
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TCP Connection Management for Stateful Container Migration at the Network Edge / Yu, YEN-CHIA; Calagna, Antonio;
Giaccone, Paolo; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2023). (Intervento presentato al convegno IEEE
MedComNet 2023 tenutosi a Ponza (Italy) nel 13-15 June 2023) [10.1109/MedComNet58619.2023.10168849].

Original

TCP Connection Management for Stateful Container Migration at the Network Edge

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MedComNet58619.2023.10168849

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978170 since: 2023-04-26T14:14:55Z

IEEE

TCP Connection Management for Stateful
Container Migration at the Network Edge

Yenchia Yu
Politecnico di Torino

Torino, Italy

Antonio Calagna
Politecnico di Torino

Torino, Italy

Paolo Giaccone
Politecnico di Torino

Torino, Italy

Carla Fabiana Chiasserini
Politecnico di Torino

Torino, Italy

Abstract—Container migration has emerged as the most ef-
fective way to ensure proximity of time-critical microservices at
the network edge with mobile end devices. However, ensuring
service continuity while migrating microservices that rely on
an established TCP connection is still a significant technical
challenge. In this paper, we investigate such pivotal issue and
propose COAT, a novel, yet simple, network architecture that
leverages overlay network technology to achieve seamless TCP
connection migration. Through experimental validation using
sample microservices, we show that, compared to the traditional
approach that does not support connection migration, our solu-
tion enables the successful migration of microservices relying on
an established TCP connection, at the cost of a 14% maximum
increase of the migration duration. Importantly, our solution to
the problem of connection migration does not require the use
of a dedicated protocol, or any modification to the application
source code or the kernel.

Index Terms—Migration, Mobile services, Overlay Networks,
Edge computing

I. INTRODUCTION

In recent years, edge computing has been acknowledged as
the state-of-the-art paradigm to overcome the bandwidth and
latency challenges in cloud computing architectures. The main
idea of edge computing is to bring applications, computational
capabilities, and storage facilities closer to the end users, thus
significantly reducing processing and communication delays.
Moreover, to fully exploit the benefits of cloud and edge
computing architectures (namely, scalability, availability, and
resiliency), applications are often designed in the form of
microservices chains, taking advantage of the lightweight
container virtualization technology [1].

Concurrently, due to the rapid development of mobile com-
munication networks (e.g., 5G/6G), the main consumers of the
edge services have evolved from static to mobile devices, such
as connected cars and Unmanned Aerial Vehicles (UAVs) –
scenarios that require the support of high-demanding, latency-
and bandwidth-critical applications. In this context, container
migration techniques have gathered attention as an effective
solution to address mobility challenges by ensuring continuous
proximity of edge microservices with mobile end devices.

Two fundamental migration strategies can be identified,
i.e., stateless and stateful migration, with the second being
used whenever keeping track of the microservice internal state
is essential to guaranteeing service continuity. Importantly,

C. F. Chiasserini and P. Giaccone are also with CNIT, Parma, Italy.

despite the current trend favouring the development of stateless
microservices, stateful microservices are still extremely com-
mon due to the complexity in refactoring legacy monolithic
applications [2].

In this work, we therefore focus on stateful container migra-
tion, and, specifically, on the problem of connection migration.
Indeed, upon statefully migrating a microservice between edge
servers, it is critical to provide seamless migration of its
network connection with the mobile end users, in order to
minimize service disruption. We underline that, despite many
recent studies have experimentally demonstrated the potential
and effectiveness of stateful container migration techniques,
just few of them have actually investigated the akin connection
migration issue. Moreover, the existing solutions are mostly
application-specific and based on either kernel or protocol
customization, which we argue to lack generality and to
be complex to implement and unfeasible to integrate with
container virtualization technology.

To fulfill this gap and allow for a performant and efficient
migration of stateful microservices, we propose COAT, a
novel, yet simple, network architecture that, independently
from the specific microservice, permits to preserve the estab-
lished connection thereof with the mobile end users, during
stateful migration. Specifically, due to its wide popularity
and practical relevance, we focus on the TCP transport layer
protocol [3], which by itself does not support the mobility of
the connection endpoints. The benefits of COAT can thus be
summarised as follows:

• It seamlessly migrates a generic microservice container
with established TCP connections;

• It keeps track of the TCP connection states upon migra-
tion, thus avoiding reconnection procedures;

• It preserves all the data queued inside the TCP socket,
thus preventing data losses;

• It performs the microservice stateful migration procedure
in an agnostic way with respect to either the server or the
client side of the connection.

The rest of the paper is organized as follows. Section II
provides an overview of container and connection migration,
thus introducing the main tools we used to design our so-
lution. Section III describes the COAT network architecture
and our enhanced version of the stateful container migration
process. Section IV details the realistic microservices and the

testbed setup we use in our validation experiments, which are
presented in Section V. Finally, Section VI discusses some
relevant related work while highlighting the novelty of our
study, while Section VII draws our conclusions.

II. TECHNOLOGICAL BACKGROUND AND SOLUTION
STRATEGY

This section presents an overview of container migration
and the primary enabling tools to implement it. Further,
it introduces the TCP connection migration challenges and
the technologies we leverage to tackle these issues, namely,
TCP_REPAIR mode and overlay networks.

A. Container migration

Container migration enables container relocation across
hosts while meeting critical time constraints. Two fundamental
container migration techniques have emerged: stateless and
stateful migration. In this work, we focus on the latter,
which is used whenever keeping track of the service state
is fundamental to ensure service continuity. Hence, stateful
container migration enables moving not only the container
template image from source to destination host, but also the
service internal state. In other words, the migrated container
can seamlessly restore its previous working state, thus guaran-
teeing minimal impact on the Quality of Experience (QoE) of
the final users. The fundamental off-the-shelf tools required to
implement stateful container migration are CRIU and Podman,
as detailed below.

CRIU [4]. Checkpoint/Restore In Userspace (CRIU) is
widely considered the key tool for stateful migration from
a process layer perspective. It implements two major proce-
dures: (i) the checkpoint procedure, which freezes a running
process, collects its internal state, and encapsulates it into
an image, and (ii) the restore procedure, which creates a
new process and restores its state by leveraging a previously
acquired checkpoint image. Such checkpoint image mainly
includes: (i) the CPU-context state, e.g., the processes tree
structure and the associated registers, (ii) the network sockets,
(iii) the memory content, and (iv) the open file descriptors.
Importantly, CRIU features the tcp-established option,
which instructs CRIU to collect, along with the internal state
of the container, the information related to the currently active
TCP connection, thus allowing for a successful restoration of
the TCP connection state during migration.

Podman [5]. It is an open-source tool designed to develop,
manage, and run containers and pods according to the Open
Container Initiative (OCI) standards. Among the many off-the-
shelf container engines, e.g., Docker and LXC, Podman is the
one featuring the strongest integration with CRIU, by directly
leveraging its APIs and, thus, effectively supporting container
migration at the microservice layer. As a container engine,
Podman enables the creation of isolated container environ-
ments by leveraging kernel namespaces and exposes the option
to customize a container network namespace, thus providing
high flexibility on the container network configuration.

CLOSED

LISTEN

SYN-RECVD SYN-SENT

CLOSING

TIME-WAIT

FIN-WAIT-1

FIN-WAIT-2

CLOSE-
WAIT

LAST-ACK

CLOSED

ESTABLISHED

No response to
any command

TCP_REPAIR

Passive Open Close

Close

Active Open

SYN/SYN+ACK

SYN/SYN+ACK

SYN+ACK/ACK

Send/SYN

Close/FIN

ACK

Close/FIN

FIN/ACK

ACK

FIN/ACK Timeout

ACK

FIN/ACK

Close/FINACK+FIN/ACK

Standard TCP state machine

N

Y

connect()
is called?

Send a probe packet to the
other end of connection

TCP Repair Mode

Fig. 1: TCP state machine diagram [7] with Repair Mode

Leveraging both CRIU and Podman, multiple stateful mi-
gration strategies can be defined. We focus on the simplest
one, i.e., Cold Migration, consisting of the following steps: (1)
creation of a snapshot of the container (named “checkpoint”)
at the source host, (2) transfer of the checkpoint image from
source to destination host, (3) restoration of the container at
the destination host.

B. Connection migration

Connection migration is one of the critical issues concerning
the migration of microservices with an always-established
connection. We focus on TCP as connection-oriented transport
protocol, as it is often used for legacy and modern edge
applications [3], and we discuss the features of TCP that
we can leverage to support connection migration. Notably,
once a TCP connection is established, the protocol does not
provide a way to modify or redirect such connection, unless
through a complete re-connection procedure. To overcome this
issue, and, hence, enhance the migration of TCP connections,
a special option for the TCP socket has been introduced from
Linux kernel version 3.5 onwards, namely, TCP_REPAIR [6].

When the TCP_REPAIR option is used, the TCP socket
is switched into a special mode where any native TCP action
performed on the socket has no effect (as depicted in Figure 1).
In this condition, the state of the TCP connection can be suc-
cessfully “checkpointed” by CRIU and restored on a new host
machine, with a probe packet being eventually sent to notify
the other connection end point that the communication can be
resumed. However, the TCP_REPAIR option is not widely
used due to the following required conditions to achieve
a successful connection restoration: (i) address consistency:
the microservice container, when migrating from source to
destination host, has to be assigned the same IP address; (ii)
network reachability: when moved to the destination host,
the microservice container must be able to directly reach the
other end involved in the communication. In other words, the

TCP_REPAIR option only provides the possibility to freeze
and collect the state of the TCP socket, thus not tackling
scenarios in which the IP address may change after migration.
Moreover, to successfully resume the communication flow, the
probe packet has to be correctly received at the destination,
which is not trivial in the case of migration between distinct
private networks.

We address the above requirements for TCP repair mode
by defining a proper logical overlay network in which traffic
flows can be dynamically managed. To do so, we leverage
Open vSwitch (OvS) [8], a production-quality, multilayer
virtual switch that provides two functions that are crucial for
our purposes: (i) overlay network creation, and (ii) network
flow management. Indeed, it creates overlay networks based
on Virtual Extensible LAN (VXLAN) – a technique that
encapsulates OSI layer 2 Ethernet frames within layer 4 UDP
datagrams. Once the overlay network is established, users can
easily define or change the behavior of the virtual switches,
e.g., forwarding rules, through the OpenFlow protocol.

III. COAT NETWORK ARCHITECTURE

We now present our solution, named Container OverlAy
TCP (COAT) architecture, which effectively supports TCP
connection migration and addresses the akin networking chal-
lenges by leveraging the previously introduced tools. In addi-
tion, we integrate the COAT architecture in the stateful con-
tainer migration procedure, yielding an enhanced procedure
referred to as COAT migration, which enables the migration
of microservices that rely on an established TCP connection.

The proposed COAT architecture is depicted in Figure 2,
which includes three fundamental blocks, namely, the source
host, the destination host, and the mobile end device. Source
and destination hosts resemble the edge nodes that run a
microservice before and after the migration process, respec-
tively. The mobile end device, instead, is the node hosting
the containerized client application that generates requests to
be served by the microservice. The connectivity between the
microservice and the client container is enabled by an overlay
network implemented using interconnected virtual switches
and customized network namespaces.

To effectively implement such architecture, we leverage the
features provided by OvS to firstly create a virtual switch
for each physical host and configure each of them to ensure
their interconnection, thus defining the “backbone” of the
overlay network. Secondly, we create two custom network
namespaces, one for the microservice at the source host and
one for the client container at the mobile end device. Both
are then connected with the virtual switches, to complete the
overlay network. Thirdly, we use Podman to run both the
microservice and the client, and bind them to their dedicated
network namespaces, hence connecting them to the overlay
network. Once this third step is completed, the microservice
and the client can communicate using the TCP protocol on
top of the newly defined overlay network.

We underline that, when the microservice migration is per-
formed, the TCP connection between the microservice and the

TCP

TCP

TCP

Virtual
Switch 3

Virtual
Switch 2

Virtual
Switch 1

VXLAN

Source Host Destination Host

Microservice
container

Migrated microservice
network namespace

e.g., 172.16.0.1

Migration

Microservice
container

Microservice network namespace
e.g., 172.16.0.1

Mobile End Device

Client namespace
e.g., 172.16.0.2

Client containerOverlay Network
e.g., 172.16.0.0/24

Fig. 2: COAT network architecture

client is preserved by (i) leveraging the TCP_REPAIR option
to collect the connection state, and (ii) imposing an exact
recreation of the microservice namespace at the destination
host, especially in terms of its IP address configuration. Thus,
COAT effectively solves the network address consistency prob-
lem since, thanks to the overlay network, the same IP address
can be easily replicated at the destination host. Furthermore,
since overlay networks enable the creation of a distributed
network among multiple machines and to dynamically manage
the traffic flows, direct reachability between microservice and
client is always guaranteed, even after the migration process
has been completed. Nevertheless, to effectively integrate
the COAT architecture with the traditional stateful migration
process, additional operations are required, which involve the
creation and replication of customized network namespaces
and the management of the flow control rules.

To address such critical issues, we introduce COAT migra-
tion, which is an enhanced version of the stateful container
migration process consisting of the steps illustrated in Figure 3
and described below.

• Step 1: Checkpoint the running container at the source
host using Podman with the tcp-established op-
tion. Both the microservice state and the established TCP
connection state are now dumped into the checkpoint
image and stop running.

• Step 2.1: Clear the network namespace, thus preventing
network configuration conflicts in the following steps.

• Step 2.2: Transfer the checkpoint image from source to
destination host.

• Step 2.3: Re-create and configure the network namespace
at the destination host to match the original one, which
is required for the later container restore procedure to be
successful.

• Step 3: Update the network flow of the TCP connection.

Checkpoint
container

Step 1
Clear network
namespace

Step 2.1
 Transfer

checkpoint image

Step 2.2
Create new network

namespace

Step 2.3
Update

network flow

Step 3
Restore

container

Step 4

tPerformed at: Destination Host Mobile End DeviceSource Host

Fig. 3: Enhanced stateful container migration procedure integrating the COAT network architecture

Firstly, update the flow control rule in OvS. During the
network namespace recreation, a new virtual network
interface is generated, along with a new MAC address.
The ARP table at the client host is then cleared in order
to ensure a successful ARP discovery process once the
TCP connection is restored.

• Step 4: Restore the container from the checkpoint image.
Now, the microservice, and its established TCP connec-
tion, can resume from its previous working state.

We notice that Steps 2.1, 2.2, and 2.3 in Figure 3 may
be executed in parallel, in order to speed up the migration
procedure. However, as in this work we aim at validating the
novel architecture and at assessing the impact of each step on
the total duration of the migration process, in our performance
evaluation all steps will be executed sequentially.

To summarize, COAT makes it possible to define an en-
hanced stateful container migration procedure to effectively
support microservices that rely on an already established TCP
connection. In particular, the proposed network architecture
(i) allows for the migration of the TCP connection state, thus
avoiding any reconnection procedure, (ii) preserves all the data
queued inside the TCP socket, hence avoiding packet loss, and,
(iii) does not require any modification at either the server or
the client application to support a stateful migration.

IV. OUR TESTBED

In this section, we briefly describe the testbed we developed
to validate the connection migration in COAT architecture and
to assess the performance of the COAT migration procedure.

A. Microservices

We perform two independent sets of experiments using
sockperf and iperf3 as examples of stateful microservices
to migrate. They indeed resemble real-world microservices
with established TCP connection and their features, briefly
described below, allow us to effectively assess the network
performance.

Sockperf is a network benchmarking utility over socket API.
It is a powerful tool to perform network latency measurements,
which can provide a full log of each packet’s transmission
timestamps in sub-nanosecond resolution. In our testbed, we
configure sockperf to measure the network latency using
the TCP protocol, in order to assess the impact of COAT
migration on the communication latency. Specifically, latency
is measured at the sockperf client side through the so-called

Open
vSwitch 1

VM1

Sockperf/iperf
service container

Microservice
network namespace

eth1
tc 1

Open
vSwitch 2

eth2
tc 2

Open
vSwitch 3Iperf/sockperf

Client container

Client namespace

eth3
tc 3

Sockperf/iperf
service container

Migrated microservice
network namespace

VM2

VM3

Network
Switch

Migrate

Control
Script

Outgoing Traffic Control Setting

eth1

eth2

eth3

sockperf iperf

20 ms

2 ms

2 ms

100 Mbps

500 Mbps

500 Mbps

Fig. 4: Testbed setup for COAT migration process

ping-pong test, which calculates the time difference between
the timestamp in which a probe packet is sent to the sockperf
server and the one in which the corresponding response from
the sockperf server is received.

Iperf3 is a popular, lightweight tool for active measurements
of the achievable bandwidth on IP networks. We use iperf3 to
determine the impact of COAT migration on the communica-
tion throughput. To this end, we configure iperf3 to measure
the throughput at the client side using the TCP protocol in
reversed mode, i.e., the iperf3 server sending data to the iperf3
client, and we set the measurement interval to 100 ms.

B. Testbed and experimental setup

In our experiments, we leverage a cloud computing archi-
tecture featuring Intel Xeon Skylake CPU to instantiate three
identical virtual machines (VMs). As shown in Figure 4, VM1
and VM2 represent two edge servers acting, respectively, as
source and destination of the microservice migration process.
Further, VM3 hosts the client container, thus acting as an
end device that interacts with the edge servers. The migration
procedure is controlled by a script running on VM3, which
passes the control commands to VM1 and VM2 using the
Secure Shell Protocol (SSH). Specifically, consistently with
Figure 3, the commands corresponding to Step 1, Step 2.1 and

0 25 50 75 100 125 150
Packet Sequence Number

101

102

103

R
T

T
[m

s]

Fig. 5: Sockperf migration experiment: RTT measurement as a
function of the packet sequence number

Step 2.2 are executed at the source host (VM1), those related
to Step 2.3 and Step 4 run at the destination host (VM2),
while Step 3 runs locally at the end device (VM3). The three
VMs can communicate with each other using their default
network interfaces, i.e., eth1, eth2 and eth3 (resp.), which are
provisioned by the underlying virtualization technology. To
emulate realistic values of network latency and throughput,
specific queuing disciplines are applied to the default network
interface of each VM using tc – a tool used to configure the
Linux kernel traffic scheduler. Through these disciplines, the
outgoing traffic of the network interface on each VM can be
manipulated as needed. In our testbed, we assume that VM2
has a closer physical distance to VM3 than VM1. Therefore,
in the latency experiment, we apply a 20 ms delay to eth1 and
a 2 ms delay to eth2 and eth3. Similarly, in the throughput
experiment, we limit the bandwidth of eth1 to 100 Mbps, and
that of eth2 and eth3 to 500 Mbps.

The results shown in the following have been obtained by
averaging over 50 runs, and computing the 90% confidence
interval.

V. EXPERIMENTAL ANALYSIS

We now use our testbed under the settings introduced in
Section IV to validate the COAT architecture and to evaluate
the migration performance according to our enhanced stateful
container migration procedure.

We start by looking at the TCP connection round trip time
(RTT) (Figure 5) and the experienced throughput (Figure 6),
before, during, and after a microservice migration. In par-
ticular, Figure 5 shows the RTT measured by sockperf as
a function of the packet sequence number. To highlight the
impact of the migration process on the experienced RTT,
a measurement window of 160 samples has been extracted
around such event, with packet with sequence number 80
being the one transferred during the migration. Consistently
with the scenario we are tackling and the settings presented in
Section IV, the experienced RTT decreases when the sockperf
microservice is moved from the source to the destination host.
Also, one can observe a peak in the RTT values corresponding

0 2 4 6 8 10
Time [s]

0

100

200

300

400

500

T
hr

ou
gh

tp
ut

[M
bp

s]

Fig. 6: Iperf3 migration experiment: throughput temporal evolution

to the time interval during which the migration procedure
takes place. Interestingly, two considerations can be drawn:
(i) despite the migration process, the packet transmission
is successful (hence also enabling a correct RTT measure-
ment), and (ii) the value of RTT measured for the packet
transmitted in correspondence of the migration reflects the
total duration of the COAT migration process. In summary,
from the experiment we can conclude that (i) the TCP
connection migration is successful, and (ii) no packet loss
is experienced at transport layer during the migration
process, which validates the proposed COAT architecture.

Figure 6 presents the temporal evolution of the throughput
measured by the iperf3 client. In this scenario, the migration of
the iperf3 server container is performed in the time window
between 4 and 8 seconds. After the iperf3 server container
is migrated, the measured throughput increases significantly,
which is again consistent with our settings. Indeed, the end
device can experience a larger link bandwidth with the destina-
tion host than with the source host (see Section IV). However,
during the migration of the iperf3 server container, the iperf3
client experiences zero throughput, as evident from the plot in
Figure 6. It follows that: (i) even though the client is unaware
of the microservice migration process, it still experiences a
service disruption, and (ii) the duration of such disruption
notably corresponds to the total duration of the COAT migra-
tion process. In summary, in spite of the fact that the COAT
migration can successfully migrate an active TCP connection,
a service disruption during migration is unavoidable. Our next
objective is therefore to thoroughly characterize the service
disruption time, along with its components, and to identify
which step of the migration process contributes the most to
service disruption.

To this end, we perform an experimental analysis to break
the migration duration measured by sockperf and iperf3 into
different components. First, we notice that, in our experiments,
the main migration control script runs on the end device, hence
most of the commands to implement the COAT migration
procedure need to be passed to specific hosts via an SSH
tunnel. Using SSH tunnels to remotely control other hosts
inevitably introduces an additional delay in the procedure.

Checkpoint Clear
Namespace

Checkpoint
Transfer

Create
Namespace

Restore
0

200

400

600

800

S
S

H
D

el
ay

[m
s]

sockperf

iperf3

Fig. 7: Additional SSH delay introduced to remotely execute the
commands related to the COAT migration procedure

Thus, the total migration duration mainly consists of two
contributions: (i) the SSH delay and (ii) the actual duration
of the migration steps.

The SSH delay is presented in Figure 7, for each step
of the migration procedure and for both the cases where
sockperf and iperf3 are migrated. The duration of such delay
varies from 500 ms to 800 ms, depending upon the specific
network latency setting, the amount of transferred data (e.g.,
the command itself), and the exchanged certificates to ensure a
secure connection with the remote host. Importantly, such SSH
delay can be easily avoided by applying better remote control
mechanisms – a relevant, interesting aspect that is, however,
out of the scope of this work.

Next, the actual duration of each migration step is in-
vestigated in Figure 8. By comparing such duration for the
two experiments with sockperf and iperf3 (resp.), one can
observe that the values measured for sockperf are higher.
This is due to the fact that sockperf is characterized by a
larger microservice state size, mainly consisting of the memory
allocation, which we measured to be, on average, 10 MB for
sockperf and 1.5 MB for iperf3. Moreover, we remark that
the duration of the checkpoint transfer step is affected by
the network setting we described in Section IV. Interestingly,
the fundamental migration steps, namely, checkpoint, transfer,
and restore, dominate the COAT migration duration, and the
duration of these steps is consistent with the results of our
previous study on stateful container migration modeling [9].
Thus, we can conclude that the COAT migration does not
introduce any time overhead in the three most-impactful
migration steps (checkpoint, transfer, and restore) with re-
spect to the original process. Indeed, the COAT architecture
only introduces three additional steps in the COAT migration
process, namely, clear namespace, create namespace, and OvS
flow update (see Figure 3), whose delay contribution is almost
one order of magnitude smaller than that of the checkpoint,
transfer, and restore steps. Remarkably, such additional steps
are independent of the microservice state size; hence, their
delay overhead would represent an even smaller percentage of

Checkpoint Clear
Namespace

Checkpoint
Transfer

Create
Namespace

Update
Net.Flow

Restore
0

200

400

600

800

1000

1200

D
ur

at
io

n
[m

s]

sockperf

iperf3

Fig. 8: Duration of each step of the COAT migration process, for the
sockperf and iperf3 experiments

TABLE I: COAT migration performance using sockperf and iperf3

Sockperf Iperf3
COAT migration duration 2.67 s 1.87 s
SSH delay 2.41 s 1.95 s
Total migration duration
(COAT migration duration + SSH delay) 5.08 s 3.82 s

Service disruption duration 5.11 s 3.71 s
SSH time overhead 47.16% 52.56%
COAT time overhead 13.67% 13.48%

the total overhead in case microservices with larger state size
were considered.

In summary, we measured three duration metrics: (i) the
COAT migration duration, comprising all COAT migration
steps, (ii) the total migration duration, computed summing the
above COAT migration duration and the SSH delay, (iii) the
service disruption duration experienced by sockperf and iperf3
upon migration (also accounting for the SSH delay).

Notice that the SSH delay for the checkpoint step (i.e.,
Step 1 in Figure 3) is omitted from the calculation mentioned
in (ii), since it happens before the migration process starts. As
reported in Table I, by comparing the total migration duration
and the service disruption duration, for both the sockperf
and iperf3 experiments, their difference is negligible, which
means that the measurements provided by such experiments
are consistent with our breakdown analysis.

In conclusion, compared to the traditional stateful migration
process, we can safely conclude that the additional steps
introduced by our COAT solution to enable seamless con-
nection migration determine an increase on the migration
duration up to roughly 14%. We argue that such overhead
is reasonably small compared to the great advantage COAT
provides in easily, yet effectively, supporting migration for
microservices with established TCP connection. On the other
hand, in the two scenarios we considered, the overhead due
to SSH remote control represents approximately 50% of the
measured migration duration. Hence, it is critical that, in place
of SSH tunnels, more efficient remote control mechanisms are
used to minimize the duration of a migration procedure.

VI. RELATED WORK

Stateful container migration has recently attracted a great
deal of interest. An extensive survey on service migration in
Multi-access Edge Computing (MEC) environments can be
found in [10], while [11] presents an overview of current
container migration techniques along with their fundamental
metrics. However, far too little attention has been paid to
the connection migration problem. Indeed, many studies, e.g.,
[12], [13], suggest to perform re-connection after a container
is migrated by customizing the application source code and
making the client aware of the migration process. To the
best of our knowledge, only few studies discuss solutions to
enable connection mobility in a completely transparent manner
for the client. Such solutions are mostly based on dedicated
protocols, network proxy, overlay network tunneling, and
software-defined networking (SDN).

The works [14], [15] propose Multi-Path TCP (MPTCP)
protocol as an effective solution to implement seamless con-
nection migration, since it permits to define multiple sub-
flows for the same connection. Similarly, [16], [17] thoroughly
investigate the QUIC protocol and propose an extension
thereof to effectively support server-side connection migration,
thus advocating its validity for container migration. Other
approaches, e.g., the ones proposed in [18], [19], leverage the
cloud platform’s network proxy to hold and redirect active
connections with external clients while performing intra-cloud
or inter-cloud service migration. Likewise, [20], [21] design
dedicated network proxies to redirect the network flows for
general connection migration purposes. Furthermore, [22] in-
vestigates the Locator/Identifier Separation Protocol (LISP),
i.e., an overlay routing level on top of legacy IP, and suggests
how to enhance it to effectively support VMs mobility manage-
ment. In addition, [23] presents an SDN-based seamless UAV
controller migration testbed, which addresses the connection
migration issue by manipulating the MAC addresses and
leveraging SDN flow duplication functionality.

We finally recall that the main objective of our work
is to enhance the stateful migration process to effectively
support microservices with an always-established connection.
We achieve this goal through an architectural solution based on
overlay networks that, unlike previous solutions, is application-
independent, requires no dedicated protocol and no modifica-
tions to the kernel or application source code.

VII. CONCLUSIONS

Container migration has become one of the fundamental
technologies to support service mobility at the network edge.
Nevertheless, multiple technical challenges still need to be
addressed, especially those related to connection migration
and service continuity. To fill this gap, we introduced COAT, a
novel and effective, yet simple, network architecture that lever-
ages overlay network technology to achieve seamless TCP
connection migration. To effectively integrate our proposed
architecture with the traditional stateful migration process, we
envisioned an enhanced version of such procedure. We val-
idated our solutions using popular, real-world microservices.

In particular, our experimental analysis demonstrated COAT
migration process successfully enables microservice stateful
migration while effectively preserving the state of the TCP
connection, at the cost of a 14% maximum increase of the
migration duration. We finally remark that COAT architecture
effectively addresses the problem of connection migration
without requiring a dedicated protocol or any modification to
the application source code or the kernel.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed. USA: Prentice Hall Press, 2016.

[2] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrat-
ing enterprise legacy source code to microservices: On multitenancy,
statefulness, and data consistency,” IEEE Software, 2018.

[3] D. Lee, B. E. Carpenter, and N. Brownlee, “Observations of UDP to
TCP ratio and port numbers,” in ICIMP, 2010.

[4] CRIU, “Checkpoint/restore,” https://criu.org/.
[5] The Containers Organization, “Podman,” https://podman.io/.
[6] J. Corbet, “TCP connection repair,” https://lwn.net/Articles/495304/.
[7] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A

Systems Approach. Morgan Kaufmann Publishers Inc., 2011.
[8] Linux Foundation, “Open vSwitch,” https://www.openvswitch.org/.
[9] A. Calagna, Y. Yu, P. Giaccone, and C. F. Chiasserini, “Processing-aware

Migration Model for Stateful Edge Microservices,” IEEE ICC, 2023.
[10] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in

mobile edge computing,” IEEE Access, vol. 6, pp. 23 511–23 528, 2018.
[11] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic

container migration and failover,” in IEEE LCN, 2021, pp. 565–572.
[12] W. Bao, D. Yuan, Z. Yang, S. Wang, W. Li, B. B. Zhou, and A. Y.

Zomaya, “Follow me fog: Toward seamless handover timing schemes in
a fog computing environment,” IEEE Communications Magazine, 2017.

[13] P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container character-
istics,” IEEE Access, vol. 7, pp. 139 746–139 758, 2019.

[14] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “LXC container
migration in cloudlets under multipath TCP,” in IEEE COMPSAC, 2017.

[15] F. Le and E. M. Nahum, “Experiences implementing live VM migration
over the WAN with multi-path TCP,” in IEEE INFOCOM, 2019.

[16] L. Conforti, A. Virdis, C. Puliafito, and E. Mingozzi, “Extending the
QUIC protocol to support live container migration at the edge,” in IEEE
WoWMoM, 2021, pp. 61–70.

[17] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side QUIC
connection migration to support microservice deployment at the edge,”
Pervasive Mobile Computing, vol. 83, no. C, 2022.

[18] P. S. Junior, D. Miorandi, and G. Pierre, “Good shepherds care for their
cattle: Seamless pod migration in geo-distributed kubernetes,” in IEEE
ICFEC, 2022, pp. 26–33.

[19] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling
live migration of containerized applications across clouds,” in IEEE
INFOCOM, 2020, pp. 2529–2538.

[20] S. Kassahun, A. Demessie, and D. Ilie, “A PMIPv6 approach to maintain
network connectivity during VM live migration over the internet,” in
IEEE CloudNet, 2014, pp. 64–69.

[21] M. Bernaschi, F. Casadei, and P. Tassotti, “SockMi: a solution for
migrating TCP/IP connections,” in EUROMICRO PDP, 2007.

[22] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pu-
jolle, “Achieving sub-second downtimes in large-scale virtual machine
migrations with LISP,” IEEE Transactions on Network and Service
Management, vol. 11, no. 2, pp. 133–143, 2014.

[23] N. An, S. Yoon, T. Ha, Y. Kim, and H. Lim, “Seamless virtualized
controller migration for drone applications,” IEEE Internet Computing,
vol. 23, no. 2, pp. 51–58, 2019.

https://criu.org/
https://podman.io/
https://lwn.net/Articles/495304/
https://www.openvswitch.org/

	Introduction
	Technological Background and Solution Strategy
	Container migration
	Connection migration

	COAT Network Architecture
	Our Testbed
	Microservices
	Testbed and experimental setup

	Experimental analysis
	Related Work
	Conclusions
	References

