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Abstract
We prove the L p-boundedness for all p ∈ (1,∞) of the first-order Riesz transforms
X jL−1/2 associated with the Laplacian L = −∑n

j=0 X
2
j on the ax + b group G =

R
n

�R; here X0 and X1, . . . , Xn are left-invariant vector fields on G in the directions
of the factors R and R

n respectively. This settles a question left open in previous work
of Hebisch and Steger (who proved the result for p ≤ 2) and of Gaudry and Sjögren
(who only considered n = 1 = j). The main novelty here is that we can treat the case
p ∈ (2,∞) and include the Riesz transform in the direction of R; an operator-valued
Fourier multiplier theorem on R

n turns out to be key to this purpose. We also establish
a weak type (1, 1) endpoint for the adjoint Riesz transforms in the direction of R

n . By
transference, our results imply the L p-boundedness for p ∈ (1,∞) of the first-order
Riesz transforms associated with the Schrödinger operator −∂2s + e2s on the real line.

Keywords Lie group · Nondoubling manifold · Riesz transform · Singular integral
operator

Mathematics Subject Classification 22E30 · 42B20 · 42B30

1 Introduction

Let G = R
n

� R, where R acts on R
n via dilations. If we write the elements of G as

(x, u), where x ∈ R
n and u ∈ R, then the group operation is given by

(x, u) · (x ′, u′) = (x + eux ′, u + u′). (1.1)

The group G is isomorphic to the group of transformations of R
n generated by trans-

lations and dilations, also known as the ax + b group (see, e.g., [22, Sect. 6.7]). We
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equip G with the right Haar measure, that is, the Lebesgue measure dx du. A basis of
left-invariant vector fields on G is given by

X0 = ∂u, X1 = eu∂x1, . . . , Xn = eu∂xn . (1.2)

The corresponding sum-of-square operator

L = −
n∑

j=0

X2
j = −∂2u − e2uΔx

is essentially self-adjoint on L2(G). If we equip G with the natural metric structure
associated with L, namely, the left-invariant Riemannian metric for which the vector
fields (1.2) form an orthonormal frame, then G with the Riemannian distance and the
Haar measure is a metric measure space of exponential volume growth.

In this work, we are interested in Lebesgue boundedness properties of the first-order
Riesz transforms

R j = X jL−1/2, j = 0, . . . , n,

associated with the left-invariant Laplacian L on G. Our first main result reads as
follows.

Theorem 1.1 For j = 0, . . . , n, the Riesz transformR j is bounded on L p(G) for all
p ∈ (1,∞).

For p ≤ 2, the above boundedness result was proved in [27]. (See also [45] for
previous partial results, and [40] for an extension to the case G = N � R, where N
is a stratified Lie group.) To this purpose, in [27] the authors developed a Calderón–
Zygmund theory adapted to the nondoubling structure of G, and showed that the
integral kernel of eachR j satisfies a suitable “integral Hörmander condition”, which
implies that R j is of weak type (1, 1) and L p-bounded for p ∈ (1, 2]. The same
“integral Hörmander condition” also implies that theR j are bounded from H1(G) to
L1(G), where H1(G) is the atomic Hardy space on G introduced in [55].

As it turns out, the adjoint Riesz transforms R∗
j do not satisfy the aforementioned

“integral Hörmander condition”. More is true: the operatorsR∗
j are not bounded from

H1(G) to L1(G). This fact, which was already discovered in [46] in the case n = 2,
demonstrates that the approach used for p ≤ 2 does not immediately extend to p > 2
by duality considerations, and a different approach is needed.

Regarding the L p-boundedness of the Riesz transforms R j for p > 2, to the best
of our knowledge, the only result so far available in the literature has been the one
contained in [25] for n = 1 and j = 1. However, the method of [25] appears not
to be suitable to treat the Riesz transform R0 = X0L−1/2, and indeed the authors
leave open the question of its L p-boundedness. One of the main reasons of interest of
Theorem 1.1 is that it also includes the case j = 0, thus solving a problem that has
been open for some time even in the smallest dimensional case n = 1.
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Our proof of Theorem 1.1 does not yield an endpoint bound for p = ∞. In par-
ticular, we do not know whether R∗

0 is of weak type (1, 1). However, we can obtain
such an endpoint for the operators R∗

j with j > 0 by a different method, namely, an
extension of the approach of [25] to the higher-dimensional cases.

Theorem 1.2 For j = 1, . . . , n, the adjoint Riesz transformR∗
j is of weak type (1, 1).

The L p-boundedness of Riesz transforms associated with elliptic and sub-elliptic
operators on manifolds is a widely studied problem (see, e.g., [1, 6, 7, 13, 36, 37, 44,
52]), and it is impossible to include here a complete literature review on the subject.
We refer to the introduction of [40] for a discussion of those works which are most
closely related to our setting. The fact that the L p-boundedness of Riesz transforms
for p > 2 is a more delicate property than that for p ≤ 2 has already been observed
in other contexts, see, e.g., [6, 12]; an additional difficulty in our case is that here we
are working in a nondoubling setting.

We remark that the Laplacian L on G considered here is not the Laplace–Beltrami
operator for the aforementioned left-invariant Riemannian structure on G. Indeed,
the group G with such Riemannian structure is nothing else than a realisation of the
real hyperbolic space of dimension n + 1, and the corresponding Laplace–Beltrami
operator LH (which is self-adjoint with respect to the left Haar measure) is given by

LH = L + nX0,

i.e.,L andLH differ by a drift term. In these respects, the operatorL can be thought of
as the natural Laplacian on the weighted Riemannian manifold G, where the weight
is the modular function (i.e., the density of the right Haar measure with respect to
the left Haar measure). Most importantly, and differently from LH, the Laplacian L
has no spectral gap, so there is no “extra decay” of the associated heat propagator for
large time that can be exploited to deal with the part at infinity of the Riesz transforms
associated with L. In addition, here we work with the “unshifted” Riesz transforms
R j = X jL−1/2, as opposed to the “shifted” Riesz transforms X j (a + L)−1/2 for
some a > 0 considered elsewhere in the literature. Correspondingly, the convolution
kernels of theR j are not integrable at infinity, which, combined with the exponential
volume growth of G, makes their analysis a nontrivial problem.

The groupG has a family of irreducible infinite-dimensional unitary representations
on L2(R), in each of which the distinguished Laplacian L on G corresponds to the
Schrödinger operatorH = −∂2s + e2s on the real line. As G is an amenable group, the
L p-boundedness of the Riesz transforms associated with L transfers to an analogous
result for the Schrödinger operator H, which may be of independent interest.

Theorem 1.3 The first-order Riesz transforms

∂sH−1/2, V 1/2H−1/2

associated with the Schrödinger operator H = −∂2s + V (s), where V (s) = e2 s, are
bounded on L p(R) for all p ∈ (1,∞).
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The L p-boundedness of Riesz transforms associated with Schrödinger operators
has also been studied extensively in the literature, and indeed the L p bounds for p ≤ 2
in Theorem 1.3 can be deduced from more general results for Schrödinger operators
with nonnegative potentials (see, e.g., [44]). As before, however, the case p > 2 is
more delicate (see, e.g., [5, 34, 43]) and we are not aware of results in the literature
for p > 2 encompassing the exponential potential V (s) = e2s considered here (for
example, [5] requires a reverse Hölder condition on the potential which fails for our
exponentially growing V , while the assumptions of the recent work [34] appear to rule
out potentials with lim inf |s|→∞ V (s) = 0).

The study of the Riesz transforms associated with the Laplacian L on G = R
n

�R

has a discrete counterpart in the analysis of the Riesz transform for a distinguished
“flow Laplacian” on homogeneous trees. Indeed, in the case p ≤ 2, L p bounds for the
latter were proved in the same paper [27] treating the continuous case as well (see also
[39] for a different proof). The recent work [35], tackling the problem of obtaining L p

bounds for p > 2 in the setting of homogeneous trees, can be thought of as a discrete
counterpart to the present paper. As is often the case, while the overall proof strategies
in the discrete and continuous settings present several similarities, there are a number
of nontrivial issues that are specific to each setting.

Proof Strategy

Thefirst step in our analysis is obtaining relatively explicit formulas for the convolution
kernels of the Riesz transformsR j on G, that is, the X j -derivatives of the convolution
kernel of the negative fractional power L−1/2 of the Laplacian. In the case n = 1 = j ,
a similar approach was adopted in [25, 45]; however, in those works, the formula for
L−1/2 was recovered via representation theory from a formula for the resolvent of
the Schrödinger operator H = −∂2s + e2s on the real line [31, 53]. Here instead we
subordinate L−1/2 to the heat semigroup e−tL and eventually reduce to known heat
kernel formulas on real hyperbolic spaces. A crucial part of our analysis, presented in
Sect. 2, is deriving precise asymptotics (at the origin and at infinity) for the convolution
kernel of L−1/2 and its derivatives.

Once these asymptotics are available, in Sect. 3 we analyze the convolution kernels
of the adjoint Riesz transforms R∗

j , both at the origin and at infinity; in each case we
are able to identify a “main term”, with a simple explicit expression, and a “remainder
term”, which is integrable, thus the boundedness properties of the Riesz transforms
are reduced to those of the respective main terms. Unsurprisingly, the behavior of the
main terms at the origin matches that of the corresponding kernels of the Euclidean
Riesz transforms for the standard Laplacian onR

n+1, and their boundedness properties
are readily established (see Sect. 4). As may be expected, the challenging part of the
problem lies in the study of the kernels at infinity.

Up to this point, our analysis broadly follows the lines (with some variations and
additional technical complications) of that in [25], where the particular case n = 1 = j
is discussed. However, the main term at infinity ofR∗

0 does not appear to be amenable
to the analysis of [25], and here a substantially different approach is developed, which
allows us to treat in a uniformway all the adjointRiesz transformsR∗

j for j = 0, . . . , n.
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Namely, we observe that left-invariant operators on G = R
n
x � Ru are invariant

under Euclidean translations in the variable x ∈ R
n ; thus, by writing L p(G) =

L p(Rn; L p(R)), we can think of such operators as operator-valued Fourier multiplier
operators with respect to the Euclidean Fourier transform onR

n . The L p-boundedness
of the main terms at infinity of the adjoint Riesz transforms is then proved by invoking
an operator-valued Fourier multiplier theorem [29, 51]. Specifically, the previously
obtained formulas allow us to derive quite explicit expressions for the operator-valued
symbols of the aforementioned Fourier multiplier operators, and the problem then
reduces to verifying suitable R-boundedness properties on L p(R) for such symbols
and their derivatives. Eventually, this verification reduces to proving the weighted
L2-boundedness for any weight in the Muckenhoupt class A2(R) of certain explicit
integral operators on R. This program is carried out in Sect. 5 and completes the proof
of Theorem 1.1.

The above approach via an operator-valued Fourier multiplier theorem, which may
be compared to that used in [32] in relation to Grushin operators, has the drawback
of not yielding endpoint boundedness results. In particular, the problem of whether
the adjoint Riesz transform R∗

0 is of weak type (1, 1) remains open. For the adjoint
Riesz transforms R∗

j for j = 1, . . . , n, however, a different approach, based on that
in [25], can be applied; we discuss this in Sect. 6, thus proving Theorem 1.2. Apropos
endpoint results, what we can establish for all the adjoint Riesz transforms R∗

j for

j = 0, . . . , n is that they are not bounded from H1(G) to L1(G); this was already
proved in [46] in the case n = 2, and in Sect. 7 we briefly discuss this negative result
for any value of n.

The fact that left-invariant operators on G are operator-valued Fourier multiplier
operators on R

n is related to the unitary representation theory of G. Indeed, up to
equivalence, all the infinite-dimensional irreducible unitary representations of G are
obtained by induction from the nontrivial unitary characters of R

n . Correspondingly,
as we illustrate in Sect. 8, the operator-valued Fourier multiplier theorem invoked in
Sect. 5 can be thought of as a Fouriermultiplier theorem for the groupFourier transform
on G. Still in Sect. 8 we discuss the relation between the Laplacian L on G and the
Schrödinger operatorH, as well as the respective Riesz transforms, and we show how
Theorem 1.1 can be transferred to deduce Theorem 1.3.

Some Open Questions

It would be interesting to investigate whether the results and methods of the present
paper could be extended to other settings.

Real hyperbolic spaces are particular cases of symmetric spaces of the noncompact
type, as well as of Damek–Ricci spaces, and the distinguished LaplacianL considered
here has natural analogues in those more general settings (see, e.g., [16, 54]). In those
contexts, tools from spherical Fourier analysis are available, which make it possible
(see, e.g., [2, 3] and references therein) to obtain explicit formulas and asymptotics for
many relevant quantities, such as heat kernels and fundamental solutions. For example,
in [24] L p-boundedness properties of second-order Riesz transforms associated with
such distinguished Laplacians are established on arbitrary rank-one symmetric spaces
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of the noncompact type, and it is a natural question whether similar results could be
obtained for first-order Riesz transforms as well.

Another natural setting to consider is that of [38, 40], where the factor R
n in

the semidirect product R
n

� R is replaced with an arbitrary stratified Lie group N ,
and correspondingly the Laplacian is replaced with a sub-Laplacian. In [40] the L p-
boundedness for 1 < p ≤ 2 of the natural first-order Riesz transforms on N � R

is established, but the problem for p > 2 is left open. We point out that, differently
from the aforementioned case of symmetric spaces, in the sub-Riemannian setting of
[40] no explicit formulas for the heat kernel are available, while such formulas are
a fundamental ingredient here. Additionally, here we crucially exploit an operator-
valued Fourier multiplier theorem on R

n , which does not appear to have an obvious
counterpartwhenR

n is replaced by a noncommutative stratified group N . So a different
approach and new ideas would likely be needed in that case.

Notation

We write N to denote the set of nonnegative integers (including 0). Moreover, R
∗

stands forR\{0}, andR+ for (0,∞). For any two nonnegative quantities A and B, we
write A � B to indicate that there is a constant C ∈ R+ such that A ≤ CB. We also
write A � B to denote the conjunction of A � B and B � A. Subscripted variants
such as �a and �a are used to indicate that the implicit constants may depend on a
parameter a. Finally, χI denotes the characteristic function of a set I .

2 Heat Kernel Formulas and Asymptotics for Fractional Powers

We start by recalling a few useful facts and formulas about the analysis on the group
G = R

n
� R. For more details, the reader is referred to [38, 40], where the more

general case of G = N � R is discussed, with N a stratified Lie group.
Recall that the group multiplication is given by (1.1); correspondingly, the group

inversion of G is given by

(x, u)−1 = (−e−ux,−u),

and the modular function m on G is given by

m(x, u) = e−nu, (2.1)

that is, e−nu dx du is the left Haar measure on G. Thus, the group convolution is given
by

f ∗ g(x, u) =
∫

G
f ((x, u) · (x ′, u′)−1) g(x ′, u′) dx ′ du′

=
∫

G
f (x − eu−u′

x ′, u − u′) g(x ′, u′) dx ′ du′
(2.2)
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and the L1-isometric involution on G is given by

f ∗(x, u) = m(x, u) f ((x, u)−1) = e−nu f (−e−ux,−u); (2.3)

of course, these formulas make sense for suitably regular functions f and g, but can
be extended to cover the case where f and g are distributions on G.

By the Schwartz Kernel Theorem, any linear left-invariant operator T mapping test
functions to distributions on G can be expressed in terms of convolution on the right
by a kernel kT , which in general is just a distribution on G:

T f = f ∗ kT .

The adjoint operator T ∗ is also left-invariant, and kT ∗ = k∗
T . For any p ∈ [1,∞], we

denote by Cvp(G) the space of the L p-convolutors of G, i.e., the convolution kernels
of L p(G)-bounded left-invariant operators.

We equip G with the left-invariant Riemannian metric for which the vector fields
X0, . . . , Xn in (1.2) form an orthonormal frame. If d is the associated left-invariant
distance function on G, then

cosh d((x, u), (0, 0)) = cosh u + e−u |x |2/2. (2.4)

We say that a function f onG is radial if the value of f at any point ofG only depends
on the distance of that point from the origin (0, 0). With a slight abuse of notation, if
f is a radial function on G and R ≥ 0, we denote by f (R) the value of f at any point
at distance R from the origin.

We point out that G, thought of as a Riemannian manifold with the aforementioned
structure, is nothing else than the real hyperbolic space of dimension n + 1, and
the Riemannian measure is the left Haar measure e−nu dx du. Moreover, while the
Laplacian L is not the same as the Laplace–Beltrami operator LH on the hyperbolic
space, the two operators are related. More precisely (see, e.g., [56, Sect. IX.1]), a
power of the modular function m (thought of as a multiplication operator) intertwines
the distinguished Laplacian L and the shifted Laplace–Beltrami operator:

L f = m1/2(LH − n2/4)(m−1/2 f ). (2.5)

It is well known that real hyperbolic spaces are rank-one symmetric spaces, and
that the group of isometries of a hyperbolic space fixing a point acts transitively on any
sphere centered at that point. As the Laplace–Beltrami operator LH is invariant under
isometries, the convolution kernels kF(LH) of operators in the functional calculus for
LH are radial. This is not the case for the operators F(L) in the functional calculus
for L; however, the intertwining relation (2.5) between L and LH implies that

kF(L) = m1/2kF(LH−n2/4), (2.6)

thus m−1/2kF(L) is radial.
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The starting point for our analysis are the following formulas for the heat kernel
ht = ke−tL associated with L on G.

Proposition 2.1 For all R > 0, if n is even,

(m−1/2ht )(R) = 1

(2π)n/2

(

− 1

sinh R

∂

∂R

)n/2

hRt (R),

while, if n is odd,

(m−1/2ht )(R)

= 1√
π(2π)n/2

∫ ∞

R

sinh x

(cosh x − cosh R)1/2

(

− 1

sinh x

∂

∂x

)(n+1)/2

hRt (x) dx,

where hRt (x) = (4π t)−1/2e−x2/(4t) is the heat kernel on R.

Proof In light of (2.6), we know that

m−1/2ht = e(n2/4)t ke−tLH ,

thus the above formulas reduce to those for the heat kernel ke−tLH on real hyperbolic
spaces (see, e.g., [3, Eqs. (2.2) and (2.3)] or [15, Eqs. (8) and (9)]). ��

From the above heat kernel formulas one can derive, via subordination, relatively
explicit formulas for the convolution kernel of the fractional power L−1/2. To this
purpose, it is convenient to introduce the notation Q0

λ−1/2 for the Legendre function
of the second kind with parameters 0 and λ − 1/2, where λ > 0. Note that, according
to [20, Sect. 3.7, Eq. (5), p. 155], for all z > 1,

Q0
λ−1/2(z) = 2−λ−1/2

∫ 1

−1
(z − s)−λ−1/2(1 − s2)λ−1/2 ds, (2.7)

and also, by [20, Sect. 3.7, Eq. (4), p. 155], for all r > 0,

Q0
λ−1/2(cosh r) = 2−1/2

∫ ∞

r
e−λx (cosh x − cosh r)−1/2 dx . (2.8)

Proposition 2.2 The distribution kL−1/2 coincides with a smooth function away from
the origin, and m−1/2kL−1/2 is radial. Moreover, for all R > 0, if n is even, then

(m−1/2kL−1/2)(R) = 1

π(2π)n/2

(

− 1

sinh R

∂

∂R

)(n−2)/2 1

R sinh R
,
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while, if n is odd, then

(m−1/2kL−1/2)(R)

= 1

π3/2(2π)n/2

(

− 1

sinh R

∂

∂R

)(n−1)/2 ∫ ∞

R
(cosh x − cosh R)−1/2 dx

x

=
√
2

π3/2(2π)n/2

(

− 1

sinh R

∂

∂R

)(n−1)/2 ∫ ∞

0
Q0

λ−1/2(cosh R) dλ.

(2.9)

In the case n = 1, an analogous formula can be found in [45, p. 3304, last display];
in the case n = 2, see [46, Eq. (2.1)].

Proof Recall that, for all λ > 0,

λ−1/2 = 1√
π

∫ ∞

0
e−tλ dt

t1/2
,

thus, at least formally,

kL−1/2 = 1√
π

∫ ∞

0
ht

dt

t1/2
. (2.10)

We now observe that, for all R > 0,

∫ ∞

0

(

− 1

sinh R

∂

∂R

)

hRt (R)
dt

t1/2
= 1

4
√

π

R

sinh R

∫ ∞

0
e−R2/(4t) dt

t2

= 1√
π

1

R sinh R
.

Thus, for n even, if we plug into (2.10) the formula for the heat kernel ht from
Proposition 2.1, then we obtain

(m−1/2kL−1/2)(R) = 1√
π

∫ ∞

0

(
m−1/2ht

)
(R)

dt

t1/2

= 1√
π

∫ ∞

0

1

(2π)n/2

(

− 1

sinh R

∂

∂R

)n/2

hRt (R)
dt

t1/2

= 1

π(2π)n/2

(

− 1

sinh R

∂

∂R

)(n−2)/2 1

R sinh R
, (2.11)

as desired.
For n odd, instead, we preliminarily observe that, if g : R+ → C is any smooth

function decaying sufficiently rapidly at infinity together with its derivatives, then

∫ ∞

R

sinh x

(cosh x − cosh R)1/2
g(x) dx = −2

∫ ∞

R
(cosh x − cosh R)1/2

∂

∂x
g(x) dx

123
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for all R > 0, by integration by parts; therefore, differentiating under the integral sign
yields the formula

(
1

sinh R

∂

∂R

)N ∫ ∞

R

sinh x

(cosh x − cosh R)1/2
g(x) dx

=
∫ ∞

R

sinh x

(cosh x − cosh R)1/2

(
1

sinh x

∂

∂x

)N

g(x) dx (2.12)

for N = 1, and by iteration the same holds for any N ∈ N.
Now, by arguing as in (2.11), but using the formula for n odd from Proposition 2.1,

one obtains

(m−1/2kL−1/2)(R)

= 1

π3/2(2π)n/2

∫ ∞

R

sinh x

(cosh x − cosh R)1/2

(

− 1

sinh x

∂

∂x

)(n−1)/2 1

x sinh x
dx,

and an application of (2.12) turns this into the first expression form−1/2kL−1/2 in (2.9).
To derive the second one, it is enough to observe that, by (2.8),

√
2

∫ ∞

0
Q0

λ−1/2(cosh R) dλ =
∫ ∞

0
(cosh x − cosh R)−1/2 dx

x
,

which shows that the two expressions are indeed equal. ��
From the above formulas we can derive the following asymptotics, which will be

crucial for the subsequent analysis.

Proposition 2.3 For all R > 0,

(
m−1/2kL−1/2

)
(R) = 1

π(2π)n/2Φn(cosh R), (2.13)

where Φn : (1,∞) → R is real-analytic and, for all k ∈ N, the kth derivative of Φn

satisfies

Φ(k)
n (X) = (−1)kΓ

(
k + n

2

)

Xk+n/2 log X

(

1 + O

(
1

log X

))

, as X → ∞,

Φ(k)
n (X) = (−1)kΓ

(
k + n

2

)

2(X − 1)k+n/2

(
1 + O

(
(X − 1)δ

))
, as X → 1+,

where δ = 1/2 if n = 1 and k = 0, and δ = 1 otherwise.

Proof Let N = 
(n − 1)/2�. Notice that the Chain Rule applied to the change of
variables X = cosh R yields

∂

∂X
= 1

sinh R

∂

∂R
. (2.14)
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Moreover,

sinh R =
√
X2 − 1, R = arccosh X = log(X +

√
X2 − 1).

Thus, from Proposition 2.2 we deduce that (2.13) holds with

Φn(X) = (−1)NΨ
(N )
j (X),

where j is equal to 0 or 1 according to whether n is even or odd, and

Ψ0(X) = 1√
X2 − 1 log(X + √

X2 − 1)
, (2.15)

Ψ1(X) =
√

2

π

∫ ∞

0
Q0

λ−1/2(X) dλ

= π−1/2
∫ ∞

arccosh X
(cosh x − X)−1/2 dx

x
. (2.16)

Consequently, the proof of the above asymptotics reduces to showing that, for all
k ∈ N and j = 0, 1,

Ψ
(k)
j (X) =

(−1)kΓ
(
k + 1 − j

2

)

Xk+1− j/2 log X

(

1 + O

(
1

log X

))

, as X → ∞, (2.17)

and

Ψ
(k)
j (X) =

(−1)kΓ
(
k + 1 − j

2

)

2(X − 1)k+1− j/2

(
1 + O

(
(X − 1)δ

))
, as X → 1+, (2.18)

where δ = 1/2 if j = 1 and k = 0, and δ = 1 otherwise.
We first prove (2.17) in the case j = 0. Notice that, by (2.15), we can write

Ψ0(X) = 1

X log X
G(1/X , 1/ log X),

where

G(a, b) = (1 − a2)−1/2

1 + b log(1 + √
1 − a2)

is a bivariate analytic function in a neighborhood of (0, 0). Thus, from the power series
expansion of G, we deduce that, for suitable coefficients c�,m ∈ R,

Ψ0(X) = 1

X log X

∑

�,m≥0

c�,m
1

X�

1

logm X
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whenever X is sufficiently large. Notice now that

∂

∂X

1

X
= − 1

X2 ,
∂

∂X

1

log X
= − 1

X log2 X
.

Thus, by differentiating term by term the above series, we deduce that, for any k ∈ N,

Ψ
(k)
0 (X) = 1

X1+k log X

∑

�,m≥0

ck�,m
1

X�

1

logm X

with ck+1
0,0 = −(k + 1)ck0,0. As c

0
0,0 = c0,0 = G(0, 0) = 1, we conclude that ck0,0 =

(−1)kk! = (−1)kΓ (k + 1), thus proving (2.17) in the case j = 0.
We now prove (2.18) in the case j = 0. For this, we observe that

1

sinh R
= 1 + O(R2)

R
, as R → 0,

where the term O(R2) stands for an even analytic function vanishing at R = 0. Thus,
for all N ∈ N \ {0},

1

sinh R

∂

∂R

1 + O(R2)

RN
= 1 + O(R2)

R

[

−N
1 + O(R2)

RN+1 + O(R)

RN

]

= −N
1 + O(R2)

RN+2

and therefore, inductively,

(
1

sinh R

∂

∂R

)k 1

R sinh R
= (−1)k2kk!1 + O(R2)

R2+2k , as R → 0. (2.19)

As Ψ0(cosh R) = (R sinh R)−1 by (2.15), in light of (2.14) the previous identity can
be rewritten as

Ψ
(k)
0 (cosh R) = (−1)k2kk!

R2+2k (1 + O(R2)), as R → 0.

On the other hand, if X = cosh R, we deduce that

X − 1 = R2

2
(1 + O(R2)) (2.20)

and

R2 = 2(X − 1)(1 + O(X − 1)), as X → 1+, (2.21)
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whence

Ψ
(k)
0 (X) = (−1)kk!

2(X − 1)1+k
(1 + O(X − 1)), as X → 1+,

which proves (2.18) in the case j = 0.
Let us now prove (2.17) in the case j = 1. According to (2.7) and (2.16), we can

write

Ψ1(X) = π−1/2
∫ ∞

0
2−λ

∫ 1

−1
(X − s)−λ−1/2(1 − s2)λ−1/2 ds dλ.

Now, we observe that, for all k ∈ N,

(
∂

∂X

)k

(X − s)−λ−1/2 = (−1)k(X − s)−λ−1/2−k
k−1∏

�=0

(λ + 1/2 + �)

= (−1)k(X − s)−λ−1/2−k
k∑

�=0

ck�λ
�

for suitable rational coefficients ck� , where c
k
0 = 2−k(2k − 1)!! = π−1/2Γ (k + 1/2)

[here we convene that (−1)!! = 1]. Consequently

Ψ
(k)
1 (X)

= (−1)k√
π

k∑

�=0

ck�

∫ 1

−1
(1 − s2)−1/2(X − s)−1/2−k

∫ ∞

0
λ�

(
2(X − s)

1 − s2

)−λ

dλ ds

= (−1)k√
π

k∑

�=0

�! ck�
∫ 1

−1

(1 − s2)−1/2(X − s)−1/2−k

log�+1
(
2(X−s)
1−s2

) ds, (2.22)

where we used that
∫ ∞
0 λ�e−λ dλ = �! for all � ∈ N.

Now, under the assumption |s| < 1, for X → ∞ we have

(X − s)−k−1/2 = X−k−1/2(1 + O(1/X)),

while

log

(
2(X − s)

1 − s2

)

= log X + log(2/(1 − s2)) + O(1/X)
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(notice that 2/(1 − s2) > 2 and log(2/(1 − s2)) > log 2 > 0 here), thus

1

log
(
2(X−s)
1−s2

) = 1

log X
− log(2/(1 − s2)) + O(1/X)

(log X)
(
log X + log(2/(1 − s2)) + O(1/X)

)

= 1

log X

(

1 + log(2/(1 − s2)) O

(
1

log X

))

and

(X − s)−1/2−k

log�+1
(
2(X−s)
1−s2

) = X−1/2−k

log�+1 X

(

1 + log�+1(2/(1 − s2)) O

(
1

log X

))

.

So

∫ 1

−1

(1 − s2)−1/2(X − s)−1/2−k

log�+1
(
2(X−s)
1−s2

) ds

= X−1/2−k

log�+1 X

(∫ 1

−1
(1 − s2)−1/2 ds + O

(
1

log X

)∫ 1

−1

log�+1(2/(1 − s2))

(1 − s2)1/2
ds

)

= π
X−1/2−k

log�+1 X

(

1 + O

(
1

log X

))

and therefore, by (2.22),

Ψ
(k)
1 (X) = (−1)k

√
π

k∑

�=0

�! ck�
X−1/2−k

log�+1 X

(

1 + O

(
1

log X

))

,

which implies the desired asymptotics (2.17) for j = 1, as ck0 = π−1/2Γ (k + 1/2).
We are left with proving (2.18) in the case j = 1. We start by observing that, by

(2.16),

Ψ1(cosh R) = π−1/2
∫ ∞

R
(cosh x − cosh R)−1/2 dx

x
.

Thus, by (2.14) and (2.12), we deduce that

π1/2Ψ
(k)
1 (cosh R) =

(
1

sinh R

∂

∂R

)k ∫ ∞

R
(cosh x − cosh R)−1/2 dx

x

=
∫ ∞

R

sinh x

(cosh x − cosh R)1/2

(
1

sinh x

∂

∂x

)k 1

x sinh x
dx .
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Assume that R < 1, and split the above integral as
∫ ∞
R = ∫ 1

R + ∫ ∞
1 . Then

∣
∣
∣
∣
∣

∫ ∞

1

sinh x

(cosh x − cosh R)1/2

(
1

sinh x

∂

∂x

)k 1

x sinh x
dx

∣
∣
∣
∣
∣

≤
∫ ∞

1

sinh x

(cosh x − cosh 1)1/2

∣
∣
∣
∣
∣

(
1

sinh x

∂

∂x

)k 1

x sinh x

∣
∣
∣
∣
∣
dx = O(1).

Moreover, for 0 < R < x < 1,

cosh x − cosh R = 2 sinh((x + R)/2) sinh((x − R)/2) = x2 − R2

2
(1 + O(x2))

and, by (2.19),

(
1

sinh x

∂

∂x

)k 1

x sinh x
= (−1)k2kk!1 + O(x2)

x2+2k ,

whence

∫ 1

R

sinh x

(cosh x − cosh R)1/2

(
1

sinh x

∂

∂x

)k 1

x sinh x
dx

= (−1)k2k+1/2k!
∫ 1

R

x−1−2k

(x2 − R2)1/2
(1 + O(x2)) dx .

We notice now that

∫ 1

R

x−1−2k

(x2 − R2)1/2
dx = R−1−2k

∫ 1/R

1
u−1−2k(u2 − 1)−1/2 du

= R−1−2k
(∫ ∞

1
−

∫ ∞

1/R

)

= Ck R
−1−2k(1 + O(R1+2k)),

where

Ck =
∫ ∞

1
u−1−2k(u2 − 1)−1/2 du = 1

2

∫ 1

0
sk−1/2(1 − s)−1/2 ds =

√
π

2

Γ (k + 1/2)

k! .

Moreover,

∫ 1

R

x−1−2k

(x2 − R2)1/2
x2 dx = R1−2k

∫ 1/R

1
u1−2k(u2 − 1)−1/2 du

= R−1−2kO(R2−ε),
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where ε = 1 if k = 0, and ε = 0 otherwise. Putting all together finally yields

√
πΨ

(k)
1 (cosh R)

= O(1) + (−1)k2k+1/2k!Ck R
−1−2k(1 + O(R1+2k) + O(R2−ε))

= (−1)k
√

π2k−1/2Γ (k + 1/2)R−1−2k(1 + O(R2δ))

for R < 1, where δ = 1/2 if k = 0 and δ = 1 otherwise. In light of (2.21), we
eventually deduce

Ψ
(k)
1 (X) = (−1)k2−1Γ (k + 1/2)(X − 1)−1/2−k(1 + O((X − 1)δ))

as X → 1+, which proves (2.18) in the case j = 1. ��

3 Kernel Asymptotics for the Riesz Transforms

Simple manipulations of the expression for kL−1/2 in Proposition 2.3 allow us to derive
the following formulas for the convolution kernels of the Riesz transforms.

Proposition 3.1 For all (x, u) ∈ G \ {(0, 0)},

kR0−R∗
0
(x, u) = 2 sinh u

m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R),

kR0+R∗
0
(x, u) = −m1/2(x, u)

π(2π)n/2

(
nΦn(cosh R) + e−u |x |2Φ ′

n(cosh R)
)

,

and, for j = 1, . . . , n,

kR j (x, u) = x j
m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R),

kR∗
j
(x, u) = −e−ux j

m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R),

where R = d((x, u), (0, 0)), and Φn is as in Proposition 2.3.

Proof From (1.2), (2.1) and (2.4) it is not difficult to derive that, for j = 1, . . . , n,

X0m
1/2(x, u) = −n

2
m1/2(x, u), X0 cosh R = sinh u − e−u |x |2/2,

X jm
1/2(x, u) = 0, X j cosh R = x j ,

where R = d((x, u), (0, 0)).
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As a consequence, from (2.13) we deduce that

kR0(x, u) = X0kL−1/2(x, u) = −n

2

m1/2(x, u)

π(2π)n/2 Φn(cosh R)

+
(
sinh u − e−u |x |2/2

) m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R)

and, for j = 1, . . . , n,

kR j (x, u) = X jkL−1/2(x, u) = x j
m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R).

Now, from (2.1) and (2.3) we immediately derive that

(m1/2 f )∗(x, u) = m1/2(x, u) f (−e−ux,−u).

As d((x, u)−1, (0, 0)) = d((x, u), (0, 0)) = R, we deduce that

kR∗
0
(x, u) = k∗

R0
(x, u) = −n

2

m1/2(x, u)

π(2π)n/2 Φn(cosh R)

−
(
sinh u + e−u |x |2/2

) m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R),

and the required expressions for kR0−R∗
0
and kR0+R∗

0
follow. Moreover, for j =

1, . . . , n,

kR∗
j
(x, u) = k∗

R j
(x, u) = −e−ux j

m1/2(x, u)

π(2π)n/2 Φ ′
n(cosh R),

as desired. ��
Now, by means of the asymptotics in Proposition 2.3, we easily deduce precise

information on the behavior of the convolution kernels kR j in a neighborhood of the
origin, showing that, up to integrable terms, they match the kernels of the Euclidean
Riesz transforms for the standard Laplacian on R

n+1.

Proposition 3.2 For j = 0, . . . , n,

kR j = −Γ (1 + n/2)

π1+n/2 K 0
j + q0j , kR∗

j
= Γ (1 + n/2)

π1+n/2 K 0
j + q̃0j ,

where q0j and q̃
0
j are locally integrable, while

K 0
j (x, u) =

{
(u2 + |x |2)−(n+2)/2 u if j = 0,

(u2 + |x |2)−(n+2)/2 x j otherwise.
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Proof As the kernels kR j and kR∗
j
are locally integrable off the origin, we only need

to analyze their behavior in a neighborhood of the origin.
Now, from the asymptotics in Proposition 2.3 and (2.20) we deduce that, if R is

small, then

Φn(cosh R) = O(R−n), Φ ′
n(cosh R) = −Γ (1 + n/2)2n/2

Rn+2 (1 + O(R2)).

Moreover, by (2.4), if R = d((x, u), (0, 0)), then |u| ≤ R; so, by (2.1), in a neighbor-
hood of the origin,

e−u = 1 + O(R), m1/2(x, u) = 1 + O(R), sinh u = u(1 + O(R2)),

and

1 + R2

2
(1 + O(R2)) = cosh R = cosh u + e−u |x |2/2 = 1 + u2 + |x |2

2
(1 + O(R)),

thus

R2 = (|x |2 + u2)(1 + O(R)). (3.1)

Therefore, from Proposition 3.1 we deduce that

kR j (x, u) = −Γ (1 + n/2)

π1+n/2

x j
Rn+2 + O(R−n),

kR∗
j
(x, u) = Γ (1 + n/2)

π1+n/2

x j
Rn+2 + O(R−n),

for j = 1, . . . , n, and moreover,

kR0−R∗
0
(x, u) = −2

Γ (1 + n/2)

π1+n/2

u

Rn+2 + O(R−n),

kR0+R∗
0
(x, u) = O(R−n),

thus

kR0(x, u) = −Γ (1 + n/2)

π1+n/2

u

Rn+2 + O(R−n),

kR∗
0
(x, u) = Γ (1 + n/2)

π1+n/2

u

Rn+2 + O(R−n).

As G has dimension n + 1, the terms O(R−n) are locally integrable; moreover, by
(3.1), in the above formulas for the kR j we can replace the denominators Rn+2 with

(|x |2 + u2)(n+2)/2 and obtain the desired expressions. ��
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It remains to analyze the behavior of the kernels kR j at infinity. By using the
asymptotics of Proposition 2.3, we will split those kernels into a “main part”, with
a relatively simple expression, and a “remainder”, which is integrable at infinity. In
order to make it easy to recognise those terms that are integrable and therefore can be
included in the remainder, it is convenient to record here some integration formulas
for radial functions against certain weights on G (cf. [41, Lemma 2.1]).

Lemma 3.3 Let f : R → [0,∞) be measurable. Then

∫

G
|x |m1/2(x, u) f (R) dx du �

∫ 1

0
f (r) rn+1 dr +

∫ ∞

1
f (r) e(1+n/2)r dr ,

(3.2)
∫

G
χ{u≤1} |x |m1/2(x, u) f (R) dx du �

∫ 1

0
f (r) rn+1 dr +

∫ ∞

1
f (r) e(1/2+n/2)r dr ,

(3.3)
∫

G
|sinh u|m1/2(x, u) f (R) dx du �

∫ 1

0
f (r) rn+1 dr +

∫ ∞

1
f (r) e(1+n/2)r dr ,

(3.4)
∫

G
χ{|u|≤1} |u|m1/2(x, u) f (R) dx du �

∫ 1

0
f (r) rn+1 dr +

∫ ∞

1
f (r) enr/2 dr ,

(3.5)

where R = d((x, u), (0, 0)).

Proof For any N ∈ R and any measurable w : R → [0,∞),

∫

G
w(u) |x |N m1/2(x, u) f (R) dx du

=
∫

R

∫

Rn
w(u)|x |N e−nu/2 f (arccosh(cosh u + e−u |x |2/2)) dx du

�
∫

R

∫ ∞

0
w(u) eNu/2 f (arccosh(cosh u + s)) s(n+N )/2−1 ds du

=
∫ ∞

0
f (r)

[

sinh r
∫ r

−r
w(u) eNu/2(cosh r − cosh u)(n+N )/2−1 du

]

dr ,

thus our task is reduced to estimating the term in brackets in the last integral, i.e., the
“radial density” of the measure w(u)|x |Nm1/2(x, u) dx du, for each of the choices of
w and N appearing in the left-hands sides of Formulas (3.2) to (3.5).

Recall now that

cosh r − cosh u = 2 sinh
r + |u|

2
sinh

r − |u|
2

�
{
er if |u| ≤ r − 1,

(r − |u|) sinh r if r − 1 ≤ |u| ≤ r .
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Consequently, if r ≤ 1, then we deduce that

sinh r
∫ r

−r
w(u) eNu/2(cosh r − cosh u)(n+N )/2−1 du

� rn+N
∫ 1

−1
w(rv) (1 − |v|)(n+N )/2−1 dv,

and the latter quantity is indeed comparable to rn+1 for each of the four choices of
N and w corresponding to the formulas to be proved [indeed, we have w(u) = 1 for
|u| ≤ 1 and N = 1 in the case of (3.2) and (3.3), orw(u) � |u| for |u| ≤ 1 and N = 0
in the case of (3.4) and (3.5)].

If instead r ≥ 1, then

sinh r
∫ r

−r
w(u) eNu/2(cosh r − cosh u)(n+N )/2−1 du

� e(n+N )r/2
∫

|u|≤r−1
w(u) eNu/2 du

+ enr/2
∫ 1

0
t (n+N )/2−1w(t − r) dt + e(n/2+N )r

∫ 1

0
t (n+N )/2−1w(r − t) dt .

Now, if we take w(u) = 1 and N = 1, then the above quantity is comparable to
e(n/2+1)r , which completes the proof of (3.2). If instead we take w(u) = χ{u≤1} and
N = 1, then the above quantity is comparable to e(n/2+1/2)r , thus completing the proof
of (3.3). Further, if we take w(u) = |sinh u| and N = 0, then the above quantity is
comparable to e(n/2+1)r , thus proving (3.4). Finally, if we takew(u) = |u|χ{|u|≤1} and
N = 0, then the above quantity is comparable to enr/2, thus completing the proof of
(3.5). ��

For a function F : R
n → C and λ > 0, we write F(λ) for the rescaled function

F(λ)(x) = λ−n F(λ−1x).

By exploiting the precise asymptotics of Proposition 2.3, we can derive the following
formulas; in the case n = 1 = j , a similar result can be found in [45, Lemma 6].

Proposition 3.4 We can write

kR0−R∗
0

= −2Γ (1 + n/2)

π1+n/2 (K̃0 + K0) + q0,

kR∗
j
= −2Γ (1 + n/2)

π1+n/2 K j + q j ,
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for j = 1, . . . , n, where q0, q j are integrable at infinity, while

K̃0(x, u) = r0(x)
χ{|u|≥1}

u
,

K0(x, u) = [
(r0)(eu)(x) − r0(x)

] χ{u≥1}
u

,

K j (x, u) = r j (x)
χ{u≤−1}

u
.

and

r0(x) = (1 + |x |2)−1−n/2, r j (x) = x j (1 + |x |2)−1−n/2.

Proof We start with the kernel kR∗
j
for j = 1, . . . , n. From the formula in Proposition

3.1 and the asymptotics in Proposition 2.3 we deduce that

kR j (x, u) = −Γ
(
1 + n

2

)

π(2π)n/2

x j m1/2(x, u)

(cosh R)1+n/2 log cosh R

(

1 + O

(
1

R

))

.

By (3.2), the term corresponding to the Big-O in the expression above is integrable at
infinity; moreover, by (3.3), the part of the above expression where u ≤ 1 is integrable
at infinity too. Thus kR j (x, u) differs from

− Γ
(
1 + n

2

)

π(2π)n/2

x j m1/2(x, u)

(cosh R)1+n/2 log cosh R
χ{u≥1} (3.6)

by a term which is integrable at infinity.
We now observe that, if u ≥ 1, then, by (2.4),

cosh R = 1

2

(
eu + e−u + e−u |x |2

)
= eu

2
(1 + |e−ux |2)(1 + O(e−2u)),

and moreover

log cosh R = u + log(1 + |e−ux |2) − log 2 + O(e−2u),

thus

1

log cosh R
= 1

u
− log(1 + |e−ux |2) − log 2 + O(e−2u)

u log cosh R

= 1

u

(

1 + O

(
1 + log(1 + |e−ux |2)

u

))
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(here we also used that cosh R ≥ cosh |u|, thus log cosh R � u for u ≥ 1), and

m1/2(x, u)

(cosh R)1+n/2 log cosh R
= 21+n/2 e−(1+n)u(1 + |e−ux |2)−1−n/2

u

×
(

1 + O

(
1 + log(1 + |e−ux |2)

u

))

, (3.7)

in the region where u ≥ 1.
Consequently, we can rewrite (3.6) as

−2Γ
(
1 + n

2

)

π1+n/2

e−nu(e−ux j )(1 + |e−ux |2)−1−n/2

u
χ{u≥1}

×
(

1 + O

(
1 + log(1 + |e−ux |2)

u

))

(3.8)

The term corresponding to the Big-O in (3.8) is integrable on G, as

∫ ∞

1

∫

Rn

e−nu

u
|e−ux |(1 + |e−ux |2)−1−n/2 1 + log(1 + |e−ux |2)

u
dx du

=
∫ ∞

1

∫

Rn

1

u2
|x |(1 + |x |2)−1−n/2

(
1 + log(1 + |x |2)

)
dx du < ∞.

(3.9)

By taking adjoints [see (2.3)] in the remaining term of (3.8), we finally obtain that
kR∗

j
= k∗

R j
differs from

−χ{u≤−1}
2Γ

(
1 + n

2

)

π1+n/2

1

u
x j (1 + |x |2)−1−n/2

by a term which is integrable at infinity, as required.
We can analyze kR0−R∗

0
in a similar way. Namely, from the formula in Proposition

3.1 and the asymptotics in Proposition 2.3 we deduce that

kR0−R∗
0
(x, u) = −Γ

(
1 + n

2

)

π(2π)n/2

(2 sinh u)m1/2(x, u)

(cosh R)1+n/2 log cosh R

(

1 + O

(
1

R

))

,

thus, by (3.4) and (3.5), we deduce that kR0−R∗
0
differs from

− Γ
(
1 + n

2

)

π(2π)n/2

(2 sinh u)m1/2(x, u)

(cosh R)1+n/2 log cosh R
χ{|u|≥1} (3.10)

by a term which is integrable at infinity.
We now restrict our analysis to the region where u ≥ 1 (indeed, the remaining

region u ≤ −1 can be recovered at the end due to skew-adjointness). If u ≥ 1, then

2 sinh u = eu(1 + O(e−2u)),
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and this, combined with (3.7), allows us to rewrite the part of (3.10) where u ≥ 1 as

−2Γ
(
1 + n

2

)

π1+n/2

e−nu(1 + |e−ux |2)−1−n/2

u
χ{u≥1}

(

1 + O

(
1 + log(1 + |e−ux |2)

u

))

.

By arguing as in (3.9), one sees that the Big-O term in the previous expression gives
rise to an integrable term on G. Thus we conclude that, in the region where u ≥ 1,
kR0−R∗

0
differs from

−2Γ
(
1 + n

2

)

π1+n/2

e−nu(1 + |e−ux |2)−1−n/2

u
χ{u≥1}

by a term which is integrable at infinity. By taking adjoints [see (2.3)], we also deduce
that, in the region where u ≤ −1, kR0−R∗

0
differs from

−2Γ
(
1 + n

2

)

π1+n/2

(1 + |x |2)−1−n/2

u
χ{u≤−1}

by a term which is integrable at infinity. Thus, by summing the previous two expres-
sions, we deduce that kR0−R∗

0
differs from

−2Γ
(
1 + n

2

)

π1+n/2

1

u
(χ{u≥1}e−nu(1 + |e−ux |2)−1−n/2 + χ{u≤−1}(1 + |x |2)−1−n/2)

by a term which is integrable at infinity. This is easily seen to match the required
expression, as

K̃0(x, u) + K0(x, u) = r0(x)
χ{|u|≥1}

u
+ [

(r0)(eu)(x) − r0(x)
] χ{u≥1}

u

= 1

u

[
(r0)(eu)(x)χ{u≥1} + r0(x)χ{u≤−1}

]
,

and we are done. ��

4 Analysis of the Local Part and Reduction to the Part at Infinity

The formulas in Proposition 3.2 show that the local behavior of the kernels of the Riesz
transforms and their adjoints onG is analogous to that of the corresponding Euclidean
kernels on R

n+1, which are standard Calderón–Zygmund operators. Based on this, it
is not difficult to show, by using the argument described, e.g., in [23, Lemma 7], that
the local part of the kernels kR j and kR∗

j
define operators which are of weak type

(1, 1) and bounded on L p(G) for all p ∈ (1,∞). We present here a slightly different
approach, based instead on the Calderón–Zygmund theory of [27]. This has for us the
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technical advantage that it implies at once the boundedness from H1(G) to L1(G)

too.
We first recall a useful fact about localisation of L p convolutors, which is true on

any Lie group G. We include a proof for the reader’s convenience.

Lemma 4.1 Let p ∈ [1,∞]. Any ζ ∈ C∞
c (G) is a multiplier of Cvp(G), i.e., ζK ∈

Cvp(G) for all K ∈ Cvp(G).

Proof In the cases p = 1 and p = ∞, the space Cvp(G) is just the space of finite
complex measures on G, so it is clearly closed under multiplication by elements of
C∞
c (G).
Assume now p ∈ (1,∞). From the results of [14], it follows that any compactly

supported element of the the Figà-Talamanca–Herz algebra Ap(G) is a multiplier of
Cvp(G). (Specifically, in [14] it is shown that Cvp(G) is the dual of a certain Banach
∗-algebra Ap(G) containing all the compactly supported elements of Ap(G), thus
Cvp(G) is naturally a module over Ap(G).) To conclude, it just remains to show that
C∞
c (G) ⊆ Ap(G). However, this follows immediately from the definition of Ap(G)

and the Dixmier–Malliavin Theorem [18], allowing us to represent any φ ∈ C∞
c (G)

as a finite sum of functions of the form ψ ∗ η with ψ, η ∈ C∞
c (G). ��

We now revert to the case of the ax + b group G and proceed with the proof of the
local boundedness of the Riesz transforms R j and R∗

j .

Proposition 4.2 Let ζ ∈ C∞
c (G). Then, for j = 0, . . . , n, the convolution operators

with kernels ζkR j and ζkR∗
j
, aswell as their adjoints, are of weak type (1, 1), bounded

on L p(G) for all p ∈ (1, 2], and bounded from H1(G) to L1(G).

Proof As (ζkR j )
∗ = (m−1ζ ∗)kR∗

j
and (ζkR∗

j
)∗ = (m−1ζ ∗)kR j , and moreover

m−1ζ ∗ ∈ C∞
c (G), the boundedness of the adjoints is reduced to that of the origi-

nal operators.
We note that, by Proposition 3.2,

ζkR j = −Γ (1 + n/2)

π1+n/2

(
ζK 0

j

)
+

(
ζq0j

)
,

ζkR∗
j
= Γ (1 + n/2)

π1+n/2

(
ζK 0

j

)
+

(
ζ q̃0j

)
, (4.1)

and the kernels ζq0j and ζ q̃0j are integrable, so the boundedness properties of ζkR j and

ζkR∗
j
are equivalent to those of ζK 0

j . In particular, asR j andR∗
j are L

2(G)-bounded

and Cv2(G) is a C∞
c (G)-module (see Lemma 4.1), we deduce that ζK 0

j ∈ Cv2(G)

too.
In order to prove that the operator of convolution by ζK 0

j has the desired bound-
edness properties, we shall apply the Calderón–Zygmund theory of [27]. Specifically,
we will show that the kernel ζK 0

j has a decomposition that satisfies the assumptions
of [40, Theorem 2.3].
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Consider a smooth nonnegative radial function η on R
n+1 supported in an annulus

and such that

∑

�∈Z
η(2�(x, u)) = 1

for all (x, u) ∈ R
n+1 \ {(0, 0)}. Set η� = η(2−�·) and η∗ = ∑

�≤0 η�. We can identify
η∗ with a smooth compactly supported function on R

n+1 which is identically 1 in a
neighborhood of the origin. By an appropriate choice of η, we may also assume that
η∗ is identically 1 on the support of ζ , thus ζ = ζη∗ = ∑

�≤0 ζ�, with ζ� = ζη�.
Correspondingly, we decompose

ζK 0
j =

∑

�≤0

ζ�K
0
j .

Now, recall that, by Proposition 3.2, the kernels K 0
j are smooth off the origin and

homogeneous of degree −(n + 1) on R
n+1. Recall also the formulas from (1.2):

X0 = ∂u, X1 = eu∂x1, . . . , Xn = eu∂xn .

If we define the right-invariant first-order differential operators X◦
j by

X◦
j f = (X j f

∗)∗,

then it is readily checked [see (2.3)] that

X◦
0 = −∂u − n − x · ∇x , X◦

1 = −∂x1, . . . , X
◦
n = −∂xn .

We then deduce that the functions X◦
k K

0
j are also smooth off the origin, and moreover

• X◦
k K

0
j is homogeneous of degree −(n + 2) on R

n+1 for k = 1, . . . , n;

• X◦
0K

0
j is the sum of two homogeneous terms of degrees −(n + 1) and −(n + 2)

on R
n+1 respectively.

Additionally, by the Leibniz rule,

X◦
k

(
ζ�K

0
j

)
= (X̃◦

kζ�)K
0
j + ζ�X

◦
k K

0
j ,

where the X̃◦
k are the nonconstant parts of the X◦

k , namely,

X̃◦
0 = −∂u − x · ∇x , X̃◦

1 = −∂x1 , . . . , X̃
◦
n = −∂xn ,

and clearly, for all � ≤ 0,

‖ζ�‖∞ � 1, ‖X̃◦
kζ�‖∞ � 2−�.
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As a consequence, for all � ≤ 0, by homogeneity considerations,

∥
∥
∥ζ�K

0
j

∥
∥
∥∞ � 2−(n+1)�,

∥
∥
∥X◦

k (ζ�K
0
j )

∥
∥
∥∞ � 2−(n+2)�.

Now we observe that, for any � ≤ 0, if (x, u) is in the support of ζ�, then, by (3.1),
R = d((x, u), (0, 0)) � |x | + |u| � 2�. Thus, for any � ≤ 0 and ε > 0,

∫

G
|ζ�K

0
j (x, u)|(1 + 2−�R)ε dx du �ε

∫

|x |+|u|�2�

2−(n+1)� dx du � 1,

and

∫

G

∣
∣
∣Xk

(
(ζ�K

0
j )

∗) (x, u)

∣
∣
∣ dx du =

∫

G

∣
∣
∣X◦

k (ζ�K
0
j )(x, u)

∣
∣
∣ dx du � 2−�.

By [40, Theorem 2.3 and Remark 2.4], we conclude that the convolution operator
with kernel ζK 0

j is of weak type (1, 1), bounded on L p(G) for p ∈ (1, 2], and also

bounded from H1(G) to L1(G). Due to the relations (4.1), the same boundedness
properties are shared by the local parts ζkR j and ζkR∗

j
of the Riesz transform kernels.

��
Because of the boundedness of their local parts, the boundedness of the adjoint

Riesz transforms is reduced to that of the corresponding parts at infinity, described in
Proposition 3.4.

Corollary 4.3 Let p ∈ (1, 2]. For the adjoint Riesz transform R∗
j with j = 1, . . . , n,

any of the following boundedness properties holds if and only if it holds for the con-
volution operator with kernel K j :

• L p(G)-boundedness;
• weak type (1,1);
• boundedness from H1(G) to L1(G).

The same is true for the adjoint Riesz transformR∗
0 and the kernel K̃0 + K0.

Proof We already know (see [27, 40, 55]) that R0 is of weak type (1, 1), bounded
from H1(G) to L1(G), and bounded on L p(G) for all p ∈ (1, 2]. Thus R∗

0 has any
of those boundedness properties if and only ifR0 − R∗

0 has.
Let us choose ζ ∈ C∞

c (G) be supported in the region where |u| < 1, and be
identically one in a neighborhood of the origin, and decompose

kR0−R∗
0

= ζkR0−R∗
0
+ (1 − ζ )kR0−R∗

0
, kR∗

j
= ζkR∗

j
+ (1 − ζ )kR∗

j
.

By Proposition 4.2, we know that the “local parts” ζkR0−R∗
0
and ζkR∗

j
have all of the

above boundedness properties, thus the problem is reduced to whether the “parts at
infinity” (1 − ζ )kR0−R∗

0
and (1 − ζ )kR∗

j
do.
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Now, the support of ζ is contained in the region {|u| < 1}, and therefore 1 − ζ is
identically 1 on {|u| ≥ 1}. So, by Proposition 3.4, for j = 1, . . . , n,

(1 − ζ )kR0−R∗
0

= −2Γ (1 + n/2)

π1+n/2 (K̃0 + K0) + (1 − ζ )q0,

(1 − ζ )kR∗
j
= −2Γ (1 + n/2)

π1+n/2 K j + (1 − ζ )q j .

As the kernels (1 − ζ )q0, (1 − ζ )q j are integrable on G, the boundedness properties
of kR0−R∗

0
and kR∗

j
are indeed reduced to those of K̃0 + K0 and K j respectively. ��

As we shall see in Sect. 7 below, the boundedness from H1(G) to L1(G) fails
for the adjoint Riesz transforms, so we set this property apart. As for the remaining
boundedness properties, a further reduction is quickly provided by the analysis of the
kernel K̃0.

Proposition 4.4 Let K̃0 be as in Proposition 3.4. Then the operator

f �→ f ∗ K̃0

is of weak type (1, 1) and bounded on L p(G) for all p ∈ (1,∞).

Proof By (2.2),

f ∗ K̃0(x, u) =
∫

G
f (x − eu−u′

x ′, u − u′) K̃0(x
′, u′) dx ′ du′

=
∫

R

∫

Rn
f (x − x ′, u − u′) (r0)(eu−u′

)
(x ′) dx ′ χ{|u′|≥1}

u′ du′.

In other words, if we use the notation

fx (u) = f u(x) = f (x, u),

then f ∗ K̃0 = AB f , where

(B f )u = f u ∗Rn (r0)(eu), (A f )x = fx ∗R k

and k(u) = χ{|u|≥1}
u .

Recall that on G with coordinates (x, u) we are using the Lebesgue measure dx du
as reference measure. As r0 ∈ L1(Rn) and the scaling F �→ F(λ) preserves the
L1-norm, it is immediately seen that B is L p(G)-bounded for all p ∈ [1,∞].

On the other hand, k is the truncation of a Calderón–Zygmund kernel on R, thus it
is well known (see, e.g., [49, Chap. I, Sect. 7.1]) that the corresponding convolution
operator is of weak type (1, 1) and L p(R)-bounded for p ∈ (1,∞), whence one easily
deduces that A is of weak type (1, 1) and L p(G)-bounded for p ∈ (1,∞). ��
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Corollary 4.5 Let p ∈ (1, 2]. For the adjoint Riesz transform R∗
j with j = 0, . . . , n,

any of the following boundedness properties holds if and only if it holds for the con-
volution operator with kernel K j :

• L p(G)-boundedness;
• weak type (1, 1).

Remark 4.6 Formally, the kernels K j for j = 1, . . . , n have a very similar expression
to that of K̃0 in Proposition 3.4. Indeed, by proceeding as in the proof of 4.4, one could
write f ∗ K j = A j B j f , where (Bj f )u = f u ∗Rn (r j )(eu) is bounded on L p(G) for
p ∈ [1,∞], as r j ∈ L1(Rn). However, in this case (A j f )x = fx ∗R h, where the
kernel h(u) = χ{u≤−1}

u is noncancellative, and indeed the corresponding convolution
operator is unbounded on any L p spaces. Thus, the fact that the composition A j B j

is bounded on L p(G) for p ∈ (1,∞) is due to a delicate interplay between the two
components, and exploits in a fundamental way the cancellative nature of the kernel
r j . See also [25, Remark at the end of Sect. 3].

5 The Fourier Multiplier Approach

In this section, we complete the proof of Theorem 1.1. As discussed, what we need
to prove is the L p(G)-boundedness for p ∈ (1, 2) of the adjoint Riesz transformsR∗

j
and, by Corollary 4.5, this is reduced to the corresponding boundedness properties of
the convolution operators with kernels K j .

As it turns out, a convenient way to analyze the L p(G)-boundedness properties
of the convolution operators corresponding to the kernels K j , j = 0, . . . , n, is to
write L p(G) = L p(Rn; L p(R)) and to think of the aforementioned operators as
operator-valuedFouriermultiplier operators onR

n . Indeed, by definition, left-invariant
operators on G commute, with left translations on G; as

(x ′, 0) · (x, u) = (x ′ + x, u),

this shows in particular that left-invariant operators on G commute with standard
translations in the variable x ∈ R

n .
More explicitly, for a kernel K on G, we can write, at least formally, by (2.2),

f ∗ K (x, u) =
∫

G
f (x − eu−u′

x ′, u − u′)K (x ′, u′) dx ′ du′

=
∫

G
f (x − x ′, u − u′)K

(eu−u′
)
(x ′, u′) dx ′ du′,

(5.1)

where we are using the notation K(λ)(x, u) = λ−nK (λ−1x, u). So, if F denotes the
partial Fourier transform in the variable x ∈ R

n , then

F( f ∗ K )(ξ, u) =
∫

R

(FK )(eu−u′
ξ, u′)(F f )(ξ, u − u′) du′

= [MK (ξ)(F f )(ξ, ·)](u),
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where for any ξ ∈ R
n\{0}, MK (ξ) is the integral operator on R given by

[MK (ξ)φ](u) =
∫

R

H ξ
K (u, u′)φ(u′) du′, H ξ

K (u, u′) = (FK )(eu
′
ξ, u − u′).

(5.2)

In other words, the partial Fourier transform F intertwines the operator f �→
f ∗ K with the operator-valued multiplier MK . Thus, in order to prove the L p(G)-
boundedness for p ∈ (1,∞) of f �→ f ∗ K , we can make use of a particular instance
of an operator-valued Fourier multiplier theorem proved in [51]. In what follows,
A2(R) denotes the Muckenhoupt class of A2 weights on R, and [w]A2 denotes the
A2-characteristic of a weight w ∈ A2(R).

Proposition 5.1 Assume that there exists a nondecreasing function ψ : [1,∞) →
[0,∞) such that, for all w ∈ A2(R), α ∈ {0, 1}n, ξ ∈ (R∗)n,

∥
∥
∥ξα∂α

ξ MK (ξ)

∥
∥
∥
L2(w)→L2(w)

≤ ψ([w]A2). (5.3)

Then, the operator f �→ f ∗ K is bounded on L p(G) for all p ∈ (1,∞).

Proof Let p ∈ (1,∞). According to [28, Proposition 4.2.15] and [29, Proposition
7.5.3], L p(R) is a UMD space with Pisier’s contraction property, in the sense of [28,
Definition 4.2.1] and [29, Definition 7.5.1]. Therefore, by [29, Corollary 8.3.22], to
deduce the L p(G)-boundedness of f �→ f ∗ K it is enough to check that

{ξα∂α
ξ MK (ξ) : ξ ∈ (R∗)n, α ∈ {0, 1}n} (5.4)

is R-bounded as a family of operators on L p(R); here we refer to [29, Definition
8.1.1(1) andRemark8.1.2] for the definitionofR-boundedness of a family of operators.
On the other hand, according to [29, Theorem 8.1.3(3)], a family of operators on
L p(R) is R-bounded if and only if it is �2-bounded (in the sense of [29, Definition
8.1.1(3)]), and the �2-boundedness on L p(R) of the family (5.4) follows from the
assumed uniform L2(w)-bound (5.3) by [29, Theorem 8.2.6]. ��
Remark 5.2 The operator-valued symbol ξ �→ MK (ξ) admits an interpretation in
terms of the group Fourier transform of the kernel K on G, defined in terms of unitary
representation theory; see Remark 8.3 for details. In this sense, the above Proposition
5.1 can be thought of as an L p Fourier multiplier theorem for the group Fourier
transform on G.

In order to prove Theorem 1.1, we intend to apply Proposition 5.1 to the case where
K is one of the kernels K0, . . . , Kn . Thus, we need to study the homogeneous ξ -
derivatives of the Fourier multipliers MK j (ξ) and the corresponding integral kernels

H ξ
K j
.
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Proposition 5.3 Let K0, . . . , Kn bet the kernels given in Proposition 3.4. Then, for all
α ∈ N

n, j = 1, . . . , n, ξ ∈ R
n\{0} and u, u′ ∈ R,

ξα∂α
ξ H

ξ
K0

(u, u′) =
[
Sα,0(e

uξ) − Sα,0(e
u′

ξ)
] χ{u≥u′+1}

u − u′ ,

ξα∂α
ξ H

ξ
K j

(u, u′) = Sα, j (e
u′

ξ)
χ{u≤u′−1}
u − u′ ,

where, for some ε > 0, the functions Sα,0 and Sα, j satisfy

|Sα, j (ξ)| �α min{|ξ |ε, |ξ |−ε},
|Sα,0(ξ)| �α (1 + |ξ |)−ε

for all ξ ∈ R
n \ {0}, as well as

|Sα,0(ξ) − Sα,0(ξ
′)| �α |ξ − ξ ′|ε whenever |ξ |, |ξ ′| ≤ 1.

Proof From (5.2) and Proposition 3.4, we deduce that, for j = 0, . . . , n and α ∈ N
n ,

the above formulas for the ξα∂α
ξ H

ξ
K j

are satisfied if we set

Sα, j (ξ) = ξα∂α
ξ r̂ j (ξ) = r̂α, j (ξ), rα, j (x) = (−1)|α|∂α

x (xαr j (x)), (5.5)

where f̂ denotes the Fourier transform of f . From the expression for r0 in Proposi-
tion 3.4, we immediately see that r0 is in the Hörmander symbol class S−(n+2)(Rn),
therefore so is rα,0 for all α ∈ N

n . Similarly, for j = 1, . . . , n, we see that r j is in
the Hörmander symbol class S−(n+1)(Rn) and is an odd function in x j , therefore so is
rα, j for all α ∈ N

n . The desired properties of the functions Sα, j , for j = 0, . . . , n, are
then deduced by applying Lemma 5.4 below with r = rα, j , and taking into account
that, for j > 0, we have Sα, j (0) = 0 due to the mentioned parity property. ��
Lemma 5.4 Let δ ∈ (0, 1). If r is in the symbol class S−(n+δ)(Rn), then its Fourier
transform r̂ is δ-Hölder continuous on R

n and supξ∈Rn (1 + |ξ |)N |r̂(ξ)| < ∞ for all
N ∈ N.

Proof As r ∈ S−(n+δ)(Rn) and δ > 0, we know that r is integrable on R
n , thus r̂ is

continuous and bounded. Since (iξ)α r̂(ξ) is the Fourier transform of ∂α
x r(x), which

is in S−(n+δ+|α|)(Rn), we deduce that ξα r̂(ξ) is continuous and bounded too for any
α ∈ N

n , whence the rapid decay of r̂ at infinity.
Now, from the fact that r ∈ S−(n+δ)(Rn) and from [30, Proposition 18.2.2 and Eq.

(18.2.7)’] we deduce that r̂ ∈ Bδ+n/2
2,∞ (Rn), thus also r̂ ∈ Bδ∞,∞(Rn) by [9, Theorem

6.5.1]; here Bs
p,q(R

n) denotes the Besov space on R
n of indices p, q and order s,

as defined in [9, Definition 6.2.2], and we remark that the notation ∞H(s) used in
[30] corresponds to Bs

2,∞ here. From the characterisation of Bδ∞,∞(Rn) given in [9,
Theorem 6.2.5], we deduce that r̂ is δ-Hölder continuous, as required. ��
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Remark 5.5 From the formulas for the functions r j in Proposition 3.4, it is clear that
the functions Sα, j in (5.5) could be more explicitly expressed in terms of derivatives of
the kernels of Bessel potentials, thus ultimately in terms of Bessel functions (see, e.g.,
[4], [26, §6.1.2], [48, §V.3]). So the desired estimates for the Sα, j stated in Proposition
5.3 could also be derived from known properties and estimates for Bessel functions.

In light of the expressions in Proposition 5.3, the following result implies that the
kernels K0, K1, . . . , Kn satisfy the assumptions of Proposition 5.1.

Proposition 5.6 Let T be an integral operator onR. Assume that either of the following
conditions is satisfied.

(i) The integral kernel of T is of the form

(u, u′) �→ [S(euξ) − S(eu
′
ξ)]χ{u≥u′+1}

u − u′

for some ξ ∈ R
n\{0} and S : R

n\{0} → C satisfying

|S(ξ)| ≤ (1 + |ξ |)−ε for all ξ ∈ R
n \ {0},

|S(ξ) − S(ξ ′)| ≤ |ξ − ξ ′|ε whenever |ξ |, |ξ ′| ≤ 1,

for some ε > 0.
(ii) The integral kernel of T is of the form

(u, u′) �→ S(eu
′
ξ)

χ{u≤u′−1}
u − u′

for some ξ ∈ R
n\{0} and S : R

n\{0} → C satisfying

|S(ξ)| ≤ min{|ξ |, |ξ |−1}ε for all ξ ∈ R
n \ {0},

for some ε > 0.

Then, for any w ∈ A2(R), the operator T is bounded on L2(w), with a bound only
depending on ε and [w]A2 .

Proof Set either

Hξ (u, u′) = [S(euξ) − S(eu
′
ξ)]χ{u≥u′+1}

u − u′

or

Hξ (u, u′) = S(eu
′
ξ)

χ{u≤u′−1}
u − u′ ,

according to which assumption is satisfied. In either case, we have

Hξ (u, u′) = Hξ/|ξ |(u + log |ξ |, u′ + log |ξ |).

123



  222 Page 32 of 53 A. Martini

As the class A2(R) and the A2-characteristic are translation-invariant, we see that it
is enough to prove the desired result with Hξ replaced by Hξ/|ξ |, i.e., we may assume
that |ξ | = 1 without loss of generality.

Now, if assumption (ii) is satisfied, then

|Hξ (u, u′)| ≤ e−ε|u′| χ{|u−u′|≥1}
|u − u′| . (5.6)

If instead assumption (i) is satisfied, then we obtain different estimates according to
the positions of u, u′. Namely, if u ≤ 0, then we also have u′ ≤ u − 1 ≤ −1 on the
support of Hξ ; thus both |euξ |, |eu′

ξ | ≤ 1 and

|S(euξ) − S(eu
′
ξ)| ≤ |euξ − eu

′
ξ |ε = (eu − eu

′
)ε ≤ e−ε|u|.

Suppose instead that u ≥ 0 and u′ ≥ 0; then

|S(euξ) − S(eu
′
ξ)| ≤ |euξ |−ε + |eu′

ξ |−ε = e−ε|u| + e−ε|u′|

Finally, if u ≥ 0 and u′ ≤ 0, then

|S(euξ) − S(eu
′
ξ)| ≤ 2,

but, at the same time, |u − u′| = |u| + |u′| ≥ √
u2 + (u′)2. Therefore, by combining

the previous estimates, we conclude that

|Hξ (u, u′)| ≤ (e−ε|u| + e−ε|u′|)
χ{|u−u′|≥1}
|u − u′| + 2

√
u2 + (u′)2

. (5.7)

In light of the estimates (5.6) and (5.7), the desired bound for T follows from
Lemma 5.7. ��

Lemma 5.7 Let ε > 0. Each of the nonnegative kernels

W (u, u′) = 1
√
u2 + (u′)2

,

Zε(u, u′) = e−ε|u| χ{|u−u′|≥1}
|u − u′| ,

Z∗
ε (u, u′) = e−ε|u′| χ{|u−u′|≥1}

|u − u′|

defines an integral operator onRwhich is bounded on L2(w) for allw ∈ A2(R),with
bound depending only on ε and [w]A2 .
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Proof Let us first discuss the kernel W . By Schur’s Test, one easily checks that the
integral operator with kernel W is L2(R)-bounded: indeed, for any δ ∈ (0, 1),

∫

R

W (u, u′)|u′|−δ du′ � |u|−1
∫ |u|

0
s−δ ds +

∫ ∞

|u|
s−1−δ ds �δ |u|−δ.

In addition, the kernel W trivially satisfies the pointwise estimates

|W (u, u′)| � 1

|u − u′| ,

|∂uW (u, u′)| + |∂u′W (u, u′)| � 1

(|u| + |u′|)2 ≤ 1

|u − u′|2 ,

i.e., W is a standard Calderón–Zygmund kernel on R. The required weighted L2

bounds for W therefore follow from the classical theory of Calderón–Zygmund oper-
ators (see, e.g., [49, Chap. V, Sect. 6.13]).

It remains to discuss the kernels Zε and Z∗
ε . It is immediately seen that the corre-

sponding integral operators are adjoints of one another; as A2(R) is closed under the
mapping w �→ 1/w, and [1/w]A2 = [w]A2 , it is enough to discuss the L2(w) bound
for the kernel Zε .

By a slight abuse of notation, we write Zε to denote the integral operator as well as
its integral kernel. Let w ∈ A2(R). Then, for all f ∈ L2(w), by the Cauchy–Schwarz
inequality, for all u ∈ R,

|Zε f (u)| ≤ e−ε|u|‖ f ‖L2(w)

(∫

|u−u′|≥1

du′

|u − u′|2 w(u′)

)1/2

,

and therefore

‖Zε f ‖2L2(w)
≤ ‖ f ‖2L2(w)

∫

R

∫

|u−u′|≥1

e−2ε|u|w(u)

|u − u′|2 w(u′)
du′ du.

Thus, the desired bound will follow if we can prove that

∫

R

∫

|t |≥1

e−2ε|u|w(u)

|t |2 w(u − t)
dt du �ε,[w]A2 1.

Now, as both w, 1/w ∈ A2(R), by the self-improving property of Muckenhoupt
weights (see, e.g., [26, Corollary 9.2.6]) we deduce that w, 1/w ∈ Ap(R) for some
p < 2 only depending on [w]A2 . Thus, by the doubling property of Muckenhoupt
weights (see, e.g., [26, Proposition 9.1.5(9)]), we deduce, for all x ∈ R and all r2 ≥
r1 > 0, the estimate

w((x − r2, x + r2))

w((x − r1, x + r1))
�[w]A2

(
r2
r1

)p

,
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as well as the analogous estimate withw replaced by 1/w; here we writew(I ) = ∫
I w

for any Borel set I ⊆ R, i.e., we identify the weight w with the measure on R with
density w with respect to the Lebesgue measure. As a consequence, for all u ∈ R,

∫

|t |≥1
|t |−2 dt

w(u − t)
≤

∑

k≥0

∑

±
2−2k (1/w)(u ± [2k, 2k+1])

�[w]A2
∑

k≥0

2−2k2kp(1 + |u|)p (1/w)([−1, 1])

�[w]A2 (1 + |u|)p (1/w)([−1, 1]),

because p < 2; in the intermediate inequality we used the doubling property for 1/w.
Thus,

∫

R

∫

|t |≥1

e−2ε|u|w(u)

|t |2 w(u − t)
dt du �[w]A2 (1/w)([−1, 1])

∫

R

e−2ε|u|(1 + |u|)pw(u) du

�ε,[w]A2 (1/w)([−1, 1]) w([−1, 1]) du � [w]A2 ,

as desired; here the second inequality follows, via a dyadic decomposition, from the
doubling property forw, while the last inequality is just a consequence of the definition
of the A2 characteristic. ��

Proof of Theorem 1.1 We already know (see [27, Theorem 2.4] and [40, Theorem 1.1])
that the Riesz transforms R j are L p-bounded for p ∈ (1, 2], so it remains to show,
by duality, that the adjoint Riesz transforms R∗

j are L p-bounded for p ∈ (1, 2).
By Corollary 4.5, it is enough to check the analogous boundedness property for the
convolution operators with kernels K j . In light of Propositions 5.3 and 5.6, the kernels
K j satisfy the assumption of Proposition 5.1, whence the desired L p-boundedness
follows. ��

6 The Haar Basis Approach

Here we aim at proving Theorem 1.2, i.e., the weak type (1, 1) boundedness of the
adjoint Riesz transforms R∗

j for j = 1, . . . , n. The argument presented here is an
extension of that in [25], which treats the case n = 1.

We point out that the argument of [25] was adapted in [35] to prove the weak type
(1, 1) boundedness of the adjoints of certain “horizontal Riesz transforms” on a homo-
geneous tree. In the context of the tree, the argument turns out to be particularly clean.
However, in the continuous setting of ax + b groups, the proof becomes somewhat
more technical due to a number of steps that appear to be needed, as in [25], to reduce
the problem to a discrete model.

We start with a preliminary reduction, or discretisation.
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Lemma 6.1 Let j = 1, . . . , n and let r j be as in Proposition 3.4. The adjoint Riesz
transformR∗

j is of weak type (1, 1) if and only if the operator Tj given by

Tj f (·, k) =
∑

h≥k+1

∫ 1
0 f (·, h + s) ∗Rn (r j )(2h+s ) ds

h − k
(6.1)

is bounded from L1(Rn × R) to L1,∞(Rn × Z).

Proof By Corollary 4.3, the weak type (1, 1) boundedness of the adjoint Riesz trans-
form is equivalent of that of the convolution operator by the kernel K j .

Much as in the proof of Proposition 4.4, we can write, for f ∈ L1(G),

− f ∗ K j (·, u) =
∫ ∞

u+1

f (·, u′) ∗Rn (r j )(eu′
)

u′ − u
du′;

thus, if c = log 2 and S f (x, u) = f (x, cu), then S(− f ∗ K j ) = T̃ j S f , where

T̃ j f (·, u) =
∫ ∞

u+1/c

f (·, u′) ∗Rn (r j )(2u′
)

u′ − u
du′,

and therefore the convolution operator by K j is of weak type (1, 1) if and only if the
operator T̃ j is. Now we write T̃ j = T̃ 1

j + T̃ 2
j , where

T̃ 1
j f (·, u) =

∫ ∞


u�+1

f (·, u′) ∗Rn (r j )(2u′
)


u′� − 
u� du′,

while T 2
j is an integral operator with kernel Hj given by

Hj ((x, u), (x ′, u′)) = (r j )(2u′
)
(x − x ′)

×
[

χ{u+1/c≤u′}
(

1

u′ − u
− 1


u′� − 
u�
)

− χ{
u�+1≤u′≤u+1/c}

u′� − 
u�

]

.

As c < 1, clearly u′ − u � 
u′� − 
u� ≥ 1 in the region where u′ ≥ u + 1/c,
whence it easily follows that the factor in brackets above is bounded in absolute
value by a multiple of 1/(1 + (u − u′)2); as moreover r j ∈ L1(Rn), this shows that
supx ′,u′

∫∫ |Hj ((x, u), (x ′, u′)| dx du � 1, i.e., T̃ 2
j is bounded on L1(G). The weak

type (1, 1) boundedness of T̃ j is therefore reduced to that of T̃ 1
j .

In order to conclude, it is enough to observe that

T̃ 1
j f (·, u) =

∑

h≥
u�+1

∫ 1

0

f (·, h + s) ∗Rn (r j )(2h+s )

h − 
u� ds = Tj f (·, 
u�)

by (6.1), and therefore ‖T̃ 1
j f ‖L1,∞(G) = ‖Tj f ‖L1,∞(Rn×Z). ��
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We now recall the key result from [25] that constitutes the core of the weak type
boundedness argument. For this, we need some definitions.

For any half-open interval I = [a, b) ⊆ R, we write I− = [a, (a + b)/2) and
I+ = [(a + b)/2, b) for the lower and upper halves of I , and write

ψI = |I |−1(χI− − χI+)

for the basic (L1-normalised) Haar function supported on I .
Let λ > 0. A scale-λ partition is a partition of R made of half-open intervals [a, b)

of length λ. A scale-λ Haar-like function is a function of the form

∑

I∈P
aIψI ,

where P is a scale-λ partition and aI ∈ C for all I ∈ P . The following result is [25,
Theorem 3].

Theorem 6.2 Let β > 0. For any h ∈ Z, let �h be a scale-β2h Haar-like function.
Assume that

∑
h∈Z ‖Δh‖L1(R) < ∞. Then

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
(t, k) ∈ R × Z :

∣
∣
∣
∣
∣
∣

∑

h≥k+1

Δh(t)

h − k

∣
∣
∣
∣
∣
∣
> α

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
� α−1

∑

h∈Z
‖Δh‖L1(R) (6.2)

for all α > 0, where the implicit constant is absolute.

While there are similarities between the sum in the left-hand side of (6.2) and the
expression for the operator Tj in (6.1), a number of further reductions are needed
before we can apply Theorem 6.2 to deduce information on Tj .

The following result is essentially a rephrasing of [25, Lemma 4]. Here, if J is a
countable set, we denote by � log �(J ) the set of all sequences a : J → C such that

∑

j∈J

|a( j)|(1 + |log a( j)|) < ∞;

moreover, for all δ ∈ (0,∞), we denote by �δ(J ) the set of all sequences a : J → C

such that

∑

j∈J

|a( j)|δ < ∞.

Clearly

�δ(J ) ⊆ � log �(J ) (6.3)

whenever δ ∈ (0, 1).
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Lemma 6.3 There exists a family P = ⋃
m∈Z Pm of half-open intervals, where Pm

is a scale-2m partition for all m ∈ N, such that the following hold. Let ε > 0. Let
ρ ∈ C1(R) satisfy

|ρ(t)| ≤ (1 + |t |)−1−ε, |ρ′(t)| ≤ (1 + |t |)−2−ε

for all t ∈ R, and
∫
R

ρ(t) dt = 0. Set cI (ρ) = |I | ∫
R

ψI (t)ρ(t) dt for all I ∈ P .
Then

ρ =
∑

I∈P
cI (ρ)ψI , (6.4)

where the series converges uniformly on R and in L1(R). Moreover

|cI (ρ)| ≤ κε(I ) (6.5)

for all I ∈ P, where the sequence (κε(I ))I∈P depends only on ε and not on ρ, and
there exists δ = δ(ε) ∈ (1/2, 1) such that

((1 + log+ |I |)Nκε(I ))I∈P ∈ �δ(P) (6.6)

for all N ≥ 0.

Proof If we take P−m = {Dmk}k∈Z for all m ∈ Z, where the Dmk are the intervals
defined in [25, Sect. 1.3], then [25, Lemma 4] gives the decomposition (6.4) and the
estimate (6.5) with

κε(Dmk) = C(ε)2εm(1 + 2m + |k|)−2−ε.

It only remains to check (6.6). Notice that, for any N ≥ 0,

(1 + log+(|Dmk |))Nκε(Dmk) �ε,N (1 + m−)N2εm(1 + 2m + |k|)−2−ε,

where m− = max{−m, 0} is the negative part of m. We can now find δ = δ(ε) ∈
(1/2, 1) such that δ(2 + ε) > 2. As a consequence,

∑

m,k∈Z

(
(1 + log+(|Dmk |))Nκε(Dmk)

)δ

�ε,N

∑

m∈Z
(1 + m−)Nδ2εδm(1 + 2m)1−δ(2+ε)

�ε,N

∑

m≥0

2m(1−2δ) +
∑

m<0

|m|Nδ2−δε|m| < ∞,

thus ((1 + log+(|Dmk |))Nκε(Dmk))m,k∈Z ∈ �δ . ��
We finally recall some addition results for the quasi-Banach space L1,∞ (see, e.g.,

[50, Lemma 2.3] and [47, Proposition 3]).
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Lemma 6.4 Let X be a measure space and N ∈ N \ {0}.
(i) If F1, . . . , FN ∈ L1,∞(X), then F1 + · · · + FN ∈ L1,∞(X) and

∥
∥
∥
∥
∥
∥

N∑

j=1

Fj

∥
∥
∥
∥
∥
∥
L1,∞

≤ 4(1 + log N )

N∑

j=1

‖Fj‖L1,∞ .

(ii) If F1, . . . , FN ∈ L1,∞(X), and ‖Fj‖L1,∞ ≤ A j for some A j > 0 and all j =
1, . . . , N , with

∑N
j=1 A j = 1, then

∥
∥
∥
∥
∥
∥

N∑

j=1

Fj

∥
∥
∥
∥
∥
∥
L1,∞

≤ 4 + 2
N∑

j=1

A j log(1/A j ).

We are now ready to prove the weak type bound for the adjoint Riesz transforms.

Proof of Theorem 1.2 Without loss of generality we assume that j = 1. We write any
x ∈ R

n as (x1, x ′), where x ′ = (x2, . . . , xn) ∈ R
n−1.

By Lemma 6.1, in order to show thatR∗
1 is of weak type (1, 1), it is enough to show

the analogous property for the operator T1 defined in (6.1).
Let f ∈ L1(Rn × R) be bounded and compactly supported. Set f u(x) = f (x, u).

We now define, for any u ∈ R, an approximation of f u by means of a sequence of
measures on R

n . Specifically, for any u ∈ R, x ′ ∈ R
n−1, and h ∈ Z, we define

auh,�(x
′) =

∫

[�2h ,(�+1)2h)
f u(x1, x

′) dx1, μu
h =

∑

�∈Z
δ�2h ⊗ auh,�. (6.7)

It is easy to check that

∑

�∈Z
|auh,�(x

′)| ≤
∫

R

| f u(x1, x ′)| dx1 (6.8)

and that the sequence of measuresμu
h converges weakly to f u as h → −∞; moreover,

one can readily prove that

‖μu
h ∗ φ − f u ∗ φ‖L p(Rn) ≤ 2h‖ f u‖L1(Rn)‖∂x1φ‖L p(Rn) (6.9)

for any p ∈ [1,∞] and any bounded φ ∈ C(Rn) with ∂x1φ ∈ L p(Rn). Thus, if we
set

μu
h,d =

{
μu
h if d = 0,

μu
h−d − μu

h−d+1 if d > 0,
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then we can write, at least in the sense of weak convergence,

f u =
∑

d≥0

μu

u�,d

and consequently, for all h ∈ Z,

∫ 1

0
f h+s ∗Rn (r1)(2h+s ) ds =

∑

d≥0

∫ 1

0
μh+s
h,d ∗Rn (r1)(2h+s ) ds. (6.10)

We point out that, as f is bounded and compactly supported, the terms f h+s and
μh+s
h,d in (6.10) are nonvanishing only for finitely many h ∈ Z, and moreover, for any

h ∈ Z, by (6.9), the convergence of the series in the right-hand side of (6.10) holds in
any L p(Rn) space, p ∈ [1,∞]. Thus, from (6.1) we deduce that

T1 f (·, k) =
∑

d≥0

∑

h≥k+1

∫ 1
0 μh+s

h,d ∗Rn (r1)(2h+s ) ds

h − k
, (6.11)

where the sum in h is actually finite, and the sum in d converges in L p(Rn) for any
p ∈ [1,∞].

Notice now that, from (6.7), it follows that

auh+1,� = auh,2� + auh,2�+1,

thus

μu
h+1 − μu

h =
∑

�∈Z
δ�2h+1 ⊗ auh+1,� −

∑

�∈Z
δ�2h ⊗ auh,�

=
∑

�∈Z
(δ�2h+1 − δ�2h+1+2h ) ⊗ auh,2�+1

= τ−2he1σ
u
h − σ u

h ,

where

σ u
h :=

∑

�∈Z
δ�2h+1+2h ⊗ auh,2�+1,

e1 = (1, 0, . . . , 0) ∈ R
n , and τv is the translation operator by v ∈ R

n . Therefore, if
d > 0, then

μh+s
h,d ∗Rn (r1)(2h+s ) =

(
σ h+s
h−d − τ−2h−d e1σ

h+s
h−d

)
∗Rn (r1)(2h+s )

= σ h+s
h−d ∗Rn

(
(r1)(2h+s ) − τ−2h−d e1(r1)(2h+s )

)

= σ h+s
h−d ∗Rn

(
(r1)(2s ) − τ−2−d e1(r1)(2s )

)
(2h) .
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In conclusion, we have established that, for all d ≥ 0,

μh+s
h,d ∗Rn (r1)(2h+s ) = σ h+s

h,d ∗Rn (Rs
d)(2h), (6.12)

where

σ u
h,d =

{
μu
h if d = 0,

σ u
h−d if d > 0,

Rs
d =

{
(r1)(2s ) if d = 0,

(r1)(2s ) − τ−2−de1(r1)(2s ) if d > 0,

and actually

σ u
h,d =

∑

�∈Z
δ�2h−d ⊗ auh,d,�, (6.13)

where

auh,d,� =
{
auh−d,� if d = 0 or � is odd,

0 otherwise.
(6.14)

From the formula for r1 in Proposition 3.4 we deduce that
∫
R
Rs
0(x1, x

′) dx1 = 0
for all x ′ ∈ R

n−1 and s ∈ [0, 1), and moreover

|Rs
0(x)| � (1 + |x |)−n−1,

|∂x1Rs
0(x)| � (1 + |x |)−n−2,

|∂2x1Rs
0(x)| � (1 + |x |)−n−3 (6.15)

uniformly in s ∈ [0, 1). Additionally, when d > 0, we can write

Rs
d(x) = −2−d

∫ 1

0
∂x1R

s
0(x1 + 2−d t, x ′) dt . (6.16)

Consequently the zero-average property

∫

R

Rs
d(x1, x

′) dx1 = 0 (6.17)

holds for all d ∈ N, and there exists ε > 0 such that

|Rs
d(x)| � 2−d(1 + |x ′|)−(n−1)−ε(1 + |x1|)−1−ε,

|∂x1Rs
d(x)| � 2−d(1 + |x ′|)−(n−1)−ε(1 + |x1|)−2−ε,

(6.18)

uniformly in d ∈ N and s ∈ [0, 1); indeed, in the case d = 0 the estimates (6.18) follow
from the first two inequalities in (6.15), while in the case d > 0 they are obtained from
(6.16) by differentiating as appropriate and estimating the corresponding integrands
via the last two inequalities in (6.15).
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In light of (6.17) and (6.18), we can invoke Lemma 6.3 and deduce that, for all
s ∈ [0, 1) and d ∈ N, we can write

Rs
d =

∑

I∈P
ψI ⊗ csI ,d (6.19)

where the functions csI ,d = |I | ∫I ψI (x1)Rs
d(x1, ·) dx1 satisfy, for all x ′ ∈ R

n−1,

|csI ,d(x ′)| � 2−d(1 + |x ′|)−(n−1)−εκε(I ) (6.20)

uniformly in d ∈ N and s ∈ [0, 1).
Consequently, by (6.12), (6.13) and (6.19), we can write

∫ 1

0
μh+s
h,d ∗Rn (r1)(2h+s ) ds

=
∑

I∈P

∑

�∈Z

(
δ�2h−d ∗R (ψI )(2h)

) ⊗
∫ 1

0

(
ah+s
h,d,� ∗Rn−1 (csI ,d)(2h)

)
ds

=
∑

I∈P
GI ,d,h =

∑

I∈P

|2d I |∗−1∑

j=0

GI ,d,h, j ,

(6.21)

where |I |∗ := max{1, |I |}, and

GI ,d,h, j =
∑

�∈ j+|2d I |∗Z
ψ�2h−d+2h I ⊗

∫ 1

0

(
ah+s
h,d,� ∗Rn−1 (csI ,d)(2h)

)
ds. (6.22)

We now point out that, for any fixed x ′ ∈ R
n−1, the function GI ,d,h, j (·, x ′) is a

scale-2h |I | Haar-like function; indeed, the gap between consecutive indices � in the
sum in the right-hand side of (6.22) is amultiple of 2d |I |, thus the intervals �2h−d+2h I
are all disjoint and contained in a scale-2h |I | partition. So fromTheorem6.2we deduce
that, for any d ∈ N, I ∈ P , x ′ ∈ R

n−1, and j = 0, . . . , |2d I |∗ − 1,

∥
∥
∥
∥
∥
∥

∑

h≥k+1

GI ,d,h, j (x1, x ′)
h − k

∥
∥
∥
∥
∥
∥
L1,∞(Rx1×Zk )

�
∑

h∈Z
‖GI ,d,h, j (x1, x

′)‖L1(Rx1 )

≤
∑

h∈Z

∑

�∈ j+|2d I |∗Z

∫ 1

0

∣
∣
∣
(
ah+s
h,d,� ∗Rn−1 (csI ,d)(2h)

)
(x ′)

∣
∣
∣ ds

�
∑

h∈Z

∑

�∈ j+|2d I |∗Z
2−dκε(I )

(∫ 1

0
|ah+s

h−d,�| ds ∗Rn−1 ((1 + | · |)−(n−1)−ε)(2h)

)

(x ′),
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where (6.14) and (6.20) were used. Thus, by integration in x ′ ∈ R
n−1 and summation

in j ,

|2d I |∗−1∑

j=0

∥
∥
∥
∥
∥
∥

∑

h≥k+1

GI ,d,h, j (x)

h − k

∥
∥
∥
∥
∥
∥
L1,∞(Rn

x×Zk )

�
∑

h,�∈Z
2−dκε(I )

∫

Rn−1

∫ 1

0

∣
∣
∣ah+s

h−d,�(x
′)
∣
∣
∣ ds dx ′

= 2−dκε(I )
∑

�∈Z

∫

Rn−1

∫

R

∣
∣
∣au
u�−d,�(x

′)
∣
∣
∣ du dx ′

≤ 2−dκε(I )‖ f ‖L1(Rn×R),

where Young’s inequality was applied to estimate the convolution in R
n−1, and (6.8)

was used in the last step. So, by (6.21) and Lemma 6.4(i), for all d ∈ N and I ∈ P ,

∥
∥
∥
∥
∥
∥

∑

h≥k+1

GI ,d,h(x)

h − k

∥
∥
∥
∥
∥
∥
L1,∞(Rn

x×Zk )

� (1 + log+ |2d I |)2−dκε(I )‖ f ‖L1(Rn×R)

� (1 + |d| + log+ |I |)2−dκε(I )‖ f ‖L1(Rn×R).

(6.23)

Now, from (6.6), we deduce that, for some δ = δ(ε) ∈ (1/2, 1),

∑

d∈N

∑

I∈P
[(1 + |d| + log+ |I |)2−dκε(I )]δ

�ε

∑

d∈N
(|d|2−d)δ

∑

I∈P
(κε(I ))

δ +
∑

d∈N
2−δd

∑

I∈P
((1 + log+ |I |)κε(I ))

δ < ∞;

in particular, by (6.3),

((1 + |d| + log+ |I |)2−dκε(I ))(d,I )∈N×P ∈ � log �(N × P).

Thus again, by (6.11), (6.21), (6.23) and Lemma 6.4(ii),

‖T1 f ‖L1,∞(Rn×Z) =
∥
∥
∥
∥
∥
∥

∑

h≥k+1

∑
I∈P, d∈N GI ,d,h(x)

h − k

∥
∥
∥
∥
∥
∥
L1,∞(Rn

x×Zk )

�ε ‖ f ‖L1(Rn×R).

As bounded and compactly supported functions f are dense in L1(Rn×R), this shows
that T1 is of weak type (1, 1), as desired. ��
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7 Hardy Space Unboundedness

Here we prove the following negative result, extending the analogous one in [46,
Theorems 4.2 and 5.2] for the case n = 2. Our proof below appears to be somewhat
shorter than the proofs in [46], but of course here we can rely on the various reductions
and asymptotics established above.

Proposition 7.1 For j = 0, . . . , n, the adjoint Riesz transform R∗
j is not bounded

from H1(G) to L1(G).

Proof In light of Corollary 4.3, for j = 1, . . . , n, in order to show that R∗
j is not

bounded from H1(G) to L1(G), it is enough to prove the same for the convolution
operator with kernel K j . To this purpose, we will exhibit (multiples of) atoms a j of
H1(G) such that a j ∗ K j /∈ L1(G).

Let φ ∈ C∞
c (Rn) and ψ ∈ C∞

c (R) be nontrivial nonnegative cutoffs, and let us
consider, for any v ∈ R

n ,

av(x, u) = (φ(x + v) − φ(x))ψ(u).

Clearly av is bounded and compactly supported, and
∫
G av = 0, thus av is a multiple

of an H1(G) atom (see, e.g., [38, Definitions 3.4 and 3.10]). Moreover, by (5.1) and
Proposition 3.4,

av ∗ K j (x, u)

=
∫

G
av(x − x ′, u − u′)(K j )(eu−u′

)
(x ′, u′) dx ′ du′

=
∫

G
φ(x − x ′)ψ(u − u′)

[
(r j )(eu−u′

)
(x ′ + v) − (r j )(eu−u′

)
(x ′)

] χ{u′≤−1}
u′ dx ′ du′.

(7.1)

Now, by the Fundamental Theorem of Calculus,

(r j )(λ)(y + v) − (r j )(λ)(y) = λ−1
∫ 1

0
(v · ∇r j )(λ)(y + tv) dt, (7.2)

and moreover

∇r j (x) = (1 + |x |2)−1−n/2e j − (2 + n)x j (1 + |x |2)−2−n/2x,

thus

e j · ∇r j (x) = (1 + |x |2)−1−n/2 − (2 + n)x2j (1 + |x |2)−2−n/2.

In particular, if x is in the region Vj ⊆ R
n where x2j ≥ (1 + |x |2)/2, then

e j · ∇r j (x) ≤ −(n/2)(1 + |x |2)−1−n/2. (7.3)
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Clearly, we can find a nonnegligible regionUj ⊆ R
n such that, if x ∈ Uj , |x− x ′| ≤ 2

and |u| ≤ 1, then eux ′ ∈ Vj ; for example, one can take Uj = {x ∈ R
n : |x j | ≥

100, |x |2 − x2j ≤ 1}. As a consequence, if x ∈ Uj , |x − x ′| ≤ 1 and |u| ≤ 1, then, by
(7.2) and (7.3),

−[(r j )(eu)(x ′ + e j ) − (r j )(eu)(x
′)] � (1 + |x |2)−1−n/2.

Thus, if we choose φ and ψ supported in balls of radius 1 centered at the origin, and
we take x ∈ Uj and u ≤ −2, then, by (7.1),

ae j ∗ K j (x, u) � (1 + |x |2)−1−n/2|u|−1,

and clearly the right-hand side is not integrable onUj × (−∞,−2]. We can then take
a j = ae j to get the desired result.

The argument for R∗
0 is analogous. Here, by Corollary 4.3, it is enough to find a

multiple a0 of an H1(G)-atom such that a0 ∗ (K̃0 + K0) /∈ L1(G). If we take a0 = av

as before, with φ,ψ supported in centered balls of radius 1, then from (5.1) we deduce
that av ∗ K0(x, u) = 0 whenever u ≤ −2, as K0 is supported in the region where
u ≥ 1. Thus, by restricting to u ≤ −2, we have

av ∗ (K̃0 + K0)(x, u)

= av ∗ K̃0(x, u)

=
∫

G
φ(x − x ′)ψ(u − u′)

[
(r0)(eu−u′

)
(x ′ + v) − (r0)(eu−u′

)
(x ′)

] χ{u′≤−1}
u′ dx ′ du′.

So we can proceed with the same argument as before with r j replaced by r0. As

∇r0(x) = −(2 + n)(1 + |x |2)−2−n/2x,

here one can just take as v any unit vector, and as V0 ⊆ R
n the region where x · v ≥√

(1 + |x |2)/2, in order to show that

av ∗ (K̃0 + K0)(x, u) � (1 + |x |2)−3/2−n/2|u|−1

on a region of the form U0 × (−∞,−2], and conclude that av ∗ (K̃0 + K0) is not
integrable. ��

8 Representation Theory ofG and Riesz Transforms for a
One-Dimensional Schrödinger Operator

The following proposition collects a few basic results about the representation theory
of the groupG (cf., e.g., [19, 31, 33] and [22, Sect. 6.7] for the case n = 1). Here, for a
unitary representationπ ofG on aHilbert space H and a function F ∈ L1(G), wewrite
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π(F) = ∫
G F(x, u) π((x, u)−1) dx du for the bounded operator on H corresponding

to F via π .

Proposition 8.1 Let ξ ∈ R
n \ {0}.

(i) The formula

σ ξ (x, u)φ(s) = eie
sξ ·xφ(s + u)

defines a unitary representation of G on L2(R), which also acts by isometries
on L p(R) for all p ∈ [1,∞].

(ii) If τvφ(s) = φ(s − v) denotes the translation operator by v on L2(R), then

σ evξ = τ−vσ
ξ τv.

(iii) For all K ∈ L1(G),

σ ξ (K ) = MK (ξ),

where MK (ξ) is the integral operator with kernel H ξ
K defined in (5.2).

(iv) For all K ∈ L1(G) and p ∈ [1,∞],

‖MK (ξ)‖L p(R)→L p(R) ≤ ‖K‖Cvp(G),

and in particular

‖MK (ξ)‖L p(R)→L p(R) ≤ ‖K‖L1(G).

Proof It is readily checked that σ ξ is a representation of G, and it is evident from the
given expression that it acts isometrically on L p(R) for any p ∈ [1,∞]; this proves
part (i). It is similarly easily checked that translations intertwine representations σ ξ

with parameters that are positive multiples of each other, as described in part (ii).
Now, if K ∈ L1(G), then, for all φ ∈ L2(R),

σ ξ (K )φ(s) =
∫

G
K (x, u)σ ξ ((x, u)−1) f (s) dx du

=
∫

R

∫

Rn
K (x, u)e−ies−uξ ·xφ(s − u) dx du

=
∫

R

∫

Rn
K (x, s − s′)e−ies

′
ξ ·xφ(s′) dx ds′

=
∫

R

FK (es
′
ξ, s − s′)φ(s′) ds′,

whereF is the partial Fourier transform in the variable x . Comparing the above formula
with (5.2) proves part (iii).
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In light of the identity in part (iii), the second estimate in part (iv) is an immediate
consequence of the fact that σ ξ acts isometrically on L p(R). The first, more precise
estimate follows from the transference principle (see, e.g., [11, Theorem 2.4] or [8,
Theorem 2.7]), as G is an amenable group since it is solvable (see [42, Corollary
13.5]). ��
Remark 8.2 The unitary representations σ ξ (where ξ ∈ R

n\{0}) on L2(R) introduced
in Proposition 8.1 are nothing else than the representations of G induced by the non-
trivial characters x �→ eiξ ·x of the normal subgroup R

n . Another family of unitary
representations of G is obtained by lifting to G the characters of R = G/R

n , i.e.,
is given by the characters χμ(x, u) = eiμu (where μ ∈ R) of G. By the “Mackey
machine” (see, e.g., [22, Theorem 6.43]) all these representations are irreducible and
any irreducible unitary representation of G is equivalent to one of these; moreover,
the only nontrivial equivalences between these representations are those described in
Proposition 8.1(ii). This corresponds to the fact that the coadjoint action of G on (the
Pontryagin dual of) R

n factors through the normal abelian subgroup R
n and corre-

sponds to the action by dilations ξ �→ euξ of Ru on R
n
ξ ; the orbits are therefore {0}

and the half-lines R+ξ for ξ ∈ R
n\{0}.

Remark 8.3 ByRemark 8.2, the unitary representations σ ξ for ξ ∈ R
n\{0} exhaust (up

to equivalence) all the infinite-dimensional irreducible representations of G. We can
therefore think of themapping K �→ (σ ξ (K ))ξ∈Rn\{0} as a “concrete” realisation of the
group Fourier transform onG (where we neglect one-dimensional representations and
allow for some redundancy in the parametrisation of the infinite-dimensional ones).
The identity σ ξ (K ) = MK (ξ) discussed in Proposition 8.1(iii) above thus yields a
potentially suggestive interpretation of Proposition 5.1: namely, Proposition 5.1 can
be thought of as an L p Fourier multiplier theorem for the group Fourier transform of
G, where L p(G)-boundedness properties of f �→ f ∗ K are deduced from suitable
boundedness properties of the “symbol” ξ �→ σ ξ (K ) and its derivatives. In these
respects, Proposition 5.1 can be compared to results of a similar flavor appeared in the
literature for other Lie groups (see, e.g., [10, 17, 21] and references therein).

In what follows, we write S(G) for the usual Schwartz class on R
n × R and S ′(G)

for the corresponding dual space of tempered distributions.

Lemma 8.4 Cv2(G) ⊆ S ′(G). Moreover, if a sequence Kn in Cv2(G) converges to
K ∈ Cv2(G) with respect to the weak operator topology on L2(G), then Kn → K in
S ′(G) too.

Proof Of course S(G) ⊆ L2(G), as we are using the standard Lebesgue measure
dx du on G. Additionally, from (1.1) it is not difficult to see that S(G) is invariant
under left translations (indeed, leftG-translations acts as affine linearmaps onR

n×R).
Moreover, the right-invariant vector fields corresponding to (1.2) are

Xr
0 = ∂u + x · ∇x , Xr

1 = ∂x1, . . . , X
r
n = ∂xn ,

thus S(G) is clearly invariant under right-invariant differential operators.
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Let K ∈ Cv2(G). Now, for any f ∈ S(G) and right-invariant differential operator
D onG, we have Df ∈ S(G) ⊆ L2(G), thus also D( f ∗K ∗) = (Df )∗K ∗ ∈ L2(G),
because K ∗ ∈ Cv2(G). By Sobolev’s embedding we conclude that f ∗ K ∗ is smooth,
and moreover, if e = (0, 0) is the identity element, then we can bound

|〈 f , K 〉| = |〈 f ∗ K ∗, δe〉| = |( f ∗ K ∗)(e)| �
∑

D

‖(Df ) ∗ K ∗‖2 �
∑

D

‖Df ‖2,

where the sum is extended over a suitable finite family (independent of f ) of right-
invariant differential operators D. The above estimate shows that K indeed defines a
bounded linear functional on S(G), i.e., K ∈ S ′(G).

By the discussion at the beginning of the proof, we have a continuous representa-
tion of G on the Fréchet space S(G), where G acts by left translations, and moreover
all elements of S(G) are smooth vectors for this representation, as S(G) is invariant
by right-invariant differential operators. If we apply [18, Théorème 3.3] to this repre-
sentation, then we conclude that any φ ∈ S(G) can be written as a finite sum of the
form

φ =
∑

j

ψ j ∗ φ j , (8.1)

where ψ j ∈ C∞
c (G) and φ j ∈ S(G).

Let now Kn ∈ Cv2(G) be a sequence converging to K ∈ Cv2(G) in the sense of
the weak operator topology on L2(G). Let φ ∈ S(G), and decompose φ as in (8.1).
Then

〈Kn, φ〉 =
∑

j

〈Kn, ψ j ∗ φ j 〉 =
∑

j

〈ψ̌ j ∗ Kn, φ j 〉, (8.2)

where ψ̌ j (x, u) = ψ j ((x, u)−1) = ψ j (−e−ux,−u). So ψ̌ j ∈ C∞
c (G) and therefore

both ψ̌ j , φ j ∈ L2(G). As Kn → K in the sense of weak operator convergence on
L2(G), when we pass to the limit in the right-hand side of (8.2) we replace Kn with
K , thus we conclude that 〈Kn, φ〉 → 〈K , φ〉. As φ ∈ S(G) was arbitrary, this shows
that Kn → K in S ′(G). ��
Remark 8.5 Observe that S(G) and S ′(G) are not invariant under right translations,
nor under the involution f �→ f ∗. Nevertheless Cv2(G) is.

We now show that, at least in the smallest dimensional case n = 1, the correspon-
dence K �→ (MK (ξ))ξ discussed in Proposition 8.1 can be extended to the case where
K is a distribution in Cv2(G). This result should be compared with, e.g., [33, Sect. 4]
and [19, Sect. 5].

Lemma 8.6 Assume that n = 1. For any K ∈ Cv2(G), the partial Fourier transform
F , thought of as a unitary isomorphism

F : L2(G) → L2(R∗
ξ ; L2(Ru)),

123



  222 Page 48 of 53 A. Martini

intertwines the operator of convolution by K on L2(G) with the direct integral

∫ ⊕

R∗
MK (ξ) dξ,

of bounded operators on L2(Ru), whose Schwartz kernels H
ξ
K are given, in the sense

of distributions, by

H ξ
K (u, u′) = (FK )(eu

′
ξ, u − u′). (8.3)

Moreover

MK (evξ) = τ−vMK (ξ)τv (8.4)

for any v ∈ R and ξ ∈ R
∗, and

‖K‖Cv2(G) = sup
ξ∈R∗

‖MK (ξ)‖L2(R)→L2(R) = max± ‖MK (±1)‖L2(R)→L2(R).

Proof Recall from Lemma 8.4 that any distribution K ∈ Cv2(G) is a tempered dis-
tribution. As a consequence, we can make sense of the partial Fourier transform
FK ∈ S ′(G) and of the computations at the beginning of Sect. 5, which show that
indeed F intertwines the convolution operator by K with the direct integral of the
MK (ξ). Here the identity from (5.2), expressing the integral kernel of MK (ξ) for
ξ ∈ R

∗, can be be interpreted in the sense of distribution: indeed, if ξ �= 0, then the
change of variables R

2 � (u, u′) �→ (eu
′
ξ, u − u′) ∈ R+ξ × R is nondegenerate.

As the partial Fourier transform F intertwines the convolution operator by K and
the direct integral of the MK (ξ), we clearly have

‖K‖Cv2(G) = ess supξ∈R∗ ‖MK (ξ)‖L2(R)→L2(R).

Now, from the formula for H ξ
K it is immediately checked that (8.4) holds. This shows

in particular that MK (ξ) and MK (ξ/|ξ |) are intertwined by an L2-isometry, so they
have the same operator norm, and the required characterisation of the norm ‖K‖Cv2(G)

follows. ��
As a consequence of the L p-boundedness of the Riesz transforms on G (see The-

orem 1.1) and the amenability of the group G, via transference we can deduce a
corresponding result for the Riesz transforms associated with the Schrödinger opera-
torH = −∂2s + e2s on R, stated as Theorem 1.3 above.

Proof of Theorem 1.3 It will be enough to work with the smallest ax + b group G =
Rx � Ru , i.e., here we take n = 1.

As before, let F denote the partial Fourier transform in the variable x on Rx × Ru .
Then it is immediately checked that, for any ξ ∈ R

∗,

F(X0 f )(ξ, u) = ∂uF f (ξ, u), F(X1 f )(ξ, u) = iξeuF f (ξ, u),
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and therefore also

F(L f )(ξ, u) = Hξ f (ξ, u),

where Hξ is the Schrödinger operator on L2(Ru) given by

Hξ = −∂2u + ξ2e2u .

Consequently,F intertwines, in the sense of Lemma 8.6, the Riesz transformsR0 and
R1 with the direct integrals

∫ ⊕

R∗
Rξ

0 dξ,

∫ ⊕

R∗
Rξ

1 dξ,

where

Rξ
0 := ∂u(Hξ )−1/2, Rξ

1 := iξeu(Hξ )−1/2;

note that the latter operators are trivially L2(R)-bounded for any ξ ∈ R
∗, with norm

at most 1. We shall show that theRξ
j are actually L p(R)-bounded for all p ∈ (1,∞);

the case ξ = 1 gives the desired boundedness result.
As the Riesz transforms R j are L2-bounded left-invariant operators on G, the

aforementioned intertwining property can be written, in the notation of Lemma 8.6,
as

Rξ
j = MkR j

(ξ).

As we know that kR j ∈ Cvp(G) for all p ∈ (1,∞) by Theorem 1.1, the L p-

boundedness of the Schrödinger–Riesz transformsRξ
j would follow if we could apply

the transference result in Proposition 8.1(iv) with K = kR j . This is not directly possi-
ble as kR j is not integrable; to overcome this, we shall show that kR j is approximable
by integrable kernels satisfying analogous L p bounds.

As discussed, e.g., in [40, Sect. 4.2], we can subordinate the Riesz transforms to
the heat propagator and obtain that

kR j = lim
n→∞ K j,n, K j,n =

∫ 2n

2−n
X j ht

dt√
π t

,

where ht is the heat kernel of L, as in Sect. 2, and the convergence is in the sense of
the strong operator topology on L2(G); so, from Lemma 8.4 we deduce that

K j,n → kR j in S ′(G), (8.5)

and moreover, by [40, Proposition 4.1(v)],

‖K j,n‖Cv2(G) ≤ ‖kR j ‖Cv2(G) ≤ 1.
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Additionally, the proof of [40, Theorem 1.1(i)] shows that each K j,n satisfies the
“Calderón–Zygmund” assumptions of [40, Theorem 2.3] uniformly in n, whence we
deduce a uniform bound

sup
n

‖K j,n‖Cvp(G) < ∞ (8.6)

for all p ∈ (1, 2].
Now, clearly K j,n ∈ L1(G), as supt∈[2−n ,2n ] ‖X jht‖1 < ∞ (see, e.g., [40, Propo-

sition 3.1]). Transference [as stated in Proposition 8.1(iv) above] can then be applied
to the K j,n , and from (8.6) we deduce that, for any ξ ∈ R

∗ and p ∈ (1, 2],

sup
n

‖MK j,n (ξ)‖L p(R)→L p(R) < ∞.

On the other hand, from (8.3) and (8.5) it follows that

H ξ
K j,n

→ H ξ
kR j

in D′(R2).

As H ξ
K j,n

and H ξ
kR j

are the Schwartz kernels of MK j,n and Rξ
j respectively, this

allows us to deduce that theRξ
j are also L p(R)-bounded for all p ∈ (1, 2]. In order to

conclude, we need to show that the adjoint operators (Rξ
j )

∗ satisfy analogous bounds.
Let ζ ∈ C∞

c (G) be any cutoff, and let p ∈ (1, 2]. As Cvp(G) is a module over
C∞
c (G) (see Lemma 4.1), we conclude that the kernels ζK j,n are also in Cvp(G)with

a uniform bound in n. Additionally, ζK j,n → ζkR j in S ′(G), so H ξ
ζK j,n

→ H ξ

ζR j

in D′(R2) for any ξ ∈ R
∗. Arguing as before, by means of transference we can then

deduce that MζkR j
(ξ) is L p(R)-bounded for all p ∈ (1, 2] and ξ ∈ R

∗.
Now, from Proposition 3.2 we deduce that ζkR j+R∗

j
∈ L1(G), thus trivially

MζkR j+R∗
j
(ξ) is L p(R)-bounded for all p ∈ [1,∞], and by difference we deduce

that MζkR∗
j
(ξ) and MζkR j−R∗

j
(ξ) are L p(R)-bounded for p ∈ (1, 2].

In order to conclude that (Rξ
0)

∗ and (Rξ
1)

∗ are L p(R)-bounded for p ∈ (1, 2], it is
therefore enough to show that M(1−ζ )kR0−R∗

0
(ξ) and M(1−ζ )kR∗

1
(ξ) are. If we choose

the cutoff ζ appropriately, as in the proof of Corollary 4.3, then

(1 − ζ )kR0−R∗
0

= c(K̃0 + K0) + r0, (1 − ζ )kR1 = cK1 + r1

for some constant c and some r0, r1 ∈ L1(G). Consequently, we are reduced to
showing thatMK̃0

(ξ), MK0(ξ), MK1(ξ) are L p-bounded for p ∈ (1, 2].While it would
be possible to use transference for this as well, here we can proceed more directly.

Indeed, from the expression for K̃0 in Proposition 3.4, we have that

H ξ

K̃0
(u, u′) = (Fr0)(e

u′
ξ)

χ|u−u′|≥1

u − u′ .
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In other words, the operator MK̃0
(ξ) on R is the composition of the operator of con-

volution by u �→ χ|u|≥1
u and the operator of multiplication by (Fr0)(euξ). The latter

is trivially bounded on any L p as the function u �→ (Fr0)(euξ) is bounded, while the
former is L p-bounded for any p ∈ (1,∞) as discussed in the proof of Proposition
4.4.

As for the remaining operators MK0(ξ) and MK1(ξ), from Sect. 5 we already know
that they are L2(w)-bounded for anyw ∈ A2(R), which implies by extrapolation (see,
e.g., [26, Theorem 9.5.3]) that they are also L p-bounded for any p ∈ (1,∞). ��
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