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Abstract: E-materials become e-waste once they have been discarded without the intent of reuse.
Due to its rich content of metals, among which many are Critical Raw Materials (CRMs), e-waste
can be considered an urban mine to exploit and valorise. Common metal refining is performed by
energy-intensive processes frequently based on the use of fossil fuel. Bio-metallurgy is a promising
alternative for e-waste valorisation based on biological routes of specialised microorganisms able to
leach solid-containing metals. Because of the physiology of these microorganisms, microbial leaching
can be economically feasible, besides being an environmentally sustainable process. Like Bacteria and
Fungi, Archaea are also capable of metal leaching activity, though their potential is underestimated.
Among them, the extremophiles are the most studied and applied in the field of metal recovery,
while mesophilic species are less common but still of high interest. Here we provide the state of
industrial application of bio-metallurgy and report on the state of the art of Archaea exploitation
in metal recovery from e-waste. Moreover, we give a special highlight to methanogenic archaea,
which are able to convert CO2 into methane in order to highlight the potential for the valorisation of
CO2-rich industrial streams generated by key processes (i.e., anaerobic digestion, concrete, and steel
production) in CH4 for gas grid distribution, while making metals content in e-waste available again
as raw material.

Keywords: e-waste; by-products; metals; critical raw material; bioleaching; archaea

1. Introduction

The growing demand for devices that are indirectly used in products, such as alu-
minium, steel, metals, concrete, cement, chemicals, wood, paper, plastics, lubricants, fer-
tilisers, and other construction materials, is the main global driver of industry GHG
emissions [1]. In the production sector, improvements in the efficiency of material extrac-
tion, processing and manufacturing alongside improved material substitution and service
efficiency, smartest designs, extended product and maintenance lifetimes, and increased
reuse are some of the measures which can be adopted to promote high energy efficiency.

Global economic development has raised the consumption of electric and electronic
equipment (e-materials), which includes a wide range of products with circuity or electrical
components with a power or battery supply. Besides everyday household and business use
(basic kitchen devices, toys, tools for music, and ICT items, such as mobile phones, and
laptops), e-materials are also used in transport, health, security systems, and renewable
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energy technologies, such as photovoltaics, and sensors or devices in the “smart home”
concept.

E-materials become e-waste once discarded without the intent of reuse, but due to
their different composition, e-waste can be unfairly harmful to the environment and human
health if not managed in an environmentally sound way.

On the basis of the European Commission (2012/19/EU) [2,3], e-wastes have been
categorised into 10 groups (i.e., the UNU-KEYS classification) according to comparable
average weights, material components, end-of-life qualities and lifetime distributions. The
10-EU classification is listed below:

(1) Large household machines (i.e., washing machines, refrigerators, dryers, air condi-
tioners, dishwashers, etc.);

(2) Small household machines (i.e., vacuum cleaners, microwaves, ventilation equipment,
toasters, electric kettles, electric shavers, calculators, radio sets, video cameras, scales);

(3) Information technology and communication (ICT) equipment (i.e., PCs, laptops,
mobile phones, fax machines, printers, telephones, and photocopiers);

(4) Consumer electronics (i.e., TV, VCR/DVD/CD players, hi-Fi sets, radios, train sets,
coin slot machines);

(5) Lighting Fluorescent lamps, high-intensity discharge lamps, and LED lamps;
(6) Electrical and electronic tools (i.e., drills, electric saws, sewing machines, lawnmowers,

large stationary tools);
(7) Toys (i.e., electrical and electronic toys);
(8) Leisure and sports equipment;
(9) Medical devices (surveillance and control equipment, medical instruments and equipment);
(10) Automatic dispensers.

From those, 54 sub-categories with approximately 920 end-of-life device products are
included. As a primary component common to almost all e-wastes, we should mention
printed circuit board (PCB) holding 28–30% of metals (copper > aluminium > nickel >
iron > tin > lead > precious metals) and 70–72% of non-metallic elements such as plastics,
ceramics, and polymers [4,5].

In 2019, 53.6 Mt of e-waste was globally generated, with an average of 7.3 kg per
capita. The global generation of e-waste has grown by 9.2 Mt since 2014 and is projected to
reach up to 74.7 Mt by 2030. The growing amount of e-waste is mainly fuelled by higher
consumption rates of e-materials, short life cycles, and few repair options [6]. The amount
of e-waste generated per capita in Europe is comparable to the Americas and Oceania,
although the EU collection and recycling rate is over four times higher. Nevertheless,
the fate of 44.3 Mt of e-waste in 2019 is uncertain, and its location and impact on the
environment are distributed differently among regions. In EU countries, about 0.6 Mt of
e-waste goes to waste bins [7]. Moreover, a considerable amount of e-waste is still exported
illegally with the excuse of being recovered or pretending to be leftover metal. Those
flows are usually undocumented and thus not traceable, although developing countries are
often the final recipients. The Transboundary E-waste Flows Monitor 2022 estimated that
5.1 Mt of e-waste passed through the borders in a controlled and uncontrolled manner in
2019 [8]. Of these, only the shipment of 1.8 Mt is controlled, while the remaining part is
moved without supervision, usually in a legal shipment. This “backyard recycling” poses
significant risks to the environment and to human health due to the toxic additives and
hazardous substances content of e-waste. Moreover, this uncontrolled trade creates the
premise for illicit management.

In 2019 were released, besides 50 t of mercury and 98 Mt of CO2-equivalents from
untreated refrigerants, corresponding roughly to 0.3% of global energy-related annual
emissions based on the International Energy Agency. The European Commission has
recently presented a new circular economy action plan that has among its priorities the
reduction of electronic and electrical waste. EC proposal addresses the principles of circular
economy, which range over product design, waste reduction, right to repair, reuse and
recycling of end-of-life products, materials, and components. Following all these solutions
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can be very challenging because it requires a deep structural change involving massive
technological investments that represent a prohibitive cost for the manufacturing sector
and SMEs [9,10]. However, a change must occur in order to improve the environment
and health system and guarantee the human rights of the countries which are involved
in the so-called “conflict minerals” [11]. In addition, proper recycling of e-waste and the
application of circular economy principles could mitigate the demand for raw materials
and lead to significant economic benefits for society.

E-waste can be considered a huge urban mine to be exploited as it contains up to
69 elements from the periodic table, among which about 50 elements are recognised as
critical raw materials (CRMs) [12–14]. Critical (e.g., cobalt, palladium, indium, germanium,
bismuth, antimony), precious (e.g., gold, silver, copper, platinum, palladium, ruthenium,
rhodium, iridium, and osmium), and other non-critical (aluminium, iron and cadmium)
metals in e-waste represent a secondary resource of raw materials. Many of those metals are
toxic (such as barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), lead
(Pb), lithium (Li), lanthanum (La), mercury (Hg), manganese (Mn), molybdenum (Mo) and
persistent organic pollutants (POPs) such as brominated flame retardants (BFRs) [15,16].
As Table S1 reports, the application of each element in industrial manufacturing can be
wide and diversified. Moreover, the use of some metals in renewable energy technology
is gradually increasing, as in the case of gallium (Ga), indium (In) and tellurium (Te) for
photovoltaic (PV) panels solar cells. Because of this, they are classified as critical. In this
regard, considering the increasing demand for and the average life of PV modules (i.e.,
20–30 years), it has been estimated that more than 78 million tons of them will reach the
end of life by 2050 [17]. Thus, proper disposal of dismissed PV panels should be a priority
in the rush to a carbon-neutral world. Other CRMs, such as platinum (Pt), palladium
(Pd), and rhodium (Rh), which are also part of the platinum group materials (PGM), are
largely used in catalysts manufacturing for automotive. Rare earth elements (REEs) such as
praseodymium (Pr), lanthanum (La), and neodymium (Nd) have recently found application
in battery manufacturing. Lanthanum is also used in alloys with nickel for H2 storage.
Currently, the EU’s primary material supply totally depends on China, South Africa, and
Latin America, which detain most of the metal reservoirs (Table S1). from this scenario, it is
clear how important is the recovery from spent devices of the elements discussed therein.

However, e-waste is not the only source of raw materials though it is the most obvious
one; also, by-products of industrial manufacturing generate a significant stream of waste
rich in critical metals, called “new scrap or process scrap”.

Vanadium (Vd), which is applied in the manufacturing of steel and battery, can be
found in the slag produced by the steel processing and titanomagnetite smelting, as well as
antimony (Sb) can be recovered from the wastewater from mining and smelting procedures.
In, Ga and Ge are obtained by the zinc refining process. Nb, mostly present in stainless
steel, can be sourced as a by-product of tin extraction. Te, which will enter the CRM list in
2022, can be recovered from the mud generated during copper refining via electrolysis. Pd,
a precious element among the CRMs, can be obtained as a by-product of nickel, copper,
and zinc refining beyond extracting it from natural ores.

Overall, the environmental implications of “industrial” metals depend on the metal
type; most are known on commonly used metals such as copper and iron, whilst limited
information is available for minor metals (e.g., niobium, indium, bismuth, germanium,
rhenium, hafnium) although their application is gradually increasing [18]. In this regard,
the Compound Annual Growth Rate (CAGR) of world production, either for raw or
refined materials, which is reported in Table S1, is a useful indicator attesting to the raw
material demand. For instance, Ga, Li and Te have a CAGR value of 16%, 17% and
15%, respectively, which is representative of a growing market in the sector of battery
and PV cell manufacturing. The economic value of raw materials in the global e-waste,
including both documented and not documented flows, generated in 2019 is equal to
approximately 57 billion €. Iron, copper, and gold contribute mostly to this value. However,
only 4 Mt of raw materials, corresponding to roughly 10 billion € gained and 15 Mt of
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CO2 saved, can be recovered from properly recycled e-waste (9.3 Mt). To have an idea
about the huge potential of e-wastes as a source of raw material, you can visit the ProSUM
project dashboard (ProSUM project, EU Horizon 2020, grant agreement N◦ 641999) [7],
which shows all available data on products placed on the market, stocks (in use and
hidden), composition and waste streams for e-wastes, vehicles and batteries for Europe,
Switzerland and Norway. The end-of-life—recycling input rate (EOL-RIR) is a circular
economy indicator that provides information about the contribution to the production
system from recycling end-of-life scrap but not processed scrap. The EOL-RIR values
reported in Table S1 are available for a few elements and never reach 50%, meaning that
the input of scrap metals is not fully exploited. The most recycled element is tungsten (W),
followed by two precious metals, i.e., rhodium (Rh) and palladium (Pd), while other metals,
such as Ge and Mn, have a low EOL-RIR.

In contrast, we reported the import reliance (IR) indicator for primary and refined
materials, also part of circular economy parameters for CRM assessment, which reveals EU
dependence on other world countries for raw and processed materials provision (Table S1).
The IR values for REEs are equal to 100% because rare elements are mostly available in
mineral deposits and in a very low amount worldwide. Thus, Europe totally depends on
the import. Also, the supply of processed material based on Li, Mg, Nb, Sc, and Y elements
totally relies on exporting countries. Although copper (Cu), iron (Fe), including steel, and
molybdenum (Mo) are not critical, their demand (CAGR value) has increased over the
last decades.

Given the undeniable value of e-waste and its implication for human and environmen-
tal health and safety, the development of a renewable recycling system offers a valuable
solution to reduce the environmental and health risks and the economic losses associated
with e-waste abandonment. In this context, biological metal recovery is emerging as an
alternative to traditional energy-consuming metallurgy processes. With this review, we
aim to provide the state of the art on microbial- and especially archaeal- application at both
research and industrial level in the recovery of metals from e-waste. Particular attention
will be given to methanogenic archaea, in the perspective of coupling CO2 conversion to
biomethane with the use and recovery of metals.

2. Recycling E-Waste via Biological Route

The metallurgy process for metal refinement frequently requires energy-intensive
melting steps based on the use of fossil fuel. Pyrometallurgy, hydrometallurgy and biohy-
drometallurgy are three variants of metallurgy that differ in the mechanism of extraction.
While pyrometallurgy uses heat power, hydrometallurgy applies redox chemical reactions
in an aqueous or organic liquid solution. Biohydrometallurgy works similarly to hydromet-
allurgical processes, except that the reagents are directly supplied by the microorganisms
because of the by-products of their metabolic reactions. Research is rapidly evolving to
manage the challenges in recycling e-waste for metal recovery through both chemical and
biological routes. As part of the chemical method, hydrometallurgy is a well-established
process for metal leaching from both primary and secondary resources [19,20]. Conversely,
biohydrometallurgy is still under investigation in several aspects, such as the physiology
of less explored microorganisms, bioprocess operation and scalability [21–23].

The biological route is carried out by specialised leaching microorganisms which
implement strategies for recovering metals against their scarcity in the environment.

The microbial systems acquire metals necessary for metabolism and counteract the
adverse effects of toxic metals to protect the cell by using a whole repertoire of mechanisms
and to acclimatise themselves to hostile environmental conditions [24]. Microbial growth,
metabolism and differentiation are intimately linked to the biogeochemical cycle of metals.
The metals can be classified into three categories based on their different physiological
roles: (a) vital and non-toxic, such as Ca and Mg; (b) vital but toxic at elevated levels, such
as Fe, Mn, Zn, Cu, Co, Ni, and Mo; and (c) toxic, such as Hg and Cd [25,26]. Metals such
as aluminium (Al), antinomy (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi),
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cadmium (Cd), gallium (Ga), germanium (Ge), gold (Au), indium (In), lead (Pb), lithium
(Li), mercury (Hg), nickel (Ni), platinum (Pt), silver (Ag), strontium (Sr), tellurium (Te),
thallium (Tl), tin (Sn), titanium (Ti), vanadium (V), and uranium (U) have no established
biological functions and are considered as non-essential metals [24]. Nevertheless, there is
evidence of microbial removal of some of these non-essential metals [21–23,27].

Natural sources of metal-leaching microorganisms are mine sites or acid mine drainage
samples, though other sources exist (e.g., brines and sediments, sludge from anaerobic
digestion plants) [28]. Due to the physiology of these microorganisms, bioleaching can be
economically feasible (e.g., in situ processing is viable thanks to the simplicity of technology
design and operating conditions; the possibility of reusing existing facilities; and reason-
able capital and operating costs) and eco-friendly approach with higher efficacy, safety
and ease of control [29]. Furthermore, the waste streams, including toxic gas emissions
and wastewater, are more restricted and controlled in the context of microbial leaching.
However, reaction kinetics can be pointed out as the main limitation of biohydrometallurgy
processes, being strictly dependent on the characteristics of the biocatalyst.

Factors affecting the bioleaching process include pH, temperature, oxygen, and carbon
dioxide supply, as well as nutrients in the medium. pH is selective only for certain metal
compounds (e.g., carbonates, common oxides, acid-soluble sulphides), and of course, it is
also a filter for microbial growth and activity [30–32].

Bioleaching essentially occurs via autotrophic and heterotrophic mechanisms, with
the former being either direct or indirect, whilst the latter being only indirect [27,31], as
depicted in Figure 1.

Direct bioleaching implies the contact between microorganisms and metallic materials.
This is valid for both single- and double-step processes, where the solid containing metals
are mixed with microorganisms from the beginning or during the exponential microbial
growth, respectively. Though direct and indirect bioleaching are both effective methods,
the first one may run into the inhibition of microbial activity due to the toxicity of leached
metals [31]. However, direct contact promotes the adhesion between microorganisms and
the solid surface, mediated by the formation of biofilms and the uptake or complexation
of metals through the excretion of bio-lixiviants and chemicals that perturb the environ-
mental state, respectively, ending with the release of metal ions into solution. Recently,
insights into the mechanism of interspecies communication within the archaeal biofilm
and its regulation have enabled a deeper understanding of the bioleaching processes [33].
Autotrophic bioleaching uses carbon dioxide as a carbon source and iron Fe (II) or sulphur
S (0) as the main energy sources to carry out their oxidation [34]. The general chemical
reactions occurring in bioleaching are extensively reported in several studies [29,35,36]
and more recently by Magoda K. and Mekuto L. (2022) [37]. Sulfur-oxidising bacteria
(e.g., Acidithiobacillus thiooxidans,), iron- and sulphur-oxidising bacteria (Acidithiobacillus
ferrooxidans) and iron-oxidising bacteria (Leptospirillum ferrooxidans) are the most employed
autotrophs in bioleaching processes because of their resistance to heavy metal toxicity and
their simple nutritional requirements [38]. The consequent acidification due to the produc-
tion of sulfuric acid and ferric ions causes metal dissolution, although for acid-insoluble
sulphides or some metal oxides. Metals can be recovered either through biological oxida-
tion, when the metal is soluble at a high oxidation state, or biological reduction, occurring
when the metal is more soluble in a low oxidation state (e. g., Ni, V, and Mn) [39]. In
contrast, heterotrophic bioleaching occurs via an indirect mechanism based on organic acids
(e.g., citric or oxalic acid), ligands (e.g., chelators and siderophores) and exopolysaccharides
(EPS) biosurfactants [33]. Among archaea, Haloferax mediterranei has been chosen as a model
organism for EPS production, achieving a technological level of readiness (TRL) of 2 [40].
Heterotrophic bioleaching can be performed via acidolysis (Acidothiobacillus ferroxidans
and Leptospirillum ferroxidans) or complexolysis (Chromobacterium violaceum, Pseudomonas
aeruginosa, Pseudomonas flourescens, and Bascillus megaterium). In acidolysis, organic acids
produce complexes with metal ions to enhance their mobilisation through a protonation
mechanism, while complexolysis occurs when a chelating agent combines with metal on the
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surface or via biosurfactants acting as complexing agents. A third possible mechanism for
heterotrophic bioleaching is the Fe (III) or (Mn (IV) dissimilatory reduction under anaerobic
conditions in complex media, where the oxidation of organic matter is coupled to the metal
reduction Shewenella putrfaciens is a reference microorganism for this process [41].
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Figure 1. Bioleaching: mechanisms and strategies. (A) Heterotrophic and autotrophic bioleaching
occurring in natural minerals deposits and in e-waste recovery processes resulting in free metal ions
and metal oxides; (B) Direct (one-step and two-step) and indirect approach to bioleaching process.
In direct bioleaching, e-waste is introduced during the initial microbial growth phase (one-step) or
exponential growth phase (two-step). In indirect bioleaching, only microbial metabolites interact
with e-waste.

Bioleaching has been successfully applied in indirect and direct approaches for the
recovering of valuable metals (i.e., Ni, Si, Cu, Ga, Mg, Te, Zn) from the dismissed light
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emitting diode (LED) [27], end-of-life PV solar cells [42], printed circuit board (PCB) [4]
and other e-waste [19,43–45].

2.1. Interactions between Archaea and Metals

Microorganisms belonging to the Archaea domain are widely recognised as cos-
mopolitan organisms capable of adapting to either natural or anthropogenic environments
characterised by extreme life conditions (i.e., natural gas and oil reservoirs, acid mines,
hydrothermal vents) [46–50]. The relation between metals and thermophilic archaea stems
from their natural ability to live at high temperatures and high-metals concentrations [25],
thanks to unique cell wall structures, thermostable enzymes, and metabolic features [51].

Archaea also requires metals because of their role in enzymatic structures and co-
factors, as final electron acceptors, or for sustaining their growth with metal enzymes and
for pathways requiring metal ions as co-factor constituting the archaeal metallosome [48].

Genomic and proteomic studies allowed for the identification of similarities between
archaeal, bacterial and eukaryotic metallosome, with the most common domains coding for
Fe-, Co-, and Zn- binding proteins and only a low percentage coding for binding domains
(<0.3%) for Ni-, Cu-, and Mo- [52]. Nonetheless, a higher percentage of Fe- binding domains
were identified in archaeal genomes (≈7.1%) when compared to bacterial (≈3.9%) and
eukaryotic (1.1%) ones. Although less represented, metal binding domains related to Ni-,
Co- and Cu- utilisation/transport were also identified in archaeal genomes [52,53]. Table 1
resumes the roles that the previously mentioned metals have in Archaea.

Table 1. Physiological role of essential metals in some selected species of Archaea.

Metal Microorganism Function in Archaea References

Fe-

Halobacterium spp.,
Methanosarcina spp.,

Methanobacterium spp.,
Sulfolobus spp., Thermoplasma

spp., Ferroplasma spp.,
Pyrobaculum spp.

Fe (II)oxidation, Fe (III) reduction,
Fe4S4-ferredoxin, Fe4S4 cluster for S-

adenosylmethionine cleavage,
Ni-Fe hydrogenase

[48,52,54–56]

Zn- n.s. “Small proteins” class genes (Zn finger
motifs and Really Interesting gene (RING)) [52]

Co-
Methanosarcina spp., Sulfolobus

solfataricus, Thermoplasma
acidophilum

Found in co-enzyme B12 structure, Ni/Co
uptake system [57,58]

Ni- Sulfolobus spp., Halobacter spp.,
Methanococcus spp.

Enzymatic co-factor for different
enzymes:Ni-Fe hydrogenase, CO

de-hydrogenase, methyl-CoM
reductase, urease

[56–58]

Cu-
Halobacterium spp.,

Methanosarcina spp.,
Methanobacterium spp.

Copper-binding proteins, N2O reductase [54]

Mo-

Sulfolobales spp.,
Halobacteriales spp.,

Methanosarcinales spp.,
Methanococcales spp.,

Methanomicrobiales spp.

Molybdenum co-factor (Moco) involved in
W utilization [59]

With archaeal life requiring metals that are classified as CRMs (i.e., Co) and toxic
materials (i.e., Ni, Co, Mo) and being capable of storing them in cellular structures (i.e.,
enzymes, co-factors, proteins) applications of archaeal cultures for metal detoxification and
recovery surely sounds appealing. Furthermore, different studies have highlighted how
archaeal-driven biotechnological applications (i.e., biomethanation, anaerobic digestion)
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need a stable supply of trace metals, including Fe, Co, Ni, Cu, and Mo, in order to maintain
process stability [60–64].

A possible solution for economically viable metal recovery could be represented by
its integration within already operating processes. In this logic, the modulation and fine-
tuning of waste metals, supplied as nutrients, could sustain the systems requirements
while increasing the sustainability of the process through the integration and valorisation
of different waste streams.

Although most knowledge about the interaction of archaea with metals focuses on
the role of Fe, Co, Ni, Cu, and Mo, many sources have reported interactions with non-
essential metals, also listed as CRMs, precious and toxic elements (i.e., As, Cd, Pt, V, and
U) [21–23,27]. A deeper insight regarding such archaea-metal interaction will be provided
in further sections.

2.2. Bioleaching among Archaea

Despite the peculiar ubiquities and the great biotechnological potential of Archaea,
Bacteria and Eukarya have always dominated the scene in terms of research studies,
industrial application, and public perception. As detailed in the review authored by [40] on
the current status of archaeal cell factories in bioproduction, few companies are investing in
Archaea, while commercialisation is limited to extremophilic genera, which are suitable for
applications in industrial processes under harsh conditions [65]. As regards the biomining
and bioleaching industry, the engagement of Archaea is very limited, while research
studies are mainly restricted to thermoacidophiles genera, often cultured with bacterial
species whose leaching ability has already been validated [25,66]. However, archaea
are also members of non-extreme environments [67]. Thus, the scenarios of possible
industrial applications and their operating conditions are multivariate. A panoramic of
CRMs typically contained in e-wastes and targeted by the Archaea herein discussed is
presented in Figure 2.
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2.2.1. Extremophile Archaeon

Several species of thermoacidophiles Archaea, such as Acidianus sp, Ferroplasma aci-
dophilum, Metallosphaera sp, Metallosphaera sedula, have been identified in stirred-tank min-
eral bioleaching and bio-oxidation operations [68]. Other species isolated from a hydrother-
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mal pool and mineral sulphide ores, respectively Acidiplasma aeolicum and Acidiplasma
cupricumulans [69], can oxidise and reduce iron. The Sulfolobacaee family comprises
species representative of acid hot spiring able to oxidise elemental sulphur (i.e., Sulfolobus
acidocaldarius DSM 639, Sulfolobus solfataricus P2, Sulfolobus tokodaii JCM 10545, Stygiolobus
azoricus DSM 6296) [70,71]. Among Thermoplasmatales, we can mention Picrophilus torridus
and Thermogymnomonas acidicola JCM 13583, which inhabit dry solfataric fields [72,73],
Thermoplasma acidophilum DSM 1728 and Thermoplasma volcanium GSS1 [74], respectively
identified from coal refuse piles and hot acid springs. Novel species isolated from acid mine
drainage (AMD), such as Cuniculiplasma divulgatum JCM 30642, Candidatus Micrarchaeum
acidiphilum ARMAN-2 NIA Candidatus Parvarchaeum acidiphilum ARMAN-4 NIA Candidatus
Parvarchaeum acidiphilum ARMAN-5 are likely capable of oxidising metal sulphides [30].

Heavy metals, such as As, Hg, and Cd, can be remediated by several extremophilic
archaeon species [39]. Sulfolobus acidocaldarius strain BC was isolated in an acidic, sulfuric
thermal spring in the Yellowstone National Park and recognised to be capable of oxidising
arsenite As (IV) to arsenate As (V) [75]. Other Archaea strains, such as Aeropyrum pernix K1,
Pyrobaculum calidifontis JCM 11548, and Sulfolobus tokodaii 7 and the genus Halorubrum con-
tain arsenite oxidase genes [76–78]. Sulfolobus solfataricus species, Halococcus, Halobacterium,
and, to a lesser extent, Haloferax genera were capable of mercury Hg (II) volatilisation
into Hg (0), thanks to the presence of mercury reductase genes [79–81]. Halobacterium
noricense stands out for its ability to adsorb cadmium [82], while Haloferax strain BBK2
uptakes cadmium intracellularly [83]. Among metalloids included in the CRMs list, Si is of
primary importance given its large application in PV solar cells. The hyperthermophilic
sulphur-metabolising Pyrococcus abyssi was fossilised during and after exposure to a silica-
saturated solution (about 500 ppm of SiO2) in a simulated hydrothermal environment [84],
demonstrating the ability to bind silica at the S-layer sites and integrate it in replacement of
the cell wall.

Based on the above-mentioned studies, thermophilic and hyperthermophilic archaea
can be applied in many types of high-temperature metal-contaminated waste streams, while
haloarchaea can be used in the treatment of hypersaline environments and wastewaters for
heavy metal removal.

2.2.2. Methanogenic Archaea

Methanogens, which already play an important role in the global methane (CH4) cycle
by producing CH4 via methanogenesis, can also recover many critical, platinum group
metal (PGM) and non-critical metals from the —end-life products, mining residues and
waste streams.

Consortia

It has been stated in many studies that anaerobic granular sludge is efficient in PGM
metals recovery (Figure 2). The work by Espadas et al. reports Pd (II) removal via reduction
to Pd (0) nanoparticles or biosorption into the biomass of a methanogenic granular sludge
from a full-scale up-flow anaerobic sludge blanket (UASB) reactor processing brewery
wastewater [85]. While the reduction route was supported using external H2, formate,
and ethanol, the biosorption dominated when acetate, lactate and pyruvate were added
as external electron donors. A more recent study determined the ability to reduce Pt (II)
and Pt (IV) to Pt (0) with the same anaerobic sludge applied by Pat-Espadas et al. 2018 [85].
Rh (III), which is one of the rarest elements in the geosphere (about 0.001 ppm), was
also reduced to Rh (0) nanoparticles, with ethanol as an external donor of electrons [86].
Ramos-Ruiz et al., 2016 highlighted the potential of anaerobic granular sludge from a
methanogenic reactor as a biocatalyst for the reduction of both Te (IV) and Te (VI) to
produce Te (0) nanoparticles [87]. Methanobacterium genus was detected as predominant
among the archaeal community populating a fluidised bed reactor applied to lithium-ion
batteries (LIBs) leaching via biogenic hydrogen sulphide [88].
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Pure Culture in H2/CO2

Compared to consortia, pure culture applications present some advantages in terms
of process reproducibility and simplicity. However, while pure cultures usually require
more strict conditions (e.g., nutrient demand and key process parameters), consortia are
typically more robust [60]. The mesophilic hydrogenotrophic strain Methanobacterium
bryatii BKYH has been isolated from a copper mining area in the Upper Peninsula of
Michigan and is able to chelate Cu by secreting a specific protein in response to copper
exposure [89]. Increased Cu concentration in the medium results in the production of an
extracellular Cu response- (CRX) protein encoded by the crx gene and promoted by an
archaeal Cu-responsive promoter, which could be synthesised as part of a more generic
stress response [90].

Zhang et al., 2014 published the first study reporting methanogenic archaeal strains
as capable of reducing vanadium (V) [91], classified as CRM in 2022 (Table S1; Figure 2).
Methanosarcina mazei and Methanothermobacter thermautotrophicus could reduce up to 10 mM
and 5 mM of vanadate V(V) to vanadyl V(IV), respectively, inducing solid extracellular
precipitation as the bioreduction occurred at the cell membrane level. However, at some
point, methanogenesis stops with vanadyl generation, possibly due to the redirection of
electrons from methanogenesis to vanadate reduction.

According to Singh et al., 2016 Methanothermobacter thermautotrophicus is capable of
reducing Co (III) present at a maximum concentration of 4 mM [92] and can reduce up to 1
mM of Cr (VI) to Cr (III) without an inhibitory effect on methanogenesis and cell growth
through an intracellular and extracellular reduction mechanism [93]. Holmes et al. re-
ported the potential role of acetoclastic methanogens belonging to the genus Methanosarcina
in reducing U(VI) present in contaminated groundwater [94]. After a period of acetate
amendment in the field, the predominance of Methanosarcina corresponded to methane
accumulation and U(VI) reduction. Like Pyrococcus abyssi, the hyperthermophilic, hy-
drogenotrophic methanogen Methanocaldococcus jannaschii could bind Si on its cell wall and
accomplish the silicification mechanism, but only when metal cations, particularly Fe (III),
were present [95]. However, a more detailed comprehension of this mechanism is pivotal
in order to understand its exploitability in the recovery of Si-rich wastes.

2.2.3. Adverse Interactions between Methanogens and Critical Metals

Despite both methanogenic consortia and pure cultures have been proven capable
of reducing different metals, studies have also reported potential issues related to the
metal-methanogen interactions as:

• Inhibition and toxicity: 50% inhibiting concentrations (IC50) for Cd, selenite, tellu-
rite, and tellurate have been investigated on methanogenic consortia, with aceto-
clastic methanogens displaying higher IC50 (IC50Cd 8.6 mg/L, IC50selenite 24.1 mg/L,
IC50tellurite 8.6 mg/L, IC50tellurate 10.2 mg/L) than those of hydrogenotrophic methanogens
(IC50Cd 2.9 mg/L, IC50selenite 18 mg/L, IC50tellurite 8.6 mg/L, IC50tellurate 10.2 mg/L) [96].
Similarly, IC50 for Pd(II), Pt(II) and Pt(IV) for methanogens were reported at 2.7, 2.4
and 3.7 mg/L, respectively [85], whilst full inhibition of methanogenesis occurred at
Pt(II) concentration higher than 5 mg/L [97];

• Competition between metal reduction and methanogenesis: Methanogenesis, both in
anaerobic digestion and in the biomethanation process, requires electron donors to
reduce CO2. When considering the bioleaching process, the addition of an external
electron donor is often needed due to the competition for electrons that are redirected
from methanogenesis to metal reduction [91]. In an anaerobic granular sludge, endoge-
nous substrates can provide sufficient electron equivalents for the leaching of metals
of interest, although reduction rates may increase with excess electrons, as reported
by [87]. Among external electron donors to be added to methanogenic anaerobic
sludge, ethanol is considered a safe and economical option. Fermentation of ethanol
by the acetogenic community populating the granular sludge generates H2 that is
then redirected to metal reduction. However,it should be mentioned that some studies
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have described the abiotic reduction of some metals through direct chemical reduction
by H2 and formate [85,97,98].

2.2.4. Anaerobic Methanotrophic Archaea (ANME)

Microorganisms play an important role in the global CH4 cycle that is controlled
by the balance between anaerobic production via methanogenesis and CH4 removal via
methanotrophic oxidation. Methane oxidation is anaerobic (AOM) in more than 90%
of cases [99]. AOM can be coupled to other electron acceptors besides the well-known
sulphates SO4

2−, such as nitrates NO3− (N-DAMO), or metals such as manganese Mn (IV),
iron Fe (III), As (V), Cr (VI), Se (VI), Sb (V), V (V), and Br (V) [100] through the establishment
of a syntrophic partnership as electron sinks. However, it is not fully elucidated whether
the reduction of metallic electron acceptors is independent or supported by electron transfer
to syntrophic partners, interspecies electron transfer, nanowires or conductive pili [101].

The study by Zhang et al., 2020 investigated the bio-reduction of vanadate V(V) present
in groundwater using an anaerobic sludge inoculum taken from a wastewater treatment re-
source [102]. Biological mediated vanadate removal, corresponding to 95.8 ± 3.1% of 1 mM,
occurred after seven days of incubation using CH4 as the sole electron donor. Microbial
community analysis revealed a more significative change in the archaeal population than
in the inoculum, with a massive presence of the Methanobacterium genus, which is known
to oxidise methane via reverse methanogenesis, and the hydrogenotrophic methanogens
belonging to Methanomassiliicoccus. Thus, vanadate reduction occurred through the anaero-
bic oxidation of methane and synergistic interactions with methane-oxidising bacteria such
as Methylomonas. Evidence of the reduction of antimonate Sb (V) to Sb (III) using CH4 is
reported by the work of Lai et al., 2018 [100] in a membrane biofilm batch reactor inoculated
with a pre-enriched culture with methane and Sb (V), Figure 2. Increasing concentrations
of Sb (V), 0.41, 0.82, 1.6 mM, at different stages of the experiment were 100% biologically
reduced in the form of Sb2O3 crystal precipitates. The Archaea community was widely
enriched during the different operational stages, where Methanosarcina and Methanolobus
genera were the two most abundant methanogens, with the former being predominant.
Other studies suggested a key role of the methanogenic archaea Methanosarcina in AOM
via reverse methanogenesis, as in Luo et al., 2017 where the electron acceptor was Br (V)
in the form of BrO3− [103]. A possible explanation is the close phylogenetic relationship
between ANME-2a/b, ANME-2c, ANME-2d, and ANME-3 and Methanosarcinales [104].
The archaea family ANME-2d, also knowns as Methanoperedenaceae lineage, was found to be
able to oxidise methane through Mn (V) reduction in a bioreactor supplied with CH4 and
pulse of birnessite operating for 480 days [105]. The inoculum originated from a bioreactor
inoculated with freshwater sediment and performing AOM via Fe (III) reduction. The
average Mn (II) production rate was 0.185 mmol L−1 day−1 with a methane consumption
rate of 0.045 mmol L−1 day−1.

3. EU-Founded Projects Involving Bioleaching for CRMs Recovery

In the last two decades, several projects aiming at applying bioleaching to mine waste
(MW) recovery and e-waste recycling have been funded by the EU. An overview of both
active and completed projects– currently a total of 12 to the best of our knowledge- is
available in Table 2.

Ongoing projects such as BIORECOVER and RAWMINA, together with RUBICON
and BIOCriticalMetals projects, target specifically the extraction of CRMs. BIORECOVER
and RAWMINA projects aim at developing sustainable bioleaching processes for the
selective extraction of CRMs from unexploited primary and secondary sources and MW
up to a Technology Readiness Level (TRL) of 5 and 7, respectively [106–108]. Specifically,
BIORECOVER targets the selective extraction of CRMs, REEs, magnesium and platinum
group metals through the isolation of microbial consortia populating raw material and
their application as pure or mixed culture [106,107]. RAWMINA aims at integrating
bioleaching and nano-based materials in a continuous pilot-scale process for the recovery
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of Sb, Co, Ge, and W from unexploited/underexploited metal-containing materials, to be
employed in products, such as batteries, flame retardants, optical fibres, and industrial
tools [106,108,109].

Similarly, RUBICON applied a novel bioleaching strategy for the exploitation of
natural metal sources, such as laterites, polymetallic deep-sea nodules and sulfide ore
deposits, using a downstream process for the specific recovery of cobalt, scandium, nickel
and other solubilised metals (e.g., Cu, Zn, V and Mn) in a pilot-scale process at TRL 4-5 [110].
Finally, BIOCriticalMetals defined the bioleaching potential of a different microorganism
isolated from a mining site consortium for critical high-tech metals, such as W, In, Ga, Te,
and Mo, contained in the mine waste tailings. This enabled the creation of a microbial
consortium that has been successfully tested at the reactor scale [111].

Among the 12 reported projects, only one, BiotaWEE, focused on the recycling of
e-waste rather than the recovery of metals from mineral ores. BiotaWEE project aimed
at the recovery of valuable metals (e.g., Cu, Ag, and Au) from the non-metallic fraction
(NMF) of PCBs of different e-waste, applying an innovative 2-step bioleaching technol-
ogy, combining an aerobic and an anaerobic process [112]. The project demonstrated the
feasibility of this 2-step bioleaching process for the recycling of the suction dust from
PCB mechanical treatment rather than the NMF. While a 2-step bioleaching technology,
combining two aerobic steps, the first for base metal treatment and the second for precious
metals, was successfully applied to both NMF and suction dust metal extraction [112].
During the 2-step bioleaching (anaerobic + aerobic) of suction dust, siderophilic (68% Co,
60% Ni, 40% Mn) and calcophilic (100% Sn, 75% Zn, 70% Cu, 46% Cd, 50% Tl) elements
were extracted in the aerobic phase, together with CH4 produced in the anaerobic phase
(up to 62% in reactor headspace). Overall, recovery yields reached 182 Kg Cu, 0.24 Kg Ag
and 0.021 Kg Au per ton of PCBs treated. Moreover, the implementation of this technology
would avoid the incineration of 300 t/year of PCBs, with consequent reduction of waste
and hazardous effluent generation (3.88 t/t PCBs, compared to a hydrometallurgical pro-
cess), CO2 production (45%) and operative costs (38%) [112]. Eventually, these projects will
contribute to increasing the sustainability of European industry, decreasing its dependence
on CRM import, and reducing production costs and environmental impacts. Along with
enhancing applied research on bioleaching-related technologies, several companies have
turned toward this area to make their production more sustainable through metal recovery
and e-waste valorisation. The commitment to bioleaching technology has grown expo-
nentially over the past two decades in several multinational industries, leaders in mining
and precious metals extraction, with large investments dedicated to research and develop-
ment in this biotechnology area and with the creation of new companies dedicated to this
sector. An updated review on worldwide industrial applications, with a particular focus
on copper bioleaching and gold recovery via biooxidation, has recently been published
elsewhere [113].

As previously mentioned, also in Europe, this area of applied research is gaining
increasing interest not only from the scientific community but also at the level of industrial
applications. Some promising European industries that have implemented innovative
applications of bioleaching are briefly described here as examples.

The first company in the UK to extract precious metals from e-waste using bioleaching
was N2s [114], established in 2002. N2s is the UK’s market leader in information technology
(IT) lifecycle services. Their innovative technology solution for the recovery of metals
from e-waste (i.e., printed circuit boards) was developed in partnership with Coventry
University. N2s holds all relevant Environment Agency waste management licences and is
fully e-waste-compliant for IT Recycling and Data Destruction services (accredited by the
National Cyber Security Centre, NCSC).

Another example in Europe is represented by the company BiotaTec [115]. Based
in Tartu, Estonia, BiotaTec was created in 2007 and formerly known as BiotaP, with the
main focus on developing environment monitoring tools based on metagenomics, which
since 2010 started to investigate different possibilities of employing microorganism-based
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solutions for new innovative bioleaching technologies. Currently, they are developing and
providing novel bioleaching approaches and biomining technologies for extracting different
metals and increasing the availability of critical raw materials metals from low-grade ores
and industrial waste streams, including e-waste and different metals/organics containing
secondary waste.

A more recent case is that of Ekolive [116], which is a start-up founded in 2018 in
Košice, Slovakia and is the first and leading provider of an EU/ETV-certified eco-innovative
bioleaching method (InnoBioTech®) for processing waste/minerals/soil using bacteria. In
2019, in the first large industrial pilot project in Slovenia, they demonstrated the market
maturity of bioleaching with heterotrophic bacteria for the upgrading of industrial minerals
from mining waste.

Table 2. Overview of active and completed bioleaching projects founded by the EU in the last two
decades. For each project, the funding program, project goals, budget and duration are reported.

Project Acronym Funding Program Project Goals Project Budget Duration Ref.

Bioshale Sixth Framework
Programme (EU-70%)

Identification and development of
innovative biotechnological processes

for a safe, clean and viable exploitation
of metal-rich black shale ores for metal

production, and design of an innovative
model of development of

mining activities

€3,390,202 1 October 2004–
30 September 2007 [117,118]

BioMinE Sixth Framework
Programme (EU-65%)

Development, improvement and
integration of bioleach processes for the

recovery of metals from primary and
secondary metal-bearing materials

€17,442,380 1 December 2004–
31 October 2008 [119]

ProMine Seventh Framework
Programme (EU-65%)

Development of new mineral-based
nano-products and new technologies for
strategic mineral supply, to stimulate the

extractive industry to deliver new
products to manufacturing industry

€17,232,739.10 1 May 2009–
30 April 2013 [120,121]

SysMetEx
(ERASysAPP)

Seventh Framework
Programme (EU-90%)

Investigation of biofilm formation on the
surface of the world’s most abundant

copper mineral, chalcopyrite, by
acidophilic microorganisms interacting
with the copper mineral and each other

€2,537,425 2015–2018 [122–126]

BioMOre Horizon 2020
(EU-100%)

Development of a novel base metal
mining technology coupling in situ

leaching and bioleaching technologies to
deep deposits, in order to reduce

environmental and social impacts and
operating costs of mining techniques

€8,564,961.75 1 February 2015–
31 July 2018 [127]

BioFlex EIT RawMaterials (EU
co-funded)

Bringing together partners with
infrastructure and expertise in

biometallurgy including metals
bioleaching from ores and waste,
biosorption from liquid streams,

bioprecipitation and
bio-electrochemistry

NA 1 January 2016–
31 December 2018 [128]

RUBICON
The European

innovation partnership
(EIP) on raw materials

Development of a novel biotechnical
process for sustainable exploitation of

laterites, polymetallic deep-sea nodules
and weathered sulphide ore deposits in

the EU. Definition of a downstream
process for the specific recovery of the

metal by-products cobalt and scandium,
together with nickel and other

solubilised metals (e.g., Cu, Zn, V,
and Mn)

NA 1 March 2016–
1 March 2020 [110]

BIOCriticalMetals
(ERA-MIN)

Seventh Framework
Programme (EU-95%)

Combining microorganisms having the
potential to be used in the extraction of
metals, with methods (bio and nano) to

adsorb them to exploit potentially
critical high-tech metals (W, In, Ga, Te,

and Mo) tailings

€546,366 1 June 2016–
31 December 2019 [111,129,130]
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Table 2. Cont.

Project Acronym Funding Program Project Goals Project Budget Duration Ref.

BiotaWEE LIFE Programme
(EU-60%)

Recovering of valuable metals (mainly
Cu, Ag and Au) from the non-metallic
fraction of the Printed Circuit Boards
(PCB) of different Waste Electric and
Electronic Equipment (WEEE) by the

application of an innovative more
efficient 2-step bioleaching technology,

combining aerobic and
anaerobic treatment

€932,377 1 July 2018–
31 July 2022 [112]

BioLeach EIT RawMaterials (EU
co-funded)

Development and improvement of
bioleaching technology for specific local
deposits to obtain raw materials (RMs)

appropriate for industrial utilization and
broad the utilisation of local sources

NA 1 April 2019–
31 March 2022 [131]

BIORECOVER Horizon 2020
(EU-100%)

Research and development of a new
sustainable and safe biotechnological

process for the selective extraction of a
wide range of Critical Raw

Materials (CRMs)

€6,337,277.50 1 June 2019–
31 May 2023 [106,107,132]

RAWMINA Horizon 2020 (EU-85%)

Implementation and standardisation of
a continuous pilot process integrating

novel bioleaching and nano-based
materials for Sb, Co, Ge, and W selective
recovery from Mine Waste (MW) from

unexploited/underexploited
metal-containing materials

€10,857,402.68 1 May 2021–
31 October 2024 [108,109]

4. Conclusions and Perspectives

This review provided a comprehensive overview of the main aspects of e-waste recy-
cling by considering the economic, environmental, and social implications of a sustainable
recovery system as ruled by EU legislation. Within this context, recycling is one of the
fundamental values to be pursued to sustain the fast and increasing demand for raw mate-
rials from which emerging and renewable technologies (i.e., PV cells, turbines, batteries,
catalysts, and H2-based technologies) are dependent. Through recycling, the huge value
held within the so-called urban mine of collected e-waste and by-products generated along
the materials supply chain could be restored through different recovery strategies.

Despite being a well-known biotechnological process carried out by bacteria and fungi,
bioleaching is less popular among archaea, especially methanogenic species populating
anaerobic sludge, sediment, and wastewater. In this work, we addressed the relationships
between metals and archaea and their potential as effective catalysts for metals recovery,
reporting current status, experimental studies, possible benefits, and drawbacks of using
them in combination with different metals, including heavy-, precious-, and critical- ones.
Among the few works currently available in the literature, there are not many mentions
of methanogens applications on end-of-life devices and old- and new scrap metals. That
considered, further studies should aim to demonstrate the process’s effectiveness or inef-
fectiveness. In this context, the choice of e-waste or other scrap metals from the refining
process should be strategic, and the target should be selected on certain criteria, such as the
following: (1) CAGR indicator for raw materials and corresponding application: a high
value means high demand; (2) EOL-RIR indicator: a low value implies a low recycling rate;
(3) illegal transboundary e-waste: a high risk for the environment and public health due to
the release of toxic pollutants, as well as being an emerging social issue.

The potential advantage of the application of methanogenic archaea to bioleaching is
to combine the ability to reduce CO2 and leach metals from end-of-life devices or residues
from their manufacturing. This would allow the coupling of two different technologies, gas-
to-gas and metallurgy, with two main end products: CH4 and dissolved metals. Although
few studies have reported on both metals’ requirements and their effects on methanogenic
archaea, assessing the feasibility of this approach and defining process bottlenecks and
strategies to overcome them is a priority. Given the level of readiness (TRL ≥ 5) and
the versatility (e.g., integrated bioprocess rather than downstream process) of the CH4
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production technology, the application of a combined process with e-waste treatment can be
strategic not only for the recovery of valuable metals per se but, as an example, also for the
implementation of other existing processes, such as anaerobic digestion, in terms of biogas
upgrading and anaerobic sludge exploitation as a source of bioleaching microorganisms.

Finally, further studies should also consider valuable strategies for the efficient separa-
tion of metal from microbial biomass to return them to the production chain.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/recycling8010020/s1, Table S1: List of elements found in e-wastes
and categorised as CRMs or non-CRMs. Each element is identified on the basis of geographical
distribution (first-three holders in the world), application, occurrence, and circular economy (CE)
indicators, i.e., EOL-RIR, IR, and CAGR%.
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