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1. Introduction

The incidence of neurodegenerative disorders (NDs) is increasing in an aging pop-
ulation. NDs encompass a wide range of disorders characterized by the progressive
deterioration of the central or peripheral nervous system, affecting millions of individuals
worldwide. Despite the clinical significance of monitoring ND’s symptoms, this can be
challenging in current practice due to the difficulty of accurately remembering and describ-
ing symptoms and the infrequency of clinical appointments. Moreover, individuals with
NDs may experience difficulties in objectively assessing their symptoms, and these may be
perceived differently by their care partners. Thus, there is an unmet need for more objective
and continuous monitoring of symptoms in NDs.

To address this challenge, new technological solutions are required for computerized
diagnosis, evaluation of the effectiveness of therapy, and continuous monitoring of disease
progression. In such a context, wearable technology has emerged as a revolutionary
approach to healthcare, offering a more personalized approach to diagnosis and disease
management. For example, in the field of neurological diseases, wearable technology has
the potential to improve diagnosis, provide inexpensive and non-invasive assessment tools,
monitor disease progression, and inform ongoing disease management. Recent advances in
wearable and portable sensors, information, and communication technologies have enabled
continuous monitoring of NDs. The use of wearable technology allows the collection of
high-dimensional data from different domains during daily activities. In addition, signal
processing and machine learning (ML) approaches have provided powerful methods for
analyzing large amounts of multimodal data, facilitating the obtaining of detailed, objective,
and accurate information on disease manifestations.

Wearable technology offers several advantages in monitoring NDs, such as continuous
monitoring, objective measurements, and remote monitoring, which can lead to earlier
diagnosis, more accurate treatment decisions, and improved outcomes. Wearable technol-
ogy can also be used to measure various parameters, such as heart rate, blood pressure,
movement, sleep patterns, and brain activity, providing insights into cognitive function and
facilitating the diagnosis of NDs. In addition, the data collected from wearable technology
can be analyzed using ML algorithms to identify patterns and develop predictive models,
supporting clinicians in making informed decisions about treatment and care. In conclusion,
wearable technology has excellent potential in NDs, providing continuous and objective
monitoring and enabling ML analysis of high-dimensional data. As wearable technology
continues to advance, it is likely to play an increasingly important role in diagnosing and
managing NDs.

2. The Present Special Issue

The present Special Issue comprises eleven research and review articles that propose
wearable solutions and explore signal processing, ML, and deep learning (DL) approaches

Electronics 2023, 12, 1269. https://doi.org/10.3390/electronics12061269 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061269
https://doi.org/10.3390/electronics12061269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5422-9826
https://orcid.org/0000-0003-0875-6913
https://orcid.org/0000-0002-3670-9412
https://doi.org/10.3390/electronics12061269
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061269?type=check_update&version=1


Electronics 2023, 12, 1269 2 of 4

for the computerized diagnosis and monitoring of NDs. The following is a brief summary
of each of the articles.

Masi et al. [1] provided an overview of non-intrusive approaches to sleep monitoring
for NDs. The authors reviewed twenty-six articles to gather information on the proposed
solutions in terms of technologies, methods, and fields of application. The results showed
that wearable sensors were mainly used for automatic sleep staging and movement analysis,
while non-wearable solutions were used for home monitoring. In addition, inertial sensors
were the most commonly used technology, followed by environmental cameras and bedside
sensors. The authors concluded that, despite the wide variety of proposed solutions, these
need further validation before being applied in clinical practice and in patients’ daily lives.

Sigcha et al. [2] proposed a wearable system to estimate the severity of bradykinesia
(i.e., slowness of movement) in Parkinson’s disease (PD). Six subjects with PD and seven
age-matched healthy controls (HCs) were equipped with a consumer smartwatch and
asked to perform a series of motor exercises for 6 weeks. Inertial data were processed
using different data representations, data augmentation techniques, feature sets, and ML
models. The combination of convolutional neural network (CNN) and random forest (RF)
classifier provided the best performance, with an accuracy of 0.86. Furthermore, a Pearson’s
correlation coefficient (r) of 0.94 and a mean square error of 0.46 were obtained between
the system output and the clinical severity score.

Carvajal-Castaño et al. [3] collected inertial data from forty-five subjects with PD and
eighty-nine HCs, including forty-four young and forty-five elderly people. Participants
were asked to perform various gait tasks while wearing inertial measurement units attached
to their shoes. Different data representations and DL models were used to process the data.
The CNN fed with the short-time Fourier transform provided comparable results to the
gated recurrent unit fed with raw data. The further combination of both models did not
significantly improve performance. Finally, discrimination of persons with PD from elderly
people proved more difficult (0.93 accuracy) than discrimination from younger persons
(0.83 accuracy).

Pau et al. [4] employed a single inertial sensor on the lower back to analyze the subjects’
gait. Specifically, 449 elderly HCs were recruited and divided into three groups according
to age. Acceleration signals were recorded while participants walked in a straight line.
Spatial and temporal gait parameters and harmonic ratio were calculated. Finally, statistical
analysis (i.e., two-way multivariate analysis of variance) was used to assess significant
differences. Older subjects showed a reduction in gait speed, stride length, and cadence
(p < 0.001), compared to younger participants. Furthermore, the harmonic ratio analysis
revealed a general trend of linear decrease with age.

Pietrosanti et al. [5] used wearable inertial sensors to analyze the swinging movement
of the forearms during walking. Fifty-eight PD patients and thirty-one age-matched HCs
were enrolled and asked to wear sensors on each arm and upper back while performing a
timed up-and-go test. The fast Fourier transform of the inertial data was generated and
used to extract a series of harmonic features. The two-sample t-test was used to assess
the differences between PD and HC subjects. In addition, Spearman’s test was used to
calculate the correlation between features and clinical scores. The results showed significant
differences in arm swing characteristics between subjects with PD and HCs. Furthermore,
the harmonic amplitude features correlated significantly with the clinical gait (r = −0.64),
body bradykinesia (r = −0.67), and overall score (r = −0.57).

Casadei et al. [6] developed a systolic blood pressure monitoring system based on a
wearable device. First, a public data set comprising photoplethysmographic (PPG) record-
ings of forty-seven subjects was used to train a DL algorithm. Subsequently, data from eight
subjects were recorded using both a small wearable PPG sensor and a sphygmomanometer,
which was used as a reference. The results showed that the performance of the system was
up to standard, with an average absolute error of 3.85 mmHg.

Cesari et al. [7] investigated how wearable devices can be assembled and used to
provide feedback to human subjects to improve gait and posture. This can be applied to
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the rehabilitation of motor disabilities of patients suffering from NDs. Twelve subjects
were asked to perform certain postural and motor tasks on a proprioceptive board while
being monitored via electromyographic sensors, a force platform, motion capture cameras,
and wearable inertial sensors. From the pre-processed multimodal data, several time- and
frequency-domain features were extracted and input to different ML models. Preliminary
analysis showed that using the inertial sensor system in addition to the other data sources
significantly improved performance. Furthermore, using only wearable motion sensors
and an RF classifier, an F-score of 0.90 was obtained in the detection of the different phases
of motor tasks.

Rana et al. [8] proposed a processing pipeline based on voice analysis for the comput-
erized diagnosis of PD. The data set consisted of voice features extracted from twenty-three
PD patients and eight HCs. The authors used different feature selection strategies and
different ML classifiers. The proposed DL algorithm provided the best results, with an
accuracy of 0.87.

Calvo-Ariza et al. [9] analyzed facial expressions (happiness, surprise, and anger) to
discriminate between thirty-one PD patients and twenty-three HCs. The face was extracted
from each video frame using a multi-task CNN cascade. Subsequently, two different feature
sets, namely local binary patterns and histograms of oriented gradients, were extracted and
given as input to a support vector machine for binary classification. The first feature set
provided the best performance, achieving an accuracy of 0.80 for the happiness expression.

Sethuraman et al. [10] proposed a system for aiding the diagnosis of Alzheimer’s
disease (AD) from resting-state functional magnetic imaging (rs-fMRI). The data set com-
prised 152 patients, in which subjects with AD, mild cognitive impairment, and HCs were
equally represented. The images were digitally processed and various frequency levels
of the rs-fMRI time series were extracted. Finally, data transformation was applied to
convert the time series into images to be input into the DL model. Two CNNs (AlexNet
and Inception V2) were used for classification, which were then fine-tuned and optimized.
The results showed excellent discrimination ability, with an accuracy of 0.97 and 0.83 in
differentiating subjects with AD from HCs and subjects with MCI, respectively.

Besides the mere utilization of wearables for monitoring purposes, the integration of
healthcare with the Internet of Things (IoT) presents numerous opportunities for patient
monitoring. Nevertheless, a major challenge in the era of Healthcare 4.0 is identifying
compromised and malicious nodes, which can threaten network security and user privacy.
On such aim, Awan et al. [11] proposed a trust management approach for edge nodes
based on ML to identify nodes with malicious behavior. The trust calculation was based
on characteristics such as friendliness, trustworthiness, and cooperation. Data were pre-
processed using feature selection and scaling and input into a naive Bayes classifier. The
experiments were performed in different scenarios and attacks, varying the number of
nodes in the network. The results showed that the proposed EdgeTrust system is able to
recognize possible IoT attacks to maintain a robust environment. Furthermore, the low
power consumption makes the system suitable for real-world scenarios.

3. Future Directions

In recent decades, the advancement of technologies and methodologies has facilitated
scientific research in wearable sensors and data processing techniques for health monitoring,
leading to a proliferation of wearable solutions for objective assessment, computer-aided
diagnosis, and continuous monitoring of chronic disorders. However, challenges in the
clinical validation of these solutions and patient compliance for long-term passive monitor-
ing in daily life still persist. To address these challenges, the development of tiny sensors
that can be attached to the body or smart textiles with embedded sensors has emerged as a
promising solution. Additionally, while research on widely prevalent neurodegenerative
disorders such as Parkinson’s disease is extensive, there has been limited exploration of
rare disorders such as ataxia, Huntington’s disease, and progressive supranuclear palsy.
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To develop effective, scalable, and clinically validated wearable sensor systems for human
health monitoring, further research is necessary.
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