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A Polarized Temporal Network Model to Study
the Spread of Recurrent Epidemic Diseases

in a Partially Vaccinated Population
Kathinka Frieswijk, Student Member, IEEE, Lorenzo Zino, Member, IEEE, and Ming Cao, Fellow, IEEE

Abstract—Motivated by massive outbreaks of COVID-19 that occurred even in populations with high vaccine uptake, we propose a
novel multi-population temporal network model for the spread of recurrent epidemic diseases. We study the effect of human behavior,
testing, and vaccination campaigns on infection prevalence and local outbreak control. Our modeling framework decouples a vaccine’s
effectiveness in protecting against transmission and severe symptom development. Additionally, it captures the polarizing effect of
vaccination decisions and homophily, i.e., people’s tendency to interact with like-minded individuals. Through a mean-field approach,
we analytically derive the epidemic threshold and, under further assumptions, we compute the endemic equilibrium. Our results show
that while vaccination campaigns are highly beneficial in reducing pressure on hospitals, they may also facilitate resurgent outbreaks,
particularly in the absence of effective testing campaigns. Subsequently, we employ numerical simulations to confirm and extend our
theoretical findings to more realistic scenarios. Our analytical and numerical results demonstrate that vaccination programs are crucial,
but as a sole control measure, they are not sufficient to achieve disease eradication without employing massive testing campaigns or
relying on the population’s responsibility. Furthermore, we show that homophily impedes local outbreak control, highlighting the peril of
a polarized network structure.

Index Terms—Epidemics, homophily, network dynamics, temporal network, vaccination

✦

1 INTRODUCTION

IN response to the COVID-19 pandemic that emerged
in Wuhan, China, in December 2019, an unprecedented

effort has been made toward developing a vaccine in record
time [2]. Although current COVID-19 vaccines are highly
effective against severe symptom development—thereby re-
ducing the number of deaths and pressure on hospitals—
they provide limited protection against transmission, espe-
cially concerning the new variants that became dominant
in 2021–22 [3], [4]. As massive outbreaks have occurred
in populations with high vaccination coverage [4], it begs
the following question: is it possible to eradicate the pandemic
by solely relying on vaccination programs? If not, could testing
campaigns and human behavior be pivotal to achieving this goal?

To study the dynamics of the spread of a disease, it is
common practice to use mathematical modeling. In par-
ticular, epidemic models on networks have emerged as a
framework to successfully incorporate the mobility patterns
of human-to-human interaction that serve as a pathway for
the conveyance of disease [5], [6], [7], [8], [9]. Among the
reasons for their success, network epidemic models allow
for the development of tractable and analytically rigorous
mathematical frameworks to study the spread of epidemic
diseases [10], [11], [12] and to construct policies to control

• Some preliminary results have appeared in [1], in the form of a con-
ference paper. KF and MC are with the Engineering and Technology
Institute Groningen, University of Groningen, Groningen, The Nether-
lands, e-mail: {k.frieswijk,m.cao}rug.nl. LZ was with the
Engineering and Technology Institute Groningen, University of Gronin-
gen, Groningen, The Netherlands; currently, he is with the Department
of Electronics and Telecommunications, Politecnico di Torino, Torino,
Italy, e-mail: lorenzo.zino@polito.it. The work was partially
supported by the European Research Council (ERC–CoG–771687).

them [13]. Moreover, they are open to several extensions
toward the inclusion of real-world features, e.g., by adding
a state of awareness in which individuals adopt preventive
behavior [14]. Previously, network epidemic models were
successfully employed to study the effect of vaccination
campaigns [15], [16], [17]. Recently, they have been applied
to study the COVID-19 pandemic, to support governments
in designing effective control strategies [18], [19], [20], [21].

Motivated by the questions formulated above, we pro-
pose a multi-population network model to investigate the
roles of vaccination programs, testing campaigns, and hu-
man behavior in the spread of recurrent epidemic diseases,
which include infections caused by fast-mutating viruses
(e.g., influenza viruses). Our model extends the standard
susceptible–infected–susceptible (SIS) model by incorporat-
ing two distinct compartments for mildly symptomatic and
severely symptomatic infected individuals, where the latter
are in quarantine. The proposed framework, referred to
as the susceptible–infected–quarantined–susceptible (SIQS)
model, includes a responsibility level, reflecting the extent
to which mildly symptomatic individuals do not overlook
their symptoms and adhere to preventive measures to avoid
transmission. Within our modeling framework, we inves-
tigate the co-evolution of the progression of the epidemic
and the network of human-to-human interactions, utilizing
a network formation process that is based on continuous-
time activity-driven networks [22], [23]. We evaluate two
measures to control the spreading of the infection. First,
we consider vaccination programs, where we assume that
a fixed part of the population is vaccinated. The effect of
vaccination is modeled through the parsimonious addition
of two distinct parameters to elegantly decouple effects on
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reducing contagion and protecting against severe symp-
toms. Second, we consider testing campaigns, which identify
and isolate mildly symptomatic infected individuals.

Despite a consensus among the scientific community
that vaccines approved by public health authorities are
effective and safe, the debate on whether to vaccinate is
very polarizing, and individuals with similar attitudes to-
ward vaccination prefer to interact with one another [24],
[25], [26], [27]. Here, we investigate the effect that this
phenomenon of homophily has on the spread of epidemic
diseases by developing a mathematical model that encapsu-
lates such a phenomenon. Specifically, we expand our pre-
liminary model [1] by embedding it in a multi-population
network scenario that accounts for the polarizing effect of
the vaccination decision, capturing the tendency of individ-
uals to establish more interactions with like-minded people.

Employing a mean-field approach on a large popula-
tion [28], [29], we perform a theoretical analysis of our
network model and derive a closed-form expression for
the epidemic threshold. Such an analytical expression sheds
light on the roles of network polarization, population re-
sponsibility, and vaccination in controlling local outbreaks.
Next, we analyze the system behavior above the epidemic
threshold, characterizing the endemic equilibrium (EE) un-
der some additional assumptions. Finally, we numerically
investigate a generalization of our SIQS model that encap-
sulates (temporary) natural immunity after recovery, with
parameters calibrated on the COVID-19 pandemic.

Our theoretical results suggest that—while vaccination
is beneficial in reducing the number of deaths—its role
in controlling local outbreaks is not straightforward and
depends on individuals’ responsibility levels and the char-
acteristics of both the vaccine and the infection. Hence,
in some cases, relying only on vaccination could act as a
double-edged sword, hindering the complete eradication
of the disease. To compensate for this, the simultaneous
implementation of massive testing campaigns is essential.
Our simulations provide further insights into the role of
human behavior. Notably, they suggest that responsibility
is vital; for low responsibility levels, it is impossible to
eradicate the infection without employing massive testing
campaigns. Furthermore, both our theoretical and numerical
results show that a high degree of homophily facilitates the
spreading of a disease. Thus, our results underline the peril
of polarization, with clusters of individuals who disregard
vaccines and the use of protective measures.

The rest of the paper has the following organization.
Section 2 introduces the notation and some mathematical
preliminaries. Section 3 illustrates our modeling framework.
Next, Section 4 presents the model analysis and main
theoretical results. Subsequently, Section 5 discusses our
numerical findings, and the paper is concluded in Section 6.

2 NOTATION AND PRELIMINARIES

Here, we gather some notational conventions and present
classical properties of Poisson processes used in the rest
of the paper (see [30], [31] for more details on stochastic
processes).

Let R≥0 and R>0 denote the sets of non-negative and
strictly positive real numbers, respectively. Let Z≥0 de-
note the set of non-negative integers. Given a function

x(t) with t ∈ R≥0, we define x(t+) = lims↘t x(s), and
x(t−) = lims↗t x(s). Given an event E, we denote by P[E]
the probability that E occurs. Given a random variable X ,
we denote its expected value by E[X].

Definition 1. A Poisson clock with (possibly time-varying) rate
γ(t) is a continuous-time stochastic process, represented by its
counting process N(t) ∈ Z≥0. Specifically, N(t) is a non-
decreasing function that satisfies

P[N(t+∆t)−N(t) = 1] =

∫ t+∆t

t
γ(t) dt+ o(∆t) , (1)

for ∆t ∈ R>0, where the Landau little-o notation o(∆t) is
associated with the limit ∆t ↘ 0; hence, lim∆t↘0 P[N(t +
∆t) − N(t) = 1]/∆t = γ(t). If N(t) has an increment at
time t ∈ R≥0, we say that the clock ticks at time t.

Proposition 1 (Flow aggregation). Let E be an event triggered
by the first tick of a set of independent Poisson clocks with rates
γ1(t), . . . , γℓ(t). Then, event E can be equivalently described as
triggered by a Poisson clock with a rate of γE(t) :=

∑ℓ
h=1 γh(t).

Proposition 2 (Flow splitting). Let E be an event that occurs
with probability p ∈ [0, 1] if a Poisson clock with a rate of γ(t)
ticks, where p is independent of the Poisson clock. Then, E occurs
if triggered by a Poisson clock with a rate equal to γE := pγ.

Definition 2. A continuous-time stochastic process X(t) with
the state space A is a Markov process if for any states h, k ∈ A,
the transition from h to k is triggered by an independent Poisson
clock with a rate of qhk(t). The transition rates are gathered in the
transition rate matrix Q(t) ∈ R|A|×|A|.

3 MODEL

We extend the traditional network SIS model [9] by separat-
ing infected individuals into two distinct compartments: i)
infectious individuals, who are untested and mildly symp-
tomatic, and ii) quarantined individuals, who are in isolation
due to a positive test result or because they are severely
symptomatic. In the rest of this section, we will present all
the details of our multi-population SIQS model.

3.1 Multi-population model

We consider a population of n individuals V = {1, . . . , n},
where the individuals are connected through a time-varying
undirected network G(t) := (V, E(t)), which evolves in
continuous time t ∈ R≥0. Each j ∈ V has a health state
Xj(t) ∈ {S, I,Q}, where S, I, and Q denote a susceptible, in-
fectious, and quarantined infected health state, respectively.

According to their vaccination status, individuals are
partitioned into two subpopulations: i) a fully vaccinated
subpopulation of size nv ∈ {1, . . . , n − 1}, and ii) a non-
vaccinated subpopulation of size n − nv. Without any loss
of generality, we assume that individuals Vv := {1, . . . , nv}
belong to the first subpopulation, while individuals Vn :=
{nv + 1, . . . , n} belong to the second one. Let v := nv

n ∈
(0, 1) be the vaccination coverage of the population. Thus,
(V, v) fully characterizes the multi-population model.

Transmission of the disease transpires via pairwise inter-
actions at close distances, which occur at a timescale com-
parable with the epidemic spreading. Such an interaction
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is henceforth named contact. These contact moments are
modeled via a time-varying undirected network G(t) :=
(V, E(t)), with t ∈ R≥0, where the time-varying edge set
E(t) denotes the close interactions between individuals at
time t. Specifically, {j, k} ∈ E(t) if and only if individuals j
and k interact in close proximity (that is, they have contact)
at time t. As is the case for many infectious diseases, the
network formation process and the disease transmission
process not only evolve at comparable timescales, but they
are also deeply intertwined, as we detail in the following.

3.2 Network formation

To reflect an individual’s tendency to interact with like-
minded individuals from their subpopulation, we introduce
a parameter θ ∈ [0, 1). Interactions take place stochasti-
cally, inspired by activity-driven networks in continuous
time [32]. Each individual has a unit rate Poisson clock that
ticks independently of other individuals’ clocks. When the
clock ticks, the individual initiates an interaction. Specifi-
cally, if the clock associated with j ∈ V ticks at time t ∈ R≥0,
then j activates and interacts with another individual k that
is chosen according to a probabilistic rule: with probability
θ, k is selected uniformly at random from j’s subpopulation,
while with probability 1 − θ, k is chosen uniformly at
random from the entire population. Hence, positive values
of θ capture the presence of homophily in the population,
similar to [33].

Whether the individuals have close contact depends on
the health state and responsibility levels of the individuals
involved. In particular, we assume that any quarantined
individual j (Xj(t) = Q) does not interact with others at a
close distance. Infectious individuals with mild symptoms
(j : Xj(t) = I) can be near others, however. Whether
they have contact with others depends on the individuals’
level of responsibility. Specifically, let σj ∈ [0, 1] denote the
responsibility of individual j ∈ V . If an infected individual j
is mildly symptomatic (Xj(t) = I), they refrain from having
contact with probability σj ; with probability 1 − σj , they
disregard their symptoms and do not maintain physical
distance while interacting. We assume that the decision to
maintain physical distance or not is made independently of
the past and other individuals.

To be precise, if a susceptible individual j (Xj(t
−) = S)

activates and selects a mildly symptomatic infectious indi-
vidual k (Xk(t

−) = I) at time t− ∈ R≥0, then they are
in contact at time t with a probability of 1 − σk; if k is
susceptible (Xk(t

−) = S), then they always have contact
at time t. If a mildly symptomatic infectious individual
j (Xj(t

−) = I) activates and interacts with a susceptible
individual k (Xk(t

−) = S) at time t− ∈ R≥0, then they
have contact at time t with probability 1− σj ; if k is mildly
symptomatic too (Xk(t

−) = I), then they have contact at
time t with probability (1 − σj)(1 − σk) (i.e., if they both
ignore the symptoms). Finally, we recall our assumption that
quarantined individuals (j : Xj(t

−) = Q) always maintain
distance, and thus, they do not establish any contact. If indi-
viduals j and k are in contact at time t, then the ephemeral
edge {j, k} is included in the set E(t), and subsequently,
instantaneously removed from the edge set E(t+).

TABLE 1: Model and control parameters.

n ∈ N population size
t ∈ R≥0 time

Xj(t) health state of individual j ∈ V at time t
(V, E(t)) contact network (interactions in close proximity)
v ∈ (0, 1) vaccination coverage
Vv ⊂ V vaccinated subpopulation
Vn ⊂ V non-vaccinated subpopulation

σj ∈ [0, 1] responsibility level of individual j ∈ V
σv ∈ [0, 1] responsibility level of vaccinated individuals
σn ∈ [0, 1] responsibility level of non-vaccinated individuals
λ ∈ (0, 1] per-contact infection probability
pq ∈ [0, 1] probability of severe illness
β ∈ R>0 recovery rate
γt ∈ [0, 1] effectiveness of vaccine against transmission
γq ∈ [0, 1] effectiveness of vaccine against severe illness
τ ∈ R≥0 testing rate
θ ∈ [0, 1) homophily level with respect to interactions

3.3 Disease transmission and control
The evolution of the health state of each individual j ∈ V
is governed by the following two natural mechanisms (con-
tagion and recovery) and free testing campaigns, where we
interpret the latter’s intensity as a control input.

Contagion. Transmission of the infection occurs through
close contact. Here, we assume that a positive vaccination
status reduces i) the risk of becoming infected and ii) the
risk of developing severe illness if infected. To model these
effects, we introduce two parameters: γt ∈ [0, 1] and γq ∈
[0, 1], respectively. Specifically, the contagion process acts
as follows. If a susceptible individual j (Xj(t

−) = S) has
contact with a mildly symptomatic infectious individual k
(Xk(t

−) = I) at time t, so {j, k} ∈ E(t), then j becomes
infected with per-contact infection probability λ ∈ (0, 1] if j
is not vaccinated. If j is vaccinated, such a probability is
reduced to λ(1− γt) ∈ [0, 1].

If the infection is transmitted, individual j will either
move to health state I or to Q. Specifically, the individual
will become severely symptomatic (Xj(t

+) = Q) with
probability pq ∈ [0, 1] if j is not vaccinated, while this
probability is reduced to pq(1−γq) ∈ [0, 1] if j is vaccinated.
Otherwise, the individual becomes infectious with mild
symptoms (Xj(t

+) = I).
Recovery. An infected individual j ∈ V with Xj(t

−) ∈
{I,Q} spontaneously recovers when a Poisson clock with
a rate of β ∈ R>0 ticks, thereby returning to a susceptible
health state (Xj(t

+) = S).
Testing. The implementation of free testing campaigns

induces mildly symptomatic infectious individuals to get
tested. To model the effect of free testing, we employ a Pois-
son clock with a rate of τ ∈ R≥0, representing the testing
rate. Hence, an infectious individual j with mild symptoms
(Xj(t

−) = I) receives a diagnosis when a Poisson clock
with a rate of τ ticks. After being diagnosed, j goes in
quarantine (Xj(t

+) = Q) and maintains physical distance
from other individuals until recovery takes place. Here, we
assume perfect testing, but further testing features such as
false negatives could readily be incorporated by adding
extra probabilistic mechanisms (e.g., see [34]).

Table 1 presents a summary of all the parameters. Note
that all parameters with a domain in [0, 1] or [0, 1) are
interpreted as probabilities.

Before presenting the analysis of the dynamics and our
main theoretical results, we would like to comment that our
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modeling framework is adaptable to several extensions and
generalizations toward even more realistic settings.

Remark 1. Our model fits the implementation of non-
pharmaceutical interventions by introducing a parameter η ∈
[0, 1] that captures their effectiveness in reducing the per-contact
infection probability, similar to [1], [18]. By replacing all the
occurrences of λ with (1 − η)λ, we effortlessly extend all our
analytical findings to this scenario.

Remark 2. Without changing the fabric of our modeling frame-
work, we can capture further features of epidemic diseases by in-
corporating additional health states and transitions. For instance,
we may capture temporary or permanent natural immunity after
recovery by adding a health state and extending our SIQS model
to a SIQR(S) model, which has been proven effective in modeling
the COVID-19 spread [19], [20], [35]. Furthermore, one can
introduce heterogeneity in the recovery rate to represent, e.g., the
effect of a vaccine in reducing the illness duration.

Remark 3. Although we assumed it to be constant here, the
responsibility level of any individual j ∈ V , σj , may be time-
varying in general, influenced by co-evolving opinion formation
processes and the epidemic spreading. To model such a temporal
evolution, one could directly incorporate opinion dynamics [36],
[37] or game-theoretic update mechanisms [38], [39], [40], [41]
within the modeling framework.

While the extension in Remark 1 is straightforward, the
others may complicate or hinder the analytical tractability of
the system. For this reason, we will perform the theoretical
analysis of the original implementation of the SIQS model in
the following sections, which one could interpret as a worst-
case scenario for a model with natural immunity (such
as a SIQR(S) model). Subsequently, we will embark on a
case study in Section 5, employing numerical simulations to
investigate the generalization discussed in Remark 2.

3.4 Dynamics

All the mechanisms described in Section 3.3 are induced by
independent Poisson clocks, which implies that the evolu-
tion of the n-dimensional state

X(t) := [X1(t), X2(t), . . . , Xn(t)] ∈ {S, I,Q}n

is governed by a continuous-time Markov process [31].
Each individual can experience five distinct state tran-

sitions (illustrated in the diagram in Fig. 1), triggered by
the processes of contagion, recovery, and testing. The two
transitions triggered by recovery (from I and Q to S) and the
one triggered by testing (from I to Q) solely involve spon-
taneous mechanisms. Hence, these three transition rates
simply amount to the rates of the corresponding Poisson
processes that trigger them. On the contrary, the two transi-
tions induced by contagion (from S to I and Q) are related
to the individual’s vaccination status, interactions between
individuals, and the health states of the others. Hence, they
have a more intricate time-varying expression, as is shown
in Proposition 3. For the sake of readability, we omit to
stress that the rates and the health states of individuals are
functions of time.

Proposition 3. A non-vaccinated individual j with Xj(t
−) = S

becomes infectious (Xj(t
+) = I) according to a Poisson clock

with a rate of

κn,j :=2λ (1− pq) (2)

·
[

θ
n(1−v)−1

∑
k∈Vn:Xk=I

(1− σk) +
1−θ
n−1

∑
k∈V:Xk=I

(1− σk)

]
,

while they become quarantined (Xj(t
+) = Q) with a rate of

νn,j :=2λpq (3)

·
[

θ
n(1−v)−1

∑
k∈Vn:Xk=I

(1− σk) +
1−θ
n−1

∑
k∈V:Xk=I

(1− σk)

]
,

A susceptible vaccinated individual j (Xj(t
−) = S) becomes

infectious (Xj(t
+) = I) according to a Poisson clock with a rate

of

κv,j :=2λ(1− γt)
(
1− pq(1− γq)

)
(4)

·
[

1−θ
n−1

∑
k∈V:Xk=I

(1− σk) +
θ

nv−1

∑
k∈Vv:Xk=I

(1− σk)

]
,

while they become quarantined (Xj(t
+) = Q) with a rate of

νv,j :=2λ(1− γt)pq(1− γq) (5)

·
[

1−θ
n−1

∑
k∈V:Xk=I

(1− σk) +
θ

nv−1

∑
k∈Vv:Xk=I

(1− σk)

]
.

Proof. Let us focus on the transition rates of a susceptible,
non-vaccinated individual j. These transitions occur due to
moments of contact between j and an infectious individual,
which take place if one of the following mutually exclusive
events happens: i) j activates, decides to interact only within
its subpopulation, selects an infected individual in Vn, and
the latter decides to have contact (i.e., to disregard physical
distance); ii) an infected individual in Vn activates, interacts
only within its subpopulation, selects j, and the former de-
cides to have contact; iii) j activates, interacts disregarding
the subpopulation structure with an infected individual in
V , who decides to have contact; iv) an infected individual
in V activates, interacts disregarding the subpopulation
structure with j, and the former decides to have contact.

We observe that i) takes place if three independent events
occur: E1, the activation of j, which is triggered by a unit
rate Poisson clock; E2, the decision to interact only in the
community, which occurs with probability P[E2] = θ; and
E3, the selection of an infected individual k ∈ Vn who
decides to have close contact, which occurs with probability

P[E3] =
1

n(1− v)− 1

∑
k∈Vn:Xk=I

(1− σk). (6)

The flow splitting property in Proposition 2 allows us to
compute the total rate associated with event i) as the product
between the rate of event E1 and the splitting probabilities
P[E2] and P[E3]. Similarly, we compute the rate associated
with ii), iii), and iv). Next, we apply the flow aggregation
property in Proposition 1 to find the rate related to the
occurrence of contact between j and an infected individual;
that is, by summing the rates corresponding to the four
mutually exclusive events i)–iv), we obtain the rate

χ := 2θ
n(1−v)−1

∑
k∈V:Xk=I

(1− σk) + 2 1−θ
n−1

∑
k∈Vv:Xk=I

(1− σk). (7)
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IS Q
κα,j

να,j

τ
β

β

Fig. 1: State transitions of the epidemic model for an indi-
vidual j ∈ Vα with a vaccination status α ∈ {n, v}.

Finally, note that a non-vaccinated individual j becomes
infectious (I) after contact with an infected individual with
probability λ (1− pq), while j becomes quarantined (Q)
with probability λpq. By the flow splitting property in
Proposition 2, we obtain (2) and (3). Likewise, we derive
(4) and (5) for a susceptible vaccinated individual.

For a generic individual j ∈ V , the transition rate matrix
of the Markov process Xj(t) is given by

Qα,j =

−κα,j − να,j κα,j να,j
β −β − τ τ
β 0 −β

 , (8)

where α ∈ {n, v} is the vaccination status of j, and the rows
(columns) correspond to states S, I, and Q, respectively.

The first row of (8) depends on the states of the other
population members, making it impossible to decouple
the individual dynamics. For a large-scale population, this
impedes the analysis, as the dimension of the state space
X(t) increases exponentially with n. Hence, as is standard
practice [28], we employ a mean-field approach, which will
be key to deriving analytical results. Rather than studying
how the health state of an individual j ∈ V evolves,
we study the evolution of the probability that j is in a
particular health state, where there is a probability assigned
to every health state. Specifically, for any vaccination status
α ∈ {n, v} and individual j ∈ V , we define the probability
that j is susceptible, infectious, or quarantined as

sα,j(t) := P [Xj(t) = S, j ∈ Vα] ,
iα,j(t) := P [Xj(t) = I, j ∈ Vα] ,
qα,j(t) := P [Xj(t) = Q, j ∈ Vα] ,

(9)

respectively, where sv,j(t) = iv,j(t) = qv,j(t) = 0 if j ∈ Vn,
and sn,j(t) = in,j(t) = qn,j(t) = 0 if j ∈ Vv.

4 ANALYSIS AND MAIN RESULTS

In this section, we present our main theoretical results.
To reduce the number of parameters, we now assume a
homogeneous responsibility level within a subpopulation,
as summarized in Assumption 1.

Assumption 1. Let σi = σv ∈ [0, 1] for all i ∈ Vv, and σj =
σn ∈ [0, 1] for all j ∈ Vn, which denote the responsibility level of
vaccinated and non-vaccinated individuals, respectively.

4.1 Mean-field dynamics
By taking a mean-field approach, we study the evolution of
the probabilities in (9). Their evolution is approximated by
their expected dynamics [28], [29], i.e.,

(ṡv,j i̇v,j q̇v,j) = (sv,j iv,j qv,j)E[Qv,j ] ,

(ṡn,j i̇n,j q̇n,j) = (sn,j in,j qn,j)E[Qn,j ] ,
(10)

which yields the following dynamical system.

Proposition 4. Let Assumption 1 hold. In the mean-field approx-
imation, (9) follows

ṡn,j = −λᾱn,jsn,j + βin,j + βqn,j ,

i̇n,j = (1− pq)λᾱn,jsn,j − (β + τ)in,j ,

q̇n,j = pqλᾱn,jsn,j + τin,j − βqn,j , (11)
ṡv,j = −λ (1− γt) ᾱv,jsv,j + βiv,j + βqv,j ,

i̇v,j = [1− pq (1− γq)]λ (1− γt) ᾱv,jsv,j − (β + τ)iv,j ,

q̇v,j = pq (1− γq)λ (1− γt) ᾱv,jsv,j + τiv,j − βqv,j ,

for all j ∈ V , where

ᾱn,j :=2(1− σn)

[
θ

n(1− v)− 1
+

1− θ

n− 1

] ∑
k∈V\{j}

in,k

+ 2(1− σv)
1− θ

n− 1

∑
k∈V\{j}

iv,k, (12)

ᾱv,j :=2(1− σn)
1− θ

n− 1

∑
k∈V\{j}

in,k

+ 2(1− σv)

[
θ

nv − 1
+

1− θ

n− 1

] ∑
k∈V\{j}

iv,k. (13)

Proof. First, we observe that the transition rates in Proposi-
tion 3 simplify under Assumption 1, as we can collect all the
similar terms in the summations and obtain, e.g.,

κn,j = 2λ (1− pq)

[
(1− σv)

1−θ
n−1

∑
k∈Vv:Xk=I

1

+ (1− σn)
(

θ
n(1−v)−1 + 1−θ

n−1

)∑
k∈Vn:Xk=I

1

]
. (14)

The same holds for the rates in Eqs. (3)–(5). Next, when
computing the entries E[κα,j ] and E[να,j ] of E[Qα,j ], note
that for any susceptible individual j ∈ V (Xj(t) = S) it
holds that

E

 ∑
k∈Vα:Xk=I

1

 =
∑

k∈V\{j}

iα,k, (15)

for a vaccination status α ∈ {n, v}. Substituting (15) into the
expected dynamics yields the rest of the proof.

From Proposition 4, we observe that the mean-field
dynamics are nontrivial. In particular, the system in Eq. (11)
has two nonlinear terms accounting for the contagion prob-
ability if j is susceptible: i) λᾱn,j if j if non-vaccinated and
ii) λ(1 − γt)ᾱv,j if j is vaccinated. These two nonlinear
terms couple the evolution of individual j with all other
individuals through the expressions in Eqs. (12)–(13).

We will now show that the system in (11) is well-defined
by showing that (sn,j in,j qn,j sv,j iv,j qv,j) is a probability
vector for all t ∈ R≥0 and j ∈ V . For this purpose, let us
define the following sets. For any j ∈ Vn, we have

Sn,j :=

(sn,j in,j qn,j sv,j iv,j qv,j)

∣∣∣∣∣∣
sn,j , in,j , qn,j ≥ 0,
sv,j = iv,j = qv,j = 0,
sn,j + in,j + qn,j = 1

,

while for any j ∈ Vv, we have

Sv,j :=

(sn,j in,j qn,j sv,j iv,j qv,j)

∣∣∣∣∣∣
sn,j = in,j = qn,j = 0,
sv,j , iv,j , qv,j ≥ 0,
sv,j + iv,j + qv,j = 1

.
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Lemma 1. For all j ∈ Vn, the set Sn,j is positive invariant under
(11). Likewise, Sv,j is positive invariant for all j ∈ Vv.

Proof. Let us consider Sn,j for any j ∈ Vn. First, note that if
one of the probabilities governed by (11) equals zero, then
its respective time-derivative is non-negative. Next, observe
that sv,j = iv,j = qv,j = 0 implies that the time-derivatives
of sv,j , iv,j , and qv,j are zero. Now note that for all j ∈ Vn,
ṡn,j + i̇n,j + q̇n,j = 0, so sn,j + in,j + qn,j = 1 for all t ∈ R≥0.
The proof works analogously for Sv,j .

To commence the mean-field analysis of the system, let
us denote the average probability for a randomly selected
individual to have vaccination status α ∈ {n, v} and be
susceptible, infectious, or quarantined as

yα,s :=
1

n

∑
j∈V

sα,j , yα,i :=
1

n

∑
j∈V

iα,j , yα,q :=
1

n

∑
j∈V

qα,j ,

(16)
respectively.

By taking a sufficiently large population size n, the
fraction of individuals in a state can be arbitrarily closely ap-
proximated by the average probability to be in that state, for
any finite time-horizon [32], [42]—that is, for an α ∈ {n, v},

Sα(t) :=
1
n |{j ∈ Vα : Xj(t) = S}| ≈ yα,s,

Iα(t) :=
1
n |{j ∈ Vα : Xj(t) = I}| ≈ yα,i,

Qα(t) :=
1
n |{j ∈ Vα : Xj(t) = Q}| ≈ yα,q,

(17)

as illustrated in Fig. 2.
Since the average probabilities in (16) adequately reflect

the state of a sufficiently large population, we now focus on
the dynamics of the macroscopic variables in (16), presented
in the following proposition.

Proposition 5. Consider the system in (11). In the thermody-
namic limit of large-scale systems n → ∞, the dynamics of (16)
are given by

ẏn,s =− 2λ
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

− 2λ(1− θ)(1− σv)yn,syv,i + βyn,i + βyn,q ,

ẏn,i =2λ(1− pq)
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

+ 2λ(1− pq)(1− θ)(1− σv)yn,syv,i − (β + τ)yn,i ,

ẏn,q =2λpq
(

θ
1−v + 1− θ

)
(1− σn)yn,syn,i

+ 2λpq(1− θ)(1− σv)yn,syv,i + τyn,i − βyn,q ,

ẏv,s =− 2λ(1− γt)(1− θ)(1− σn)yv,syn,i + βyv,i (18)

− 2λ(1− γt)
(

θ
v + 1− θ

)
(1− σv)yv,syv,i + βyv,q ,

ẏv,i =2λ(1− γt)[1− pq(1− γq)](1− θ)(1− σn)yv,syn,i

+ 2λ(1− γt)[1− pq(1− γq)]

·
(

θ
v + 1− θ

)
(1− σv)yv,syv,i − (β + τ)yv,i ,

ẏv,q =2λ(1− γt)pq(1− γq)(1− θ)(1− σn)yv,syn,i

+ 2λ(1− γt)pq(1− γq)
(

θ
v + 1− θ

)
(1− σv)yv,syv,i

+ τyv,i − βyv,q .

Proof. Computing the temporal derivatives of the expres-
sions in (16) while using Proposition 4 gives the system
presented in (18).

0 50 100 150
0

0.2

0.4

0.6

0.8

0
0

time, t

(a) α = v

0 50 100 150
0

0.1

0.2

0
0

time, t

Sα yα,s

Iα yα,i

Qα yα,q

(b) α = n

Fig. 2: Comparison of the quantities in (17) via a simu-
lation of the Markov process (solid) and its deterministic
approximation from Proposition 5 (dashed). Parameters are
n = 20 000, v = 0.8, λ = 0.2, σv = 0.7, σn = 0.2, pq = 0.2,
β = 0.02, γt = 0.5, γq = 0.9, τ = 0.05, and θ = 0.5.

Remark 4. Only 4 of the 6 equations in (18) are linearly inde-
pendent since yv,s+yv,i+yv,q = v and yn,s+yn,i+yn,q = 1−v.

4.2 Epidemic threshold

Here, we study whether a local infection outbreak leads
to endemicity in the population. Theorem 1 presents the
conditions for the epidemic threshold, which is formulated as
the testing rate τ̄ above which the disease-free equilibrium
(DFE) of (18) (with yn,i = yn,q = yv,i = yv,q = 0) is
locally asymptotically stable. If the testing rate τ exceeds
the threshold τ̄ , then the local outbreak will be eradicated.
If not, it will lead to endemicity. The proof is reported in
Appendix A.

Theorem 1. Consider the system in (18). The epidemic threshold
is equal to

τ̄ :=λξ − β + λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv),
(19)

where

ξ :=(1− pq)(1− σn)[θ + (1− θ)(1− v)] (20)
+ (1− γt)[1− pq(1− γq)](1− σv)[θ + (1− θ)v].

If τ > τ̄ , the DFE is locally asymptotically stable.

Remark 5. Observe from (19) that if the recovery rate satisfies

β > λξ+λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv), (21)

then no control is needed, since the DFE is always locally asymp-
totically stable.

Corollary 1. In the absence of homophily—i.e., if θ = 0 and
the multi-population structure does not influence individuals’
interactions—the epidemic threshold in (19) reduces to

τ∗ :=2λ(1− σn)(1− v)(1− pq) (22)
+ 2λv(1− σv)(1− γt)[1− pq(1− γq)]− β.

Although the expression of the epidemic threshold in
Theorem 1 is generally intricate, we can immediately ob-
serve the monotonicity properties in the following proposi-
tion. These properties are derived directly from the stability
analysis of the DFE, as reported in Appendix B.
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Fig. 3: The epidemic threshold τ̄ (color-coded) computed
using (19) for different values of the model parameters.
Common parameters are λ = 0.2, σv = 0.5, pq = 0.2,
β = 0.02, γt = 0.5, γq = 0.9, and τ = 0.05.

Proposition 6. An increase in the infection probability λ or
the effectiveness of the vaccine against severe illness γq leads to
an increase in the epidemic threshold τ̄ in (19). Contrarily, τ̄
decreases with increases in the recovery rate β, the effectiveness
of the vaccine against transmission γt, the responsibilities σv and
σn, and the probability of developing severe illness pq.

Proposition 6 states that while an increase in a vac-
cine’s effectiveness against transmission generally facilitates
the eradication of an epidemic outbreak, its effectiveness
against severe illness raises the threshold, hindering the
controllability of the disease. This phenomenon may arise
as infected individuals with non-severe symptoms go un-
detected, thereby fueling disease transmission, which may
help explain the epidemic outbreaks that transpired after
the COVID-19 vaccination campaign.

The impact of the remaining parameters (the vaccina-
tion coverage v and the homophily θ) is less intuitive,
however. Of particular interest is understanding the role of
vaccination coverage in facilitating or deterring epidemic
outbreaks. To shed light on this matter, we perform a sen-
sitivity analysis of the threshold in (19), summarized in the
following proposition.

Proposition 7. An increase in the vaccination coverage v de-
creases the epidemic threshold τ̄ in (19) if and only if

(1−γt)(1−pq(1−γq))(1−σv)−(1−pq)(1−σn) < 0. (23)

Proof. The condition in (23) is obtained by computing the
partial derivative of τ̄ with respect to v, which is equal to the
left-hand side of (23) multiplied by a positive quantity.

From Proposition 7, we observe that the level of vacci-
nation coverage has an ambiguous effect on the epidemic
threshold. In particular, whether an increase in vaccination
coverage facilitates the prevention of an epidemic outbreak
depends on the characteristics of the vaccine (i.e., its effec-
tiveness against transmission and severe illness), the proba-
bility of developing severe illness, and the responsibility of
vaccinated and non-vaccinated individuals. This is consis-
tent with the observations made on a simpler model in [1].

Finally, Figure 3 reports some observations concerning
the role of the homophily level θ. Our numerical simulations
show that high levels of homophily facilitate the spread of
epidemic diseases, particularly when combined with lower

levels of responsibility for non-vaccinated individuals. This
suggests that neglecting the polarization that can emerge
during a pandemic—with clusters of individuals who dis-
regard the use of protective measures and refuse to be
vaccinated—may lead to a dangerous underestimation of
the risk of a local outbreak.

4.3 Endemic equilibrium
To conclude this section, we observe that while vaccination
may exhibit a complex and unexpected effect on epidemic
outbreak control, calling for an increased testing effort,
its impact on mitigating endemic prevalence is more pre-
dictable. In fact, the simulations reported in Fig. 4 suggest
that increasing the vaccination coverage of a population
is always beneficial—the number of infections decreases if
the vaccination coverage v increases—excluding the specific
scenario in which non-vaccinated individuals are signif-
icantly more responsible than their vaccinated peers. In
this scenario, increasing the vaccination coverage may be
harmful, as illustrated in Fig. 4d.

Further insights can be gained by analyzing the behavior
of (18) above the epidemic threshold (i.e., when the DFE is
not locally asymptotically stable), but the high number of
nonlinear terms in (18) hinders the system analysis above
the threshold. Therefore, we will now focus on a specific
scenario for which analytical results can be established.

Assumption 2. Let σv = 1 and σn < 1.

Under Assumption 2, non-vaccinated individuals are
less responsible than their vaccinated peers, who always act
responsibly. From Theorem 1, we note the following.

Corollary 2. Under Assumption 2, the epidemic threshold in (19)
reduces to

τ̂ := 2λ(1− σn)(1− pq)[θ + (1− θ)(1− v)]− β . (24)

Next, we present the main result of this section that
characterizes all the equilibria of the system and their local
stability properties. The proof can be found in Appendix C.

Theorem 2. Under Assumption 2, the system in (18) has at most
two equilibria:

i) the DFE (1−v, 0, 0, v, 0, 0), which is locally asymptotically
stable if τ ≥ τ̂ (with exponential stability if strict inequality
holds), and a saddle point if τ < τ̂ ;

ii) the EE (y∗n,s, y
∗
n,i, y

∗
n,q, y

∗
v,s, y

∗
v,i, y

∗
v,q), which exists if and

only if τ < τ̂ , where

y∗n,s :=
(β+τ)(1−v)

2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)
,

y∗n,i := βκ ,

y∗n,q := 1− v − (β+τ)(1−v)
2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)

− βκ ,

y∗v,s :=
v

1+2λκ(1−σn)(1−γt)(1−θ) , (25)

y∗v,i :=
2λκvβ(1−σn)(1−γt)(1−θ)[1−pq(1−γq)]

(β+τ)[1+2λκ(1−σn)(1−γt)(1−θ)] ,

y∗v,q :=
2λκv(1−σn)(1−γt)(1−θ)[τ+pq(1−γq)β]

(β+τ)[1+2λκ(1−σn)(1−γt)(1−θ)] ,

with

κ := (1− v)
(
1−pq

β+τ − 1
2λ(1−σn)[θ+(1−θ)(1−v)]

)
. (26)

If it exists, the EE is locally asymptotically stable.
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Fig. 4: Total fraction of infected individuals Iv(t) + In(t) + Qv(t) + Qn(t) at t = 200 (color-coded) for different levels of
the vaccination coverage v, with on the y-axis varying levels of: (a) the vaccine effectiveness against transmission γt and
(b) severe symptoms γq; (c) the level of homophily θ; and (d) the responsibility of non-vaccinated individuals σn. Common
parameter values are n = 10 000, λ = 0.2, β = 0.02, σv = 0.5, pq = 0.2, and τ = 0.05. Each data-point is obtained by
averaging 10 independent runs of the Markov process.

Despite the cumbersome expression of the EE in Theo-
rem 2, we observe by computing the derivatives of

y∗
n,s

1−v and
y∗
v,s

v that an increase in the fraction of vaccinated individuals
results in a decrease in the relative epidemic prevalence
within both sub-populations. Such analytical insight con-
firms the numerical intuition from Fig. 4 that vaccination
is always beneficial in reducing the epidemic prevalence,
especially in the presence of a cluster of individuals with
low responsibility, such as epidemic deniers [33]. Finally,
one can use similar arguments to compute the EE for the
opposite scenario with σn = 1 and σv < 1. Nonetheless,
we omit to report such a result due to space constraints and
its minor interest in the context of epidemic deniers, who
typically refuse vaccination and responsible behaviors [43].

5 NUMERICAL RESULTS

In this section, we will expand on Remark 2 and employ
numerical simulations while focusing on a case study moti-
vated by the COVID-19 pandemic.

Earlier, in Remarks 1–3, we discussed how our modeling
framework is open to several generalizations. For some
of them, our analytical findings can be readily extended.
For instance, as suggested in Remark 1, Theorem 1 can be
expanded to incorporate non-pharmaceutical interventions
by substituting λ with (1 − η)λ in (19), where η ∈ [0, 1]
is the effectiveness of non-pharmaceutical interventions.
Other extensions, however, increase the complexity of the
dynamics, thereby hindering the analytical treatment and
preventing a direct extension of the mean-field approach
used to derive our theoretical findings. Nevertheless, the
implementation of our model, grounded in the activity-
driven network formalism, enables a numerical treatment
via fast Monte Carlo simulation campaigns.

Following Remark 2, we expand our modeling frame-
work by including an additional health state—denoted by
R—to account for temporary immunity after recovery. We
define this SIQRS model as an extension of our SIQS model,
in which infected individuals (either in I or Q) transition
to R when they recover and are (temporarily) immune to
contagion. Loss of natural immunity is modeled through
a Poisson process with a rate of µ ∈ R≥0, where µ = 0

IS Q R
κα,j τ β

β
µ

να,j

Fig. 5: State transitions of the SIQRS model for an individual
j ∈ Vα with a vaccination status α ∈ {n, v}.

TABLE 2: Parameters of the COVID-19-inspired case study.

n λ β v pq γt γq
value 10 000 0.36 0.1 0.821 0.19 0.65 0.92

represents the scenario in which immunity is permanent,
and the limit µ → ∞ coincides with the SIQS model studied
analytically in the above. A schematic of the SIQRS model
is shown in Fig. 5.

We consider a case study inspired by the ongoing
COVID-19 pandemic and global vaccination campaign.
Specifically, we utilize model parameters calibrated to re-
flect some characteristics of COVID-19 and the situation
in the Netherlands as of early November 2021, estimated
in our previous work [1] from clinical and epidemiological
data [44], [45] and reported in Table 2. Considering the high
level of uncertainty on the duration of natural immunity for
COVID-19, which may strongly depend on the appearance
of new variants [46], we will test different hypotheses on µ.

First, we perform a set of Monte Carlo simulations to
show that the threshold behavior, proved analytically in
Section 4 in the absence of natural immunity, is an inherent
property of the epidemic model. To this aim, we numer-
ically estimate the probability of disease eradication and
the steady-state fraction of infected for different values of
the testing rate τ and for four different natural immunity
durations—spanning from an average of 1 week (which
may represent the pessimistic scenario in which a new
variant appears) to an average of 4 months.

Our simulations, reported in Fig. 6, confirm our analyt-
ical findings for the SIQS model in Section 4 (compare the
gray curve and the gray dashed line in Fig. 6a). Further-
more, the simulations suggest that the threshold behavior
is also an intrinsic property of the SIQRS model, although
the duration of natural immunity affects the value of the
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Fig. 6: Numerical estimation for the SIQRS model (averaged
over 100 independent runs) of (a) the eradication probability
and (b) the steady-state fraction of infected individuals
Iv(t) + In(t) + Qv(t) + Qn(t) at t = 200, for increasing
values of the control parameter τ and different duration of
natural immunity µ. The gray curves and the gray vertical
dashed line are, respectively, the numerical estimations and
analytical computation of the threshold (using Theorem 1)
for the SIQS model (which is equivalent to the SIQRS
model in the limit µ → ∞). Common parameter values are
σn = θ = 0.5 and σv = 0.7; the rest of the parameter values
are given in Table 2.

epidemic threshold, as illustrated in Fig. 6a. Predictably, the
longer immunity lasts, the easier it is to control an epidemic
outbreak. Moreover, when the testing rate τ is insufficient to
reach disease eradication, the duration of natural immunity
has a strong impact. In this scenario, an increase in the
immunity duration leads to a decrease in the steady-state
fraction of infected individuals, as reported in Figure 6b.

In light of these observations, we conduct a series of
simulations to increase understanding of the impact of
the model parameters on the progression of the epidemic.
Here, we set µ = 1/30. In Fig. 7, we report the epidemic
threshold and the long-term fraction of infected individuals
for different values of homophily θ and responsibility of
non-vaccinated individuals σn. The threshold is estimated
via a Monte Carlo-based approach detailed in Appendix D.
Our simulation results in Fig. 7 suggest the following. First,
individual responsibility is crucial: for low levels of respon-
sibility, it is impossible to eradicate the disease without
resorting to massive testing campaigns (Fig. 7c). Second,
the role of homophily, already highlighted in our analytical
results for the SIQS model, remains critical in the presence of
natural immunity, in particular when vaccinated individuals
have a higher responsibility level than non-vaccinated ones
(Figs. 7b and 7d). This can, e.g., reflect the situation in
which non-vaccinated individuals belong to a minority of
conspiracy theorists, as COVID-19-related conspiracy belief
has a negative correlation with the willingness to vaccinate
and display infection-preventive behavior [43]. Third, the
responsibility level of vaccinated individuals strongly im-
pacts the epidemic threshold, but only if non-vaccinated
people display some degree of responsible behavior and
homophily is moderate, as can be observed by comparing
the top-right of Figs. 7a and 7b. When above the threshold,
we can observe by comparing Fig. 7c and Fig. 7d that the
responsibility level of vaccinated individuals also plays a
major role in reducing the fraction of infected individuals.
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Fig. 7: (a,b) The epidemic threshold τ̄ (color-coded) es-
timated numerically for the COVID-inspired case study
with a backbone network; and (c,d) the total fraction of
infected individuals Iv(t)+ In(t)+Qv(t)+Qn(t) at t = 200
(color-coded), for different values of the model parameters.
Common model parameter values are µ = 1/30, τ = 0.02,
and those summarized in Table 2.

6 CONCLUSION

We proposed a polarized temporal multi-population net-
work model to study the spread of recurrent epidemics
and investigated the effect of vaccination campaigns, human
behavior, and homophily on infection prevalence and local
outbreak control. Via a mean-field approach, we analytically
derived the epidemic threshold and, under certain assump-
tions, we characterized the endemic equilibrium. Addition-
ally, we conducted numerical simulations on a generaliza-
tion of our mathematical model that incorporates temporary
natural immunity following recovery, utilizing parameters
calibrated on the COVID-19 pandemic. Our results suggest
that vaccination is a powerful measure to mitigate the
number of deaths and the pressure on hospitals. However,
the effectiveness of vaccination campaigns in controlling
local outbreaks is contingent upon the characteristics of
both the virus and the vaccine in question. In certain sce-
narios, relying solely on vaccination campaigns may have
both beneficial and detrimental effects: while they alleviate
the burden on healthcare systems, they may also impede
the control of local outbreaks. Analytical and numerical
findings suggest that, in these scenarios, complete disease
eradication requires either reliance on population respon-
sibility or widespread testing campaigns. Furthermore, our
simulations showed that a polarized network structure with
a high degree of homophily hinders local outbreak control.

Despite the generality of our modeling framework, some
limitations should be noted. In particular, we assumed that
individuals’ decisions to vaccinate are fixed and made a
priori. This assumption may be appropriate for certain
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infections, such as influenza viruses, but it does not take
into account situations in which vaccination decisions dy-
namically change. Moreover, our model operates under the
assumption that individuals who support vaccination have
already received the vaccine. To extend the model, one
could consider incorporating changes in attitudes towards
vaccination over time, as suggested in [47], [48], [49], and
introducing vaccine administration during an epidemic out-
break, as in [18], [50].

In addition to incorporating these features in the model,
there are several other directions for future research. Our
numerical results for the SIQRS model suggest that the
threshold phenomenon—proved analytically for the SIQS
model—is an inherent feature of our epidemic framework.
Future efforts should aim to extend our analytical results to
models with extra compartments. Additionally, it would be
useful to provide a more general analytical treatment of the
system above the epidemic threshold. An expansion on The-
orem 2 for more general conditions would be crucial for the
development of optimal intervention policies, which could
be achieved by incorporating a cost associated with the
implementation of testing campaigns. Furthermore, for the
sake of analytical tractability, we assumed that individuals’
decisions on maintaining physical distance follow a memo-
ryless mechanism. More realistic scenarios may include a
game-theoretic decision-making process that accounts for
individuals’ past behaviors, societal pressure, the spread
of the epidemic, and other external factors [38], [40], [41].
Finally, validating our framework against real-world data
will be a priority in future research.

APPENDIX A
PROOF OF THEOREM 1
Observe that the disease-free equilibrium of (18) is the state

(yn,s, yn,i, yn,q, yv,s, yv,i, yv,q) = (1− v, 0, 0, v, 0, 0),

which is an equilibrium since the right-hand side of (18)
is equal to zero in this state. To study the local stability
of the DFE, we recall that only four of the six equations
of system (18) are linearly independent (Remark 4). In our
analysis, we reduce the system to a 4-dimensional system
by choosing the macroscopic variables yn,i, yn,q, yv,i, and
yv,q. Subsequently, we linearize (18) around the DFE of
the original system (which coincides with the origin of the
reduced 4-dimensional one), yielding

ẏn,i =2λ(1− pq)[θ + (1− θ)(1− v)](1− σn)yn,i

+ 2λ(1− pq)(1− θ)(1− v)(1− σv)yv,i

− (β + τ)yn,i,

ẏv,i =2λ(1− γt)[1− pq(1− γq)]v(1− θ)(1− σn)yn,i

+ 2λ(1− γt)[1− pq(1− γq)]

· [θ + v(1− θ)](1− σv)yv,i − (β + τ)yv,i,

ẏn,q =2λpq[θ + (1− θ)(1− v)](1− σn)yn,i

+ 2λpq(1− θ)(1− v)(1− σv)yv,i + τyn,i − βyn,q,

ẏv,q =2λ(1− γt)pq(1− γq)v(1− θ)(1− σn)yn,i

+ 2λ(1− γt)pq(1− γq)[θ + v(1− θ)](1− σv)yv,i

+ τyv,i − βyv,q. (27)

According to standard system-theoretic methods [51], the
(local) stability of the DFE is fully determined by the eigen-
values of the Jacobian matrix of (27) evaluated at the origin.
After re-sorting the equations in the order (yn,q, yv,q, yn,i,
yv,i), we observe that the Jacobian of (27) has the following
block-triangular structure:


yn,q yv,q yn,i yv,i

yn,q ∗ 0 ∗ ∗
yv,q 0 ∗ ∗ ∗
yn,i 0 0 ∗ ∗
yv,i 0 0 ∗ ∗

, (28)

where an asterisk (∗) denotes a nonzero entry.
The block (yn,q, yv,q) is diagonal and has eigenvalue Λ1,2 =
−β < 0, with multiplicity 2. Through a direct computation,
we establish that the eigenvalues of the block (yn,i, yv,i) are
given by

Λ3,4 =λξ − β − τ

± λ
√

ξ2−4θ(1−γt)(1−pq)[1−pq(1−γq)](1−σn)(1−σv),

with ξ defined as in (20). Observe that

ξ2 − 4θ(1− γt)(1− pq)[1− pq(1− γq)](1− σn)(1− σv)

=θ2 [vρ+ (1− v)ϕ]
2
+ 2θ

[
v(1− v)(ϕ− ρ)2 − ϕρ

]
+ [(1− v)ρ+ vϕ]

2
, (29)

where the right-hand side is a polynomial in θ, with

ϕ := (1− γt)[1− pq(1− γq)](1− σv),

ρ := (1− pq)(1− σn).

Through explicit computation, we verify that the roots of
the right-hand side of Eq. (29) are complex. Since the leading
coefficient of the polynomial is positive, it follows that (29) is
strictly positive for all θ. Thus, the two eigenvalues Λ3,4 are
real, and the DFE is locally asymptotically stable if and only
if the maximum eigenvalue (i.e., the one with the positive
sign) is negative, which is the case if τ > τ̄ . On the contrary,
if τ < τ̄ , then the maximum eigenvalue is positive and the
DFE is unstable.

APPENDIX B
PROOF OF PROPOSITION 6
All the statements are derived from observing the mono-
tonicity properties of (27) with respect to the considered
parameters. For pq and γt, monotonicity holds only for the
equations ẏn,i and ẏv,i, which are the two that determine the
stability of the DFE due to the structure of (28).

APPENDIX C
PROOF OF THEOREM 2
Let Assumption 2 hold, i.e., σv = 1 and σn < 1. Consider the
system in (18). Solving the equilibrium condition ẏn,s = 0
gives

yn,s =
β(1−v)

2λ(1−σn)(
θ

1−v+1−θ)yn,i+β
.

Subsequently solving ẏn,i = 0 gives yn,i = 0 (which trivially
leads to the DFE (1− v, 0, 0, v, 0, 0)) or

yn,i = β(1− v)
(
1−pq

β+τ − 1
2λ(1−σn)[θ+(1−θ)(1−v)]

)
,
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which gives the EE in (25) by solving ẏv,s = 0 and
ẏv,i = 0, while noting that yn,q = 1 − v − yn,s − yn,i
and yv,q = v − yv,s − yv,i. Note that for the EE to exist,
we need that yn,i > 0, which is equivalent to the condition
τ < τ̂ . Concerning the stability, local stability for the DFE
immediately follows from Theorem 1. Now consider the EE
in (25), where we assume that τ < τ̂ . Linearizing around the
EE, we obtain a Jacobian matrix with eigenvalues

Υ1 = −(β + τ) < 0,

Υ2 = −β[1 + 2λκ(1− σn)(1− γt)(1− θ)] < 0,

and

Υ3,4 = 1
2

(
1− 2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)

β+τ

)
± 1

2

√ (
1−

2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)
β+τ

)2

−4[2λ(1−σn)[θ+(1−θ)(1−v)](1−pq)−(β+τ)]
.

Note that τ < τ̂ implies that Re(Υ3,4) < 0, so the EE is
locally asymptotically stable.

APPENDIX D
DETAILS ON NUMERICAL SIMULATIONS

The epidemic threshold is estimated as follows. We set a
range of values for the parameter τ . For each value of τ , we
initialize the epidemics with 10 infected individuals, and
we estimate the probability that the disease is extinguished
within a fixed time horizon (we set it to t = 200) through
10 independent Monte Carlo simulations. Following [52],
[53], we estimate the threshold by the value of τ that maxi-
mizes the standard deviation of the eradication probability.
Because the output of each simulation is a binary variable
(’0’ for eradication, ‘1’ for endemicity), the value of τ that
maximizes the standard deviation coincides with the value
that has an estimated eradication probability close to 0.5. To
optimize the process, we adopt a two-step procedure. First,
we consider a wide range of values of τ with a large step
size ∆τ . We estimate the eradication probability by starting
at a high value of τ and decreasing it until we reach a value
τ̃ with an estimated eradication probability of less than 0.5.
Second, we use the proposed algorithm to approximate the
threshold value in the range τ ∈ [τ̃ − ∆τ, τ̃ + ∆τ ] with a
smaller step size. The code used for all our simulations is
available at https://github.com/lzino90/vaccine siq.
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[43] T. Ripp and J. P. Röer, “Systematic review on the association
of COVID-19-related conspiracy belief with infection-preventive
behavior and vaccination willingness,” BMC Psychol., vol. 10,
no. 1, pp. 1–14, 2022.

[44] C. Phucharoen, N. Sangkaew, and K. Stosic, “The characteristics of
COVID-19 transmission from case to high-risk contact, a statistical
analysis from contact tracing data,” EClinicalMedicine, vol. 27,
p. 100543, 2020.

[45] N. Dagan et al., “BNT162b2 mRNA Covid-19 vaccine in a nation-
wide mass vaccination setting,” N. Engl. J. Med., vol. 384, no. 15,
pp. 1412–1423, 2021.

[46] R. K. Suryawanshi et al., “Limited cross-variant immunity from
SARS-CoV-2 omicron without vaccination,” Nature, vol. 607,
no. 7918, pp. 351–355, 2022.

[47] C. T. Bauch and D. J. D. Earn, “Vaccination and the theory of
games,” Proc. Natl. Acad. Sci. USA, vol. 101, no. 36, pp. 13391–
13394, 2004.

[48] A. R. Hota and S. Sundaram, “Game-theoretic vaccination against
networked SIS epidemics and impacts of human decision-
making,” IEEE Trans. Control. Netw. Syst., vol. 6, no. 4, pp. 1461–
1472, 2019.

[49] X.-J. Li, C. Li, and X. Li, “The impact of information dissemination
on vaccination in multiplex networks,” Sci. China Inf. Sci., vol. 65,
June 2022.

[50] Y. Tatsukawa, M. R. Arefin, S. Utsumi, and J. Tanimoto, “Inves-
tigating the efficiency of dynamic vaccination by consolidating
detecting errors and vaccine efficacy,” Sci. Rep., vol. 12, no. 1, 2022.

[51] W. J. Rugh, Linear System Theory. London, UK: Pearson, 2 ed., 1996.
[52] A. Moinet, R. Pastor-Satorras, and A. Barrat, “Effect of risk per-

ception on epidemic spreading in temporal networks,” Phys. Rev.
E, vol. 97, p. 012313, Jan 2018.

[53] L. Zino, A. Rizzo, and M. Porfiri, “Modeling memory effects
in activity-driven networks,” SIAM J. Appl. Dyn. Syst., vol. 17,
pp. 2830–2854, Jan. 2018.

Kathinka Frieswijk is a PhD candidate at the
Faculty of Science and Engineering, University
of Groningen (UG), the Netherlands. At the UG,
she received a BS in Medicine, a BS in Mathe-
matics, and a BS in Physics, and she graduated
in 2018 with an MS in Theoretical Physics. In
2022, she received a Fulbright scholarship (as
well as scholarships from Stichting Het Scholten-
Cordes Fonds and dr. Hendrik Mullerfonds) to
conduct research at Yale University, New Haven,
CT, USA. Her research interests include opinion

dynamics (focusing on climate change in particular), epidemic modeling
on large-scale networks, and evolutionary game theory.

Lorenzo Zino has been an Assistant Professor
with the Department of Electronics and Telecom-
munications at Politecnico di Torino (Turin, Italy)
since 2022. He received the BS in Applied Math-
ematics and MS in Mathematical Engineering
(summa cum laude) from Politecnico di Torino,
Torino, Italy, in 2012 and 2014, respectively, and
the PhD in Pure and Applied Mathematics (with
honors) from Politecnico di Torino and Università
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