
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Survival of the Tested: Gamified Unit Testing Inspired by Battle Royale / Materazzo, Antonio; Fulcini, Tommaso;
Coppola, Riccardo; Torchiano, Marco. - (2023), pp. 1-7. (Intervento presentato al convegno 7th International ICSE
Workshop on Games and Software Engineering (GAS) tenutosi a Virtual [Melbourne (AUS)] nel 15 May 2023)
[10.1109/GAS59301.2023.00008].

Original

Survival of the Tested: Gamified Unit Testing Inspired by Battle Royale

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/GAS59301.2023.00008

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978158 since: 2023-09-29T09:06:28Z

IEEE

Survival of the Tested: Gamified Unit Testing
Inspired by Battle Royale

Antonio Materazzo
Politecnico di Torino

Turin, Italy
s289015@studenti.polito.it

Tommaso Fulcini
Politecnico di Torino

Turin, Italy
tommaso.fulcini@polito.it

Riccardo Coppola
Politecnico di Torino

Turin, Italy
riccardo.coppola@polito.it

Marco Torchiano
Politecnico di Torino

Turin, Italy
marco.torchiano@polito.it

Abstract—While testing takes on a fundamental role to verify
software quality and correctness, it often results to be overlooked
in the educational field and students often approach it unwillingly,
due to its repetitiveness.

Our aim is to exploit gamification to engage students by
providing them with dynamics like competition, self-expression,
and personal improvement.

We designed and developed Unit Brawl, a gamified application
meant to manage multiple rounds, each one consisting of students
developing Java programs and unit tests to be executed on each
other. The players collect points by writing correct code that
does not make the other players’ test cases fail, or by writing
test cases capable of detecting defects in the other players’ code.

The results of a preliminary evaluation to assess the func-
tionality and performance of Unit Brawllook promising. They
make us confident about its stability, so we plan an evaluation
with students in order to verify the effectiveness of the applied
game elements in enhancing the students’ interest towards testing
topics and their learning.

Index Terms—Software Engineering Education, Gamification,
Software Testing, Unit Testing, Java

I. INTRODUCTION

Nowadays, more and more areas of our society are sup-
ported by the direct or indirect use of some type of software.
Therefore, it can be deduced that software quality and correct-
ness ensure the ordinary course of our everyday life runs on
a regular basis. These two software aspects can be examined
by means of testing. that is verifying that the behaviour of a
system or its components matches their requirements.

Despite these premises, the activity of testing is often
overlooked, postponed, or performed poorly [1], leading to
user dissatisfaction, interruption of services, economic losses,
and, in the worst-case scenarios, risks to public safety.

In the educational field, the teaching of test-related concepts
is often absent or overshadowed; moreover, students them-
selves feel unmotivated to design and carry out tests, due to
the nature of the task, which is often considered repetitive and
inherently uncreative [2] [3]. The production of poorly-written
code, on the other hand, can lead to problems that might
remain hidden for a long time, and it may require difficult and
time-consuming activities to detect and correct the source of
the defects. Hence, it becomes necessary for academic courses
to introduce a structured and, yet, enjoyable way of teaching
software testing [4].

Gamification is defined as ”the use of game design elements
in non-game contexts” [5]. The main perceived advantage of
gamification is to enhance the motivation and engagement of
users of a particular task that they would not perform will-
ingly otherwise, ultimately improving their user experience.
Gamification elements have been applied in latest years in
many areas of society, from business to medical, from services
to marketing, leading to benefits when the mechanics are
applied and integrated with each other in the right way. In
academic literature, it is possible to find many tools leveraging
gamification for teaching purposes, concerning information
technology in general, but also software testing. Many of them
report positive results following the carried-out experiments
[6], although there are some studies [7] which report negative
effects, too.

With this work, we aim at designing and developing Unit
Brawl, a gamified platform to support students with the
development and testing processes in Java language, in order to
discuss its effects on students’ performances and involvement.
The final and desirable aim of this work is to improve the
quality of students’ learning about code development and
testing. The tool we propose is a multiplayer gamified envi-
ronment, to perform unit-level white and black box testing of
Java applications. To the best of our knowledge, the approach
we propose is the first attempt at introducing a significant
multiplayer gamified component to such testing activity.

Unit Brawl is intended to support practice classes in the
scope of the Object-Oriented Programming (OOP) course held
at the Bachelor Computer Engineering course at Politecnico
di Torino. The educational context where the application is
going to be exploited plays a fundamental role in the decision
of which gamification mechanics to implement and how to
integrate them. Considering its current version, Unit Brawl
could also be integrated into other Software Engineering teach-
ing realities other than Politecnico di Torino’s OOP course,
following the constraints and rules explained in the following
sections.

The remainder of the paper is structured as follows: firstly,
Section II explores other works related to gamification and
software testing topics; next, Section III illustrates the problem
and analyzes the proposed solution in terms of the adopted
gamification mechanics, and in terms of the design choices
for implementation; in Section IV we discuss the weaknesses

of the approach; lastly, in Section V we provide a final resume,
along with improvements and new directions that we aim to
follow as our future work.

II. BACKGROUND AND RELATED WORK

A. Software testing

Referring to the definition reported by the ”IEEE Standard
Glossary of Software Engineering Terminology” [8], software
testing is ”the process of operating a system or component
under specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system or
component”. Therefore, it can be deduced the importance of
this activity, which guarantees to track the presence of defects
in order to solve them before the product release.

There are various possibilities to categorize tests, based
on their goal or on their sphere of action. A first, useful
categorization concerns the level of specificity:

• Unit testing verifies the behaviour of single, isolated
software units;

• Integration testing combines the components and eval-
uates the interactions between them;

• User Interface testing is focused on the user interface
and on the possible interactions between the user and the
system;

• System testing is executed on the complete system;
• Acceptance testing is related to the relationship with the

stakeholders, allowing to prove the meeting of predeter-
mined requirements.

In his book ”Succeeding With Agile” [9], Mike Cohn
defines the ”test pyramid”, an execution strategy of tests
belonging to these categories. The pyramid is grounded on
the unit testing level, which needs a large number of tests:
at least one for each unit. Unit level is the starting point of
the testing process in order to intercept the first bugs in the
modules. Next, the above level is integration testing, whose
goals are – among others – to streamline the responsibilities
of the underneath level, and to verify that the different units
correctly embed. At the top of the pyramid is placed UI testing,
which can focus on verifying that graphical components are
correctly linked to their respective function.

It is worth mentioning an additional (by no means exhaus-
tive) classification, based on the employed techniques:

• Black-box testing, to analyze output data as a function
of input ones, ignoring interior features of the component
or system;

• White-box testing, to examine the application or com-
ponent’s behaviour after executing statements, paths or
branches;

• Mutation testing, whose goal is to find bugs in the
software by introducing changes and testing all these
versions;

• Exploratory testing, carried on by users who can freely
explore the system, increasing their level of knowledge
during the process.

The decision of which tests to implement in the development
phases depends on the goals to be achieved or on the aspects to
be analyzed. Black-box testing is meant to verify the functional
correctness of the System Under Test (SUT), providing inputs
to its modules or interfaces and verifying if the outputs match
the expected result, with no visibility of the code. Whilst,
white-boxing is meant to verify the correctness of the SUT
by having access to the underlying code and analyzing the
coverage and the paths followed on the source code. Mutation
testing consists in introducing small, intentional changes to
the source code of a program, and then running the original
test suite to see if any of the tests detect the change: if
the test suite is able to detect the changes, it is providing
good coverage of the program’s behavior, otherwise, it may
be missing some important cases and could be improved.
Finally, exploratory testing is a technique allowing testers to
conduct the activity in an informal and unstructured way. This
technique is often done in an incremental and iterative manner,
with the tester adjusting the approach based on what learned
about the application.

The testing techniques involved in Unit Brawl are black-box
and white-box testing, in order for the students to focus on the
coverage of the SUT requirements and code quality.

B. Gamification

In order to frame the gamification topic, Robson et al., with
MDE framework [10], provided a rigorous characterization
of what falls under the generic name of game element,
distinguishing between mechanics, dynamics, and emotions.

Mechanics are elements predetermined by the designers
of the experience and do not vary from player to player;
they concern actions players can take and the whole context,
with its rules and limits. Dynamics are behaviors and ways
to interpret and exploit mechanics which can be partially
predicted during the design phase, but which actually emerge
only after players join the experience. Lastly, emotions are
internal states in which players find themselves during the
various phases of the gamified experience; from the point of
view of the designer, they are the goal to be reached with
the choice of which mechanics to implement. All of these
elements influence each other and the success of the gamified
application will highly depend on how well they are integrated.

Another characterization concerning the existing game me-
chanics, the way they can be implemented, their effects, and
their relations is provided by the framework developed by Yu-
kai Chou in the so-called Octalysis [11]. In this framework, he
distinguishes eight different groups of gamification mechanics,
called Core Drives, according to the aspects of players’
engagement they concern (e.g. narration, sociality, loss, etc.).

In order to emphasize the importance of integration and
balancing between these categories, he subdivided them into
two different macro groups. One of them (”Right Brain”/”Left
Brain”) differentiates mechanics based on logical thinking
from the ones based on emotional aspects: the first ones result
to be used more widely due to their ease of implementation
and quickness in providing feedback, but their abuse would

Fig. 1. BPMN representing the workflow of to-be practice classes.

bring to stagnation, driving away potential users. The second
subdivision (”Black Hat” and ”White Hat”) deals with the
feelings the mechanics arouse in the user: some of them are
quicker in the results, but negative in the long run; others can
be used to balance with more long-term positive sensations.

Looking at the application of gamification in the software
testing field, various tools have been developed and in most
cases, they have led to positive results.

One of the most successful is Code Defenders [12]. It
is a turn-based gamified application with two roles facing
each other on a Java class: one is the attacker, and the
other one plays the role of the defender. The attacker has to
develop code mutants (variants of the class with the same
functionality), while the defender’s goal is to expand with
new test cases an existing test suite to find them out. The
game intelligently integrates mechanics belonging to narration,
sociality, creativity, and satisfaction deriving from progress.

In the field of Exploratory GUI testing, Fulcini et al. defined
a gamified framework [13] to make it more appealing and
effective, experiencing positive results. They implemented it as
a plugin for Scout [14], a tool that enriches the system under
test with information to support the tester. After each session,
a final score is assigned to the tester (taking into account her
interactions, time spent, and issues signaled), based on which
a leaderboard is generated. These two elements are introduced
as means to motivate the user, but they are supported by
others like a progress bar based on the number of interactions,
avatars, easter egg injection to insert a random factor, and
exploration highlights to give the testers feedback when they
discover new pages.

Shifting the attention to test data generation, Amiri-Chimeh
et al. developed Rings [15], a single-player mobile game with
a purpose, whose aim is to make users (with no programming
skill required) generate test data by solving puzzles. Puzzles
are strictly linked to constraints that identify some paths of
the program: solving a puzzle reflects finding input data that
executes the related code path. They consist of a pipe network
(with an entrance, an exit, branches, and filters) and rings

of different diameters, colors, and shapes within them. The
player’s goal is to configure the rings’ properties in order to
pass all the filters in at least one path from the entrance to
the exit. The game succeeds in making human-based test data
generation more fun, abstracting it from technical concepts by
integrating elements like points, rankings, and levels to give
players a way to appreciate their results.

III. PROPOSED APPROACH

A. Conceptualization

As stated above, the application context of Unit Brawl will
be the ”Object-Oriented Programming” course in Politecnico
di Torino, through which students learn concepts related to
object-oriented programming by means of the Java language.

Currently, students can attend weekly practice classes during
the course. They consist of exercises about writing one or more
Java classes with some methods to match predefined criteria.
A repository is assigned to each student, so they can upload
their solution by the deadline. After the deadline, a set of unit
tests is executed on each submission to evaluate it, and a test
report is sent by email to the respective author.

The scope of these practice classes excludes test develop-
ment: as a result, many students pay less attention to each
aspect of the requirements, and the submitted solutions present
failures. In the end, various bugs emerge after the execution
of the final tests. Moreover, the engagement of the students
typically declines in the long run: a descending trend is verified
in their attendance after a few weeks due to the non-mandatory
nature of the laboratories.

Our goal is to overcome these weaknesses by introducing
Unit Brawl , a gamified platform to enhance engagement
and user experience promoting participation in practice class
activities.

The main difference with the as-is reality is that each
exercise proposed during practice classes will not only involve
writing Java code, but also the related unit tests. When the
deadline is reached, each test suite will be executed against
every solution submitted by the other players in a battle-royale

Fig. 2. An example of a hypothetical session involving three players.

fashion. Students can also use a web application to manage
some aspects of the process.

B. Game rules

The workflow of to-be practice classes (shown in Figure 1)
is made of two main phases: coding and evaluation.

Coding phase begins with the presentation of the exercise,
which contains the description of classes to implement and
general requirements (such as names and methods’ signatures).
Students can fork an existing GitLab project (with a pre-
defined structure) and have two weeks to submit a solution
– i.e. commit and push to the repository – along with some
unit tests, whose maximum number varies according to the
complexity of the assignment. In this phase, students can push
their solutions on their repository as many times as they want:
each push will trigger a pipeline (implemented by means of
GitLab’s Continuous Integration) intended to verify that the
submitted tests satisfy the following conditions:

1) the test suite compiles;
2) the test suite does not exceed the maximum size (in

terms of number of test cases) allowed for that specific
practice class;

3) tests do not fail on a pre-defined (and undisclosed to the
students) ideal solution.

If any of the above conditions is not satisfied, students
can see a report through GitLab’s interface. Otherwise, their
tests are executed on their own classes in order to obtain the
coverage percentage and update a specific section of the web
application related to achievements.

Evaluation phase takes place when the deadline is reached
– two weeks –. To begin with, all the submitted solutions
undergo the same testing process described before, obtaining
1 point if they pass this step or getting filtered if they don’t.
At this point, the remaining solutions are tested by using the
test suites developed by all the other players: students get 1
point for each failure found by their tests on other players’
solutions and 1 point per each adversary test that does not
find any bug in her code. Suppose that players A, B, and C
each develop a single test case to be executed on the others’
code. The full tests outcome is represented in Figure 2; at
the end of the session, player C will score 5 points (1 point
for passing validation tests, 2 test cases detecting failures on

enemy code, 2 enemy test cases passing on their code); player
B will score 3 points (1 point for passing validation tests, one
test case detecting failures on enemy code, one enemy test
case passing on their code); player A will score 1 point for
passing validation tests.

C. Applied Game Elements

The selection of the gamified mechanics to implement was
made not just by taking into account the concept of gamifica-
tion itself, but above all focusing on the educational context
into which the platform will be integrated. Learning is a highly
subjective experience, so we concentrated on gamification core
drives that could be as generalizable as possible: the main
drive is the competition one, but it is supported by elements
concerning sociality, self-improvement, and self-expression.

Points are the foundation of the majority of the following
mechanics. Calculated as explained above, they play a dual
role: they represent the status – allowing the user to appreciate
its progress compared to herself or other players– and they are
exchangeable points, through which users can access aesthetic
customization.

Leaderboards are the main consequence of points’ integra-
tion. Their main goal is to show users’ progress in relation
to other players’ results. However, two potential issues were
found about their implementation:

• a full and completely visible leaderboard could demoti-
vate users with a lower ranked;

• an unbalanced leaderboard could lead users with few
points to give up practice classes.

To overcome these problems, we designed two different
types of leaderboards: one depending on the result of the single
practice class and a global one (Figure 3). These are generated
by points calculated as explained in the previous subsection:
the first 10 positions are shown with information about their
results and those of the two players ranked right above and
below her. By doing so, we reward players performing the best,
equally giving the other users clues about the achieved results.
Points related to the second type are accumulated lab by lab
and they are assigned to players according to the position
they reach in the specific practice class. In this way it is
possible to shorten distances between global positions, making
them insensitive to single points’ instabilities of single practice
classes.

Avatars 1 are one of the most powerful elements to balance
the competition drive. Their contribution is manifold:

• they stimulate creativity through customization;
• they exploit the desire to possess rare and expensive

items;
• they act as means of self-expression.

Users can buy different avatars through coins, which can be
obtained by converting points (one-to-one ratio) related to
practice classes.

Achievements have been introduced to further emphasize the
importance of reaching personal goals. Their objectives are not

1Avatars’ images are generated through getavataaars.com

Fig. 3. An example of the global leaderboard with players’ positions, avatars,
nicknames, and points.

strictly related to competition, but they aim at giving players
goals concerning other aspects of testing (for example, related
to tests’ coverage percentage on their solution) or platform
exploration. Each achievement is combined with a progress
bar in order to give players real-time feedback about their
progress. When the achievement is completed, the progress
bar disappears.

Finally, the scarcity of time is a concept intrinsic to practice
classes’ periodic nature. It gives the player the right state
of tension to feel the possibility to obtain benefits acting in
the short term, maximizing students’ focus and productivity.
Visually it is depicted through the expiration date of the
practice class, which turns into a progress bar as soon as the
deadline approaches in order to empower the sense of urgency
for the last short period of time.

D. Implementation

The system is made of four main components (Figure 4):
• A backend server, the center of the communications

between components; it contains business logic and man-
ages data access.

• GitLab’s Continuous Integration mechanisms, with
the aim of running tests on the submitted solution to give
players fast feedback without overloading the server.

• Two web frontends to give users (both students and
administrators) access points to interact with the system.

User experience has been designed starting from the study
of users’ possible interactions with the platform, leading
to the creation of prototypes, including low-fidelity (paper
prototypes) and high-fidelity (digital mockup) before the actual
implementation of the various parts [16]. Each design decision
was made without losing sight of the available computational
power.

The backend server has been developed by means of the
Express framework. The project is organized following a
stack-like structure, from routes and controllers to intercept
the request to modules to manage database access. Between

TABLE I
APPLIED GAME ELEMENTS

Game
Element

Purpose Octalysis Core
Drive

White
/ Black
Hat

Points Quantify user’s progress
and buy avatars

Accomplishment,
Ownership

White

Leaderboard Allow the user to appreci-
ate her progress compared
to other players’

Accomplishment,
Ownership

White

Avatar Balance the competition
drive

Ownership, Em-
powerment

White

Achievement Emphasize the importance
of reaching personal goals

Accomplishment White

Live
Feedback

Give players real-time
feedback about their
progress

Accomplishment White

Scarcity of
time

Maximize students’ focus
and productivity

Scarcity Black

these levels are placed the services, which contain the business
logic to manage requests and carry on game processes.

GitLab Continuous Integration (CI) pipeline is defined
in a specific file contained in the root repository and it’s
executed by a remote environment offered by GitLab itself.
The pipeline’s purpose is to validate the player’s solution
after each push on the repository, to get test coverage after
executing them on her own solution, and to send the data to the
server to update the achievements section. The user’s GitLab
nickname is attached to the request in order to allow the server
to associate requests coming from GitLab’s environment with
its identity. Furthermore, when a player joins a practice class,
it’s up to them to specify their repository’s URL so the server
can clone it before the validation phase starts.

Finally, the two web frontends have been developed lever-
aging the React library. React Bootstrap framework has been
used extensively to fasten the development and to give conti-
nuity to the user interface.

Players’ frontend contains sections to which is possible to
navigate, containing:

• Leaderboard, which allows users to consult the global
leaderboard;

• Labs (shown in Figure 5), to recover information about
expired or ongoing practice classes and to possibly join
the latest;

• Shop, to check the avatars full list and to buy them;
• About, which explains Unit Brawl’s rules;
• Profile, where players can find information about personal

data, past results, purchased avatars, and achievements’
completion percentage (Figure 6).

The administrator’s frontend gives the possibility to consult
the global and -– here — full leaderboard, past practice
classes’ results, to manage ongoing practice classes or to start
new ones, and to download reports concerning the state of the
system (players, practice classes, results, etc.).

Fig. 4. A Unified Modeling Language (UML) deployment diagram showing
the system components and the way they communicate.

Fig. 5. An example of the Lab section, showing Clodia’s position and the
ones right above and below her.

The current state of the implementation of the platform is
publicly available at this2 repository.

E. Preliminary Evaluation

A preliminary evaluation was carried on in order to verify
the application’s behavior and to collect performance metrics.

We started with a solution for a practice class held in the
academic year of 2021/2022 and we produced some variations
of it, in order to simulate solutions proposed by students. To
do so, we injected zero or more bugs in each variation and
we wrote tests in order to catch zero or more bugs in other
solutions.

Two sessions were carried on. Each one began with the
administrator logging into the system and starting a new
practice class, inserting – among others – ideal solution’s URL
and the maximum number of submittable tests (7) per each
solution. Students registered and logged into the system and
joined that practice class, specifying their solution’s repository
URL. Then, we forced the expiration of the practice class in
order to start the evaluation process.

The first simulation involved 3 solutions, each one passing
tests about compilation, the ones on the ideal solution, and
about the maximum number of tests allowed. The second
simulation involved 8 solutions, characterized as follows:

• 1 solution had a syntax error;
• 1 solution had an error in its tests, failing against the

ideal solution;

2https://github.com/antmat99/unit-brawl

Fig. 6. An example of the Profile section, showing player’s achievements
information.

• 1 solution contained 8 tests, exceeding the maximum
number allowed;

• 4 solutions passed the tests mentioned previously.
The system behaved consistently with the expectations.

Regarding the first simulation, each solution underwent the
final process, bringing to their score calculation. After that,
achievement completion percentages have been updated and
points related to the global leaderboard have been assigned.
The second simulation’s first three solutions got correctly
filtered, while the last four took part in the next steps.

With each student logging in, the web application showed
information in line with these outcomes.

IV. LIMITATIONS

The current implementation of Unit Brawl presents some
limitations related implementation aspects, discussed in the
following.

The first identified limitation concerns the GitLab’s Con-
tinuous Integration file, which is an asset prone to tampering,
being visible to and editable by the student who owns the
project. Possible mitigations are to treat as unreliable data
coming from this GitLab’s Continuous Integration (which
is already implemented) and to introduce a unified login
mechanism to associate GitLab’s usernames with the ones
stored by the server.

Additionally, analyzing some hypothetical game situations
we identified a possible way of exploiting the game mechanics
worthy of further investigation. It concerns the possibility for
a player to develop clone tests, i.e. writing multiple different
tests which find the exact same bug on an enemy solution. On
one hand, if clone tests actually find a bug, they will ensure
the player as many points as their number, on the other hand,
if they do not succeed in finding any bug, they will turn out
to be a waste of time and resources that the user could have
employed to cover more cases.

Regarding the generalizability of the platform, we consider
the battle-royale approach as applicable to any kind of veri-
fication and validation activity, therefore the game mechanics
described are not limited to white and black-box unit testing
of Java code. The generalizability of the approach is strongly
dependent on the tooling that is available for each possible
target language and considered testing phase.

The selection of the gamified mechanics to implement
has been performed based on state-of-the-art literature, by
implementing the most widely adopted mechanics. As many
related works highlight, it is not guaranteed that gamified
mechanics tested on a specific activity will guarantee the same
outcomes when applied in different contexts. There is therefore
a possibility that some gamified aspects implemented may turn
out detrimental to the student’s engagement and learn in the
practice classes.

Lastly, despite being subjected to the preliminary evaluation
described previously, Unit Brawl is yet to be tested on the field.
A thorough evaluation with users is the next scheduled activity,
along with the analysis of its result to assess the effectiveness
of chosen game mechanics implementation.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced Unit Brawl, a gamified applica-
tion to foster unit testing activity in a Java course. It consists of
multiple rounds through which players develop Java programs
and unit tests to be executed on opposing solutions. The scores
computed in each round are used to build a general leaderboard
and can be converted to virtual goods that can be used to buy
avatars.

With Unit Brawl we aim to bring students closer to the
concept of testing, exploiting gamification to make this activity
more exciting and interesting to perform by integrating aspects
that go outside testing itself. Our final goal is to increase
students’ focus on the topic and, consequently, their quality
of learning about it.

Competition has been chosen as the main drive around
which to design the experience. However, elements like avatars
and achievements were integrated to provide cross-cutting
objectives, complementary to the competition one. By doing
so, we avoided generalizing the concept of learning to get
closer to as many ways of learning as possible.

After a preliminary evaluation, the system behaved consis-
tently, making us confident about the current implementation’s
stability.

As the immediate follow-up to this work, we plan to
perform a thorough evaluation of the gamified system, to
assess the benefits deriving from the gamification aspect in the
educational context. We plan to support all the practice classes
of the Object-Oriented Programming course (thereby during
an entire semester) with the platform, in order to evaluate the
learning benefits obtained by the students.

In parallel, we plan to implement and evaluate additional
gamification mechanics, by following well-established trends
in the literature related to the implementation of a narrative
for gamified tasks, and the utilization of graphical metaphors
to better resemble an actual game, and to abstract the activ-
ities performed by the students. The importance of having
metaphors to visualize metrics, or a problem to solve is
underlined by Balogh et al. [17], where authors use elements
of a virtual city (e.g. building, gardens, ...) to represent various
code metrics.

REFERENCES

[1] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the ide: Patterns, beliefs, and be-
havior,” IEEE Transactions on Software Engineering, vol. 45, no. 3, pp.
261–284, 2019.

[2] G. Fraser, A. Gambi, and J. M. Rojas, “Teaching software testing with
the code defenders testing game: Experiences and improvements,” in
2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2020, pp. 461–464.

[3] D. Towey and T. Y. Chen, “Teaching software testing skills: Metamor-
phic testing as vehicle for creativity and effectiveness in software test-
ing,” in 2015 IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE), 2015, pp. 161–162.

[4] M. Marabesi and I. Frango Silveira, “Towards a gamified tool to improve
unit test teaching,” in 2019 XIV Latin American Conference on Learning
Technologies (LACLO), 2019, pp. 12–19.

[5] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “c,” in Proceedings
of the 15th International Academic MindTrek Conference: Envisioning
Future Media Environments, ser. MindTrek ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 9–15. [Online].
Available: https://doi.org/10.1145/2181037.2181040

[6] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work? – a
literature review of empirical studies on gamification,” in 2014 47th
Hawaii International Conference on System Sciences, 2014, pp. 3025–
3034.

[7] C. Almeida, M. Kalinowski, A. Uchôa, and B. Feijó,
“Negative effects of gamification in education software: Systematic
mapping and practitioner perceptions,” Information and Software
Technology, vol. 156, p. 107142, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584922002518

[8] “Ieee standard glossary of software engineering terminology,” IEEE Std
610.12-1990, pp. 1–84, 1990.

[9] M. Cohn, Succeeding with Agile: Software Development Using Scrum,
1st ed. Addison-Wesley Professional, 2009.

[10] K. Robson, K. Plangger, J. H. Kietzmann, I. McCarthy, and L. Pitt, “Is
it all a game? understanding the principles of gamification,” Business
Horizons, vol. 58, no. 4, pp. 411–420, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S000768131500035X

[11] Y. Chou, Actionable Gamification: Beyond Points, Badges, and
Leaderboards. Createspace Independent Publishing Platform, 2015.
[Online]. Available: https://books.google.it/books?id=jFWQrgEACAAJ

[12] J. M. Rojas and G. Fraser, “Code defenders: A mutation testing game,”
in 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2016, pp. 162–167.

[13] T. Fulcini and L. Ardito, “Gamified exploratory gui testing of web
applications: a preliminary evaluation,” in 2022 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2022, pp. 215–222.

[14] M. Nass, E. Alégroth, and R. Feldt, “On the industrial applicability
of augmented testing: An empirical study,” in 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2020, pp. 364–371.

[15] S. Amiri-Chimeh, H. Haghighi, M. Vahidi-Asl, K. Setayesh-Ghajar,
and F. Gholami-Ghavamabad, “Rings: A Game with a Purpose for Test
Data Generation,” Interacting with Computers, vol. 30, no. 1, pp. 1–30,
02 2017. [Online]. Available: https://doi.org/10.1093/iwc/iww043

[16] M. M. I. of Technology, “Prototyping,” 2018, accessed: 2022-11-15.
[17] G. Balogh, T. Gergely, Beszédes, and T. Gyimóthy, “Using the city

metaphor for visualizing test-related metrics,” in 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 2, 2016, pp. 17–20.

