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ORIGINAL ARTICLE
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ellipsoids with the Rayleigh–Ritz method
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Engineering Institute, Moscow, Russia

ABSTRACT
The Rayleigh–Ritz method is widely employed to analyze free vibrations of elastic solids and struc-
tures. For a simple formulation and efficient evaluation of vibrations of elastic ellipsoids, which
also include spheres, the Cartesian coordinate system is utilized. It is hoped that the formulation
with lengthy expressions can be solved with fewer terms of displacement functions in Chebyshev
polynomials for simple evaluations of stiffness and mass matrices of the elastic ellipsoids with the
procedure. The vibrations of elastic ellipsoids are calculated with geometric parameters for the val-
idation of the procedure and formulation with known results and the analysis from this study.
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1. Introduction

There are many natural and artificial solids with perfect geo-
metric configurations such as ellipsoids as objects we have to
deal with in our lives daily [1, 2]. There have been many
numerical approaches, such as Godunov’s discrete-orthogon-
alization method [3], the finite element method [4, 5], the
Rayleigh–Ritz method [6], among others, applied to the vibra-
tion analysis to determine the natural frequencies and vibra-
tion modes of the isotropic elastic spheres. In general, such
analytical methods are widely used for the analysis of vibra-
tions of the isotropic elastic spheres [7–9] while an exact solu-
tion to the free vibrations of elastic ellipsoids, which can also
cover the usual spheres, is not available. With the existing
approaches, the Rayleigh–Ritz method has been widely uti-
lized to construct the equation of characteristic frequency of
the structure with a better approximation [10–14]. The admis-
sible functions of the displacements directly related to the
convergence and the precision of the results, such as the
ordinary or orthogonal polynomials, trigonometric functions
[15], and so on are specifically chosen to represent the
deformation with accuracy. With the minimization of the total
energy functional, which involves the potential and kinetic
energies of the system, the natural frequencies and mode
shapes of the structure can then be obtained numerically [3].

Clearly, a sphere as a special ellipsoid has been calculated
by analytical methods and measured from various experi-
ments such as the resonant spherical technique [4, 16]. In
such analyses, Hashemi and Anderson [15] adopted the
spherical coordinates to study the torsional vibrations of the
isotropic elastic sphere, and Deneuville et al. [16]

investigated spheroidal modes of the isotropic sphere with
resonant ultrasound spectroscopy (RUSpec), which is a use-
ful measurement technique for obtaining the full range of
the material properties of elastic solids with different geome-
tries. Buchanan and Ramirez [4] worked on the vibrations
of transversely isotropic solid spheres. Wang and Ding [6]
studied the radial vibration of a multilayered piezoelectric/
magnetostrictive composite hollow sphere.

If the structural geometry is complicated, such as an
ellipsoid, it is hard to access the solution by the analytical
method [3], then an approximate method such as the
Rayleigh–Ritz method is a good tool that can be used to cal-
culate the vibration properties of such an elastic structure
[10, 17–23]. As it is widely known, the basis function of the
Rayleigh–Ritz method has wide options, like the orthogonal
polynomials [24], trigonometric functions [17], and other
similar functions.

For an isotropic sphere, there are extensive research on
the analysis [5, 7, 16, 25, 26], but the research on elastic
ellipsoids, which are more versatile as spheric samples, is
limited. In this article, the Rayleigh–Ritz method is used to
calculate the natural frequencies of free vibrations of elastic
ellipsoids with the Chebyshev polynomials as the basis func-
tions. With the solution process, several examples of spheres
are chosen to make comparisons using the analytical results
and measurements obtained by the RUSpec technique and
those obtained by the calculations of FEM. The
Rayleigh–Ritz method is used to improve the accuracy of
the calculations by increasing the number of terms of dis-
placement functions. As it is found from calculations of
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FEM, the Rayleigh–Ritz method can be used to obtain the
results with same accuracy at a smaller computational cost.
Then the calculated results of free vibrations of the elastic
sphere are compared with the results from Oda [27] to
ensure the accuracy of the method. It has been shown that
the Rayleigh–Ritz technique can be used to predict vibration
modes of an ellipsoid accurately. For the analysis of such a
three-dimensional solid, it has a greater advantage in terms
of computational time.

In summary, after reviewing methods and techniques for
the analysis of natural frequencies of elastic ellipsoids, the
Rayleigh–Ritz method is chosen with the basis functions in
Chebyshev polynomials [13, 28]. As a cautious procedure,
the analyses are done in combinations of isotropic, aniso-
tropic, spheres, and ellipsoids respectively with rigorous vali-
dations through known results and measurements as a rare
example of completeness. Eventually, it is concluded that the
Rayleigh–Ritz method with Chebyshev polynomials as basis
functions can analyze the free vibrations of elastic ellipsoids
with a simple procedure for accurate frequency and mode
shape solutions. Of course, as intended, the approximate
results have been validated with RUSpec measurements sat-
isfactorily [29–32]. The motivation of this study is to pro-
vide an approximate technique for the accurate and efficient
analysis of natural frequencies of ellipsoids in conjunction
with the applications of RUSpec measurements for material
properties, because the evaluation libraries are better to
cover all possible configurations of material samples as part
of the test procedure. In addition to usual samples like
cuboids, cylinders, and spheres [33, 34], this research is
planned to include more adaptable configurations such as
ellipsoids, cones, pyramids, prisms, polyhedrons, among
others, with possible truncations so most samples can be
prepared from originals with minimal cost and impact due
to processing. This, of course, is consistent with the general
principle of the RUSpec testing, and it is more desirable to
have an ellipsoid first because it can cover many variations
of spheric samples with further considerations of possible
truncations and alternations. Clearly, the analysis of ellips-
oidal objects is an important part of the improvement and
enhancement of RUSpec sample library with more analytical
data for comparison and iteration. The application of the
Rayleigh–Ritz method has been refined with the validated
basis functions and experimental verification through actual
measurements of ellipsoidal samples. The work presented in
this article will certainly provide further guidance and
encouragements for the development of RUSpec with suit-
able tools and clear path for broader and easy applications.

2. The Rayleigh–Ritz method formulation

2.1. The analysis of an elastic ellipsoid

Assuming that a homogeneous elastic ellipsoid is shown in
Figure 1 with a Cartesian coordinate system and its center is

at the origin. Let a, b and c are the principal semiaxes,
implying the equation of such an ellipsoid is

x2

a2
þ y2

b2
þ z2

c2
¼ 1: (1)

If a ¼ b ¼ c, it becomes a sphere.
For the vibration analysis of the ellipsoid by the

Rayleigh–Ritz method, the required strain energy in strain
tensors is

V ¼ 1
2

ð
V
eijCijklekl dV, i, j, k, l ¼ 1, 2, 3, (2)

where eij and Cijkl are the second-order strain tensor and
the fourth-order tensor of elastic constants of the material
with a volume of V , respectively. For the simplification of
the calculation, the contracted notations of the second-order
tensor are used for the elastic constants, which have the cor-
respondence between the fourth-order tensor with the rela-
tionship shown in Table 1 [34].

If the material is isotropic, C11 ¼ C22 ¼ C33 ¼ kþ
2l, C12 ¼ C13 ¼ k, C44 ¼ C55 ¼ C66 ¼ l with k ¼ Ev=ð1
þ�Þð1� 2�Þ and l ¼ E=2ð1þ �Þ, and E represents the
Young’s model and � is the Poisson’s ratio of material. For
the linear deformation of vibrations, with displacements
ui i ¼ 1, 2, 3ð Þ, the strain tensors are

e11 ¼ @u1
@x1

¼ u1, 1, e22 ¼ @u2
@x2

¼ u2, 2, e33 ¼ @u3
@x3

¼ u3, 3,

e12 ¼ e21 ¼ @u1
@x2

þ @u2
@x1

¼ u1, 2 þ u2, 1,

e13 ¼ e 31 ¼ @u1
@x3

þ @u3
@x1

¼ u1, 3 þ u3, 1,

e23 ¼ e32 ¼ @u2
@x3

þ @u3
@x2

¼ u2, 3 þ u3, 2:

(3)

Similarly, the kinetic energy is

T ¼ 1
2

ð
V
q _ui _ui dV , l ¼ 1, 2, 3, (4)

where q is density of material.
As it has been stated before, the critical factor of the

accuracy of the Rayleigh–Ritz method is relying on the
choice of displacement functions. Generally speaking, if
the chosen displacements satisfy the boundary conditions of
the physical problem, the vibration solutions will converge
fast and achieve better accuracy. With earlier studies on the
general implementation of the Rayleigh–Ritz method, we
follow the recommendations based on earlier studies with
good results by expanding displacement functions with
Chebyshev polynomials as

u1 ¼ U1eixt ¼
XL
l¼1

XM
m¼1

XN
n¼1

AlmnPl xð ÞPm yð ÞPn zð Þeixt

u2 ¼ U2eixt ¼
XO
o¼1

XP
p¼1

XQ
q¼1

BeosPe xð ÞPo yð ÞPs zð Þeixt

u3 ¼ U3eixt ¼
XR
r¼1

XS
s¼1

XT
t¼1

CfghPf xð ÞPg yð ÞPh zð Þeixt

(5)

Table 1. The relationship between the tensor subscripts of elastic constants.

ijðklÞ 11 22 33 23 13 12
mðnÞ 1 2 3 4 5 6
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where x is the angular frequency, Almn, Beos, Cfgh are dis-
placement amplitudes, Pl xð ÞðPe xð Þ, Pf ðxÞÞ, Pm yð ÞðPo yð Þ,
Pg yð ÞÞ, and Pn zð Þ ðPs zð Þ, Ph zð ÞÞ denote the assumed admis-
sible functions in the x-, y-, and z- directions, respectively.
The boundary range x ¼ 6a, y ¼ 6b, z ¼ 6c are the inter-
cepts of the ellipsoid in the x-, y- and z- directions, x is the
angular frequency of the vibrations, and t is time, respect-
ively. The basis functions here are the Chebyshev polyno-
mials [34]

P0 xð Þ ¼ 1,
P1 xð Þ ¼ x,

::::
Pn xð Þ ¼ 2xPn�1 xð Þ � Pn�2 xð Þ, n � 2,

(6)

where n is the order of the polynomial.

2.2. Modal characteristics by the Rayleigh–Ritz method

The energy expressions will give the Lagrangian of the
vibrating ellipsoid as

K ¼ Tmax � Vmax: (7)

According to the principle of conservation of energy,
Tmax ¼ Vmax, and the known displacements, the maximum
energies from Eqs. (2) and (4) are

Vmax ¼ 1
2

ð
V
Ui, jCijklUk, ldV, i, j, k, l ¼ 1, 2, 3, (8)

Tmax ¼ qx2

2

ð
V
U2

i dV, i ¼ 1, 2, 3: (9)

To make the expression simpler, all the following repre-
sentations in this section are with the consideration of the
symmetric modes only. Applying the variational principle,
the following equations can be obtained from Eq. (7)

@K
@Almn

¼ 0,
@K
@Beos

¼ 0,
@K
@Cfgh

¼ 0, (10)

which result in a typical eigenvalue problem

KA� x2MA ¼ 0: (11)

The matrices K and M are assembled as the stiffness and
mass matrices, respectively, and A is the column vector of
the unknown amplitude coefficients (Almn, Beos, Cfgh) of
deformation.

The eigenvalue problem of Eq. (11) can be written as

KU1U1 KU1U2 KU1U3

KT
U1U2

KU2U2 KU2U3

KT
U1U3

KT
U2U3

KU3U3

2
664

3
775� x2

MU1U1 0 0

0 MU2U2 0

0 0 MU3U3

2
64

3
75

0
BB@

1
CCA

�
fAg
fBg
fCg

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;:

(12)

The stiffness and mass matrices K and M are obtained by
substituting Ui into Eq. (12) for elements

KUiUk ¼ ci1k1E
1, 1
UipUkp

F0, 0UiqUkq
G0, 0
UirUkr

þ ci1k2E
1, 0
UipUkp

F0, 1UiqUkq
G0, 0
UirUkr

þ ci1k3E
1, 0
UipUkp

F0, 0UiqUkq
G0, 1
UirUkr

þ ci2k1E
0, 1
UipUkp

F1, 0UiqUkq
G0, 0
UirUkr

þ ci2k2E
0, 0
UipUkp

F1, 1UiqUkq
G0, 0
UirUkr

þ ci2k3E
0, 0
UipUkp

F1, 0UiqUkq
G0, 1
UirUkr

þ ci3k1E
0, 1
UipUkp

F0, 0UiqUkq
G1, 0
UirUkr

þ ci3k2E
0, 0
UipUkp

F0, 1UiqUkq
G1, 0
UirUkr

þ ci3k3E
0, 0
UipUkp

F0, 0UiqUkq
G1, 1
UirUkr

,

(13)

MUiUk ¼ qE0, 0UipUkp
F0, 0UiqUkq

G0, 0
UirUkr

, (14)

where

Ea, bUipUkp
¼ a

ð1
�1

daPpðXÞ
dXa

dbPpðXÞ
dXb

dX,

Fa,bUiqUkq
¼ b

ð ffiffiffiffiffiffiffiffi
1�X2

p

�
ffiffiffiffiffiffiffiffi
1�X2

p
daPqðYÞ
dYa

dbPqðYÞ
dYb

dY,

Ga, b
UirUkr

¼ c
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�X2�Y2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X2�Y2

p
daPpðZÞ
dZa

dbPpðZÞ
dZb

dZ:

(15)

In the above equations, a and b are the order of the deriva-
tives, p, q, r, p, q and r are the order of the polynomials,
where p, p ¼ l, e, f ; q, q ¼ m, o, g; r, r ¼ n, s, h, and the nor-
malized variables to simplify the calculations are X ¼ x=a,
Y ¼ y=b, Z ¼ z=c: The elements of K and M above are
actually KUiUj

� �
mn

and MUiUj

� �
mn

with m ¼ r þ q� 1ð ÞL
þ p� 1ð ÞL2, n ¼ r þ q � 1ð ÞLþ p � 1ð ÞL2: Through the
Eq. (12), the angular frequency x and the associated eigen-
vector A can be obtained, then the frequency of the struc-
ture can be also obtained with f ¼ x=2p: In comparison to
the analytical method, it is more convenient to obtain the
frequencies and mode shapes of the vibration from the
eigenvalue problem.

3. Numerical results

3.1. The natural frequencies of an isotropic sphere

To illustrate the capability of the presented procedure in
obtaining the frequencies and mode shapes of an elastic
ellipsoid, several examples of vibration analysis of isotropic
spheres are compared with results from an earlier study [7].
According to the Figures 2–5, the results have basically con-
verged at the order of polynomials is 9 for the admissible
polynomials along the three axes, respectively, and 12 has
been chosen as the order for the calculation at high frequen-
cies. More terms in the deformation series could induce for-
midable computational problems in the solution process, as
it can be imagined.

Figure 1. A homogeneous elastic ellipsoid.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 3



In this study, the normalized frequency is defined as

C ¼ xd
cT

, (16)

where d ¼ ffiffiffiffiffiffiffiffiffi
abc3

p
and cT is the transverse wave velocity of

an isotropic elastic solid known as

cT ¼
ffiffiffi
l
q

r
: (17)

If a ¼ b ¼ c, the solid is a special ellipsoid or a sphere,
then the relation between normalized frequencies and
Poisson’s ratio of a sphere is given in Figure 6 from Eq. (12).
In this figure, the spheroidal and torsional vibration modes

Figure 2. Convergence of an isotropic sphere with a radius of 1mm.

Figure 3. Convergence of an isotropic ellipsoid with a¼ 1mm,
b¼ 0.9mm, c¼ 0.8mm.

Figure 4. Convergence of an isotropic sphere with a radius of 1mm.

Figure 5. Convergence of an isotropic ellipsoid with a¼ 1mm,
b¼ 0.9mm, c¼ 0.8mm.

Figure 6. The relation between normalized frequencies and Poisson’s ratio of
an isotropic sphere.

Table 2. A comparison of frequencies from this and earlier studies.

k Mode This study fðMHzÞ Yaoita [7] fðMHzÞ
1 1T2

1 1.437 1.437
2 1S2

1 1.514 1.514
3 2S1

2 1.917 1.917
4 1T3

1 2.221 2.221
5 1S3

1 2.240 2.240
6 1S0

1 2.355 2.353
7 2S2

2 2.728 2.728
8 1S4

1 2.860 2.860
9 1T4

1 2.928 2.927
10 2T1

2 3.312 3.311

4 J. WU ET AL.



are denoted as iSn and iTn with i and n indicate the number of
vibration nodes in the radial direction of the sphere and the
order of spherical Bessel functions Jn, respectively [7]. Since
the spherical modes are a mixture of shear and dilatational
wave modes, they depend on Poisson’s ratio [27]. While the
torsional modes are only shear modes, they are independent
of Poisson’s ratio [5]. Besides, the results computed from the
analytical method [7] are also shown in Figure 6, and they are
in very good agreement between these two approaches can
be observed.

Table 2 lists the numerical results of an elastic sphere of
BK-7 glass with material and structural properties E ¼
79:2GPa, � ¼ 0:21, q ¼ 2510kg=m3, a ¼ b ¼ c ¼ 1mm for
the analyses with the Rayleigh–Ritz and other analytical
methods. The largest difference among them is within 0.1%,
which are much smaller then expected. The method pre-
sented in this article has some advantages like much less

computational cost and obtaining the frequencies and mode
shapes at the same time.

An ideal isotropic sphere could have different mode
numbers m(¼1, 2, ., 2nþ 1) and the same natural frequency
because of modal degeneration. There are some typical
mode shapes known as 1S2 and 1T2 are listed in Table 3.

The measurement results also proved that the
Rayleigh–Ritz method is reliable in obtaining the frequencies
of the elastic solids. The five glass balls with almost same com-
position ingredients (SiO2 > 65%, Na2O > 14%, CaO >
8%, MgO > 2:5%, Ai2O3 > 0:5%, Fe2O3 > 0:1%) and same
size with r ¼ 5mm have been measured by the resonant ultra-
sound spectroscopy (RUSpec), which simulates the free
boundary conditions by means of a resilient holding device of
specimen, using an emitter to excite ultrasonic waves with
gradually increasing frequency in a certain range. If the fre-
quency of excitation coincides with the intrinsic frequency of

Table 3. Some mode shapes of a BK-7 sphere.

m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1S2
1

XY plane

XZ plane

YZ plane

m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5
1T2

1

XY plane

XZ plane

YZ plane

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



the specimen itself, a resonance phenomenon will occur, and
the receiver detects the signal and obtains the corresponding
frequency. The results are shown in the Table 4.

3.2. The natural frequencies of an isotropic ellipsoid

If the three axes of the elastic solid are unequal, it is a typ-
ical ellipsoid. There are several examples of natural frequen-
cies of an isotropic ellipsoid with the different sizes shown
in Figure 7.

In comparison with spheres, because a, b, c are not equal to
each other in ellipsoids, each frequency only has one mode or
two modes. This means that the vibration mode shapes of the
isotropic elastic ellipsoid are much less than the sphere of the
same material in the frequency range. While the data in a
bracket implies the mode of the ellipsoid with a : b : c ¼ 1 :

0:9 : 0:8, the data in square bracket represent the mode of
the ellipsoid with a : b : c ¼ 1 : 1 : 1, and the remaining cases
meaning the mode of the ellipsoid with a : b : c ¼ 1 : 1 : 0:9:
Figure7 shows that whatever the size of the ellipsoid, and the
torsional modes are independent on Poisson’s ratios since the
torsional modes are determined by shear deformation only.
Again, several modes of the ellipsoid of BK-7 glass with differ-
ent sizes are shown in Table 5.

For a validation of vibration frequencies and mode
shapes of ellipsoids, five ellipsoid samples were fabricated
using DM12, a resin widely used in 3D printing by the SLA
3D printer (Shining3D Company, Yangzhou, Jiangsu
Province, China), have been measured with the resonant
ultrasound spectroscopy (RUSpec, Magnaflux Quasar
Systems, Albuquerque, New Mexico, USA), and the results
are shown in Table 6. It showed that calculation and meas-
urements are close and the calculation procedure in this art-
icle can be used for material characterization with unusual
and small samples, as the study is intended to.

3.3. The natural frequency of an anisotropic sphere

As a further validation of the method and results, frequencies of a
spherical specimen of single-crystal periclase as presented in an
earlier study by Oda [33] are used for comparison in this part. In
comparison to an isotropic elastic sphere, the vibration modes of
anisotropic spherical with cubic crystal symmetry are much
sparse. The vibration modes are divided into ten groups, such as
single modes, twofold degenerate modes, and threefold degener-
atemodes [33]. Specifically, themode groups are denoted as single
modes ðA1g, A2g, A1u and A2uÞ, twofold degenerate modes
ðEg and EuÞ, and threefold degenerate modes ðT1g, T2g, T1u

and T2uÞ: With material properties of olivine specimen q ¼
3:350� 103kg=m3, a ¼ b ¼ c ¼ 0:893mm, elastic constants
C11 ¼ 319:61GPa, C12 ¼ 69:24GPa, C22 ¼ 197:32GPa, C23 ¼
75:67GPa, C31 ¼ 70:92GPa, C33 ¼ 236:84GPa, C44 ¼ 64:06
GPa, C55 ¼ 77:76GPa, C66 ¼ 78:34GPa, the first ten frequen-
cies from the sphere with radius ¼ 0.893mm are shown in Table
7. It is almost the same results given byOda[17].

Table 4. A comparison of frequencies from calculation and measurement.

Properties of the ball Frequency RUSpec ðkHzÞ This studyðkHzÞ Errors

E ¼ 73:128GPa, � ¼ 0:217, q ¼ 2557:1kg=m3 1 273.01 272.89 0.041%
2 287.93 287.53 0.139%
3 364.49 365.64 0.313%
4 421.55 421.67 0.028%

E ¼ 72:454GPa, � ¼ 0:225, q ¼ 2513:9kg=m3 1 270.93 273.06 0.779%
2 288.10 287.83 0.093%
3 364.63 367.83 0.870%
4 421.79 421.93 0.033%

E ¼ 73:555GPa, � ¼ 0:215, q ¼ 2513:9kg=m3 1 272.26 272.35 0.035%
2 286.60 286.93 0.113%
3 364.66 364.42 0.067%
4 419.92 420.84 0.217%

E ¼ 73:723GPa, � ¼ 0:221, q ¼ 2611:2kg=m3 1 270.16 270.70 0.200%
2 285.59 285.28 0.107%
3 363.70 363.68 0.001%
4 418.09 418.29 0.046%

E ¼ 73:008GPa, � ¼ 0:221, q ¼ 2507:3kg=m3 1 273.42 274.91 0.545%
2 289.83 289.72 0.039%
3 367.08 369.34 0.611%
4 426.52 424.79 0.404%

Figure 7. The relationship between normalized frequencies and Poisson’s ratios
of ellipsoids with different sizes.
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Table 5. Vibration modes of the BK-7 glass ellipsoid with different sizes.

a : b : c ¼ 1 : 1 : 0:9 a : b : c ¼ 1 : 0:9 : 0:8

Initial mode

XY plane

XZ plane

YZ plane

2S1
2

XY plane

]

XZ plane

YZ plane

(continued)
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3.4. The natural frequency of an anisotropic ellipsoid

The above sections show that the repeated frequencies for
BK-7 glass spheres with radius of 1mm and olivine spheres
of radius of 0.893mm (Tables 2 and 7) are accurate. Now it
is shown that there are indeed correct degeneracies which
can be identified by looking at the frequencies of ellipsoids
close to spheres. Then, the first ten frequencies from the
ellipsoids of different sizes with the same material in the last
part are shown in Table 9.

1T2
1

XY plane

XZ plane

YZ plane

Table 6. A comparison of frequencies of ellipsoids from calculation and measurement.

Properties of the ellipsoids Frequency RUSpec ðkHzÞ This studyðkHzÞ Errors

a ¼ 1:074mm, b ¼ 1:07mm, c ¼ 0:801mm, E ¼ 1:401GPa, � ¼ 0:3885,q ¼ 158:85kg=m3 1 596.53 600.96 0.743%
2 749.56 719.77 3.974%
3 750.80 739.70 1.478%
4 810.58 811.95 0.169%

a ¼ 1:083mm, b ¼ 1:08mm, c ¼ 0:763mm, E ¼ 1:3990GPa, � ¼ 0:3985,q ¼ 155:85kg=m3 1 584.19 589.64 0.924%
2 749.37 723.48 3.455%
3 755.48 744.23 1.489%
4 755.96 757.74 0.235%

a ¼ 1:092mm, b ¼ 1:035mm, c ¼ 0:79mm, E ¼ 138:49GPa, � ¼ 0:3996,q ¼ 161:25kg=m3 1 584.19 592.54 1.409%
2 753.89 714.15 5.271%
3 755.48 760.89 0.711%
4 805.09 803.10 0.247%

a ¼ 1:08mm, b ¼ 1:08mm, c ¼ 0:795mm, E ¼ 138:89GPa, � ¼ 0:3896,q ¼ 158:87kg=m3 1 592.98 590.17 0.474%
2 755.16 711.68 5.758%
3 757.31 734.75 2.979%
4 809.29 809.02 0.033%

a ¼ 1:078mm, b ¼ 1:06mm, c ¼ 0:805mm, E ¼ 139:89GPa, � ¼ 0:3812,
q ¼ 157:39kg=m3

1 606.81 608.26 0.238%
2 761.80 738.85 3.013%
3 761.92 754.66 0.953%
4 815.56 814.60 0.118%

Table 7. A comparison of natural frequencies of an olivine sphere.

k Modes This study f (kHz) Oda [17] f (kHz)

1 Au � 1 2025 2025
2 B3g � 1 2082 2082
3 B3u � 1 2083 2083
4 B1u � 1 2135 2135
5 Au � 2 2140 2140
6 Ag � 1 2159 2159
7 B2u � 1 2225 2225
8 B2g � 1 2254 2254
9 B1g � 1 2271 2271
10 Ag � 2 2588 2588
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Table 8. Some mode shapes of the olivine sphere.

Initial mode Au � 1 B3g � 1 B3u � 1 B1u � 1 Ag � 1

XY plane

XZ plane

YZ plane

Table 9. The natural frequencies of olivine ellipsoids in two sizes.

k Modes a� b� c 1� 1� 0:9 mm f (kHz) Modes a� b� c 1� 0:9� 0:8 mm f (kHz)

Rayleigh–Ritz method COMSOL Rayleigh–Ritz method COMSOL
1 Au � 1 1822 1821 Au � 1 1882 1881
2 B1u � 1 1852 1853 B1u � 1 1961 1963
3 B3g � 1 1945 1944 B3u � 1 2163 2163
4 B3u � 1 1955 1955 B1g � 1 2178 2173
5 Ag � 1 1990 1990 Ag � 1 2187 2189
6 Au � 2 2031 2031 B2u � 1 2217 2215
7 B1g � 1 2050 2048 B3g � 1 2226 2225
8 B2g � 1 2112 2113 B2g � 1 2269 2269
9 B2u � 1 2149 2147 Au � 2 2271 2272
10 Ag � 2 2403 2401 Ag� 2 2552 2549

Table 10. Some mode shapes of olivine ellipsoids.

Initial mode Au � 1 B3g � 1 B3u � 1 B1u � 1 Ag � 1

1� 1� 0:9mm

XY plane

XZ plane

YZ plane

1� 0:9� 0:8mm

(continued)
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4. Conclusions

In this article, the Rayleigh–Ritz method is used to analyze
the free vibrations of spherical specimens for the natural fre-
quencies and mode shapes. The relationship between nor-
malized frequencies and Poisson’s ratio of isotropic elastic
spherical specimens is different in spherical and ellipsoidal
samples, as it is found from calculations. The different
modes have different behaviors with the changes of ellips-
oidal parameters, and the higher frequency modes are less
insensitive with the variations of the semiaxes a, b, and c:
The vibration modes of anisotropic samples, on the other
hand, are much less dependent on dimensions, and the indi-
vidual mode shapes have distinctive characteristics that can
be distinguished by the modal contours of each cross-sec-
tion. In summary, the Rayleigh–Ritz method is simple and
efficient for the analysis of vibrations of elastic ellipsoids,
and the results converge quickly and accurately. The
Chebyshev polynomials are chosen for their stability as basis
functions for the displacements are easy to calculate and
accurate in both frequency and modal shapes. As validated,
the procedure can be used for the analysis of anisotropic
ellipsoids encountered frequently in engineering applications
and measurement with the resonant ultrasound spectroscopy
(RUSpec) technology.
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