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Hygro-Elastic Coupling in a 3D Exact Shell Model for Bending
Analysis of Layered Composite Structures
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10129 Torino, Italy
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Abstract: In this work, a 3D fully coupled hygro-elastic model is proposed. The moisture content
profile is a primary variable of the model’s displacements. This generic fully coupled 3D exact shell
model allows the investigations into the consequences arising from moisture content and elastic
fields in terms of stresses and deformations on different plate and shell configurations embedded in
composite and laminated layers. Cylinders, plates, cylindrical and spherical shells are analyzed in
the orthogonal mixed curvilinear reference system. The 3D equilibrium equations and the 3D Fick
diffusion equation for spherical shells are fully coupled in a dedicated system. The main advantage
of the orthogonal mixed curvilinear coordinates is related to the degeneration of the equations for
spherical shells to simpler geometries thanks to basic considerations of the radii of curvature. The
exponential matrix method is used to solve this fully coupled model based on partial differential
equations in the thickness direction. The closed-form solution is related to simply supported sides
and harmonic forms for displacements and the moisture content. The moisture content amplitudes
are directly applied at the top and bottom outer faces through steady-state hypotheses. The final
system is based on a set of coupled homogeneous second-order differential equations. A first-order
differential equation system is obtained by redoubling the number of variables. The moisture field
implications are evaluated for the static analysis of the plates and shells in terms of displacement
and stress components. After preliminary validations, new benchmarks are proposed for several
thickness ratios, geometrical and material data, lamination sequences and moisture values imposed
at the external surfaces. In the proposed results, there is clearly accordance between the uncoupled
hygro-elastic model (where the 3D Fick diffusion law is separately solved) and this new fully coupled
hygro-elastic model: the differences between the investigated variables (displacements, moisture
contents, stresses and strains) are always less than 0.3%. The main advantages of the 3D coupled
hygro-elastic model are a more compact mathematical formulation and lower computational costs.
Both effects connected with the thickness layer and the embedded materials are included in the
conducted hygro-elastic analyses.

Keywords: three-dimensional exact models; coupled hygro-elastic shell model; 3D Fick diffusion
law; multilayered configurations; composite materials.

1. Introduction

Modern composite aircraft tend to absorb moisture from the humid air that can
accelerate the degradation of structural performances. This effect is more remarkable for
the matrix material than for the fibers. The hygrothermal effects can be analyzed as the
degradation of material properties and/or as hygroscopic and thermal load applications on
structures to evaluate their typical bending behaviors [1–5]. In the literature, several works
have been related to the hygro-elastic plate and shell bending analyses of multilayered and
composite configurations. Both numerical and analytical solutions are proposed. In order
to understand the novelties implemented in this new formulation, two different sections are
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discussed. The first one is related to analytical models in 1D, 2D, and 3D form. The second
one is about 1D, 2D and 3D numerical approaches.

For what concerns the exact models, Bouazza and Zenkour [6] proposed the analytical
approach of buckling of cross-ply and angle-ply composite beams under hygro-thermo-
mechanical loadings. The steady-state dynamic problem of a composite double-beam
system under hygrothermal environments was proposed in [7] in a systematic way. The gov-
erning equations were derived using the Euler–Bernoulli beam hypotheses considering the
expansion caused by temperature and moisture conditions. Li et al. [8] proposed a rotating
composite thin-walled beam structure introduced in the hygrothermal environment that
can influence the material properties of composites and modify the mechanical behavior.
An analytical model was presented by Tsokanas and Loutas [9] to calculate the first two
mode components of delamination between two sub-laminates, modeled as Timoshenko
beams, considering the residual hygrothermal stress effects. Yu and Sun [10] presented
the large deformation post-buckling analyses of a linear-elastic beam in an hygrothermal
environment, considering analytical approximate solutions for nonlinear problems. Bouk-
ert et al. [11] proposed the investigation of thick composite laminates using a high-order
method and hygrothermal stress calculations. The moisture distribution was calculated
along the z direction of the laminate with the Fick equation. Brischetto [12] analyzed the
hygrothermal loading effects in the bending of multilayered composite plates with the Fick
moisture diffusion law and the Fourier heat conduction equation. Refined two-dimensional
models were used to evaluate these effects. The extension to shell geometries was pre-
sented in [13], where the refined two-dimensional models for the static hygro-thermo-elastic
analysis of multilayered composite and sandwich shells were discussed. Chien et al. [14]
analyzed the stability equations for perfect/imperfect composite plates subjected to hygro-
thermal loads. In [15], a hygro-magneto-electro wave propagation analysis was presented
for axially moving circular cylindrical nanoshells. Panduro and Mantani [16] discussed the
hygro-thermo-mechanical behavior of multilayered composite and sandwich plates based
on a layer-wise approach. Hygro-thermo-mechanical loads were applied considering the
various profiles obtained via Fick moisture diffusion and Fourier heat conduction laws.
The same authors presented the introduction of five different nonpolynomial shear strain
shape functions in [17] in the models already proposed in [16]. Peron et al. [18] proposed
the hygro-mechanical behavior of a bio-sourced composite material through the charac-
terization of its moisture diffusion and elastic properties. Zenkour and El Sharany [19]
showed the vibration of a simply supported rectangular composite plate with four actu-
ating magnetostrictive layers in an hygrothermal environment. The plate was supported
by the two-parameter elastic Pasternak’s foundations. The same authors presented in [20]
the vibration study of a simply supported smart sandwich plate embedded in an elastic
substrate. The sandwich plate contained fiber-reinforced and magnetostrictive layers and a
core made of a viscoelastic material. Brischetto and Torre showed in [21] the stress analysis
of single-layered and multilayered composite and sandwich plates and shells under steady
state moisture conditions. This 3D solution was based on an exact layer-wise approach
where the formulation was unique for different geometries. The moisture conditions were
externally defined in an uncoupled way at the outer surfaces and evaluated in the thickness
direction following three different procedures. The same authors presented in [22] the
same model for the hygrometric loading effects analysis of single-layered and multilayered
composite plates and shells embedding FGM layers.

In the framework of the numerical models, Jena et al. [23] investigated the vibra-
tion characteristics of a nanobeam embedded in a Winkler–Pasternak elastic foundation
using the Haar wavelet method. The nanobeam was subjected to a longitudinal mag-
netic field in hygroscopic and thermal environments. Motamedian and Kulachenko [24]
presented a method for modeling the moisture or thermal expansion of interconnected
fiber networks using only beam elements. Oceallaigh et al. [25] proposed a fully cou-
pled moisture–displacement finite element model to predict the viscoelastic behavior of
reinforced timber elements when under loads and immersed in a relative humidity field.
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Zhou et al. [26] presented a study of piezoelectric beams under multi-physical hygro-
thermo-electro-mechanical fields. Akbas proposed in [27] a post-buckling analysis of
laminated composite beams under hygrothermal effects using the finite element method
and the first-order shear beam theory. Amoushahi and Goodarzian [28] investigated the
effects of hygrothermal conditions on free vibration frequencies and the buckling loads of
composite laminated plates. Bandyopadhyay et al. showed in [29] a finite element-based
method to investigate the hygrothermal effects on the transient dynamic response of a
delaminated composite pre-twisted conical shells using an eight-node shell element based
on Mindlin theory. A finite element-based method was developed in [30] to study the
influence of elevated temperature and moisture absorption on the free vibration behavior
of rotating pre-twisted sandwich conical shells. Kolahchi et al. [31] presented a study on the
post-buckling behaviors of three different types of defective quadrilateral single-layered
graphene sheets subjected to temperature, moisture, and in-plane magnetic loads. Ko-
lahchi and Kolahdouzan analyzed in [32] the dynamic stability of the viscoelastic defective
single-layered graphene sheet already seen in [31]. Lal et al. [33] investigated the effect
of random system properties on the transverse nonlinear central deflection of composite
spherical shell panels subjected to hygro-thermo-mechanical loadings. The higher-order
shear deformation theory and von Karman nonlinear kinematics were used for the for-
mulation. A control method was presented in [34] for the vibration suppression of the
piezoelectric composite cantilever rectangular plates subjected to the aerodynamic forces in
a hygrothermal environment thanks to a classical composite plate theory and Hamilton
principle. Ma et al. [35] experimentally and analytically investigated the hygrothermal
effects on the shear behaviors of composite stiffened panels. A moisture absorption test
and a new moisture absorption model based on the non-Fickian model were included.
Rajanna et al. [36] presented a model for a panel and stiffener, under severe external
conditions, adopting nine-node heterosis plate elements and three-node beam elements.
Rajia et al. showed in [37] the active stiffening and compensation analyses on the dynamic
behavior of piezo-hygro-thermo-elastic laminates using a coupled piezoelectric finite ele-
ment formulation involving a hygrothermal strain field. Gholami et al. [38] investigated
the effects of hygrothermal conditions on the elastic properties of polymeric composite
materials using a micromechanical degradation model based on the Fick second law via an
ABAQUS scripting micro modeling and on an ABAQUS parallel finite element analysis.
A 3D micromechanical model studying stresses due to moisture diffusion through a unidi-
rectional fiber-reinforced polymeric matrix composite was analyzed in [39]. Knarud and
Geving [40] proposed several benchmarks for hygrothermal simulation models developed
in the COMSOL Multiphysics software. Vinyas and Kattimani [41] showed the static re-
sponse of magneto-electro-elastic plates subjected to hygrothermal loads using a numerical
formulation derived from the principle of total potential energy, taking into account the
thermal and hygroscopic field effects. The coupled finite element equilibrium equations
were solved using the condensation procedure. Ye et al. [42] proposed the reduction study
of the strength and stiffness of composites due to the rise in moisture concentration and
temperature. The 3D hygrothermal vibration analysis of multilayered cylindrical shells
under general boundary conditions was conducted. Yi and Hilton [43] investigated the
temperature and moisture content effects on the viscoelastic responses of composites us-
ing a numerical approach. Time-dependent strains and stresses were presented for the
involved composite plates. In [44], Li et al. proposed the investigation of the active control
effect on the bending and vibration responses of the magnetorheological elastomer (MRE)
multifunctional grid composite sandwich plates using the first-order shear deformation
theory, the energy principle, the Ritz method, and the Duhamel integral approach. A simi-
lar study for the static and dynamic performances of sandwich plates with the MRE core
was proposed in [45]. In ref. [46], a finite element model updating (FEMU) procedure is
shown to discover the best creep parameters for filament-wound cylinders under radial
compression under harsh environmental conditions. Three different winding angles are
considered, each under three different hygrothermal conditions.
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This new 3D coupled hygro-elastic shell model could analyze different geometries:
spherical and cylindrical panels, plates and cylinders. It is formulated in closed-form using
the simply supported hypotheses for the sides and the harmonic forms for displacements
and moisture contents. The 3D equilibrium equations and the 3D diffusion equation for
multilayered composite structures were solved using the exponential matrix method along
the thickness direction. A layer-wise approach was employed. The present 3D exact coupled
hygro-elastic shell model can be seen as the general case of the pure mechanical model
already developed by Brischetto in [47–49] in the case of free vibration and bending analyses
of multilayered composite structures. The addition of the moisture-related equation in
orthogonal mixed curvilinear coordinates (see [50–53]) to 3D shell equilibrium relations
generates a set of homogeneous differential equations that can be solved via the procedure
shown in [54,55]. The new results are presented in terms of displacements, stresses, and
moisture profiles. They can be used as benchmarks for the development and testing of
new 3D, 2D, and 1D numerical models for the hygro-elastic stress analysis of composite
and sandwich structures. The main novelty with respect to the 3D uncoupled hygro-elastic
shell model proposed in [21,22] is the full coupling between the displacement field and the
hygroscopic field. Therefore, the moisture content profile is now directly obtained from the
system solution and not “a priori” separately calculated. A similar procedure was already
used by the authors in [56,57] in the case of full coupling between the displacement field
and the thermal field for the 3D bending analysis of composite and functionally graded
plates and shells.

2. Geometrical and Constitutive Equations for Hygro-Elastic Problems

The 3D fully coupled hygro-elastic exact model considers plate and shell structures via
a general formulation for different geometries. The innovative feature with respect to the
similar 3D model proposed by Brischetto and Torre in [21] is the full coupling between the
elastic and moisture fields. Therefore, the primary variables of the formulation are the three
displacement components u, v, and w and the scalar moisture contentM. The appropriate
constitutive and geometrical equations will be introduced in 3D equilibrium equations
and 3D Fick moisture diffusion relation for the spherical shells. The multilayered shell
is subjected to a moisture contentM(α, β, z) at the outer faces of the structure. For each
k physical layer, the geometrical relations written in an orthogonal mixed curvilinear
reference system (α, β, z) are:

εk =
(

∆(z) + G(z)
)

uk − ηkMk = εk
u − εk

M (1)

where εk is the 6× 1 strain vector, ∆(z) is a 6× 3 matrix containing the derivatives for
the shell geometry, G(z) is a 6× 3 matrix that includes pure geometrical terms (radii of
curvature Rα and Rβ and parametric coefficients Hα and Hβ). uk is the 3× 1 displacement
vector, ηk is the 6× 1 vector containing the moisture expansion coefficients evaluated in the
mixed orthogonal reference system, andM is the scalar moisture content. The previous
matrices and vectors are:
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εk =



εk
αα

εk
ββ

εk
zz

γk
βz

γk
αz

γk
αβ


, ∆(z) =



∂
∂α

1
Hα(z)

0 0

0 ∂
∂β

1
Hβ(z)

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂β

1
Hβ(z)

∂
∂z 0 ∂

∂α
1

Hα(z)
∂

∂β
1

Hβ(z)
∂

∂α
1

Hα(z)
0


, G(z) =



0 0 1
Hα(z)Rα

0 0 1
Hβ(z)Rβ

0 0 0
0 − 1

Hβ(z)Rβ
0

− 1
Hα(z)Rα

0 0
0 0 0


,

uk =

uk

vk

wk

, ηk =



ηk
α

ηk
β

ηk
z

0
0
0


,

(2)

where parametric coefficients Hα(z), Hβ(z) and Hz are:

Hα(z) =
(

1 +
z

Rα

)
=

(
1 +

z̃− h/2
Rα

)
, Hβ(z) =

(
1 +

z
Rβ

)
=

(
1 +

z̃− h/2
Rβ

)
, Hz = 1 . (3)

Hα and Hβ are functions of the thickness coordinate z (which varies from −h/2 to
+h/2 with the origin located in the correspondence of the Ω0 surface) or z̃ (which varies
from 0 to h with the zero located at the bottom surface). They represent the curvature terms
of the shell in the two in-plane directions α and β.

It is possible to define the moisture content M in a non-dimensional form (or in
percentage by simply multiplying the non-dimensional form for 100) as:

M =
W −Wd

Wd
=

Wd + Wc −Wd
Wd

=
Wc

Wd
, (4)

where W is the mass of the moist material that is composed by the mass of the dry material
(Wd) plus the mass of the moisture (Wc) present in the considered material. The mass of the
moisture present in the material can be computed by integrating the moisture concentration
c (in kg/m3) in the volume of the material as follows:

Wc =
∫

V
c · dV. (5)

The same idea is valid for the mass of the dry material that is calculated whilst
integrating the mass density of the dry material in the volume:

Wd =
∫

V
ρd · dV, (6)

where ρd (kg/m3) is the mass density of the dry material. Introducing Equations (5) and (6)
in Equation (4), the definition ofM can be rewritten as:

M =
Wc

Wd
=
∫

V

c · dV
ρd · dV

=
cV

ρdV
=

c
ρd

. (7)

The moisture content is in non-dimensional form because it is computed as a ratio
between two mass density values in kg/m3. It should be noted that, if M is in non-
dimensional form, the related moisture expansion coefficients ηi have to be written in
non-dimensional form; if the moisture content is written in percentage, the coefficients ηi
must be divided by 100.
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The constitutive equations for the proposed problem permit the linking between the
six-strain components with the six stress components via the 6× 6 elastic coefficient matrix
C. The constitutive equations (Hooke law) are valid for each k physical layer:

σk = Ckεk = Ck(εk
u − εk

M) , (8)

where the stress vector σk =[σk
αα σk

ββ σk
zz σk

βz σk
αz σk

αβ]
T has dimensions of 6× 1 and the elastic

coefficient matrix Ck has dimensions of 6 × 6. The matrix of elastic coefficients in the
structural reference system for the orthotropic case, with lamination angles of 0◦ or 90◦,
has the following form:

Ck =



Ck
11 Ck

12 Ck
13 0 0 0

Ck
12 Ck

22 Ck
23 0 0 0

Ck
13 Ck

23 Ck
33 0 0 0

0 0 0 Ck
44 0 0

0 0 0 0 Ck
55 0

0 0 0 0 0 Ck
66


. (9)

The solution of the problem is only developed for orthotropic angles 0◦ or 90◦ because
the impositions Ck

16 = Ck
26 = Ck

36 = Ck
45 = 0 permit to solve the mathematical problem

in a closed form. The substitution of Equation (1) into Equation (8) allows to link the
stresses with the primary variables of the problem uk and Mk. The explicit form of
Equation (8) defines the hygro-elastic coupling coefficients ξk

α, ξk
β and ξk

z in the mixed
orthogonal structural reference system (α, β, z). These are defined as follows:

ξk
α = Ck

11ηk
α + Ck

12ηk
β + Ck

13ηk
z , (10)

ξk
β = Ck

12ηk
α + Ck

22ηk
β + Ck

23ηk
z , (11)

ξk
z = Ck

13ηk
α + Ck

23ηk
β + Ck

33ηk
z . (12)

3. Three-Dimensional Coupled Hygro-Elastic Governing Equations

Figure 1 shows the different proposed geometries in an orthogonal mixed curvilinear
reference system (α, β, z). The global thickness of the structure h has a constant value
for each configuration. The origin of the orthogonal mixed curvilinear reference system
is placed in the corner. α and β are parallel to the lateral curvilinear sides of the shell
and located on the middle surface Ω0. Ω0 is the reference surface for the evaluation of all
geometrical parameters. z is the coordinate in the thickness direction and it is orthogonal
to Ω0 and directed from the bottom to the top surface. Angle ψ shows the curvature angle
of the two in-plane dimensions.

For the present formulation, the governing equations consist of three 3D equilibrium
equations and the 3D Fick diffusion equation for spherical shells. The explicit forms of the
governing equations, valid for each k physical layer, are written as:

Hβ(z)
∂σk

αα

∂α
+ Hα(z)

∂σk
αβ

∂β
+ Hα(z)Hβ(z)

∂σk
αz

∂z
+
(2Hβ(z)

Rα
+

Hα(z)
Rβ

)
σk

αz = 0, (13)

Hβ(z)
∂σk

αβ

∂α
+ Hα(z)

∂σk
ββ

∂β
+ Hα(z)Hβ(z)

∂σk
βz

∂z
+
(2Hα(z)

Rβ
+

Hβ(z)
Rα

)
σk

βz = 0, (14)

Hβ(z)
∂σk

αz
∂α

+ Hα(z)
∂σk

βz

∂β
+ Hα(z)Hβ(z)

∂σk
zz

∂z
−

Hβ(z)
Rα

σk
αα −

Hα(z)
Rβ

σk
ββ +

(Hβ(z)
Rα

+
Hα(z)

Rβ

)
σk

zz = 0, (15)
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Dk
1

H2
α(z)

∂2Mk

∂α2 +
Dk

2
H2

β(z)
∂2Mk

∂β2 +Dk
3

∂2Mk

∂z2 = 0. (16)

Equations (13)–(16) are valid for all the structures proposed in Figure 1. Thanks to the
orthogonal mixed curvilinear reference system, the formulation is valid for plates, cylinders,
and cylindrical panels by assuming proper values for the two radii of curvature Rα and Rβ.
Equation (16) is the 3D Fick diffusion equation under steady-state conditions specifically
written for spherical shells and already presented by Brischetto and Torre in [21]. In this
fully coupled hygro-elastic problem, the 3D Fick diffusion relation is directly coupled with
the 3D equilibrium equations. Equation (16) can be rewritten as:

D∗k1 (z)
∂2M
∂α2 +D∗k2 (z)

∂2M
∂β2 +D∗k3

∂2M
∂z2 = 0 (17)

in order to highlight the terms D∗ki (z) (for each direction α, β and z) that takes into account
the moisture diffusion coefficients Dk

i and the curvature terms Hα(z) and Hβ(z). It must be
noted that D∗ki (z) are dependent on z because of the curvature terms.

a= ψR

=
 ψ

R

Rα

Rβ

b

z

α

β

h

β

Rα

h

z

α

z

α

β

Rα

b

b

α

α

a= ψR

h

h

a

b

z

α

β

Rα
=

R
β

=

R
β
=

R
β
=

Rαa= 2π

β

∞

∞

∞

∞

Figure 1. Geometries analyzed in preliminary validation cases and benchmarking analyses: spherical
shell, plate, cylinder, and cylindrical shell.

The closed-form solution of the coupled governing Equations (13)–(16) can be obtained
by imposing the harmonic form for displacements and moisture content. These impositions
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directly affect the boundary conditions, because only simply supported configurations are
considered. The harmonic forms for displacements and moisture content can be written as:

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (18)

vk(α, β, z) = Vk(z)sin(ᾱα)cos(β̄β) , (19)

wk(α, β, z) = Wk(z)sin(ᾱα)sin(β̄β) , (20)

Mk(α, β, z) = Mk(z)sin(ᾱα)sin(β̄β) , (21)

where the two coefficients ᾱ and β̄ are defined as ᾱ = mπ
a and β̄ = nπ

b : m and n are the
half-wave numbers in the α and β directions, a and b are the shell in-plane dimensions.
Uk(z), Vk(z), and Wk(z) are the displacement amplitudes. Mk(z) is the moisture content
amplitude. These amplitudes are the unknowns of the problem.

The introduction of the harmonic form for displacements and moisture content
(Equations (18)–(21)), and geometrical and constitutive relations (Equations (1)–(12)) into
the coupled hygro-elastic Equations (13)–(16) gives four differential relations written as
functions of amplitudes for displacements and moisture content and related derivatives in
z. The derivatives in α and β directions are exactly computed thanks to the harmonic forms
in Equations (18)–(21). Therefore, they are calculated algebraic values. The final system of
equations is composed of four second-order differential equations in the thickness direction
z. They do not have constant coefficients because the curvature terms Hα and Hβ depend
on z. In order to transform this set of four second-order differential equations having
non-constant coefficients into a set of differential equations with constant coefficients, each
k physical layer must be divided into an appropriate number of fictitious layers. As a
consequence, a further index j is introduced to count the number of fictitious layers: this
index j varies from 1 to the total number of fictitious layers F. The total number of fictitious
layers con be easily defined as F = s · k where s indicates the number of subdivisions for
each physical layer k. Assuming a proper thickness for each fictitious layer, the parametric
coefficients Hα and Hβ can be calculated in its middle point and considered as constant. As
such, a set of four second-order differential equations with constant coefficients is obtained.
The compact form of this second-order system of partial differential equations in z is:

Aj
1U j + Aj

2V j + Aj
3W j + J j

1Mj + Aj
4U j

,z + Aj
5W j

,z + Aj
6U j

,zz = 0 , (22)

Aj
7U j + Aj

8V j + Aj
9W j + J j

2Mj + Aj
10V j

,z + Aj
11W j

,z + Aj
12V j

,zz = 0 , (23)

Aj
13U j + Aj

14V j + Aj
15W j + J j

3Mj + Aj
16U j

,z + Aj
17V j

,z + Aj
18W j

,z + J j
4Mj

,z + Aj
19W j

,zz = 0 , (24)

(J j
5 + J j

6)Mj + J j
7Mj

,zz = 0 . (25)

The system of Equations (22)–(25) can be reduced to a system of first-order partial
differential equations via the methodology described in [54,55]. The order of derivatives
along the thickness direction can be reduced by redoubling the number of unknowns from

4 (U j, V j, W j, Mj) to 8 (U j, V j, W j, Mj, U j
′
, V j

′
, W j

′
, Mj

′
) by including in the unknown

vector the first partial derivatives in z (indicated by the superscript ′). Terms Mj and Mj
′

are calculated in analogy with the displacement amplitudes and related derivatives by
solving the system of Equations (22)–(25). For this fully coupled case, the moisture content
in the thickness direction must not be a priori defined or separately calculated by solving
the Fick diffusion equation. The matrix form of the problem can be written as:
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Aj
6 0 0 0 0 0 0 0

0 Aj
12 0 0 0 0 0 0

0 0 Aj
19 0 0 0 0 0

0 0 0 J j
7 0 0 0 0

0 0 0 0 Aj
6 0 0 0

0 0 0 0 0 Aj
12 0 0

0 0 0 0 0 0 Aj
19 0

0 0 0 0 0 0 0 J j
7





U j

V j

W j

Mj

U j
′

V j
′

W j
′

Mj
′



′

=



0 0 0 0 Aj
6 0 0 0

0 0 0 0 0 Aj
12 0 0

0 0 0 0 0 0 Aj
19 0

0 0 0 0 0 0 0 J j
7

−Aj
1 −Aj

2 −Aj
3 −J j

1 −Aj
4 0 −Aj

5 0
−Aj

7 −Aj
8 −Aj

9 −J j
2 0 −Aj

10 −Aj
11 0

−Aj
13 −Aj

14 −Aj
15 −J j

3 −Aj
16 −Aj

17 −Aj
18 −J j

4
0 0 0 −(J j

5 + J j
6) 0 0 0 0





U j

V j

W j

Mj

U j
′

V j
′

W j
′

Mj
′


. (26)

Equation (26) can be compacted as:

DjX j
′
= AjX j, (27)

where X j = [U j V j W j Mj U j
′
V j
′
W j

′
Mj
′
]T and X j

′
= ∂X j

∂z . Superscript T indicates a
transposed vector. Equation (27) can be further written as:

X j
′
= Dj−1

AjX j ⇒ X j
′
= A∗

j
X j, (28)

where A∗
j
= Dj−1

Aj. The solution of the problem presented in Equation (28), which is a
general homogeneous system of first-order differential equations, can be written as:

X j(z̃j) = e(A∗
j
z̃j)X j(0), (29)

X j(hj) = A∗∗
j
X j(0)⇒ X j

t = A∗∗
j
X j

b , (30)

where A∗∗
j

is the exponential matrix. Equation (30) is employed to define the unknown
vector X j(hj) that represents the unknown vector at the top (t) of the j-th layer, when the

exponential matrix A∗∗
j
= e(A∗

j
hj) has been computed in each j fictitious layer considering

hj as thickness. X j(hj) is X j
t and X j(0) is X j

b. t and b indicate the top and the bottom of the
j-th fictitious layer, respectively. The exponential matrix can be expanded as a power series
and calculated for each j fictitious layer having a thickness hj as:

A∗∗
j
= e(A∗

j
hj) = I + A∗

j
hj +

A∗
j 2

2!
hj2 +

A∗
j 3

3!
hj3 + · · ·+ A∗

j N

N!
hj N

, (31)

where the identity matrix I has dimensions of 8× 8.
Equation (30) links the top and bottom unknown vectors (primary variables and

the related derivatives in z) within the same mathematical layer j. To move from the
j-th fictitious layer to the next one, a set of interlaminar continuity conditions must be
imposed. These conditions involve the displacements, the transverse shear/normal stresses,
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the moisture content, and the transverse normal moisture flux at each fictitious layer
interface. The continuity of the displacement components and moisture content at each
interface can be imposed as:

uj+1
b = uj

t , vj+1
b = vj

t , wj+1
b = wj

t , Mj+1
b =Mj

t . (32)

The conditions given in Equation (32) can be easily imposed for the related amplitudes
U j, V j, W j, and Mj. In the same way, the continuity of the transverse shear stresses,
transverse normal stress and transverse normal moisture flux in the z direction can be
written as:

σ
j+1
zzb = σ

j
zzt , σ

j+1
αzb = σ

j
αzt , σ

j+1
βzb

= σ
j
βzt

, gj+1
zb = gj

zt . (33)

In Equations (32) and (33), for each considered variable, the continuity is imposed
between the value at the top (t) of the general j-th layer and the value at the bottom (b)
of the (j + 1)-th layer. The use of constitutive equations and harmonic forms allows us to
obtain an amplitude form of Equations (32) and (33). The methodology has already been
discussed in [47–49], however, the only difference lies in the dimension of the involved
matrices and vectors. The amplitude form of Equations (32) and (33) may be rewritten in a
matrix form introducing the transfer matrix:



U
V
W
M
U
′

V
′

W
′

M
′



j+1

b

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
T1 0 T2 0 T3 0 0 0
0 T4 T5 0 0 T6 0 0
T7 T8 T9 τ1 0 0 T10 0
0 0 0 0 0 0 0 τ2



j+1,j

U
V
W
M
U
′

V
′

W
′

M′



j

t

⇒ X j+1
b = T j+1,jX j

t. (34)

where T j+1,j is the transfer matrix mentioned previously. The diagonal part composed
of 1 indicates the congruence conditions in terms of displacement components and the
continuity of moisture content written in Equation (32). The other coefficients Ti and τi
indicate the stress and moisture flux continuity conditions of Equation (33) in terms of dis-
placements and moisture content (and related derivatives in z), respectively. Equation (34)
allows to link the unknown vector defined at the top of the j-th layer with the unknown
vector defined at the bottom of the (j + 1)-th layer.

All configurations consider simply supported sides: these boundary conditions are
automatically satisfied via the proper harmonic forms in Equations (18)–(21) used for all
primary variables. Thus, it is possible to write:

M = 0, w = v = 0 for α = 0, a , (35)

M = 0, w = u = 0 for β = 0, b . (36)

In addition, load boundary conditions must be imposed at the outer faces of the
structures. These conditions can be written as:

σzz = 0, σαz = 0, σβz = 0, M = Mext for z = ±h/2, (37)
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Equation (37) can be rewritten, in matrix form, as:



− CM
13

HM
αt

ᾱ − CM
23

HM
βt

β̄
CM

13
HM

αt Rα
+

CM
23

HM
βt

Rβ
−ξM

z 0 0 CM
33 0

0 − CM
44

HM
βt

Rβ

CM
44

HM
βt

β̄ 0 0 CM
44 0 0

− CM
55

HM
αt Rα

0 CM
55

HM
αt

ᾱ 0 CM
55 0 0 0

0 0 0 1 0 0 0 0





U
V
W
M
U
′

V
′

W
′

M
′



F

t

=


0
0
0

Mt

, (38)



− C1
13

H1
αb

ᾱ − C1
23

H1
βb

β̄
C1

13
H1

αb
Rα

+
C1

23
H1

βb
Rβ
−ξ1

z 0 0 C1
33 0

0 − C1
44

H1
βb

Rβ

C1
44

H1
βb

β̄ 0 0 C1
44 0 0

− C1
55

H1
αb

Rα
0 C1

55
H1

αb
ᾱ 0 C1

55 0 0 0

0 0 0 1 0 0 0 0





U
V
W
M
U
′

V
′

W
′

M
′



1

b

=


0
0
0

Mb

. (39)

Equations (38) and (39) can be compacted as:

BF
t XF

t = Pt , (40)

B1
bX1

b = Pb . (41)

Superscript F indicates the last fictitious layer and superscript 1 shows the first fic-
titious layer. Vectors Pb and Pt include the impositions related to the load conditions
in the three directions α, β, and z, as well as the moisture content. Assuming a classical
hygro-elastic stress analysis, the mechanical loads in the α, β, and z directions are set equal
to zero (Pαt = Pβt = Pzt = Pαb = Pβb = Pzb = 0).

Considering Equations (40) and (41), it is possible to link the bottom of the first
fictitious layer to the top of the F-th fictitious layer by recursively introducing Equation (34)
into Equation (30). It can be obtained as:

XF
t =

(
A∗∗FTF,F−1 A∗∗F−1TF−1,F−2 . . . . . . A∗∗2T2,1 A∗∗1

)
X1

b. (42)

Equation (42) defines the 8× 8 matrix Hm for multilayered structures. This matrix is
different from the Hm matrix presented in [47–49] for the pure elastic analysis; the difference
is due to the coupling of the 3D Fick diffusion relation with the 3D equilibrium equations.
In a compact form, it can be rewritten as:

XF
t = HmX1

b. (43)

Using Equation (43), Equation (40) can be rewritten in terms of X1
b:

BF
t HmX1

b = Pt . (44)

Equations (44) and (41) can be now compacted as:

EX1
b = P , (45)



J. Compos. Sci. 2023, 7, 183 12 of 27

where

E =

[
BF

t Hm
B1

b

]
, P =

[
Pt
Pb

]
. (46)

The matrix E is always 8× 8 even if the number F of fictitious layers changes and a
layer-wise approach is employed. P is the vector containing all the hygro-elastic loading
impositions. The matrix E changes in size with respect to the pure elastic analysis in [47].
Considering the addition of the 3D Fick diffusion equation in the 3D equilibrium equations
for shells, this new model can be defined as the generalization of the pure mechanical
model proposed in [47] by Brischetto. The system in Equation (45) is formally the same
as that seen in [47–49] for the pure elastic investigation, but the coupling of the 3D Fick
diffusion equation with the 3D equilibrium equations is now considered. The vector of
unknowns has dimensions of X1

b has 8× 1.
After the calculation of the unknowns at the bottom, Equations (30) and (34) can

be subsequently substituted to define the displacements and moisture content (and the
related derivatives with respect to z) through the global thickness of the shell or the plate.
Therefore, the unknown trends along the z direction are obtained.

The present formulation can be implemented in a Matlab code permitting the eval-
uation of stresses, strains, and displacements along the thickness direction z for all the
proposed geometries with different materials, thickness ratios, lamination schemes, and
load conditions.

4. Results

The first part of this section proposes two validation results used to certify the correct-
ness of the developed general 3D exact coupled hygro-elastic shell model. Comparisons
with [21] are presented to define the proper order of expansion N for the exponential matrix
in Equation (31) and the appropriate number of fictitious layers F for the computation
of the constant curvature terms of the shell. After these two validation cases, four new
benchmarks are proposed. N and F values are opportunely identified and the new re-
sults aim to discuss the effects of thickness ratios, geometry configurations, lamination
sequences, embedded materials, and moisture content impositions when a 3D hygro-elastic
analysis of plates and shells is executed. Geometrical data for the validation results and
benchmarks are collected in Tables 1 and 2. The material data shown in Table 3 are the
Young moduli, Poisson ratios, shear moduli, moisture expansion coefficients, and moisture
diffusion coefficients in the three directions of the material reference system.

Table 1. Moisture contents, geometrical data, and lamination sequences, as already proposed in [21],
for the preliminary validation results.

Assessment 1 Assessment 2
Rectangular Plate Cylindrical Shell

a (m) 4 π
3 Rα

b (m) 12 50
h (m) 2, 1, 0.4, 0.2, 0.08, 0.04 5, 2.5, 1, 0.2, 0.1, 0.02
Rα (m) ∞ 10
Rβ (m) ∞ ∞
h1 h/3 h
h2 h/3 -
h3 h/3 -
Lamination 0°/90°/0° 0°
Mt (%) +0.5 +0.5
Mb (%) +0.1 +0.1
m 1 1
n 1 1
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Table 2. Moisture contents, geometrical data, and lamination sequences for the four benchmarking
analyses. t can assume the values 0.5, 0.25, 0.1, 0.02, and 0.01. s can assume the values 2.5, 1, 0.2, 0.1,
and 0.02.

B1 B2 B3 B4
Square Plate Cylindrical Shell Cylinder Spherical Shell

a (m) 1 π
3 Rα 2πRα

π
3 Rα

b (m) 1 30 30 π
3 Rα

h (m) t s s s
Rα (m) ∞ 10 10 10
Rβ (m) ∞ ∞ ∞ 10
h1 (m) h/10 h/3 h/4 h/3
h2 (m) h/10 h/3 h/4 h/3
h3 (m) 6h/10 h/3 h/4 h/3
h4 (m) h/10 - h/4 -
h5 (m) h/10 - - -
Lamination 0°/90°/PVC/90°/0° 0°/90°/0° 0°/90°/0°/90° 0°/90°/0°
Mt (%) +1.0 +1.0 +1.0 +1.0
Mb (%) 0.0 +0.5 +0.5 +0.5
Pzt (Pa) 10000 0 0 0
m 1 1 2 1
n 1 1 1 1

Table 3. Mechanical and hygrometrical properties of the materials used in preliminary results and
new benchmarks [21].

Composite One Composite Two PVC

E1 (GPa) 172 138 3
E2 (GPa) 6.9 8.5 3
E3 (GPa) 6.9 8.5 3
ν12 0.25 0.29 0.4
ν13 0.25 0.29 0.4
ν23 0.25 0.36 0.4
G12 (GPa) 3.4 4.5 E

2(1+ν)

G13 (GPa) 3.4 4.5 E
2(1+ν)

G23 (GPa) 1.4 3.2 E
2(1+ν)

η1 ( 1
% ) 0 0 0.28 · 10−2

η2 ( 1
% ) 0.4 · 10−2 0.4 · 10−2 0.28 · 10−2

η3 ( 1
% ) 0.4 · 10−2 0.4 · 10−2 0.28 · 10−2

D1 (kg/ms) 7.04 7.04 9.324 · 10−8

D2 (kg/ms) 4.96 4.96 9.324 · 10−8

D3 (kg/ms) 4.96 4.96 9.324 · 10−8

The acronyms employed represent the different models involved in the performed
analyses: 3D-u-M means the 3D fully coupled hygro-elastic model where the displace-
ments (indicated as u) and the moisture content profile (indicated asM) are fully coupled.
The displacements u, v, and w along the three directions and the moisture content profile
M are the primary variables of the hygro-elastic problem. The general acronym 3D() is
used for 3D uncoupled hygro-elastic models presented by Brischetto and Torre in [21].
The variable separately solved and the version of the Fick diffusion equation involved are
indicated inside the parentheses. Specifically, the 3D(Mc, 3D) indicates the 3D uncoupled
model where the 3D Fick diffusion equation is separately solved, the 3D(Mc, 1D) denotes
the 3D uncoupled model where the 1D Fick diffusion equation is separately solved and
3D(Ma) denotes the 3D uncoupled model including the a priori assumed linear moisture
content profile.
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4.1. Comparisons for Validations

Two validation cases are proposed for this new three-dimensional general exact cou-
pled hygro-elastic shell model (denoted by 3D-u-M). A rectangular plate and a cylindrical
shell panel are analyzed for different thickness ratios, moisture content profiles, and lamina-
tion schemes. When N = 3 and M = 300, the 3D-u-Mmodel gives the same results as the
3D(Mc, 3D) model presented by Brischetto and Torre in [21]. The convergence of the 3D-
u-Mmodel (obtained thanks to the coupled formulation) occurs for fewer mathematical
layers than those employed in the 3D(Mc, 3D) model.

The first preliminary validation results take into account a three-layered composite
rectangular plate having simply supported sides. The geometrical data can be seen in
the first column of Table 1. Material data employed for this case are collected in Table 3,
in correspondence with the Composite One column. The results used as a comparison
are those presented by Brischetto and Torre in [21]. The model used as a reference is
the 3D(Mc,3D) model. The new 3D-u-M model couples the 3D Fick diffusion relation
with the 3D equilibrium relations. The moisture content profile is an unknown due to the
displacements. The proposed new solution employs N = 3 and F = 300. This preliminary
analysis uses these two values in order to understand whether the 3D-u-Mmodel gives
the same results obtained with the 3D(Mc,3D) model. Table 4 proposes the transverse
displacement and in-plane stress components for different thickness ratios a/h. The present
3D-u-M model is perfectly in accordance with the reference solution for each thickness
ratio because both the material and thickness layer effects are evaluated thanks the use of
the 3D Fick moisture diffusion Equation (fully coupled or separately solved).

Table 4. First preliminary validation results, 0◦/90◦/0◦ rectangular composite plate with moisture
content Mt = +0.5%, and Mb = +0.1% for m = n = 1. The solution for comparisons is the 3D
(Mc,3D) model by Brischetto and Torre [21] employing the 3D calculated moisture content profile.

a/h 2 4 10 20 50 100

w (mm) in z̄ = +h/2, α = a/2 and β = b/2

3D (Mc,3D) [21] −0.0710 0.0133 0.0977 0.204 0.513 1.03
3D-u-M −0.0710 0.0133 0.0977 0.204 0.513 1.03

σαα (MPa) in z̄ = 0, α = a/2 and β = b/2

3D (Mc,3D) [21] 11.9 7.05 3.67 3.04 2.86 2.83
3D-u-M 11.9 7.05 3.67 3.04 2.86 2.83

σββ (MPa) in z̄ = +h, α = a/2 and β = b/2

3D (Mc,3D) [21] −12.5 −13.0 −13.2 −13.3 −13.3 −13.3
3D-u-M −12.5 −13.0 −13.2 −13.3 −13.3 −13.3

The second preliminary validation results show a simply supported single-layered
composite cylindrical shell panel. The geometrical data can be seen in the proper column of
Table 1 and the material data can be seen in Table 3 (Composite One column). The employed
reference results derive from the 3D (Mc,3D) model presented in [21]. The 3D-u-M model
adds the 3D Fick diffusion equation to the 3D equilibrium equations and it has all the
peculiarities previously discussed in the first validation results. Table 5 indicates the same
quantities evaluated in the previous case for different thickness ratios Rα/h. The 3D-u-M
model is coincident for each thickness ratio Rα/h with the reference solution [21] because
both use the 3D Fick diffusion relation: coupled with the 3D equilibrium equations or
separately solved in an external tool.
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Table 5. Second preliminary validation results, one-layered cylindrical composite shell with moisture
content Mt = +0.5%, and Mb = +0.1% for m = n = 1. The solution for comparisons is the 3D
(Mc,3D) model by Brischetto and Torre [21] employing the 3D calculated moisture content profile.

Rα/h 2 4 10 50 100 500

w (m) in z̄ = 0, α = a/2 and β = b/2

3D (Mc,3D) [21] −0.00271 −0.00245 −0.00152 0.00823 0.0326 0.212
3D-u-M −0.00271 −0.00245 −0.00152 0.00823 0.0326 0.212

σαα (MPa) in z̄ = 0, α = a/2 and β = b/2

3D (Mc,3D) [21] 16.7 9.32 0.654 −12.3 −22.4 −28.2
3D-u-M 16.7 9.32 0.654 −12.3 −22.4 −28.2

σαα (MPa) in z̄ = +h, α = a/2 and β = b/2

3D (Mc,3D) [21] 23.8 14.3 7.03 12.6 22.2 28.1
3D-u-M 23.8 14.3 7.03 12.6 22.2 28.1

In the next section, four new benchmarking analyses are proposed where different
geometrical data, thickness ratios, lamination stacking sequences, materials, and moisture
content profiles are presented. For all the four benchmarks, a number of F = 300 fictitious
layers and N = 3 order of expansion for the exponential matrix are employed.

4.2. New Benchmarks

Four benchmarking analyses are presented in this subsection. The benchmarks con-
sider plates, cylinders, cylindrical panels, and spherical panels (see Figure 1). Outer
moisture content impositions are applied directly to the structures; different amplitudes
and half-wave numbers are taken into account. All geometrical and material data for the
four benchmarks are presented in Tables 2 and 3, respectively. In these new results, different
materials, lamination schemes, and load configurations are considered. The 3D-u-Mmodel
will be used for these new analyses. The N = 3 order of expansion for the exponential
matrix and F = 300 fictitious layers will be used for each benchmark. The 3D coupled
hygro-elastic shell model will be extensively discussed and compared with past uncoupled
3D results where 3D calculated moisture content profiles (Mc,3D), 1D calculated moisture
content profiles (Mc,1D), and assumed moisture content profiles (Ma) were externally
defined. These new results may be considered as test cases for those scientists involved in
the development of two-dimensional and/or three-dimensional analytical or numerical
shell models for hygro-elastic stress analysis of multilayered structures.

The first benchmark shows a square sandwich composite plate with simply supported
sides (see Figure 1). The geometrical and lamination data used for this benchmark are
included in the Table 2 (column B1). The considered thickness ratios a/h are also high-
lighted in Table 2. The five-layered configuration is made of two skins (the bottom one
0◦/90◦ and the top one 90◦/0◦) and a PVC core. The elastic and hygroscopic properties
of the skins and the core are collected in Table 3 in the columns Composite Two and PVC,
respectively. Figure 2 shows the moisture content profile through the z direction of a thick
(a/h = 2) and a thin (a/h = 100) square plate. For the thin case, the moisture content
profiles (calculated via (Mc,3D), via (Mc,1D), and obtained from (u,M) as a primary vari-
able) are the same. The linear assumed profile (Ma) is wrong because it did not consider
the different hygroscopic properties of the skins and core in the sandwich configuration.
For thick configurations, the u-M profile is in accordance with the (Mc,3D) profile; these
two models display behaviors through the z direction with respect to the (Mc,1D) profile
and the (Ma) profile because the two previous profiles take into account the thickness and
material layer effects. Table 6 shows the moisture content, the in-plane and transverse
displacements, the transverse normal and in-plane normal stresses, and the transverse
shear strains. Different thickness coordinate positions and different a/h thickness ratios
are considered. For thin structures, the 3D (Ma) model gives the wrong results because
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it discards both material and thickness layer effects. For thick or moderately thick con-
figuration, the 3D (Ma) model remains inadequate. In this last case, the 3D (Mc,1D), 3D
(Mc,3D), and 3D-u-Mmodels provide the same results because they are able to include
the material layer effect while the thickness layer effect is negligible. Figure 3 gives the
moisture content profile, the in-plane and transverse displacement components, and three
stress components through the thickness direction of a moderately thick structure (a/h = 4).
The two displacement components are nonlinear and not constant because of the thickness
value considered and the sandwich configuration involved. The transverse normal stress
component is continuous and it fulfills the boundary load conditions imposed at the outer
surfaces (σzzt = Pzt =10,000 Pa and σzzb = Pzb = 0). The in-plane normal and in-plane
shear stress components are discontinuous at each physical layer interface of the sandwich.
The different values depend on the mechanical and hygrometric properties of the materials
embedded in the sandwich configuration.

The second benchmark shows a composite cylindrical shell with simply supported
sides, and equally divided into three layers (0◦/90◦/0◦ lamination sequence); the structure
is shown in Figure 1. Geometrical data are available in Table 2 and material data are
available in the column Composite One of Table 3. The moisture content profiles in the z
direction (Figure 4) show two different Rα/h ratios: in the case of the thick cylindrical
shell, the (Mc,3D), and the (u-M) solutions display the proper moisture content profile
because they consider the thickness layer effect (the profile is not linear inside each single
thick layer). The (Ma) profile is always rectilinear for the entire multilayered cylindrical
shell for both thick and thin configurations. In the case of a thin cylindrical shell panel,
all the moisture content profiles are correct because neither material nor thickness layer
effects are involved. In Table 7, the results in terms of displacements and stresses are
presented. For thin structures, the four three-dimensional models always provide the
same values. For thicker plates, 3D (Mc,3D) and 3D-u-M models are coincident and
show bigger differences with respect to the other two models because they are able to
consider the thickness layer effects. Figure 5 gives the displacement and stress components
for the moderately thick (Rα/h = 10) cylindrical shell panel. The typical peculiarities of
a multilayered composite cylindrical panel are shown: a zigzag form of displacements,
a moisture content profile, and stresses. It is possible to notice the proper inclusion in
the model of the interlaminar continuity conditions for displacements and transverse
normal/shear stresses. In-plane stresses and strains are discontinuous due to the change
of mechanical material properties. Moreover, the free mechanical load conditions at the
external surfaces are satisfied in terms of the σzz stress component.
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Figure 2. Benchmark number one (0◦/90◦/PVC/90◦/0◦ sandwich square plate) and moisture
content profiles for two different a/h ratios. Maximum value ofM(α, β, z) is evaluated in the center
of the structure (α = +a/2, β = +b/2).
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Figure 3. Benchmark number one (0◦/90◦/PVC/90◦/0◦ sandwich square plate), displacement
components, and stress components for a moderately thick (a/h = 4) case. The coupled model
3D-u-M is used to compute these trends along the z direction. Maximum values: u in (0,b/2); w,M,
σββ and σzz in (a/2,b/2); σαβ in (0,0).
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Figure 4. Benchmark number two (0◦/90◦/0◦ composite cylindrical shell) and moisture content
profiles for two different Rα/h ratios. Maximum value ofM(α, β, z) is evaluated in the center of the
structure (α = +a/2, β = +b/2).
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Table 6. Benchmark number one, sandwich 0◦/90◦/PVC/90◦/0◦square plate with moisture content
Mt = +1.0%, and Mb = 0% and a mechanical load Pzt = 10,000 Pa for m = n = 1. Three-
dimensional uncoupled hygro-elastic models from [21] with the moisture content profile were
assumed to be linear (3D (Ma)), defined via the one-dimensional Fick diffusion relation (3D (Mc,1D))
and via the three-dimensional Fick diffusion relation (3D (Mc,3D)).

a/h 2 4 10 50 100

M(%) in z̃ = +4h/5, α = a/2 and β = b/2

3D (Ma) [21] 0.8000 0.8000 0.8000 0.8000 0.8000
3D (Mc,1D) [21] 1.0000 1.0000 1.0000 1.0000 1.0000
3D (Mc,3D) [21] 0.8914 0.9709 0.9952 0.9998 1.0000
3D-u-M 0.8914 0.9709 0.9952 0.9998 1.0000

v (10−2 mm) in z̃ = +4h/5, α = a/2 and β = 0

3D (Ma) [21] −7.165 −9.489 −10.12 −12.11 −18.49
3D (Mc,1D) [21] −7.759 −10.18 −10.90 −12.94 −19.31
3D (Mc,3D) [21] −7.017 −9.879 −10.84 −12.93 −19.31
3D-u-M −7.017 −9.879 −10.84 −12.93 −19.31

w (10−1 mm) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] −0.3691 0.7748 2.976 26.55 120.8
3D (Mc,1D) [21] −1.043 0.6929 3.678 30.89 129.5
3D (Mc,3D) [21] −0.8156 0.6990 3.667 30.88 129.5
3D-u-M −0.8156 0.6990 3.667 30.88 129.5

σzz (104 Pa) in z̃ = +h/5, α = a/2 and β = b/2

3D (Ma) [21] −95.33 −19.54 −2.631 0.02410 0.1033
3D (Mc,1D) [21] −76.76 −15.07 −1.941 0.05121 0.1101
3D (Mc,3D) [21] −55.91 −13.73 −1.908 0.05127 0.1101
3D-u-M −55.91 −13.73 −1.908 0.05127 0.1101

σαα(MPa) in z̃ = +h, α = a/2 and β = b/2

3D (Ma) [21] 61.71 47.41 43.69 58.53 105.7
3D (Mc,1D) [21] 69.10 54.11 49.97 64.64 111.8
3D (Mc,3D) [21] 58.79 51.83 49.64 64.62 111.8
3D-u-M 58.79 51.83 49.64 64.62 111.8

γβz(10−4) in z̃ = +h/3, α = a/2 and β = 0

3D (Ma) [21] −15.18 −7.892 −3.402 0.06178 1.279
3D(Mc,1D) [21] −16.93 −8.657 −3.628 0.02663 1.262
3D (Mc,3D) [21] −12.67 −8.024 −3.586 0.02696 1.262
3D-u-M −12.67 −8.024 −3.586 0.02696 1.262

The third benchmark considers a four-layered composite 0◦/90◦/0◦/90◦ cylinder
with simply supported sides (see Figure 1). All the geometrical characteristics are given in
Table 2 and the employed material is shown in Table 3 (Composite One column). The mois-
ture content profiles are shown in Figure 6 for thick (Rα/h = 4) and thin (Rα/h = 500)
structures. In this benchmark, the thickness layer effect for thick cylinders is negligible due
to the symmetry and rigidity of the closed cylindrical geometry: the difference between
(Mc,3D) or (u-M) profiles and (Mc,1D) or (Ma) profiles for the thick case is not so evident.
These conclusions are still valid for the displacement, stress, and strain components dis-
cussed in Table 8, where 3D (Ma), 3D (Mc,1D), 3D (Mc,3D), and 3D-u-M models provide
the same results for thin cylinders and small distinctions for very thick structures: the
thickness layer effect in the thick configuration is not so important thanks to the great
rigidity of the closed and symmetric cylinder configuration. Figure 7 shows displacements,
stresses, and strains through the thickness direction of the four-layered composite cylin-
der. The displacements and transverse normal stress shown in Figure 7 are continuous,
even if the material properties change in the thickness direction because of the proper
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congruence and equilibrium impositions. The same is valid for the moisture content profile.
The transverse normal stress satisfies the imposed external load conditions. The in-plane
normal stress and transverse shear strain show discontinuities in correspondence with the
layer interfaces.

Table 7. Benchmark number two, 0◦/90◦/0◦ composite cylindrical shell with moisture content
Mt = +1%, andMb = +0.5% for m = n = 1. Three-dimensional uncoupled hygro-elastic models
from [21] with the moisture content profile assumed to be linear (3D (Ma)), defined via the one-
dimensional Fick diffusion relation (3D (Mc,1D)) and via the three-dimensional Fick diffusion relation
(3D (Mc,3D)).

Rα/h 4 10 50 100 500

M(%) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,1D) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,3D) [21] 0.6850 0.7389 0.7495 0.7499 0.7500
3D-u-M 0.6850 0.7389 0.7495 0.7499 0.7500

u (mm) in z̃ = +h/3, α = 0 and β = b/2

3D (Ma) [21] −1.643 −1.243 2.555 5.167 6.794
3D (Mc,1D) [21] −1.643 −1.243 2.555 5.167 6.794
3D (Mc,3D) [21] −1.514 −1.224 2.554 5.167 6.794
3D-u-M −1.514 −1.224 2.554 5.167 6.794

w (mm) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] −3.061 −2.621 8.252 16.11 21.17
3D (Mc,1D) [21] −3.061 −2.621 8.252 16.11 21.17
3D (Mc,3D) [21] −2.838 −2.582 8.249 16.11 21.17
3D-u-M −2.838 −2.582 8.249 16.11 21.17

σzz (MPa) in z̃ = +2h/3, α = a/2 and β = b/2

3D (Ma) [21] −1.314 −0.5024 −0.1344 −0.06058 −0.007403
3D (Mc,1D) [21] −1.314 −0.5024 −0.1344 −0.06058 −0.007403
3D (Mc,3D) [21] −1.207 −0.4957 −0.1343 −0.06057 −0.007403
3D-u-M −1.207 −0.4957 −0.1343 −0.06057 −0.007403

σββ(MPa) in z̃ = +h, α = a/2 and β = b/2

3D (Ma) [21] −25.79 −26.27 −25.90 −25.73 −25.75
3D (Mc,1D) [21] −25.79 −26.27 −25.90 −25.73 −25.75
3D (Mc,3D) [21] −25.86 −26.28 −25.90 −25.73 −25.75
3D-u-M −25.86 −26.28 −25.90 −25.73 −25.75

γαβ(10−3) in z̃ = 0, α = 0 and β = 0

3D (Ma) [21] −1.026 −0.7063 −0.2706 −0.07889 0.01048
3D (Mc,1D) [21] −1.026 −0.7063 −0.2706 −0.07889 0.01048
3D (Mc,3D) [21] −0.9645 −0.6992 −0.2705 −0.07888 0.01048
3D-u-M −0.9645 −0.6992 −0.2705 −0.07888 0.01048

The last benchmark investigates a composite three-layered spherical shell panel with
simply supported sides (see Figure 1). Geometrical data are available in column B4 of
Table 2 and the material properties are written in Table 3 (Composite One column). The results
in Figure 8 demonstrate that the moisture content profile is linear when the spherical shell
panel is thin. The material layer effect is not visible because the material of each physical
layer is always the same and the change in the fiber orientation angle from 0◦ to 90◦ has
no effects on material properties. This feature means that only the thickness layer effect
is visible. For the thick configurations, the (Mc,3D) and (u-M) profiles give different
trends with respect to the (Mc,1D) and (Ma) cases because the thickness layer effect is
evident. The displacement, stress, and strain components for different thickness ratios
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Rα/h are given in Table 9, where it is clear that for thick cases, the thickness layer effect is
the only effect acting due to the particular material configuration. Displacement and stress
component evaluations through the thickness direction shown in Figure 9 remark these
effects. Moisture content, in-plane displacement, transverse displacement, and transverse
shear stress components are not discontinuous because the congruence and equilibrium
conditions have been correctly imposed in the mathematical formulation. In-plane strain
shows two discontinuities in correspondence with the two physical interfaces where the
composite material changes the fiber orientation. Typical zigzag effects due to the transverse
anisotropy are shown in Figure 9 and load boundary conditions are fully satisfied in terms
of the σzz stress component.

Table 8. Benchmark number three, 0◦/90◦/0◦/90◦ composite cylinder with moisture content
Mt = +1% andMb = +0.5% for m = 2 and n = 1. Three-dimensional uncoupled hygro-elastic
models from [21] with the moisture content profile assumed to be linear (3D(Ma)), defined via the
one-dimensional Fick diffusion relation (3D (Mc,1D)) and via the three-dimensional Fick diffusion
relation (3D (Mc,3D)).

Rα/h 4 10 50 100 500

M(%) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,1D) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,3D) [21] 0.7354 0.7476 0.7499 0.7500 0.7500
3D-u-M 0.7354 0.7476 0.7499 0.7500 0.7500

v (mm) in z̃ = +3h/4, α = a/2 and β = 0

3D (Ma) [21] −1.133 −1.252 −1.281 −1.283 −1.284
3D (Mc,1D) [21] −1.133 −1.252 −1.281 −1.283 −1.284
3D (Mc,3D) [21] −1.117 −1.249 −1.281 −1.283 −1.284
3D-u-M −1.117 −1.249 −1.281 −1.283 −1.284

w (mm) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] 2.109 2.479 2.672 2.696 2.715
3D (Mc,1D) [21] 2.109 2.479 2.672 2.696 2.715
3D (Mc,3D) [21] 2.080 2.473 2.672 2.696 2.715
3D-u-M 2.080 2.473 2.672 2.696 2.715

σzz (103 Pa) in z̃ = +h/4, α = a/2 and β = b/2

3D (Ma) [21] −680.9 172.3 95.63 51.54 10.90
3D (Mc,1D) [21] −680.9 172.3 95.63 51.54 10.90
3D (Mc,3D) [21] −664.4 172.2 95.62 51.54 10.90
3D-u-M −664.4 172.2 95.62 51.54 10.90

σαβ(103 Pa) in z̃ = 0, α = 0 and β = 0

3D (Ma) [21] −703.8 −164.1 −24.90 −12.15 −2.389
3D (Mc,1D) [21] −703.8 −164.1 −24.90 −12.15 −2.389
3D (Mc,3D) [21] −692.9 −163.7 −24.90 −12.15 −2.389
3D-u-M −692.9 −163.7 −24.90 −12.15 −2.389

γβz(10−5) in z̃ = +h/3, α = a/2 and β = 0

3D (Ma) [21] 15.59 6.534 1.258 0.6243 0.1241
3D (Mc,1D) [21] 15.59 6.534 1.258 0.6243 0.1241
3D (Mc,3D) [21] 15.46 6.525 1.257 0.6243 0.1241
3D-u-M 15.46 6.525 1.257 0.6243 0.1241
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Table 9. Benchmark number four, 0◦/90◦/0◦ composite spherical shell with moisture content
Mt = +1% andMb = +0.5% for m = n = 1. Three-dimensional uncoupled hygro-elastic mod-
els from [21] with the moisture content profile assumed to be linear (3D (Ma)), defined via the
one-dimensional Fick diffusion relation (3D (Mc,1D)) and via the three-dimensional Fick diffusion
relation (3D (Mc,3D)).

Rα/h 4 10 50 100 500

M(%) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,1D) [21] 0.7500 0.7500 0.7500 0.7500 0.7500
3D (Mc,3D) [21] 0.6390 0.7301 0.7492 0.7498 0.7500
3D-u-M 0.6390 0.7301 0.7492 0.7498 0.7500

v (mm) in z̃ = +h/3, α = a/2 and β = 0

3D (Ma) [21] −0.8904 −0.6471 −0.2607 −0.2528 −0.2663
3D (Mc,1D) [21] −0.8904 −0.6471 −0.2607 −0.2528 −0.2663
3D (Mc,3D) [21] −0.7641 −0.6328 −0.2606 −0.2528 −0.2663
3D-u-M −0.7641 −0.6328 −0.2606 −0.2528 −0.2663

w (mm) in z̃ = +h/2, α = a/2 and β = b/2

3D (Ma) [21] −0.1617 0.3608 1.651 1.703 1.681
3D (Mc,1D) [21] −0.1617 0.3608 1.651 1.703 1.681
3D (Mc,3D) [21] −0.0540 0.3680 1.650 1.703 1.681
3D-u-M −0.0540 0.3680 1.650 1.703 1.681

σzz (103 Pa) in z̃ = +h/3, α = a/2 and β = b/2

3D (Ma) [21] −1080 −553.0 −59.78 −20.61 −2.559
3D (Mc,1D) [21] −1080 −553.0 −59.78 −20.61 −2.559
3D (Mc,3D) [21] −958.4 −544.2 −59.76 −20.60 −2.559
3D-u-M −958.4 −544.2 −59.76 −20.60 −2.559

σβz(103 Pa) in z̃ = +2h/3, α = a/2 and β = 0

3D (Ma) [21] −4584 −2144 −463.4 −233.6 −46.95
3D (Mc,1D) [21] −4584 −2144 −463.4 −233.6 −46.95
3D (Mc,3D) [21] −4312 −2121 −463.1 −233.6 −46.95
3D-u-M −4312 −2121 −463.1 −233.6 −46.95

γαα(10−4) in z̃ = +h, α = a/2 and β = b/2

3D (Ma) [21] 2.998 2.315 1.370 1.118 0.9025
3D (Mc,1D) [21] 2.998 2.315 1.370 1.118 0.9025
3D (Mc,3D) [21] 2.801 2.280 1.369 1.117 0.9025
3D-u-M 2.801 2.280 1.369 1.117 0.9025
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Figure 5. Benchmark number two (0◦/90◦/0◦ composite cylindrical shell panel), displacement
components, and stress components for a moderately thick (Rα/h = 10) case. The coupled model
3D-u-M is used to compute these trends along the z direction. Maximum values: v in (a/2,0); w,M,
σαα and σzz in (a/2,b/2); σαβ in (0,0).
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Figure 6. Benchmark number three (0◦/90◦/0◦/90◦ composite cylinder), moisture content profiles
for two different Rα/h ratios. Maximum value ofM(α, β, z) is evaluated in the center of the structure
(α = +a/2, β = +b/2).



J. Compos. Sci. 2023, 7, 183 23 of 27

4.5 5 5.5 6 6.5 7 7.5

u [m] 10
-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

u displacement component

u

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

w [m] 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

w displacement component

w

0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

M moisture content profile

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

 [Pa] 10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

 stress component

-3 -2 -1 0 1 2 3 4 5 6

zz
 [Pa] 10

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

zz
 stress component

zz

-5 -4 -3 -2 -1 0 1 2

z
10

-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

z
 strain component

z

Figure 7. Benchmark number three (0◦/90◦/0◦/90◦ composite cylinder), displacement components,
stress components, and strain component for a moderately thick (Rα/h = 10) case. The coupled model
3D-u-M is used to compute these trends along the z direction. Maximum values: u in (0,b/2); w,M,
σββ and σzz in (a/2,b/2); γαz in (a/2,0).
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Figure 8. Benchmark number four (0◦/90◦/0◦ composite spherical shell), moisture content profiles
for two different Rα/h ratios. Maximum value ofM(α, β, z) is evaluated in the center of the structure
(α = +a/2, β = +b/2).
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Figure 9. Benchmark number four (0◦/90◦/0◦ composite spherical shell), displacement components,
stress components, and strain component for a moderately thick (Rα/h = 10) case. The coupled model
3D-u-M is used to compute these trends along the z direction. Maximum values: v in (a/2,0); w,M,
σzz and εββ in (a/2,b/2); σαz in (0,b/2).

5. Conclusions

A fully coupled hygro-elastic 3D exact shell model for the static analysis of one-
layered and multilayered isotropic, sandwich, and composite plates and shells has been
discussed. The moisture content environment influences the external faces of the structures
under steady-state conditions. The moisture content profile is evaluated through the
thickness direction. The moisture content profile is a primary variable of the problem as
the displacements: the 3D Fick equation and the 3D equilibrium equations for the shells
are coupled. The 3D Fick equation allows a moisture content profile able to consider both
the thickness layer and material layer effects for each possible configuration. The coupled
system is solved in a closed form thanks to the exponential matrix method and harmonic
forms for each variable. Several results, in terms of displacements, in-plane and out-of-
plane stresses, and moisture content profiles have been discussed for different thickness
ratios, geometrical properties, lamination sequences, moisture impositions, and materials.
These analyses showed a complete match between the 3D uncoupled model that uses the
3D Fick diffusion relation and the 3D fully coupled model developed in this paper. This
new method takes into account both the thickness and the material layer effects using a
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mathematical formulation that is simpler and more elegant because the 3D Fick diffusion
relation is not separately solved via an external method. Moreover, a reduced number of
mathematical layers F is requested in comparison with the uncoupled 3D model.
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