCTION

Deep neural networks (DNN) have achieved remarkable perfor-
mance on various tasks. However, their training often necessitates
large datasets and considerable computing and energy resources. In
this context, federated learning (FL) [13] has emerged as a promising
paradigm to enable the collaborative training of machine learning
models while preserving user privacy. In FL, the models are trained
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locally on individual nodes and only the aggregated updates are
shared with the server, fso the sharing of raw datasets is not re-
quired. Specifically, the models are trained collaboratively using
the gradients from each device while keeping the training data
decentralized [9]. While FL thus enhances privacy, it is still prone
to attacks [7].

Membership inference attacks (MIA), first introduced by [15],
are a class of privacy attacks that target general DNNs. In MIA,
an adversary aims to determine if the record was in the model’s
training dataset, which may contain sensitive data such as human
faces or medical records. Thus, it is critical to prevent such attacks.
Existing studies have addressed MIA by considering black-box at-
tacks, where the adversary only has access to the target model’s
outputs, and white-box attacks, where the adversary has full knowl-
edge of the target model’s architecture and parameters [5]. In this
paper, we focus on black-box attacks that have direct applicability
in real-life scenarios and pose a greater threat if successfully ex-
ecuted with limited knowledge, as described in [6], compared to
white-box settings. In the black-box setting, the adversary can only
receive the probabilistic output of the model after submitting a data
sample to a target model. Many strategies have been proposed to
perform MIAs, such as threshold attacks [15] and logistic regression
attacks [14]. The former use a threshold, e.g., the confidence score
produced by the target model to determine the membership of a
specific data sample, whereas the latter ones train a binary classifier
using the target model’s confidence scores as input features. In this
context, [15] trains shallow models to attack the membership of a
given dataset, and [14] generalizes such an attack to frameworks
in which the training of a shallow model is not needed.

In our work, we study the impact of Early Exit (EE) mechanisms
in both centralized and FL settings and investigate their ability to
improve the resilience of the training process and inference against
MIA. Within the general context of dynamic neural networks, mod-
els equipped with early exits adapt the computing path of individual
samples to be analyzed to their specific complexity [12]. EE mecha-
nisms have been primarily applied in computer vision [10], natural
language processing, and speech recognition tasks [22] [17], and,
importantly, they have been shown to reduce energy consumption
and latency [18]. Furthermore, since EE mechanisms share less in-
formation during the inference phase, they are potentially aligned
with the goal of improving the privacy of FL. However, their impact
on privacy in neural models trained under different settings has
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not been analyzed. To the best of our knowledge, this paper is the
first to explore the potential of early exits in enhancing privacy
protection in both centralized and FL settings, specifically against
MIA. To do so, we leverage both threshold attacks and logistic re-
gression attacks as relevant privacy assessment metrics to evaluate
the impact of EE techniques on privacy preservation.

More specifically, by means of experiments, we evaluate the
resiliency of different models and find that models without early
exits are more vulnerable to MIAs. Specifically, we assess the vul-
nerability of the Convolutional Neural Network (CNN), AlexNet,
and ResNet18 models to such attacks during the training process,
and conduct experiments in both centralized and FL settings. Our
results indicate the potential of modern dynamic architectures to
boost privacy, thus encouraging privacy-specific study and design
of this class of models.

2 RELATED WORK AND NOVEL
CONTRIBUTION

The overarching objective of this paper is to bridge the gap between
EE mechanisms and privacy preservation in the context of both
centralized and FL settings.

In the recent literature, several approaches have been proposed
to boost privacy in FL frameworks. For instance, [3] divides the
model into two parts, with one part residing on the client side for
personalization and the other part on the server side for general-
ization. However, this approach potentially suffers from privacy
leakage, and a comprehensive analysis of the privacy risks associ-
ated with it is lacking.

Other studies, such as [8], [2], and [20], have focused on locking
personalized layers on each edge device to guarantee privacy. These
works have employed sensitive attribute inference and membership
inference attacks to assess privacy risks. [19] introduces a noise
layer to provide privacy guarantees, while [23] explores the privacy
and communication efficiency trade-offs in split learning algorithms
within federated settings, using attack resilience defined in the same
paper as a privacy assessment metric.

Unlike previous work, our objective is to assess the versatility
and effectiveness of EE mechanisms, especially in potential privacy
benefits in an FL setting.

3 METHODOLOGY

In FL, MIA is a type of attack aimed at the global model that is
trained through various rounds between federated server and client
devices. Fig. 1 presents an overview of the scenario we address and
use for our experiments. We consider a typical FL setting (depicted
in the top image), which uses the FedAve algorithm [13]. Each
of the N clients possesses its own dataset, ranging from D; to
Dy . Throughout each communication round, every client trains
its model locally with early exits and sends its weights to the feder-
ated server. The server then averages the weights and returns the
updated model weights to the clients.

Each client has its own local model with branches whose archi-
tecture integrates multiple early exits. Fig. 1(bottom), as an example,
depicts a CNN with two exit points, one is an early exit point we in-
jected and the other is the regular output of the model. Each added
branch consists of a subset of the model’s layers and an exit point.
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Figure 1: Overview of ours setting. Standard MIAs are adopted.
A simple CNN model with an early exit is presented and noted
as a branchy local CNN model that is trained locally at each
client.

The training methodology for the EE strategy applies joint training.
According to this approach, an overall loss function is defined for
each early exit classifier. The loss function for the generic j-th exit
is defined as:

1)

LCE(Qj,ytrue) = —log( exp(Jrrue) ) ,

2cec exp(Yc)

where §/ and y;,y are, respectively, the output and the correct label
given to a model input x, and g is the model returned probability
for class ¢ € C, with C being the set of considered classes. The
objective of the EE model is to minimize the weighted sum of Lcg
with a weighted scalar A, as represented by the following expression
[12]:
] .

-~sg]],ytrue) = Z)Lj-£CE(gj»ytrue) (2

Jj=1

Ljoint([gl’
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where [§,...,7/] are the outputs from J exits, and the correct
label y¢rye is shared to every branch in the model.

The inference process of EE models enables the classification
of data samples at earlier stages, utilizing the early exit points
injected during the training phase. Suppose a data sample achieves
a predefined confidence score threshold at any exit. In that case,
it can exit early from the larger model without being processed
through the remaining layers, thus enabling faster inference.

An MIA involves constructing an unsupervised binary classifier
Mattack to ascertain whether a data sample x; is part of the training
datasets D used to train a model M. Each data sample x; has its
corresponding label y;. The training dataset D is private and was
used for training the model M. We apply MIA in a black-box setting
where the adversary is able to submit a data sample x; 4ttacker to the
trained target model and receives the model’s probabilistic output.
More specifically, test labels and probabilistic test output would be
provided to the Myack- The Mygack would perform MIA based
on the received information. The output of Mitack is 1 (noted as a
member of the training dataset) or 0 (noted as not a member of the
training dataset).

As mentioned, two metrics can be used to perform MIA: a thresh-
old attack metric [16], and a logistic regression attack metric [21].
Both metrics make the membership prediction based on the con-
fidence of the target model’s output p(y|x; attacker)- In threshold
attacks, Mipreshold attack €xtracts the highest posterior and tags the
input data sample as a member of the posterior if such a quantity
is above a predefined threshold 7:

Mthreshold attack(ﬁ(y|x)) = ]l(maxﬁ(ylx) 2 77) . (3)

The logistic regression attack is instead performed by training a
logistic regression classifier with the input of training labels and
the returned probability as features.

The effectiveness of these two attacks is quantified at the end
of each FL round through two metrics, namely, the area under the
curve (AUC) and the attacker advantage, shown later in Section 4.
The AUC metric measures the ability of a classifier to distinguish
between the positive and negative classes, with a value of 0.5 indicat-
ing random guesses and a value of 1 indicating perfect classification.
A higher AUC value indicates that the adversary’s model is more
successful at distinguishing between training and non-training sam-
ples, which implies a higher privacy risk. The attacker advantage
metric quantifies the difference between the true positive rate and
the false positive rate of the attack. A value of 0 indicates that the
attacker’s performance is equivalent to random guessing. A pos-
itive value indicates that the adversary is performing better than
random guessing, and a value of 1 means that the attacker has
perfect accuracy in identifying whether a data point belongs to the
training dataset .

4 PRIVACY EVALUATION RESULTS

In this section, we demonstrate the effectiveness of early exits
attached to different models to mitigate privacy leakage, particu-
larly in MIA. All experiments were conducted using the CIFAR-10
dataset. For the centralized setting, the entire dataset was utilized.
In the Federated Learning (FL) scenario, the dataset was partitioned
among 10 clients using an extreme label skew non-i.i.d. distribution.
Each client was allocated data from two classes out of a total of 10
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classes. Specifically, each client was given 10,000 samples in total,
with 5,000 samples for each class. Our intention was to partition the
data in a way that the local dataset of each client is not a represen-
tative sample of the entire dataset, unlike the data in the centralized
setting. Tensorflow Privacy library [1] was used to generate the
privacy metrics such as logistic attacks and threshold attacks.

We begin with a simple experiment to present the influence of
EE techniques on privacy. We consider a CNN model with only one
early exit attached to it without incorporating an FL setting. The
CNN model consists of two convolutional layers and three fully
connected layers. We then add a branch with one fully connected
layer after the second convolutional layer. For AlexNet [11], two
early exit points were added after the first convolutional layer and
the second convolutional layer. Both early exits have a convolu-
tional layer followed by a fully connected layer. For ResNet18 [4],
one early exit point was added between the fourth and fifth ResNet
blocks with one convolutional layer and a fully connected layer.
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Figure 2: Privacy assessment obtained comparing a simple
CNN with and without early exits, where the MIA is executed
after each round during training.

In Fig. 2, CNN. AlexNet and ResNet18 show a striking separation
between models with and without early exits attached, in the case
of both logistic attacks and threshold attacks in a centralized setting.
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Figure 3: Privacy and accuracy trade-off with and without
early exits in a centralized setting

This observation suggests that attaching exits largely reduces the
risks of privacy leakage in MIAs as training goes on. Also, notice
that threshold attacks only used one threshold to determine the
membership of data instead of training a classifier as in the logistic
attacks, leading to less noisy curves.

The trade-off between privacy risks and accuracy is presented
in Fig. 3 and 5. The model with branches in both centralized and
federated settings achieves comparable accuracy compared to the
model without branches. However, for the same level of accuracy,
the model with branches exhibits lower privacy risks. In the fed-
erated setting, the performance of the branchy model is slightly
better.

5 DISCUSSION AND CONCLUSION

It is important to highlight that the privacy risks associated with
deep learning models are contingent upon various factors. As the
depth of the model architecture grows, the model becomes less
susceptible to MIA pointing to a trade-off between model com-
plexity and privacy vulnerabilities. Early exit mechanisms result
in ‘reduced’ confidence scores for the output, effectively providing
less information for an attacker attempting to mimic the targeted
model’s output. This phenomenon indicates that early exit mecha-
nisms may play a crucial role in enhancing privacy protection.
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Figure 4: Privacy assessment with and without early exits in
an FL setting.
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Figure 5: Privacy and accuracy trade-off with and without
early exits in an FL setting.

Further investigation is necessary to understand the interplay
between EE mechanisms and privacy preservation. Future research
involves examining the impact of varying the number and position
of early exits connected to the models, adjusting the scalar of the
loss function for joint training, and exploring alternative attack
strategies. Additionally, comparisons can be made between the abil-
ity of the EE mechanisms to enhance privacy and the performance
of existing privacy metrics, such as differential privacy.
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