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ABSTRACT
Telecommunication operators are massively moving their network
functions in small data centers at the edge of the network, which are
becoming increasingly common. However, the high performance
provided by commonly used technologies for data plane processing
such as DPDK, based on kernel-bypass primitives, comes at the
cost of rigid resource partitioning. This is unsuitable for edge data
centers, in which efficiency demands both general-purpose applica-
tions and data-plane telco workloads to be executed on the same
(shared) physical machines. In this respect, eBPF/XDP looks a more
appealing solution, thanks to its capability to process packets in the
kernel, achieving a higher level of integration with non-data plane
applications albeit with lower performance than DPDK. In this pa-
per we leverage the recent introduction of AF_XDP, an XDP-based
technology that allows to efficiently steer packets in user space, to
provide a thorough comparison of user space vs in-kernel packet
processing in typical scenarios of a data center at the edge of the
network. Our results provide useful insights on how to select and
combine these technologies in order to improve overall throughput
and optimize resource usage.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Network
servers; Programmable networks; • Software and its engineer-
ing → Communications management;

KEYWORDS
Data Plane, XDP, AF_XDP, eBPF, NFV, Linux Kernel

1 INTRODUCTION
Edge computing is a paradigm that moves computational capabili-
ties close to the end user, in order to provide services with lower
latency and increase the amount of available bandwidth. Unlike
cloud computing, where user data is processed in big, centralized
data centers with almost unlimited resources, processing at the
edge requires telco operators to support a large number of small,
distributed data centers, each one featuring a few servers. Traffic of
the user reaching these data centers has to be processed by a fixed
chain of Network Functions (NFs) that provide basic connectivity to
the global network (e.g. 5G User Plane Functions, a.k.a. UPFs, NATs).
This traffic might be further processed by additional network ser-
vices (e.g., firewalls) and can be either directed to the Internet or to
applications running in the same data center (e.g., 5G control plane

services, object recognition software, content caches, etc.), located
at the edge for different reasons such as latency requirements, data
aggregation, or resiliency concerns.

Traditionally, the above two types of workload (data plane NFs
and traditional applications) are handled by partitioning available
servers in two subsets. Data-plane workloads are usually executed
on servers that leverage kernel-bypass packet processing frame-
works such as Intel DPDK. Instead, traditional applications are
orchestrated by platforms such as Kubernetes and leverage the
widespread Linux TCP/IP networking stack. In fact, kernel-bypass
technologies allow to process packets in user space, completely
avoiding the overheads introduced by the kernel network stack.
They are well known for their flexibility and for providing very
high throughput, but can hardly be executed in servers running
also traditional applications due to the necessity to rely on rigid
resource allocation schemes (e.g., CPU pinning with dedicated CPU
cores, huge memory pages), and the difficulties to support applica-
tions that leverage the standard TCP/IP stack (which, in fact, needs
to be re-implemented in user space [12]). On the other side, existing
kernel-level network processing primitives (e.g., Netfilter, Traffic
Control, etc.) are highly integrated with applications relying on the
network stack, but introduce an unnecessary overhead (hence, low
throughput) to pass-through traffic, that only needs NF processing.

While the approach based on rigid servers partitioning may be
appropriate in cloud data centers, it may provide a sub-optimal re-
source usage when a few servers are available, which could severely
impact the edge scenario. On one side, packets moving between
NF and application servers generate additional traffic in the data
center (east-west traffic) and require additional I/O operations. On
the other side, the rigid partitioning of servers based on the type
of application may lead to wasting some of the available resources.
In this scenario, a shared approach that consolidates both work-
loads on the same machine(s) would enable a more efficient usage
of resources, allowing to co-locate NFs and applications working
on the same traffic and to allocate spare resources to any kind of
workload.

In recent years, the introduction of the eXpress Data Path (XDP)
[11] and AF_XDP has provided the missing ingredients to efficiently
handle traffic either in kernel or in user space, on the same platform.
XDP allows to process packets in the NIC driver [6, 19], retaining
the possibility to yield a packet to the Linux network stack, while
AF_XDP sockets can be used to bypass limitations of eBPF programs
and provide flexible processing in user space. However, it is still
unclear how to use the above technologies at the same time in a
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single server, to handle the complex processing scenario envisioned
at the edge of the network.

This paper presents the performance analysis of in-kernel and
user space packet processing based on XDP/AF_XDP, including
pass-through traffic, processed by a chain of NFs and redirected to a
remote destination, local traffic, directed to applications running lo-
cally, and dropped traffic, which has to be discarded e.g., for security
reasons. This has the aim of determining which technology is best
suited for each case, and to provide insights on how to optimally
handle the mixed scenario typical of edge data centers.

Whilemost recent network cards, such as Intel 800 series, provide
customized hardware packet processing at the NIC level, we did
not include this technology in our evaluation. Indeed, this paper
focuses on a fully software approach, which allows to be completely
independent from the underlying hardware and supports the case
(rather common at the time of writing) of the many data centers that
feature network cards with limited packet processing capabilities
(such as our Intel 700 series).

This paper is structured as follows. Section 2 provides a back-
ground on the two main technologies considered in this paper
(namely, XDP and AF_XDP), as well as on HW/SW packet steering
mechanisms that proved to be a key to further improve performance.
Section 3 details the methodology and scenarios encompassed in
our tests, while Sections 4 to 6 present the results of our experi-
ments for the above tests scenarios, namely dropped, pass-through
and local traffic. Section 7 combines the takeaways from previous
experiments to provide guidelines to handle heterogeneous com-
binations of traffic and experimentally verifies their effectiveness.
Section 8 reviews the literature related to the topic, while Section 9
draws the main conclusions.

2 BACKGROUND
2.1 eBPF/XDP
eBPF is a virtual machine that allows the extensions of the func-
tionalities of the kernel with custom code that can be injected at
run time and executed at various hook points (e.g. trace points,
system calls, every kernel function, etc.). eBPF programs leverage a
special bytecode that is generated by the Clang/LLVM toolchain
starting from a source code written in a (restricted) C language,
which can be compiled just-in-time into native machine code for
extra performance. Upon injection, eBPF programs are analyzed by
a verifier, whose aim is to guarantee that the code cannot harm the
kernel, for example checking that only allowed memory accesses
are performed and that the program will eventually terminate. As a
consequence, eBPF programs have some limitations, such as a maxi-
mum number of instructions and the lack of support for unbounded
loops. Moreover, they cannot access memory in a custom way, but
need to rely on maps, a set of key-value stores with different access
semantics (array, hash, queue, etc.), that can be shared between
several eBPF programs and with the user space, and can be used to
preserve the state among multiple executions of a program. Despite
these limitations, eBPF has proven to be suitable to the creation of
reasonably complex NFs, especially if limited to headers processing
[18].

The eXpress Data Path provides a hook to execute high speed
eBPF packet processing programs before actually entering the main
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Figure 1: The life cycle of a UMEM buffer in an application receiving
traffic from the network.

Linux kernel. XDP allows, in its native mode, to execute these
programs in the NIC driver, at the earliest possible point after a
packet is received from the hardware, before the kernel allocates its
per-packet sk_buff data structure or performs any parsing. Based
upon the result of the processing, the program can either ask the
kernel to drop the packet, let it continue for further processing in the
network stack, send it back on the receiving interface or redirecting
it to another net device or to user space thanks to AF_XDP sockets.

2.2 AF_XDP sockets
AF_XDP sockets are a new socket family that allows user space code
to exchange packets with the NIC with very limited overhead, very
similar to existing kernel-bypass technologies [5]. An application
leveraging AF_XDP has to create an array of user-space memory
called UMEM. The UMEM is a chunk of contiguous memory divided
into equal-sized buffers, each one holding a single Ethernet frame.
These buffers are used to move packets between the NIC driver and
the user space application, exchanging their pointers through four
circular rings allocated by the kernel. Figure 1 shows the lifecycle
of a UMEM buffer in an application receiving packets from the
network and dropping/redirecting them. At startup, buffers are
waiting in the fill ring (1). When a packet arrives, the NIC stores
it in a buffer available in the fill ring and moves its pointer to the
rx ring (2), where it is consumed (i.e., processed) by the user space
application (3). If the packet is dropped, its buffer is re-added to the
fill ring (3a); otherwise it is queued to the tx ring for redirection
(3b). The driver transmits packets from the tx ring and moves their
buffers to the comp (i.e., completion) ring (4), leaving to the user
space application the responsibility to move the above buffers back
to the fill ring (5), ready to keep new packets.

Every AF_XDP socket is bound to a single {netdev, queue}
couple (multiple sockets for the same couple are allowed), and is as-
sociated with one rx and one tx ring. A single UMEM can be shared
between different sockets, however, a new pair of fill and comp
rings is needed for every {netdev, queue} couple handled. This
allocation of rings guarantees a single-producer single-consumer
access pattern on the kernel side, allowing faster operations. In
user-space, the responsibility to make sure that no concurrent ac-
cess to the same ring can occur is left to the programmer. When
a packet is received by the NIC, it is first processed by an XDP
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program, that can choose to redirect it towards an AF_XDP socket
stored into a map of type XSKMAP. In the initial implementation
of AF_XDP, packets where first DMAed by the NIC into a kernel-
owned XDP buffer, then copied into a UMEM buffer and sent to
user space (a similar operation was performed for transmission). A
zero-copy mode was later introduced [25], allowing the NIC to DMA
packets directly into/from a UMEM buffer and move them to user
space without expensive copies. While the copy mode works on all
drivers supporting XDP, the zero-copy mode requires an explicit
driver support.

In a standard AF_XDP-based packet processing program, the
NIC triggers an interrupt after the reception of one or more pack-
ets. Packets are then processed by the driver poll function in the
NAPI software interrupt context (softirq) and possibly moved to
the AF_XDP rx ring, and the application has to check the ring for
the presence of new packets (a similar process happens for trans-
mission). This can be done either with a busy loop or with the
poll() system call that puts the program into a wait state until
buffers are available. The user space application and the driver can
either be executed on the same core, with the consequent cost of
continuous context switching between app and softirq, or on sep-
arated cores, this time adding the cost of realigning the caches of
the different CPU cores (cache coherency). An additional preferred
busy-polling mode was recently introduced in [26]. With this mode,
interrupts are disabled and the user space application is responsible
of periodically executing the driver poll function with a system call
(sendto() or recvfrom()). This allows running the application
and the driver on a single core eliminating all the context switching
and coherency traffic costs, but at the cost of executing a syscall
for each batch of transmitted/received packets.

2.3 Packet steering mechanisms
Given the massive number of processing cores available in modern
CPUs, a key problem is how to distribute traffic load among the
different available CPU cores, which is important for both NFs
and traditional applications. This can be achieved leveraging either
software-based techniques running in the kernel, or hardware-
based mechanisms available on the NIC, such as the following.

2.3.1 Receive Side Scaling (RSS) [16]. It allows a NIC to dis-
tribute incoming packets on multiple queues, which can then be
processed by different CPU cores without contention (assuming no
dependencies are present in the above traffic). RSS typically applies
a hash function to the packet 5-tuple to identify the target queue,
which guarantees that packets belonging to the same session are
processed on the same core.

2.3.2 Receive Packet Steering (RPS) [4]. It is a software imple-
mentation of RSS in Linux. Whereas RSS selects the queue and
hence CPU that will run the hardware interrupt handler, RPS se-
lects the CPU to perform protocol processing above the interrupt
handler. This is accomplished by placing the packet on the desired
CPU’s backlog queue and waking up the CPU for processing. Like
in RSS, the target CPU is selected applying a hash function on the
packet 5-tuple. Each receive hardware queue has an associated list
of CPUs to which RPS may enqueue packets for processing.

2.3.3 Receive Flow Steering (RFS) [7]. It is an extension of RPS
that redirects packets to the core where the consuming application
is running. This increases the performance by improving the cache
locality for data structures handling the session (both kernel and
user/space processing happens on the same core), and avoids copies
of the packet among cores [20].

2.3.4 Ntuple filters [16]. They define a set of rules, configured
on the NIC hardware, that can (i) steer packets to a given queue,
(ii) drop traffic or (iii) enforce specific hash options for RSS; this
is called Ethernet Flow Director [21] on Intel NICs. Flow Director
rules can be either inserted manually (Externally ProgrammedMode)
such as through ethtool, or automatically populated through the
proprietary Application Targeting Routing technology (ATR).

2.3.5 Application Targeting Routing (ATR) [21]. It represents the
hardware acceleration of RFS available on selected Intel NICs: the
NIC driver samples some of the outgoing packets and automatically
generates hardware rules that force the incoming traffic to be sent
to the same queue/core where the application is running.

3 BENCHMARKING METHODOLOGY
3.1 Objectives
This section defines a benchmarking methodology for the perfor-
mance characterization of XDP and AF_XDP, with the final ob-
jective of determining the best technology to be used on servers
that host both traditional (i.e., computing intensive) and data plane
(i.e., network intensive) workloads. For this aim, we identified three
classes of traffic that must be handled by our server, each one char-
acterized by a different processing path in the Linux networking
stack. Dropped traffic refers to packets discarded by the NF, such
as in case of a firewall, a DDoS mitigator or (partly) a traffic shaper.
Pass-through traffic refers to packets that are forwarded to a re-
mote destination after being processed by one or more NFs on the
local server, such as in case of a load balancer redirecting packets
towards backends running on different servers. Local traffic refers
to packets that have to be processed by an application running on
same server as the NF, e.g., traffic that is inspected by a firewall
and is terminated on a local application, such as a Kubernetes pod
running locally. Even though the above three scenarios are usually
combined in a common deployment, we analyzed them in isolation
to facilitate the profiling of the technologies under test, and then
used results to determine their best combination in real use cases.

For each class of traffic we analyzed four cases. First, we eval-
uated raw I/O performance (Pure I/O), i.e., the impact of non-
avoidable components such as the NIC driver and the basic XDP
and AF_XDP mechanisms on the overall throughput, using a mini-
mal program that simply swaps the MAC addresses of the packet.
This test highlights the maximum theoretical throughput obtained
by each technology, which can be considered our ideal target. Sec-
ond, with respect to the dropped and pass-through test cases, we
profiled the performance by running software with increasing com-
plexity, either in terms of CPU demand (i.e., programs whose
processing logic has different degrees of complexity) and Memory
demand (i.e., different amount of RAM addressed by the appli-
cation). The former aims at determining the impact of the data
plane program complexity on the overall performance, while the
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Test mode Packet processing location User space packet notification mode Driver execution mode AF_XDP sockets enabled
XDP Kernel - Interrupt No

AF_XDP User Busy loop Interrupt Yes
AF_XDP sysc User Busy loop Syscall Yes
AF_XDP poll User poll() Interrupt Yes

XDP-sk Kernel poll() Interrupt Yes
XDP-sk sysc Kernel Busy loop Syscall Yes

Table 1: Main characteristics of the encompassed test modes.

latter aims at determining the impact of the amount of allocated
memory, which, surprisingly to us, is not orthogonal to the chosen
processing technology. Processing complexity was measured by
creating a program that recomputed the L4 checksum of the packet
an increasing number of times. Memory demand was measured by
allocating an array with increasing size and performing, for each
packet, one random access in the above memory. In this respect, we
verified how the generation of a random number introduces a min-
imal additional (but constant) CPU processing cost and has almost
no memory impact. At the same time, random memory accesses
make irrelevant the hardware pre-fetching capabilities of the CPU,
hence avoiding the forecast of future requests and the masking
of memory access costs. Finally, we ended our evaluation with a
(proof-of-concept) real application (Traditional NF), to confirm
that our findings are actually verified in a realistic scenario.

Our analysis focuses on the throughput of the technologies under
test; albeit the latency represents another important metric, for the
sake of space we leave its evaluation for a future work.

3.2 Benchmarked technologies
For in-kernel packet processingwe executed our NFs in the standard
XDP native mode (XDP in Table 1) to leverage all the advantages
of early packet redirection/discarding.

For user space packet processingwe executed our AF_XDP-based
NFs in three differentmodes, all relying on the zero-copy user-kernel
interaction. In standard mode (AF_XDP in Table 1) the NIC dri-
ver execution is triggered by the traditional interrupt/NAPI based
mechanism; we performed a busy loop to check for the presence of
new descriptors in AF_XDP rings in our user-space packet process-
ing thread. In the system call mode (AF_XDP sysc in Table 1) we
enabled the SO_PREFER_BUSY_POLLING flag to trigger the execution
of the NIC driver through a system call executed in a (user-space)
busy loop, leaving interrupts disabled, and configured the network
interface as suggested in [26]1. Instead, the poll mode (AF_XDP
poll in Table 1) replaced the busy loop mechanism with the poll()
system call, leaving the user space code in a waiting state until
packets are received, all triggered by an interrupt.

Enabling AF_XDP sockets changes the way packet buffers are
managed and how the code of the NIC driver handles packets,
therefore impacting also XDP performance. Hence, we defined two
combined test modes (XDP-sk and XDP-sk sysc in Table 1, the
former relying on the traditional interrupt-based mechanism to
trigger the NIC driver, the latter relying on a system call executed
in a busy loop running in user space), in which AF_XDP sockets
1echo 2 | sudo tee /sys/class/net/<ifname>/napi_defer_hard_irqs
echo 200000 | sudo tee /sys/class/net/<ifname>/gro_flush_timeout

are enabled even if packets are completely processed at the XDP
level and never reach user space.

All our tests (unless specified differently) run on a single CPU
core, to prevent entering the multi-core scalability domain, whose
study is left to a future work. While this configuration fits perfectly
in-kernel processing, where a single processing context is sched-
uled (i.e., the NIC interrupt context), it may raise some concern
in the user space case, in which both the interrupt and the user
space application are potentially running at the same time. For
example, [14] suggests to handle NIC interrupt requests (IRQ) and
applications (hence, kernel vs user-space processing) on different
CPU cores to avoid context switches and maximize performance.2
Nonetheless, we scheduled them on the same core to simplify the
comparison with other technologies, paying attention not to affect
the validity of our results. In fact, we always tuned the offered load
to maximize the throughput of the system, achieving a result that
was more than half the one obtained with two distinct CPU cores.
This guarantees the fairness of our results, because our tuning
avoids the livelock phenomenon in which the code running at the
highest priority, i.e., the kernel, consumes most of the resources
while the rest tends to starve, as shown in [13].

3.3 Testbed
Our testbed is composed of two servers equipped with a dual-port
Intel XL710 40 Gbps NIC, only one port used, connected back-to-
back. One server operates as Device Under Test (DUT) and the
other one as tester/load generator. Both machines feature an Intel
Xeon Gold 5120 14-cores CPU @ 2.20 GHz with Hyper-Threading
and Turbo Boost disabled. The processor is provided with 32 KiB
of per-core L1 data cache (corresponding to 512 x 64B lines), 1 MiB
of per-core L2 cache (∼16K x 64B lines) and a 19.25 MiB unified L3
cache (∼315K x 64B lines). The servers run Ubuntu 20.04.4 LTS with
kernel 5.14. The traffic is terminated on the DUT for the Dropped
and Local tests, while is sent back to the traffic generator for the
Pass-through tests. The DUT supports Intel DDIO technology, that
allows the network card to DMA packets directly to/from the Last
Level Cache (LLC, a.k.a. L3), hence avoiding high latencies due to
the access to the main memory. As suggested in [8] (and confirmed
in our tests), we increased the number of LLC ways available to
Intel DDIO from 2 to 63 to improve the throughput of NFs and
reduce packet losses.

2Notably, this does not apply to the AF_XDP sysc case in which IRQs and applica-
tion have to be scheduled on the same core to achieve decent performance; more in
Section 2.2.
3sudo wrmsr 0xc8b 0x7e0.
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Figure 2: Maximummanageable rate in the pure I/O test case (mac
address swap) when dropping packets.

For the dropped and pass-through test cases we used Moon-
Gen as packet generator, generating minimum size UDP packets
(64B Ethernet frames) towards the XDP/AF_XDP NF running on
the DUT. We measured the throughput of the NFs according to
RFC2544, tuning the input rate till the packet loss was lower than
0.1%. For local traffic tests we selected memcached [9] as a sam-
ple application, since it is likely to be deployed at the edge of the
network and it is rather network intensive. We executed it with
a variable number of threads and with a memory limit extended
to 128MB (default is 64MB), and we pinned it to a set of cores
(taskset command), either shared or disjoint from the ones used
by the NF depending on the benchmarked technology (more details
in Section 6). Requests on the tester machines were generated with
Memoslap4 running on four cores, 128 clients per core, each one
establishing a TCP connection and requesting items with random
keys for ten seconds. The sar tool was used to measure the CPU
utilization of the DUT, split between user space (User), system calls
(System) and software interrupt processing (SoftIRQ), the latter two
both related to kernel space code.We also leveraged the perf tool to
monitor the number of LLC hits and misses (the latter representing
the number of memory accesses), since (i) memory access latency
is one of the main bottlenecks in packet processing [28] and (ii) the
LLC is the target of packet transfers to/from the NIC (DDIO). Due to
space concerns, the above numbers are presented only when they
provide some insights on the causes of the achieved throughput.
In all cases we repeated our measurements 10 times and our plots
show the average value and the standard deviation as error bars.

All the code used for testing is publicly available.5

4 DROPPING TRAFFIC
4.1 Pure I/O performance
Results in Figure 2 show the performance in terms of dropped traffic
of the technologies under test in a pure I/O scenario (packets are
only touched by swapping their MAC addresses). In general, XDP
packet dropping is highly efficient, as it avoids additional kernel
processing (if the Linux network stack is traversed) or to exchange
frames on AF_XDP rings (if AF_XDP processing is involved). How-
ever, XDP dropping performance are even better if AF_XDP sockets
are enabled, with a 21% improvement when the driver is executed
in interrupt mode (XDP-sk). Numbers in Figure 3, which shows LLC
accesses (hits and misses), seem to suggest a higher memory usage

4https://github.com/FedeParola/memoslap
5https://github.com/FedeParola/xsknf

XDP AF_XDP
AF_XDP sysc

AF_XDP poll

XDP-sk
XDP-sk sysc

0

0.5

1

Ac
ce
ss
es

pe
rp

ac
ke
t

LLC load hits LLC load misses LLC store hits LLC store misses

Figure 3: Per-packet LLC accesses in the pure I/O test case (mac
address swap) when dropping packets.
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Figure 4: CPU usage in the pure I/O test case (mac address swap)
when dropping packets.

of pure XDP, which needs one LLC load and one LLC store per
packet, while other technologies do not need the store operation.
However, this LLC store is due to a prefetchw() operation in the
NIC driver, which prepares the memory area to store the meta-
data for packet transmission (the xdp_frame). However, since the
prefetchw() assembly instruction is executed asynchronously, we
detected no difference in performance when removing the above
operation from the driver, even when this memory region is not
needed (i.e., when dropping traffic).

We speculate that the root cause of the performance improve-
ment in XDP-sk is the different buffer management model intro-
duced by AF_XDP, since, to the best of our knowledge, this is the
only main difference when enabling AF_XDP sockets in the drop
scenario. In addition, Figure 4 shows the execution context of the
packet processing code, namely user space, system call or software
interrupt, where the last two are both in kernel space. Interestingly,
the usage of a system call to retrieve packets is convenient when
dropping traffic in user space (AF_XDP sysc), but it has a nega-
tive effect when this operation is performed in the kernel (XDP-sk
sysc), since we still have to spend some processing time in user
space just to trigger another driver loop. Finally, Figure 4 shows
also that technologies that include a context switching (e.g., part
of the processing is done in user space, part in SoftIRQ) tend to
perform worse, suggesting the opportunity to choose a technology
that completes all the processing in the same context.

In conclusion, dropping packets at the kernel level always proved
to be more efficient (XDP, XDP-sk and XDP-sk sysc), with an extra
improvement when enabling AF_XDP sockets (XDP-sk), suggesting
a more effective buffer management model introduced by AF_XDP.
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4.2 Impact of memory demand
Figure 5 shows the throughput achieved by the most effective I/O
configurations (namely XDP, AF_XDP-sysc, and XDP-sk) while in-
creasing the memory allocated to our NF and randomly accessed.
Results show a stable throughput as long as the allocated mem-
ory is limited in size, with an advantage of in-kernel (XDP and
XDP-sk) over user space (AF_XDP). However, the gap shrinks when
the amount of allocated memory exceeds 16K cache lines (corre-
sponding to the size of our L2 cache), with user space processing
eventually outperforming XDP first and XDP-sk next.

Comparing these results with the number of per-packet accesses
in the LLC cache (Figure 6) we can see that they remain stable as
long as the size of the allocated memory fits in the L1/L2 caches. All
LLC accesses in this region are related to a load/store in the packet
buffer: in fact, DDIO transfers (through DMA) packets to/from the
LLC, hence all packet accesses result in an LLC access. As in the
pure I/O test case, pure XDP presents one additional LLC access
due to a prefetch operation. While this operation should intuitively
affect the memory scalability, we did not detect any performance
difference when removing that operation. In general, pure XDP per-
formance showed to be the most affected by memory demand, with
an improvement achieved when enabling AF_XDP sockets (XDP-
sk). However, user space processing with AF_XDP (AF_XDP-sysc)
proved to be the most resilient solution with respect to memory
demand, which suggests the presence of some important differ-
ence beyond the buffer management model, whose identification
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Figure 7: Impact of an increasing CPU demand on the throughput
when dropping traffic.

is left for future studies. For instance, this is confirmed in Figure 8
(e.g., 5M entries), in which AF_XDP-sysc is less efficient when a
limited memory is involved, but it outperforms XDP-sk when a
large amount of memory is requested (in that case, the identifiers
of many TCP sessions).

In general, processing packets in user space with AF_XDP proved
to be less affected by the amount of memory accessed by the NF.

4.3 Impact of CPU demand
Figure 7 shows the throughput achieved by the technologies un-
der test with NFs of increasing processing complexity. Unlike the
memory case, all technologies were similarly affected by this in-
crease in CPU requirements, with in-kernel processing keeping its
performance gap over user space (even if this became less relevant
with higher processing complexity becoming dominant over the
I/O processing cost). As expected, we did not detect variations in
the number of LLC/memory accesses, that always remained equal
to the ones measured in the pure I/O test. Interestingly in this test
we did not experience the gap between the XDP and the XDP-sk
modes, likely because the NF processing cost dominates over the
cost of pure I/O.

4.4 Traditional NF performance
In this experiment we evaluated the performance of a realistic
NF, namely a simple L4 firewall dropping all traffic whose 5-tuple
matches a set of pre-configured rules stored in a hash table. The
main parameter that influences its performance is the number of
ACL entries, as well as the number of different flows matching those
entries. Therefore, in our test we scaled this variable, influencing
the degree of memory dependency of the function.

We wrote two versions of the firewall, an XDP-based and an
AF_XDP-based one, keeping them as similar as possible. To avoid a
bias in the results due to the characteristics of the hash table, the
AF_XDP firewall leveraged a user space clone of the eBPF hash map
available in kernel,6 which differs only in how concurrent read and

6For the sake of precision, the data structure has the following features: it uses the
list_nulls double linked list of the kernel to store elements that collide on the same
bucket; the maximum size of the map is defined at initialization time and the number
of buckets is defined rounding this number to the next power of two; the memory
for map nodes (storing both the key and the value) is pre-allocated in a contiguous
area; the jhash function is used for hashing and the hash value is mapped to the
corresponding bucket selecting its lower n bits (with 2𝑛 buckets); when an element
is modified (added, deleted or updated), the concurrent access to the corresponding
bucket is protected with a spin lock.
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Figure 8: Firewall throughput with an increasing number of pro-
cessed sessions.

write operations are handled. The eBPF hash map leverages Read-
Copy-Update [17], which supports multiple reads to be executed
in parallel with one update, with a negligible cost on the read
side. Unfortunately there is no ready-to-use implementation of this
mechanism in user space, so we decided not to support this type of
concurrency in our map and our tests included only read operations,
in which the overhead would be negligible anyway; hence, we pre-
populated the maps before starting our measurements.

We configured the firewall with an increasing number of ACL
entries (each one with a different source IP address), and tested
the maximum throughput achievable by the NF when dropping all
the received packets, which were randomly distributed across all
configured sessions. Results in Figure 8 confirm the advantage of
dropping packets at XDP level (both with AF_XDP sockets enabled
and with standalone XDP) but only as long as the size of the ACL
is limited (and fits the L2 cache size size). XDP reaches up to 29%
higher throughput compared to AF_XDP sysc, but this advantage
tends to shrink as the number of sessions increases (i.e., when the
cost of memory access tends to dominate over pure I/O cost). When
the size of the ACL exceeds 10K entries, there is no appreciable
difference between the two technologies, and for an even larger
number of sessions, dropping packets in user space becomes much
more efficient with a 51% performance improvement over XDP.
This confirms the better memory efficiency of AF_XDP found in
our Memory demand test: while a hash map makes hard to predict
in advance when the data structure starts generating accesses in
the LLC, our cache measurements (omitted for the sake of brevity)
show an increase of LLC accesses in the 10K-100K sessions range.

Takeway 1: Dropping packets at the XDP level (XDP and XDP-
sk) is more efficient when the packet processing function operates
mainly in the lower levels of cache (L1 and L2), thanks to the
smaller amount of code traversed to process the traffic. Bringing
packets in user space (AF_XDP sysc) results advantageous when
the NF becomes more memory bound, hence representing the most
effective solution for memory intensive processing logic.

5 PASS-THROUGH TRAFFIC
5.1 Pure I/O performance
We evaluated raw packet I/O performance by measuring the maxi-
mum throughput when performing a swap of MAC addresses and
sending back the packet out of the receiving interface (return code
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Figure 9: Maximummanageable rate in the pure I/O test case (mac
address swap) when redirecting packets out of the receiving inter-
face.
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Figure 10: Per-packet LLC accesses in the pure I/O test case (mac
address swap) when redirecting packets out of the receiving interface.
Misses can hardly be seen since they are close to zero.
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Figure 11: CPU usage in the pure I/O test case (mac address swap)
when redirecting packets out of the receiving interface.

XDP_TX at the XDP level).7 Figure 9 shows that the clear winner is
AF_XDP sysc, with a 29% improvement over XDP. With respect to
user space processing, AF_XDP sysc outperforms AF_XDP, hence
differing from the dropping test case in which interrupt-based or
system call-based modes brought to similar performance. Instead,
AF_XDP yielded a lower throughput, which can be explained with
the need to periodically perform a system call to inform the driver
of the presence of new packets to transmit. This represents an oper-
ation that consumes a CPU time similar to the (less efficient) poll()
based mode, as shown in Figure 11 (AF_XDP and AF_XDP poll bars).
Curiously, when redirecting packets with XDP-sk*, we always ob-
tained a very low throughput (about 2.5 Mpps). The reason may be
7This paper does not include the results when the traffic is redirected on a different
interface, which can be achieved with return code XDP_REDIRECT at the XDP level, and
with minor changes at the AF_XDP level. In the above conditions, our experiments
showed lower performance for both XDP and AF_XDP, with a trend that is very similar
to the presented one.
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Figure 12: Impact of an increasing memory demand on the through-
put when redirecting traffic.
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Figure 13: Number of accesses in the LLC cache (reads + stores) per
packet, with increasing amount of allocatedmemory, when dropping
traffic. The vertical dashed lines represent the size of the L2 and L3
caches. LLC misses are almost overlapped.

due to the number of LLC accesses shown in Figure 10: while the
number of LLC loads per packet is similar for all tests (and in line
with the results of the drop test case), a notable difference exists
for store operations. This number ranges from 0.1 per packet (with
AF_XDP) to one per packet (with XDP) (unlike the drop test case,
here the additional LLC write is needed to populate the xdp_frame
metadata for transmission; see Section 4.1) till two per packet (with
XDP-sk*). In fact, an analysis of the Linux kernel (at least till version
5.14) shows that when AF_XDP sockets are enabled and packets
are re-transmitted at the XDP level, the packet is copied from its
UMEM frame to an in-kernel XDP page before being sent out of
the interface. This expensive operation is probably the cause of the
higher number of LLC stores and consequent lower throughput of
the XDP-sk test cases.

5.2 Impact of memory demand
Results of the memory test shown in Figure 12 and Figure 13 un-
derline a trend similar to the one observed in the dropping traffic
scenario, with AF_XDP broadening its gap over XDP as memory
accesses shift from L1/L2 caches to the LLC and to main memory.
This gap goes from a 19% improvement when the function uses
little memory to a maximum of 39% higher throughput when a
notable number of accesses hits the LLC and the main memory.

5.3 Impact of CPU demand
Similar considerations apply to the CPU-intensive test (Figure 14);
XDP and AF_XDP sysc score similar, with the limited advantage of
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Figure 14: Impact of an increasing CPU demand on the throughput
when redirecting traffic.
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Figure 15: Load balancer throughput with an increasing number of
active sessions.

the latter that disappears when increasing the complexity of the
processed function, i.e., when the raw I/O cost becomes less relevant.
The reduced memory efficiency of XDP-sk has a huge impact in
this CPU-intensive test as well, hence sitting at the bottom.

5.4 Traditional NF Performance
To assess the performance of traffic redirection with a realistic func-
tion, we wrote a minimal load balancer that parses the packet till
level 4 and uses the 5-tuple to access an hash map of the active
sessions. If the lookup is successful, the retrieved value contains
the information to update the packet, that can be either the des-
tination IP, port and MAC address of the backend for incoming
packets (client to service), or the original service IP and port for
return packets (service to client). In case the lookup fails, a new
load balancing decision is taken and two entries are added to the
table of active sessions to handle both incoming and return packets.
In the end, the fields of the packet are updated and the packet is
sent back on the receiving interface. As presented in Section 4.4
with respect to the user space implementation of the hash map, we
limited our performance measurements on packet processing sce-
narios involving only lookup operations, avoiding write operations.
Therefore, we populated in advance the table of active TCP sessions
of the load balancer generating traffic that is randomly distributed
among those sessions.

Figure 15 shows the maximum throughput handled by the NF
for an increasing number of active sessions. For a small number of
sessions (i.e., limited memory used) the performance advantage of
AF_XDP against XDP is reduced compared to the one measured
with raw I/O performance (a 14% improvement vs the 29% recorded
in the former test). However, when the number of sessions increases
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and the NF becomes more memory bound, the same behavior ob-
served in the dropping scenario applies, with user space processing
increasing its performance gap over XDP, with a maximum of 38%
higher throughput when processing packets of 100K different ses-
sions.

Takeway 2: AF_XDP sysc, i.e., AF_XDP sockets with system call-
triggered driver, provides the highest performance when processing
pass-through traffic. The advantage over XDP is limited for simple
packet processing functions but increases as the logic becomesmore
memory bound, requiring frequent accesses to the LLC and to the
main memory. In general, considering the higher flexibility of user
space processing that, unlike eBPF, does not impose any limitation
(e.g., on the program size, on the type of data structures used, on
loops, etc.), AF_XDP sockets should be preferred for pass-through
traffic with respect to in-kernel processing.

6 LOCAL TRAFFIC
This section investigates the case of traffic processed by one or more
NFs before landing on an application running on the local server,
usually as a container (e.g., a Kubernetes pod). In this case, the traffic
has to traverse the entire TCP/IP stack before data is eventually
delivered to the application. In our analysis we do not consider the
case of applications running in a virtual machine because of the
increasingly diffusion of cloud-native workloads, particularly with
respect non-NF applications running in telco-oriented datacenters.

While processing a packet at XDP level, the XDP_PASS return
code can be used to inform the kernel that the packet has to continue
its journey in the standard network stack and reach the application
running locally. Instead, for what concerns AF_XDP, traffic is han-
dled in user-space and therefore we need a way to re-inject packets
into the kernel, which is needed to complete the remaining TCP/IP
processing and deliver the packet to the application.8 Therefore
we leveraged a veth interface to re-inject the packet in the kernel;
however, this introduces more overhead due (i) to the necessity
to perform an additional copy of the packet, as veth devices do
not support the zero-copy mode,9 and (ii) to the additional context
switch. Therefore, given that the zero-copy capability is a property
of the UMEM, we relied on two different UMEMs, the first one
bound to the physical interface and operating in zero-copy, while
the second one associated to the veth and operating in copy mode.
This solution requires an additional copy of the packet between
the two UMEMs each time a packet traverses the two interfaces,
resulting in two copies per packet, the first in user space (with
AF_XDP) and the second in the kernel (on the veth). Unfortunately,
leveraging a single UMEM shared among the two interfaces does
not solve the problem. In fact, while the first (user-space) copy
would be avoided, this method requires the physical interface to
work in copy mode, resulting anyway in two copies per packet
for local traffic (performed by the kernel on each one of the two
interfaces), but losing the performance advantage of zero-copy on
the physical interface in case of pass-through traffic.

8We did not encompass user space implementations of the TCP/IP stack (e.g., [12])
since they are not widespread and require patched applications in order to be leveraged.
9At the time of writing, all physical and virtual NICs supporting XDP are also compat-
ible with AF_XDP sockets, but only physical NICs support the more efficient zero-copy
mode, even if an attempt to add it to the veth driver was made in the past [23].
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Figure 16: Path of traffic reaching a local application, when the NF
runs as XDP code (blue continuous line) or as AF_XDP code (red
dashed line).
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Figure 17: Throughput when delivering a packet to the TCP/IP stack
based on the different processing paths highlighted in Figure 16.

While with AF_XDP the traffic is processed on the ingress and
the egress paths (thanks to the packet redirection in user-space
done by the veth), XDP programs can only be attached to ingress
hooks. In this case, egress traffic processing leverages the TC eBPF
hook, which executes the same packet processing function on traffic
leaving the server. Figure 16 highlights the different paths followed
by the traffic to reach a local application, depending on where the
NF is implemented (XDP or AF_XDP).

6.1 Pure I/O performance
The first test determines the raw I/O performance limited to the
early part of the Linux TCP/IP stack, by assessing the overhead of
adding custom NF processing to packets reaching the local applica-
tion. Particularly, it assesses the cost of the initial processing of the
packet before reaching the TCP/IP stack, which is different in XDP
and AF_XDP + veth cases, while the remaining processing stack
is the same for both. We used Moongen to generate UDP traffic
with non-existing MAC addresses, and executed an XDP/AF_XFP
program that performs a MAC swap on the packets, which are then
passed to the network stack. Due to the wrong destination MAC
address, which does not correspond to the ones present on the
server, packets are dropped very early in the network stack. Results
in Figure 17 show that adding some processing at the XDP level
has very little overhead (9%) with respect to the baseline (i.e., when
packets are dropped by the kernel without being first processed by
XDP/AF_XDP). On the other hand, when moving packets into user
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space and then back into the kernel, the hit on performance is con-
siderable, with a 64% reduction of throughput. Interestingly we did
not experience any difference for the three different AF_XDP-based
modes.

On the other side, XDP-sk* experiments measure the cost of
enabling AF_XDP sockets on traffic that is not redirected in user
space. This is the price we may have to pay if we want to leverage
both XDP and AF_XDP at the same time, e.g., by splitting the
traffic and handling it in part with AF_XDP (which represents the
best choice for pass-through traffic, Section 5), in part with XDP
(which represents the best choice for dropped traffic, Section 4).
One of the reasons of this additional cost is due to the necessity to
copy the received packet from the UMEM to a new buffer before
sending it up to the network stack, assuming the NIC operates
in the more efficient zero-copy mode. This is needed because the
UMEM can be modified in user space, hence the packet could be
corrupted during kernel processing, causing unexpected behaviors.
Vice versa, in vanilla XDP the buffer is only accessible by the kernel,
hence allowing true zero-copy operations [15]. This cost could be
prevented by using AF_XDP sockets in copy mode that, like XDP,
receives packets in a private kernel buffer and then copies them to
the UMEM. This however would result in very poor performance for
the traffic reaching the user space (in our experiments we were able
to achieve a maximum of 1.17 Mpps when redirecting packets in
copy mode, way below the performance of other zero-copy versions
of AF_XDP shown in Figure 9), hence forcing us to discard this
alternative. Results show that, at least in this I/O-intensive test, the
overhead of enabling AF_XDP sockets is significant, with a 22%
performance reduction of XDP-sk against pure XDP (Figure 17).

The second test analyzes the raw I/O performance including the
entire Linux TCP/IP stack and the receiving application, by using
our sample application (memcached), hence evaluating the impact of
added packet processing in a real scenario. In this test, the number
of CPU cores to be used, and the allocation of different processing
tasks to each core proved to be more problematic than in the previ-
ous cases. For instance, the Linux scheduler gets confused by the
polling-based working mode of AF_XDP, which looks like a user-
space process always requiring more resources. Hence, the CPU
allocation is partitioned among all the requesting processes (in this
case AF_XDP and memcached), reaching the best equilibrium when
the core is equally shared among the two (50% each). However, this
would achieve sub-optimal performance, because the 50% allocated
to AF_XDP is only partly spent in doing actual processing, while
the rest is spent in empty busy polling iterations. To overcome the
above limitation, in this test we used multiple cores. We dedicated
one core to packet processing and then we added a number of cores
to memcached that enabled to reach stable performance, which im-
plies a saturation the NF core. This lead to the usage of (1+3) cores,
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Figure 19: TCP/IP-based application throughput (memcached) when
applying some simple processing (mac swap) to packets.

achieving an average 96% usage of memcached cores, indicating
that we were wasting almost no resources. It is important to notice
that with this configuration the ingress TCP/IP stack is executed
on the NF core (where the software interrupt of the veth interface
is triggered), while the egress stack is executed on the application
cores (where the system call sending packets is executed). In fact,
when we leveraged Receive Packet Steering (Section 2.3) to move
the network stack processing to the memcached cores, we simply
increased load imbalance (i.e., some fully utilized cores along others
with more idle time), resulting in lower overall throughput, hence
confirming that the previous configuration was the best choice in
our operating conditions.

For the XDP-sk sysc experiments, even if packets are processed at
the XDP level, the code is executed in the context of the user space
application, within a busy loop triggering the driver with a system
call. From the Linux scheduler perspective, the NF is therefore seen
as an application requiring all resources available on the core, and is
subject to the same considerations that apply to AF_XDP, hence we
handled it with the same (1+3) cores partitioning. For what concerns
other solutions based on in-kernel, interrupt-based processing (i.e.,
XDP and XDP-sk), we were able to partition available cores in a
more granular way thanks to RSS, allowing the NF and memcached
to share each one of the 4 available cores according to their needs
and the overall traffic load. The final cores distribution used in our
test is shown in Figure 18.

With XDP, we achieved the highest performance by enabling
Application Targeting Routing (Section 2.3), that moves the XDP pro-
cessing on the same core where the recipient application is running
(Figure 19, XDP ATR on). This technology is not available when
processing traffic in user space because it requires the execution of
a part of the driver that is bypassed by AF_XDP. Since not all net-
work cards support ATR (or equivalent technologies), and it might
not always be effective (e.g., in the case of connectionless traffic),
we evaluated the performance of in-kernel processing also with
ATR off (i.e., relying on the classic RSS packet steering). Figure 19
shows the throughput we achieved in terms of requests per second
handled by memcached. The gap between in-kernel and user space
packet processing reduced significantly with respect to the former
test case (Section 6.1), but running our NF at the XDP level still
guaranteed a considerable lead over AF_XDP, with a throughput
advantage of 42% with ATR on, and 27% when this technology is
not available. In this test, the performance reduction when enabling
AF_XDP sockets (i.e., XDP-sk) is limited to no more than 5%.
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Figure 20: TCP/IP-based application throughput (memcached) when
applying some complex processing (load balancing) to packets.

Final remark, no NIC-based accelerations were used with XDP-sk
sysc and all AF_XDP-based technologies, as the entire traffic goes
on the single core that executes the NF. Instead, XDP and XDP-sk
look more efficient when ATR is on, compared to the simpler RSS
(active when ATR is off ). In the XDP context, enabling RFS did
not prove to have any positive impact with respect to plain RSS.
This is due to the fact that RFS is applied at a later stage in the
networking stack with respect to XDP, after the NIC driver has
completed its operations, resulting in the XDP program and the
application thread potentially being executed on different cores.

6.2 Traditional NF performance
To evaluate the impact of a more complex NF, we extended the load
balancer presented in Section 5.4 to balance sessions also toward
a local memcached backend running on the same server. Results
in Figure 20 are very similar to the ones that we observed in the
simple processing scenario (Figure 19), indicating that the cost of the
NF is negligible compared to the complexity of the network stack
and the application. However, our tests show that in the AF_XDP*
and XDP-sk* cases the additional pressure put on the (single) NF
core exacerbates the load imbalance problem caused by the rigid
partitioning of cores. In fact, in this test the bottleneck imposed
by the NF core caused our application cores to be leveraged only
at about 88% (compared to the 96% of the mac swap test), slightly
increasing the gap between in-kernel and user space processing
performance.

Takeway 3:When processing traffic that is directed to a service
running on the local server and leveraging the TCP/IP stack, XDP
is much more efficient than AF_XDP, thanks to its smooth inte-
gration with all the TCP/IP processing code that runs also in the
kernel, hence avoiding expensive kernel-to-user (and vice versa)
context switches. Moreover, XDP facilitates distributing the pro-
cessing power of the CPU cores in a simpler and more granular way
between NFs and applications, particularly when ATR is available.

7 DISCUSSION AND SUGGESTED BEST
PRACTICES

In previous sections we characterised the performance of the ana-
lyzed packet processing technologies on homogeneous classes of
traffic (either dropped, redirected out of the machine or delivered
to a local application). While for each one of the above categories
we were able to identify the most efficient processing technology

for the NFs, a one-size-fits-all winner does not exist. Hence, this
section leverages previous results to provide some guidance for real
world deployments, focusing on resource-limited edge datacenters
in which each server may need to handle all the three types of traffic
(dropped, forwarded, terminated locally) at the same time, with the
highest efficiency. To do so, we derive two preliminary guidelines
that could drive the design and optimal placement of NFs, starting
from the simple combination of the takeaways presented in the
previous sections, which assumed the presence of a single class
of traffic. Then, in the following sections we verify whether these
guidelines hold also in real world scenarios, with a combination of
traffic of different classes.
• Tentative guideline 1.When handling only pass-through and
dropped traffic, process it in user space with the system call-
triggered driver (AF_XDP sysc), thanks to its higher performance
(which is even more evident when a huge amount of memory
is requested, due to its higher efficiency in that case) and supe-
rior processing freedom (no eBPF limitations) (Takeway 2). In
addition, offload only the most accessed packet dropping rules
in the kernel (as long as they fit in the L2/L3 cache), in order
to leverage earlier packet discarding without incurring in the
memory penalty of XDP (Takeway 1), while the rest is left to
user-space.

• Tentative guideline 2.When handling also local traffic, process
this class of traffic in the kernel, to avoid the expensive crossing
of the user-kernel barrier multiple times (Takeway 3). However,
in case a NF needs to operate on all types of traffic, this may
require to duplicate its logic both in user space and XDP, which
might not always be possible due to the limitations of eBPF. In
this case, the developer could evaluate whether (other) existing
kernel networking facilities (such as qdisc, netfilter, etc.)
can be used to achieve the desired function, overcoming the
limitations of eBPF. Alternatively, he can move local traffic to
user space, incurring in the additional cost of re-injecting packets
into the kernel to send them to the application through the
TCP/IP stack, unless he can modify general-purpose applications
to receive the TCP/IP traffic directly from user-space.

7.1 Mixing pass-through and dropped traffic
To evaluate the effectiveness of Tentative guideline 1 we defined
a NF chain composed of our firewall followed by the load balancer.
We compared the performance of the chain running (i) purely in
user-space (i.e., AF_XDP), (ii) purely in kernel-space (i.e., XDP),
and (iii) in hybrid mode, in which the firewall logic is at the XDP
level and the load balancing logic sits in user space10.

In this first test, which does not include local traffic, we generated
a total of 11K flows: 1K matched the ACL of the firewall (hence
were dropped), while the remaining 10K reached the load balancer.
Figure 21 shows the throughput globally handled by the chain
(both dropped and redirected packets) varying the share of traffic
belonging to each class. Curiously, the performance advantage
of user-level processing with respect to XDP when all packets
are redirected decreased from 33% when only the load balancer
10Our proof-of-concept implementation repeats the parsing of the packet both in
kernel and user space. A possible improvement would be leveraging XDP metadata
to share information already computed in the eBPF program with the user space [2],
whose evaluation is left as a future work.
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Figure 21: Pass-through + dropped traffic: effect of kernel offloading
of packet dropping logic (Hybrid sysc) if compared to pure user space
(AF_XDP sysc) and pure in-kernel (XDP) processing.

was used (Figure 15) to 19% in this case, suggesting that the user
space code seems to be more affected by the additional ACL lookup
than XDP. Unfortunately moving the firewall logic in the kernel
(Hybrid sysc in Figure 21) highly impacted the performance of the
chain also in the scenario where all traffic was redirected (20%
throughput reduction with respect to AF_XDP sysc), making even
pure XDP processing more effective than the hybrid approach. The
performance advantage of both XDP and the Hybrid approach over
full user space is noticeable only when the share of dropped traffic
exceeds 75%. While in this scenario, with huge amount of dropped
traffic, XDP performs slightly better than the Hybrid solution, the
latter is much more suitable to a be enabled dynamically, hence
allowing to switch from pure AF_XDP to Hybrid upon necessity.
In fact, this requires only to replace the existing XDP program
with a new one (an atomic operation without service disruption),
while switching from AF_XDP to XDP requires creating/destroying
sockets and/or changing the interrupt configuration of the NIC
queues, which can hardly be done with the current technology.

Takeaway 4:When handling only pass-through and dropped
traffic, process all traffic in user space under normal conditions (i.e.,
when most traffic is forwarded) and dynamically offload the most
accessed packet dropping rules in the kernel (as long as they fit in
the L2/L3 cache) when the amount of dropped traffic is predominant,
for example during the mitigation of a DDoS attack.

7.2 Mixing pass-through and local traffic
The Tentative guideline 2 speculates that the best choice for pass-
through traffic is AF_XDP in user space, while local traffic stays in
kernel with XDP. However, to have both the above technologies
running at the same time, we need some processing logic that ana-
lyzes incoming traffic and redirects each packet to the appropriate
pipeline. In this section we assume to have both pass-through and
local traffic and we evaluate the feasibility and effectiveness of this
hybrid approach, analyzing the different options for the processing
logic that separates the two classes of traffic.

First, we analyze a software-based solution running at the XDP
level, which redirects part of the traffic in user space for AF_XDP
processing, while the rest continues along the TCP/IP stack (XDP_PASS
return code). Then, we will explore an hardware-based alternative,
which leverages the capabilities of the NIC to steer different flows
to different receive queues. These tests used a load balancer NF,
which redirects local traffic to the proper pod replica of the final
application (running on the server itself), while the pass-though
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Figure 22: Pass-through traffic only: impact of additional in-kernel
packet dispatching logic applied to AF_XDP sysc (AF_XDP sysc +
XDP disp) compared to pure XDP or pure AF_XDP sysc.

traffic was redirected to multiple external servers. In case of traffic
splitting, the load balancing logic of each instance will operate only
on the portion of traffic handled on that path (e.g., either local or
pass-through).

7.2.1 Software-based splitting. In this paper we assume that the
traffic terminating locally can be detected by simply checking the
5-tuple of the packet, which enables to detect traffic directed to
local destinations with a simple lookup on a hash table. To assess
the feasibility of this solution we started by measuring the overhead
of the additional XDP dispatching logic on the traffic redirecting
performance of the AF_XDP sysc load balancer, in the optimal case
in which the hash table of local sessions contains only one element
that is never hit (we generated only pass-through traffic). Results
in Figure 22 show that the overhead of this solution (AF_XDP sysc
+ XDP disp) greatly affects overall performance, compromising the
benefits of user space processing (AF_XDP sysc) and making even
a pure XDP implementation of the load balancer more appealing
in case part of the traffic reaches local applications through the
TCP/IP stack. This result does not surprise since the dispatching
logic has almost the same complexity as the load balancing program,
and it is not needed in case of pure XDP. Since the addition of the
required splitting logic reverted previous results and made XDP a
better solution even in the pass-through-only scenario, which is the
preferred battlefield for AF_XDP, we avoided additional tests with
local/dropped traffic that, as confirmed by our previous tests, are
already pushing further for an XDP-based solution. Nonetheless, a
pure software-based splitting mechanism may still be useful, for
example when eBPF limitations prevent the implementation of the
correct logic at the XDP level, and therefore we need to rely on
slower kernel network stack facilities (e.g. the TC layer, Netfilter).
In this case the performance benefit of AF_XDP sockets over the
kernel stack for pass-through traffic may overweight the cost of
flows dispatching.

Takeaway 5: When handling also local traffic (in addition to
pass-through/dropped one), and no hardware-based packet steer-
ing mechanism is available, process all the traffic in the kernel
with XDP, given the prohibitive overhead of software-based packet
dispatching.

7.2.2 Hardware-based splitting. An alternative to software (XDP-
based) flows dispatching is to rely on the capabilities of the NIC
to steer different flows to different receive queues, leveraging the
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Figure 23: Pass-through + local traffic: effect of hardware-based split-
ting of local and pass-through traffic processing between kernel and
user space (Hybrid) compared to pure kernel processing (XDP).

Ethernet Flow Director technology (Section 2.3). This greatly sim-
plifies the operations of the XDP splitter, which can now operate
on the (simpler) input queue instead of the 5-tuple. To evaluate
this option we extended our setup with an additional traffic gener-
ation machine (with the same configuration described in Section 3)
and connected all of them with a 40 Gbps switch. The first traffic
generator leveraged MoonGen to create pass-through traffic, while
the second traffic generator sent requests to memcached running
on the DUT (local traffic). As in the former test, we leveraged the
load balancer as a sample NF and selected a pool of 4 CPU cores,
allocated in different ways depending on the test configuration.
Since pure XDP proved to be the most effective solution for local
traffic (Section 6), we leveraged the XDP implementation of the
load balancer as a baseline, relying on RSS and ATR to ‘naturally’
distribute all traffic (both local and pass-through flows) across all
four available cores, that were therefore shared between NF and
application (memcached) processing. As an alternative we experi-
mented with an hybrid solution, partitioning our cores in a first set
dedicated to pass-through traffic and running the load balancer in
AF_XDP mode (with system-call-triggered driver) and another set
executing memcached and processing packets in-kernel at the XDP
level. We used Flow Director rules to instruct the NIC to steer all
pass-through traffic to the first set of queues/cores, leaving RSS/ATR
to balance local flows on the second set. Since the driver of our
NIC supports a single XDP program running on the interface, we
added a simple dispatching logic to the XDP load balancer, using
the input queue to decide whether to redirect traffic to user space
or to proceed with in-kernel processing.

Figure 23 shows the maximum number of requests per second
handled by memcached (local traffic) for an increasing amount of
pass-through traffic hitting the server. The Hybrid configuration
presents a step behavior, with the performance of memcached re-
maining constant regardless of the amount of pass-through traffic
(due to the dedicated CPU cores), until we need to reallocate a
core from the set dedicated to local traffic to the one dedicated to
pass-through traffic to accommodate the increasing offered load.
On the other hand, XDP processing proves again to be the most
flexible solution with respect to resource allocation, with processing
power gradually being re-allocated from local traffic / application
to pass-through traffic, although the pass-through traffic seems to
have the precedence over local traffic (i.e., the system tends to pro-
cess all incoming pass-though traffic, at the expense of an inferior
number of memcached served requested). Despite this increased

flexibility, XDP outperforms the Hybrid configuration in some op-
erating conditions characterised by a low amount of pass-through
traffic (particularly, when the XDP line sits above the Hybrid line
in Figure 23). When the pass-through traffic exceeds 7.5 Mpps, the
Hybrid solution provides consistently higher performance to mem-
cached with an equal amount of pass-through traffic hitting the
server, and allows to achieve a higher global throughput when all
cores are dedicated to pass-through processing.

It is worth mentioning that we faced some limitations in imple-
menting the hybrid solution due to the hardware at our disposal.
Flow Director rules available on our NIC only allow to perform
exact match on packets (no wildcards allowed) and to steer traffic
to a single queue. Therefore, to guarantee a fair load distribution
among pass-through cores we had to generate a specific pattern
of pass-through traffic. Some modern NICs provide wildcard rules
able to steer packets to an RSS context operating on a set of queues,
so that further load balancing can be applied. A second problem
was related to ATR, that is automatically disabled as soon as Flow
Director rules are manually added to the NIC. Since ATR internally
relies on Flow Director rules automatically generated by the NIC
driver, this prevents clashes with user-provided rules. A possible so-
lution would be re-implementing the ATR logic by sampling egress
packets, for example with a TC eBPF program. Nonetheless, despite
the absence of this acceleration, the Hybrid solution was still able
to outperform pure XDP by a good margin.

Takeaway 6: When processing all kinds of traffic (i.e., pass-
through, dropped and local) resort to in-kernel processing with
XDP if the fraction of pass-through load is low. If (i) hardware
dispatching mechanisms are available, (ii) a more complex and rigid
partitioning of resources (e.g., CPU cores) is acceptable and (iii) a
high volume of pass-through traffic is handled, split pass-through
and local traffic between user space and in-kernel processing to
achieve best overall performance.

For the sake of precision, the above experiment assumes that
the traffic splitting operation is simple, e.g., based on IP destination
addresses or the session 5-tuple. In some cases, e.g., edge clusters
running 5G mobile core components, the traffic processing may
include some heavy operations (e.g., User-Plane Function - UPF,
GTP de-tunneling) in order to derive the above parameters, raising
the question where to implement the above (expensive) processing.
The analysis of the above case is left for future work.

8 RELATEDWORK
Different works in the recent literature studied the properties and
characterized the performance of in-kernel and user space packet
processing with a focus on the XDP and AF_XDP technologies.

In [10] Hohlfeld et al. analyze the performance of offloading
packet processing both to the kernel and to a SmartNIC leveraging
XDP. While advantages and drawbacks of these two approaches
are thoroughly studied, the paper does not analyze the possibilities
of interaction between in-kernel and user space processing. In [27]
authors propose an architecture for eBPF based NFs called eVNF.
This architecture encompasses a fast path executed at the XDP level
to carry out simple but critical tasks, while a slow path, based either
on the kernel network stack or on a user space application accessible
through AF_XDP sockets, handles corner cases. Both these papers
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however, probably due to the early stage of development of the
AF_XDP technology, do not consider user space packet processing
as a valid fast path alternative.

In [24] authors present the maintainability, flexibility and per-
formance considerations that led to the selection of AF_XDP as the
base for the future data plane of Open vSwitch. The paper identifies
the performance limitations of user space when processing traffic
directed to containers leveraging the TCP/IP stack, and provides
some preliminary considerations on the possibility to rely on in-
kernel processing for this type of traffic. Our work extends these
considerations. [1] proposes a different solution to the problem,
experimenting with a user space implementation of the TCP/IP
stack to support standard applications and layer 7 NFs.

[22] makes the case for automatically decomposing eBPF/XDP
based NFs in multiple programs and between in-kernel and user
space components to bypass the limitations imposed by the eBPF
verifier.

8.1 DPDK user space drivers
The most common solution for high-speed packet processing is
currently DPDK coupled with custom user space drivers, which
enable direct access to the hardware from user space. While the
DPDK can leverage AF_XDP and standard Linux drivers for packet
I/O, user space drivers present multiple advantages with respect
to AF_XDP, at the cost of taking complete control over the NIC,
which is no longer visible by the kernel. In fact, an all-userspace
design enables higher performance because it avoids expensive
system calls and/or context switches. Furthermore, unlike AF_XDP
programs, user space drivers can access many hardware offloadings
features such as TSO and GRO, as well as packet metadata (e.g.,
checksum) provided by modern NICs11.

However, we did not consider the DPDK technology in our paper
because it is more appropriate for dedicated servers, which may not
be the case of small edge-based data centers as well as cloud-native
deployments, as suggested also by [24]. DPDK requires the use of
memory hugepages, and the mmap()ing of large contiguousmemory
areas, an operation that could fail. Both these constraints complicate
the coexistence with other traditional applications. Moreover, user
space drivers would prevent native traffic processing in the Linux
TCP/IP stack, given the full control of DPDK over the NIC, requiring
to re-inject packets from user space into the kernel, whose (low)
performance is expected to be similar to the one showed in Figure 17.
On the other hand, AF_XDP can easily enable part of the traffic to
be natively processed by the Linux kernel TCP/IP stack, with traffic
steering done either in software (with an XDP program) or with
rules installed on the NIC.

A possible way to enable a similar behavior with DPDK would
be leveraging SR-IOV with user space drivers bound to one or more
Virtual Functions (VFs), the kernel bound to the Physical one (PF),
plus the proper additional logic at the NIC level to steer packets
among the two as in Section 7.2. This logic however might not be
supported by the NIC, as in the case of our Intel XL710, where each
VF must have a different MAC address used for packet steering,
that would make VFs and the PF behave like completely different
interfaces.

11An attempt to support the above features in AF_XDP was proposed in [3].

Given the above considerations, it is worth noting that, in a
context in which no traffic has to be processed locally and packets
are either dropped or forwarded, DPDK’s user space drivers can
represent a more efficient choice with respect to the results pre-
sented in Section 4 and Section 5, which builds on the assumption of
having shared server. We leave a holistic evaluation, encompassing
all available technologies, as a future work.

9 CONCLUSIONS
This paper presents the performance characterization of in-kernel
and user space packet processing based only on the recent kernel-
provided XDP/AF_XDP infrastructure, without the need to main-
tain and integrate custom kernel modules. Our analysis focuses
on the scenario of telco edge data centers, where the processed
traffic includes both a pass-through portion, handled by a chain of
NFs and redirected towards a remote destination, as well as a local
portion, directed to applications running on the same set of servers
and leveraging the local TCP/IP stack.

We carried out a set of experiments studying these classes of traf-
fic, with the aim of optimizing the usage of (scarce) edge resources
by running both data plane-oriented workloads and traditional
applications on the same (shared) servers. Our results underline
which technology is best suited for each possible mix of traffic,
deriving six guidelines that can help telecom operators to select
the best technology based on the actual operating conditions, and
to achieve optimal performance in a mixed workload scenario such
as the one present in the data centers at the edge of the network.
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A REPRODUCTION OF OUR RESULTS
To encourage the reproduction of our results, the code used for
our our tests is available online at https://github.com/FedeParola/
xsknf. In this appendix we discuss our experiments in terms of
Repeatability (i.e., ability of our team to obtain the same results
multiple times), Reproducibility (i.e., ability of independent teams
to obtain the same results using our artifacts) and Replicability (i.e.,

ability of independent teams to obtain the same results using their
own artifacts) as described in the ACM Artifact Review and Badging
document.12

A.1 Repeatability
Given the controlled environment in which our experiments were
carried out, with few to none external sources of variability, our
results are highly repeatable.

A.2 Reproducibility
Anyone can expect to reproduce the same results presented in this
paper with the setup presented in Section 3.3 and the code published
in the online repository.

The repository contains a library to speedup the development of
NFs based on XDP and AF_XDP and to simplify their integration.
Under the examples/ folder it is possible to find all the NFs used in
our experiments. Each one is composed, at the bare minimum, by an
in-kernel XDP program (<nf>_kern.c file), a user space program,
encompassing the management and configuration logic as well
as the user space AF_XDP data plane logic (<nf>_user.c file),
and a common header file (<nf>.h). The tests/ folder contains
detailed information on how to reproduce our tests. Tests based on
connectionless (UDP) traffic can be automatically executed through
the python scripts contained in the folder. Each script needs to be
configured with the parameters of the testbed (e.g., IP addresses of
the DUT and tester server) as well as the parameters of the test (e.g.,
sizes of the firewall ACL). The scripts leverage the pktgen.lua
MoonGen script to generate traffic. Tests encompassingmemcached
traffic were executed by hand using the memoslap tool.

In the following table we provide additional information on
software versions, omitted from Section 3.3 for the sake of brevity.

Software Version Notes
GCC 9.3.0 User NFs compilation

Clang/LLVM 10.0.0 eBPF NFs compilation
libxdp 1.2.3 Embedded in the repo

memcached 1.5.22 -
MoonGen Commit 525d991 -
memoslap Commit ff9bdff -

A.3 Replicability
In our experiments we paid particular attention to code and data
structures in order to make the implementation of our user space
and XDP NFs as close as possible, with the aim to focus on the
performance of the I/O technologies and not on the NFs themselves.
Anyone trying to repeat our measurements with different code
should therefore attain to the same principle.

Beyond the code of the NFs under test, other factors that may
affect results are the hardware and the software environment. With
respect to the latter, since XDP/AF_XDP is a new technology under
quick evolution, the version of the kernel as well as the driver of
the NIC may heavily influence the results.
12https://www.acm.org/publications/policies/artifact-review-and-badging-current
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