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Abstract: This research presents the application of a beam finite element, specifically derived for
simulating bending—torsion coupling in equivalent box-beam structures with curvilinear stiffeners.
The stiffener path was simulated and optimized to obtain an expected coupling effect with respect to
four typical static load cases, including geometric constraints related to the additive manufacturing
production method. The selected load condition was applied to the centroid of the beam section,
and the structure performance was consequently determined. A variation in load position up to one-
fourth of the beam width was considered for investigating the stiffener path variation corresponding
to a minimum bending-torsion coupling effect. The results demonstrated the capability of such a
beam finite element to correctly represent the static behavior of beam structures with curvilinear
stiffeners and show the possibility to uncouple its bending-torsion behavior using a specific stiffener
orientation. The simulation of a laser powder bed fusion process showed new opportunities for the
application of this technology to stiffened panel manufacturing.

Keywords: bending—torsion coupling; curvilinear stiffeners; beam finite elements; additive manufac-
turing; topology optimization

1. Introduction

High aspect ratio wing configuration and weight reduction can improve aircraft energy
efficiency, reducing CO, emissions to match the standards adopted by the 36-state ICAO
council. The resulting slender structures are highly flexible and are subjected to aeroelas-
tic instabilities [1-5], both static and dynamic. Divergence is a typical static aeroelastic
instability involving torsion deformation, which is potentially increased up to an unsafe
level. Bending-torsion flutter is referred to as a classical aeroelastic dynamic instability that
causes rapidly increasing amplitude oscillations up to a dangerous extent if related to the
wing structural integrity. Therefore, specific design care has to be devoted to the definition
of innovative structural configurations capable of mitigating such critical phenomena.
Anisotropic materials can be adopted to enhance wing box structural performances with
no weight penalties by combining both aerodynamic and material coupling, according
to the concept of “aeroelastic tailoring”, as described in the review papers of Jutte and
Stanford [6] or of Shirk et al. [7].

Aeroelastic tailoring demonstrates its important advantages when orthotropic ma-
terials are involved in the design. Composite material lay-ups can be optimized to ob-
tain a desired behavior in connection to functionally graded materials (FGM) [8-11] and
variable angle tow (VAT) [12-16]. An alternative solution can be based on curvilinear
stiffened panels, as described in [17,18]. All these technologies can be adopted as passive
aeroelastic tailoring.

Materials 2023, 16, 3391. https:/ /doi.org/10.3390/ma16093391

https:/ /www.mdpi.com/journal /materials


https://doi.org/10.3390/ma16093391
https://doi.org/10.3390/ma16093391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0557-2086
https://orcid.org/0000-0003-4842-3320
https://orcid.org/0000-0002-1463-9660
https://orcid.org/0000-0002-5182-6481
https://doi.org/10.3390/ma16093391
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16093391?type=check_update&version=1

Materials 2023, 16, 3391

20f22

The optimization of material orientation for aeroelastic tailoring has been widely
investigated and enlarges the design space for next-generation wings. Weisshaar [19] used
a set of closed-form solutions on static aeroelastic problems to describe the effects of fibrous
composites on aerodynamic characteristics of composite wings and illustrated the ability of
aeroelastic tailoring to modify the spanwise center-of-pressure location.

Kameyama et al. examined [20] the effects of laminate configurations on flutter
and divergence characteristics of composite plate wings with various sweep angles and
conducted an optimization to find the minimum weight design, with constraints on the
flutter and divergence speeds. Stroud et al. [21] presented an approach for the reliability-
based optimization of metallic wing plates to meet strength and flutter requirements. The
design variable was the thickness distribution, while the constraints were the weight and
the probability of failure. Maute et al. [22] presented a topology optimization methodology
for the design of aeroelastic structures, accounting for the fluid-structure interaction. The
optimization results showed the significant influence of the design dependency of the loads
on the optimal layout of flexible structures when compared with results that assumed a
constant aerodynamic load. Other works involving aeroelastic tailoring and composite
materials were presented in [23-26].

The optimization process can be very demanding in terms of time and computational
costs. Equivalent models or beam elements can be adopted to find optimal solutions for the
early design stages. Danzi et al. [27] used an equivalent continuum plate model to obtain
an optimal configuration through a topology optimization problem, where the design
variables became the orientation of the stiffeners at prescribed points.

In the present work, a beam finite element with bending—torsion coupling formulation
(Figure 1), developed and validated with numerical and experimental results by Patuelli
et al. [28,29], was adopted to find the optimal configuration of curvilinear stiffener panels
of a box-beam structure. The bending—torsion coupling beam finite element (BTCE) was
used in a topological optimization to find the optimal stiffener orientation that guaranteed
prescribed levels of deflection and torsion for three different load cases (LC1, LC2, and
LC3) located on the beam axis; these design cases were identified as LC1_C, LC2_C,
and LC3_C. A second optimization procedure was performed with the loads positioned
at one-fourth of the beam width, imposing O-tip torsion angles as constraints and thus
generating uncoupled bending and torsion behavior. These optimizations were identified
as LC1_U, LC2_U, and LC3_U. The analysis was limited to static load cases to reduce
the number of design variables and to test the capabilities of the derived beam finite
elements in the presence of curvilinear stiffeners; moreover, this work aimed to verify the
existence of an optimal configuration that can couple or decouple bending and torsion
within prescribed constraints.

An additional optimization procedure was considered to obtain a self-supporting
structure in the additive manufacturing production scheme by selecting the right stiffener
orientation for minimizing the support structure extension and weight. General guidelines
are available in literature and the ISO/ASTM normative [30-32]. Additionally, for the
definition of the best build orientation for the minimization of the support structure, other
criteria were considered for the design of the product and the process, such as surface
finish, powder and part removal ease, inspection accessibility, and others. The presence of
support structures can increase time and costs for AM parts production; for this reason,
the self-support requirement was taken as a technological constraint in this case. This
optimization was identified with the acronym LC_AM.

A static analysis of the resulting optimal configurations subjected to the related loads
was performed with two finite element (FE) models: a SHELL FE model and a TETRA10 FE
model. The static results were compared to the ones computed by the BTCE model to verify
its simulation capabilities in the presence of curvilinear stiffeners and its performance as an
optimization tool. The manufacturing of a portion of the optimized beam by means of the
laser powder bed fusion (LPBF) process was simulated with the software AMTOP® V. 2.0,
which was developed by ITACAe S.r.l. Asti, Italy and SimTech Simulation et Technologie
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SARL Paris, France for enhancing the AM application to the curvilinear stiffener box-beam
configuration. The software was based on the FE discretization of the macro-scale process;
this class of models can be used to understand the overall temperature progressions and
deformations during the process, as shown in [33-38].
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Figure 1. Beam element reference system with dimensions, nodal degrees of freedom, and resul-
tants [28].

The objective of this work is to investigate the capabilities of the BTCE as an optimiza-
tion tool to find a desired box-beam structure configuration at a very early design stage and
to assess its accuracy in determining structural performances in the presence of curvilinear
stiffeners. Moreover, the presented research explores the possibilities of AM production for
such a stiffened configuration, taking into consideration related geometric constraints.

The research paper is organized as follows: the second section briefly presents the
characteristics of the BTCE, with a focus on its derivation. In the third section, the geometry
of the box-beam structure, the optimization problems, and the finite element models are
described. The fourth section contains the results, while the conclusions are outlined in the
fifth and last sections).

2. Finite Element Model

The finite element used in this work was a two-node finite element with six degrees of
freedom per node, derived by Patuelli et al. [28], which included bending—torsion couplings;
the elongation was not considered in this work, so the nodal degrees of freedom were
reduced to five. The derivation proceeded from the equation of motion derived according
to [39,40], considering only linear terms:

v 2 (v) _
mgz + C33W(W) =0
22 2 (P 9 [
m32 + Cn s (34) - C (58) =0 @
%¢ 3 (dg 0 (Pw) _
Plp o — Clla(ax ) +Cugy (W) =0

where Cy and Cs3 are the bending stiffness with respect to the y- and z-axes, C1, represents
the bending-torsion coupling coefficient, Cy; is the torsional stiffness, m = pA is the mass
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of the beam element, p is the material density, and I, is the polar moment of inertia of the
beam section. The edgewise, spanwise, and torsional displacements were represented as v,
w, and @, respectively, and were defined in the spatial coordinate x and in the time ¢.

The structure considered in this work was a circumferentially asymmetric stiffness
(CAS) configuration, and the stiffness coefficients were obtained with Equation (2).

Coo = 74 Alds, (2a)
402
CH=——"--— 4% D} ds, 2b
1 § /AL ds + 6645 (2b)
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Cpp = 20— 4?{D d 2
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The coefficients were defined in a three-dimensional cartesian reference system (x, y, z),

and the integral was computed along the curvilinear coordinate s, which followed the
mid-thickness line of the generic closed section, which enclosed the area (). A}; and D;‘j

were the coefficients of the reduced laminate extensional and bending laminate stiffness
matrices. They were obtained from the coefficients A;; and D;; of the extensional and
bending stiffness matrices [A] and [D], according to the classical laminate theory (CLT) and,
in the case of symmetric lamination, with Equation (3), according to [28].

A7 ApA A3
jop— 12 jol— _ £41274326 op— _ 1726
All = A11 A%z A A16 Ay ’A66 = A66 A%z’ (3)

D? Dy,D D
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Considering the external loads fy, fu, and f,, Equation (1) can be rewritten as:

pA atz + C33aa;2 (axz) fv
pATE atz +Cas Bx22 (%ZU) Ciagy (axZ) iy @)
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Galerkin’s method was adopted to find the element stiffness and mass matrices. The
method consists of expressing the variables v(x, t), w(x, t), and ¢(x,t) as a series of shape
functions ¢;(x) multiplied for the degrees of freedom §;(t), which means:

N
v(x,t) = jgi Gi () ¢oi(x)
@) = L E0)a(), ®

N
p(x,t) = jgiéi(f)fl’q)i(x)
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Once the shape functions were defined, the set of the function was multiplied by a
residual function R, and integrated over the beam length, imposing zero as the solution for
Equation (6)

L
[ 9iRedx =0 ©)
0

In this way, the error between the shape function and the equation of the problem was
minimized. The results of this procedure were the discrete equations of motion, written in
the form:

[M{Z} + [KI{¢} = [F] @)

where [M], [K], and [F] represent the mass matrix, the stiffness matrix, and the vector of
nodal forces, respectively.

Further details on shape functions, element stiffness, and mass matrices derivations
can be found in [28].

The coefficients were constant along the element. For a beam structure with curvilinear
stiffeners or fibers, the orientation ¢; at node 1 of the element was different from the
orientation 19]- at node 2. In this case, the orientation of the stiffener along the element was
considered equal to the mean value of ¢ at the nodes. This hypothesis was more accurate
when the variation of ¢ inside the element was small. For stiffeners with high curvatures,
this was achieved by increasing the number of elements for the beam structure.

3. Problem Formulation

The generic box-beam structure analyzed in this work is depicted in Figure 2. It was
characterized by a length of L = 1100 mm, composed of two stiffened panels with a width
of b = 50 mm, and connected with two C-shaped spars with the dimension 20 mm x 40 mm
The stiffener dimensions were h; = 4 mm and b; = 3 mm. The distance between the two
stiffeners was ds = b/N = 8.33 mm, where N = 6 was the number of stiffeners. The
stiffener orientations varied linearly with Equation (8), where ¢, was the orientation at the
first section of the beam, while ¢, was the orientation at the end section. The thickness
of the C-shaped spars and of the mid-layer of the stiffened panels was s = 2 mm. The
geometry followed the dimensions of the beam used in [28,29], where the structure was
widely analyzed, and many numerical and experimental data are available for model
verification; moreover, it can be manufactured and tested with the procedures and methods
used in previous works. The material considered for the structural analysis was an Al6060
aluminum alloy, with its properties listed in Table 1.

40 mm
2 : hs
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A E }
_—OSOGOO"E c A
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Figure 2. Beam structure geometry.
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Table 1. Al6060 mechanical properties.

Property Value

Young’s Modulus, E [MPa] 58,000

Shear Modulus, G [MPa] 21,805
Poisson’s ratio, v1» 0.33

The stiffener orientations evaluated at prescribed control points with Equation (8) were
considered design variables in the topology optimization procedure: ¢; was the orientation
at x = 0, and ¢, was the orientation at x = L. The local orientations of the stiffeners were
presumed to vary linearly, according to [41-43].

®)

The optimization problem for the static bending—torsion coupling cases can be formu-
lated as (9):
max 3 {u}" [K]{u},
subject to [K[{u} = {p}
O < 1o < By ©)

‘q)tip| Z |§0O|
|wtip| < |w0|

While the optimization problem for the load cases where the objective is to find an
uncoupling configuration can be written as (10):

max 1 {u}" [K]{u},
subject to [K|{u} = {p}
Op <12 <Oy
Ptip =0 ]

(10)

where [K] is the global stiffness matrix, {u} is the vector of nodal displacements, and {p}
is the vector of nodal moments and forces. In the case of planar deformation, for a finite
element formulation, the strain energy was given by Equation (11). The static solution and
the strain energy were obtained with a 100-element BTCE model constrained at one end.

Sy TIK {u, an

The optimization was carried out with the MATLAB optimization algorithm “fmin-
con”. The allowable orientations ranged from 9 to 8,,;,, which represented the lower and
upper boundaries of the problem. The stiffness coefficients C11, C1p, Czp, and Cs3 were
computed with Equation (2); the CLT matrices were obtained by considering the stiffeners
as equivalent orthotropic materials, according to [28,29,44], and with properties computed
with Equation (12) and listed in Table 2. For each element, the stiffener orientations were
considered equal to the mean angle between the angles at the element nodes.

Esb Ty [ Esb
En=(—")iEn=0v=0Gp=—(——];Gi3=0;G3 =0 (12)
ds 4 dS
Table 2. Equivalent single-layer material properties.
Property Value
Longitudinal Young’s Modulus, E; [MPa] 20,888.36
Transverse Young’s Modulus, Ej; [MPa] 0

Shear Modulus, G, [MPa] 1636.03

Poisson’s ratio, vq» 0
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The optimization was obtained with 200 initial couples of #; and ¢, randomly gener-
ated within the limit values of ¢;, and 9.

The optimization was performed by considering different load cases (LC) listed in
Table 3 and different constraints on deformation. For each load case, the force F was equal
to 41.37 kg, which was the same load considered in [27].

Table 3. Load cases descriptions.

Load Case Equation Graphical Representation
9
LC1 qw =F
L
[ qw
LC2 Jw=F
L
F x Gu
LC3 go=1(1-1)
L

The first optimization was designed to find the configuration, which resulted in a
coupled bending-torsion deformation with the highest level of strain energy and with
constraints on maximum deflection and minimum torsion angle. In this case, the load
was applied on the section centroid (LCi-C). The second optimization was arranged to
find the configuration that separated bending and torsion when the load was applied at
one-fourth of the beam width (LCi-U), which was equal to a distance of d = 13 mm from
the center of the beam section (see Figure 2). This parameter was chosen by assuming
that the aerodynamic center of a hypothetical airfoil fixed to the box-beam structure was
positioned at a distance d from the center of the closed section. These optimizations were
referred to as “coupling optimization” and “uncoupling optimization”, respectively.

The constraints applied for each optimization are listed in Table 4, and those related to
LC1_C, LC2_C, and LC3_C were the same ones used in [27].

Table 4. Optimizations loads, design limits, and constraints.

Optimization Load Applied [01 O] Constraints [¢, wo]
LC1_C LC1 [—45° 45°] [0.287° 14 mm]
LC2_C LC2 [—45° 45°] [0.08° 4.6 mm]
LC3_C LC3 [—45° 45°] [0.03° 1.1 mm]

LC1_AM LC1 [40° 90°] [0.2° 17 mm]
LC1 U LC1d = 13mm [—45° 45°] Prip <1 x 1072 [rad]
LC2_U LC2d = 13mm [—45° 45°] Prip <1 x 107° [rad]
LC3_U LC3d = 13mm [—45° 45°] Prip <1 x 1072 [rad]

The constraints reported in Table 4 for LC1_C, LC2_C, and LC3_C were the same
constraints used in [27]. The design space for the case LC1_AM was modified in order to
avoid or minimize the use of support structures during the AM process. For this reason,
the minimum allowable angle was 40°. In general, it is not possible to determine “a priori”
if the imposed constraints will be satisfied within the design space: the desired minimum
torsion angle could be impossible to achieve with the imposed constraints on the deflection
and vice-versa. Subsequent optimization cycles can be performed to refine the optimization,
but for the scopes of this work, the configuration with the highest strain energy that was
closer to the constraints was considered the best solution.
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As an example of the application for beam structure design optimization, the optimal
values related to ¢ and ¢, for each load case were rounded to the nearest angle with a
precision of 0.5°, defining a set of design solutions with a slight variation in final deflections.
Such a variation was considered acceptable for the scope of this work. A feasible design
was so generated.

The chosen configurations were subsequently simulated with three different FE mod-
els: a 10 BTCE model, a SHELL FE model, and a TETRA10 FE model, following the
procedure and the FE modeling described in [28]. For each model, the applied load was
discretized with 10 concentrated loads positioned at element nodes for the BTCE and
applied at the section centroid for the SHELL and the TETRA10 models. The three models
were constrained at one end, imposing all the degrees of freedom equal to 0. The BTCE
and the SHELL models consisted of ten sections. Each section considered a constant stiff-
ener orientation equal to the mean value of the orientation angle at the section ends. The
stiffened plates were considered laminates for the BTCE and the SHELL models, where
the curvilinear stiffeners were modeled as an equivalent single layer. Their mechanical
properties were computed by means of Equation (12).

The additive manufacturing production of a portion of a stiffened panel, including
related constraints, is represented in Figure 3 by means of a simulation performed with
the AMTOP® V. 2.0. AMTOP® V. 2.0 is a platform of software tools developed to analyze
and optimize additive manufacturing products and processes. The platform includes
several algorithms to efficiently optimize the orientation of the part on the build plat-
form [45] and evaluate the extent of stresses and distortions through a “layer-by-layer”
approach [46,47]. The approach allows the macro-scale process simulation for most additive
manufacturing technologies, such as powder melting (powder bed (PB) technology) or
molten wire deposition (fused filament fabrication (FFF) technology), through a series of
coupled thermal-structural finite element analyses. One of the approach assumptions is
considering the size of the laser dot negligible, compared to the characteristic dimensions
of the component. In the preprocessing step, an algorithm prepares the FE model starting
from the surface mesh of the part with a technique called “voxelization” of the domain,
i.e., discretization in layers on the growth plane, divided into small hexahedral subdo-
mains. The voxels sizes are multiples of the layer thickness and the laser dot diameter. The
software prepares the finite element model (Figure 4) of the part (in yellow), including
powder elements (in blue) for stability purposes and the base plate elements (in orange);
moreover, it sets the thermo-mechanical problem for the CalculiX solver, which evaluates
the heat transfer in Equation (13) with boundary conditions reported in Equation (14). A
representative flow of heat is applied to the entire layer for a time representative of the
time of realization of the same layer. The layer realization time is the sum of the build time
and the idle time for the repositioning of the re-coater (PB) or the nozzle (FFF).

Conduction, convection, and radiation heat transfer phenomena, as well as the non-
linear mechanical elastic—plastic behavior, were taken into account in the analysis through
the introduction of temperature-dependent material properties into the FE model. The
evaluation of distortions of the part, compared to the nominal geometry, was carried out
with the alignment of calculated and nominal part geometries through a root-mean-square
error minimization method. _

A(—«xAT) + pcT = ph (13)

—KAT = — he(T = To) — ot (T — T3 (14)

In Equations (13) and (14), T is the temperature, x is the thermal conductivity of
the material, p is the material density, & is the heat generation per unit of mass, g is the
input heat flux, h. is the heat transfer coefficient under natural convection, o, is the Stefan—
Boltzmann constant, Ty is the ambient temperature, and ¢ is the emissivity. The material
considered for the simulation was a AlSi10Mg alloy, and the effects of emissivity and
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convection were neglected. The process parameters used for the simulation are listed in

Table 5.
112 mm i
7 £
2N &
o
Yo}
£
S £
Q S
‘ Juuuuuuuuu} -
0 e Y e A A A | !
. 2mm %
N

Figure 4. Finite element model for LPBF process simulation.

Table 5. AM process simulation process parameters.

Process Parameters Value
Recoat Time [s] 10
Layer Thickness (LT) [mm] 0.03
Hatch Distance [mm)] 0.2
Base Plate Temperature [°C] 160
Laser Diameter (LD) [mm] 0.1
Laser Speed [mm/s] 1200
Element Width 10x LD

Element Height

50x LT
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4. Results

The optimization procedure revealed that many different configurations gave a similar
response and therefore a comparable strain energy level. However, it was possible to deter-
mine the configurations that achieved the highest strain energy values. The optimization
results are presented in Figures 5-11. The green dot represents the best solution, while
the blue dots represent the solution with a tip deformation and a torsion angle with a 5%
relative difference with respect to the best solution. These configurations were highlighted
to show that the chosen optimization algorithm tended to converge to different solutions
because there were multiple possible configurations that showed similar deformations and
strain energy levels. The red dots represent the non-convergent solutions or configurations
with tip deflections and torsion angles with a relative difference with respect to the best
solution greater than 5%.

For the cases where the desired solution was meant to eliminate the bending—torsion
couplings, it was interesting to note that the acceptable configurations laid on a line for each
load case, and that the configurations with the highest strain energies were similar. The
optimal solutions are listed in Table 6. Considering the introduced approximation related
to FE discretization and the equivalent single layer representation, a rotation below 0.01° at
the tip was considered equal to 0. It is worth noting that the best solution was placed at the
boundary of the parameter range. In Figures 9-11, all the other valid solutions were located
on a curve, and consent to achieve the torsion angle was equal to zero; however, only the
best solution had the highest strain energy level. This was plausible because the more the
stiffeners approached an orientation of —90°, the more the bending stiffness decreased and
the strain energy increased.
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Figure 5. Optimization results for the LC1_C configuration.
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Figure 6. Optimization results for the LC2_C configuration
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Table 6. Optimal solutions.

Optimization Applied Load [01 32] Wtjp [mm] @1ipl°]
LC1.C LC1 [30.77° 29.96°] —13.98 —0.26
LC2.C LC2 [18.32° 21.95°] —4.60 —0.08
LC3_C LC3 [12.50° —0.11°] —1.10 —0.01

LC1_AM LC1 [45.43° 40.24°] —15.93 —-0.2
LC1. U LC1d =13 mm [30.16° —45°] —11.88 Prip| < 0.01
LC2_U LC2d =13 mm [25.10° —45°] —4.39 Pip| < 0.01
LC3_U LC3d =13 mm [23.88° —45°] -1.15 Ptip| < 0.01

The optimized angles for each configuration were approximated to the nearest value
within 0.5°. Due to the similarities between the optimal solutions for the decoupling cases,
a single configuration was chosen. The resulting configurations are listed in Table 7 and
represented in Figure 12A-E.

A)

®)

©)

®)

€)

X

Figure 12. Configuration derived from optimal solutions: (A) LC1_C, (B) LC2_C, (C) LC3_C,
(D) LC1_AM, and (E) LC1_U, LC2_U, and LC3_U.

Three different FE models were created for each one of the geometries presented in
Table 7 and Figure 12A-E in order to compare the static results. The reference model was
a TETRA10 FE model with a fully described geometry. Another model consisted of a
SHELL FE model, with the beams divided in ten sections. For each section, the equivalent
properties of the stiffeners were computed according to the procedure described in the
previous section. The orientations of the stiffeners were considered uniform for each section
and equal to the mean value of the angles at the two ends of the section. The third model
consisted of a BTCE model with bending—torsion formulation; the finite element was the
same one used for the optimization. Ten BTCE elements were considered for this model,
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and the orientations of the stiffeners were considered uniform along the beam element and

computed with the same procedure used for the SHELL FE model.

Table 7. Configurations derived from optimal solutions.

Optimization Applied Load [¢41 3,1
LC1_C LC1 [31° 30°]
LC2_C LC2 [18.5° 22°]
LC3_C LC3 [12.5° 0°]

LC1_AM LC1 [45.5° 40°]
LC1_U LCl1d =13 mm [25° —45°]
LC2_U LC2d =13 mm [25° —45°]
LC3_U LC3d =13 mm [25° —45°]

The results obtained with the different FE models are reported in Figures 13-19 and in
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Figure 13. LC1_C deformation results comparisons between the TETRA10 FE model, SHELL FE

model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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Figure 15. LC3_C deformation results comparisons between the TETRA10 FE model, SHELL FE

model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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Figure 16. LC1_AM deformation results comparisons between the TETRA10 FE model, SHELL FE

model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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Figure 17. LC1_U deformation results comparisons between the TETRA10 FE model, SHELL FE
model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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Figure 18. LC2_U deformation results comparisons between the TETRA10 FE model, SHELL FE
model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.
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Figure 19. LC3_U deformation results comparisons between the TETRA10 FE model, SHELL FE
model, and BTCE model: (a) deflection comparison, (b) torsion angle comparison.

In the majority of the considered cases, the geometries obtained from the optimal
solution produced a deformation compliant with the design constraints. The static analysis
revealed some differences with respect to the deformation results obtained with the optimal
solutions reported in Table 5. These differences were linked to the approximations of ¢
and &, as introduced in the design procedure. In particular, the case LC2_C violated the
imposed constraints on the deflection.

A good agreement between the different models were determined, showing a relative
difference generally below 6% with respect to the TETRA10 FE model results and below 10%
with respect to the SHELL FE model results. These differences were justified, considering
the BTCE model assumptions. The developed beam element considered the stiffeners
straight along the element length; moreover, an equivalent single layer material was
adopted to describe the stiffened panel behaviors. In addition, the beam element section
was considered non-deformable. However, the BTCE model demonstrated a good fidelity
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in representing the static behavior of a box-beam structure with curvilinear stiffener panels.
This was a very interesting result for a tool useful in the preliminary design environment.

Table 8. Finite elements model Results Comparisons.

Coupled Bending-Torsion

Load Case  DOF BTCE SHELL TETRA10

w [mm] 1420 1347 —13.75
(5.4%) (3.3%)
Lct ¢ [°] 026 029 —027
(10.3%) (3.7%)
 [mm] 523 5.03 —5.16
(4.0%) (1.4%)
Le2 ¢+ [°] ~0.09 ~0.10 ~0.10
(10%) (10%)

w [mm] ~1.10 ~1.07 ~1.09
(0.9%) (0.9%)

Les 9+ [°] —0.01 001 —0.01

(0%) (0%)
w [mm] “16.17 1524 1534
(6.1%) (5.4%)

LC1 AM ¢ [°] ~0.20 ~0.18 ~0.19
(11.1%) (5.26%)

Uncoupled Bending-Torsion
Load Case  DOF BTCE SHELL TETRA10

w [mm] 1161 ~11.19 1145
(3.8%) (1.4%)

LCt ¢ [°] 0.03 0.03 0.02
(0%) (50%)

w [mm)] —4.96 —4.79 —4.90
LC2 (3.5%) (1.2%)

¢ [°] 001 < ¢y <001 001 < ¢y <001  —0.01 < gyx<0.01

w [mm] “1.16 112 115

LC3 (3.6%) (0.9%)
¢ [°] 001 < gy<001 001 < gy <00l  —001 < gx<0.01

Figures 20-23 present the results of the thermo-mechanical simulations performed
with AMTOP®; the reported results were displacements of the finite element model nodal
coordinates from the starting geometry after the removal of the base plate and powder finite
elements. The chosen process parameters and the designed geometry did not generate
support structures minimizing the post-production machining. The deformations induced
by the release of the stresses cumulated during the part cooling were represented in the
principal directions. The simulation showed that the part could be produced with LPBF,
obtaining a component with deformations lower than 0.82 mm.
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Figure 20. Deformation magnitudes for the AM component.
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Figure 21. Deformations in the x-direction for the AM component.
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Figure 22. Deformations in the y-direction for the AM component.
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Figure 23. Deformations in the z-direction for the AM component.

5. Conclusions

The application of a beam finite element with bending—torsion formulation for the
stiffener path optimization of box-beam structures with curvilinear stiffened panels was
presented and validated. The optimization was devoted to three different load cases applied
on the beam axis, including one typical situation related to manufacturing geometric
constraints in the AM process. The objective function of the optimal procedure was
focused on the maximum strain energy under the prescribed load related to the selected
configuration under maximum vertical deflection and minimum torsional angle global
constraints. With this method, the highest level of bending—torsion coupling was achieved.

A second optimization considered the same load cases but was positioned at one-
fourth of the beam width, generating an additional torsional moment. In this case, the
objective of the investigation was focused on minimizing the bending—torsion effect and
therefore obtaining the maximum strain energy, with the torsion angle at the tip equal to 0.

The optimization results were converted into a beam structure design to assess the
structural performances of the chosen configurations and to verify whether the BTCE was
capable of correctly representing the deformation under static loads of beam structures with
curvilinear stiffeners. A TETRA10 FE model, a SHELL FE model, and a BTCE model were
created for each design, and a static analysis was performed. The comparison between the
different FE models revealed a good precision of the BTCE, with relative differences in the
deformation results less than 6% in most of the cases when compared to the TETRA10 FE
model results and less than 10% when compared to the SHELL FE model. The discrepancies
between the different models can be explained by considering the assumptions made for
the BTCE derivation. The developed beam element considered the stiffeners straight along
the element length and reduced the stiffeners to an equivalent single layer. In addition, the
beam element section was considered non-deformable.

The potential of the BTCE as an optimization tool and as a static analysis tool for beam
structures with curvilinear stiffeners was confirmed. Moreover, the possibility to obtain a
specific configuration capable of enhancing or diminishing the effect of bending on torsion
and vice-versa was also demonstrated.

The optimal configuration related to geometric constraints for AM production with
a self-supporting structure that minimized the post-production machining was also per-
formed. AMTOP® thermo-mechanical simulation revealed that residual stress induced
deformations smaller than 0.82 mm on the final component, confirming the possibility for
the AM production of stiffened panels for such performant beam structures.
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