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High dimensional Bernoulli distributions:
Algebraic representation and applications
ROBERTO FONTANAa and PATRIZIA SEMERAROb

Department of Mathematical Sciences, Politecnico di Torino, corso Duca Degli Abruzzi 24, 10129 Torino, Italy,
aroberto.fontana@polito.it, bpatrizia.semeraro@polito.it

The main contribution of this paper is to find a representation of the class Fd(p) of multivariate Bernoulli distri-
butions with the same mean p that allows us to find its generators analytically in any dimension. We map Fd(p) to
an ideal of points and we prove that the class Fd(p) can be generated from a finite set of simple polynomials. We
present two applications. Firstly, we show that polynomial generators help to find extremal points of the convex
polytope Fd(p) in high dimensions. Secondly, we solve the problem of determining the lower bounds in the con-
vex order for sums of multivariate Bernoulli distributions with given margins, but with an unspecified dependence
structure.

Keywords: Convex order; extremal points; ideal of points; multidimensional Bernoulli distribution

1. Introduction

This paper proposes an algebraic representation of the class Fd(p) of d-dimensional Bernoulli distribu-
tions with Bernoulli univariate marginal distributions with parameter p - the class of joint distributions
of (X1, . . . ,Xd), where Xi ∼ Bernoulli(p), i = 1, . . . ,d. This representation turns out to be fundamental
for solving some open issues regarding this class. Our main theoretical contribution is to find a set of
generators of the class Fd(p) analytically in any dimension. We build on the geometrical structure of
Fd(p). The class Fd(p) is a convex polytope (see [12]) that we map into an ideal of points. Using the
Gröebner basis of the ideal we find an analytical set of polynomials that generates the class Fd(p).
These polynomial generators are also very simple in high dimensions. Through two applications we
show that this novel representation allows us to address and solve some open problems in applied
probability and statistics.

One open problem in applied probability is to find the lower bounds in the convex order for sums
S = X1 + . . . + Xd of the components of random vectors in a given Fréchet class, i.e. with given mar-
gins and an unspecified dependence structure (see, e.g. [26]). The upper bound is known to be the
upper Fréchet bound, while the problem to find the lower bound has been solved only under specific
and restrictive conditions. Sums of Bernoulli random variables have received much attention among
researchers in computer science, optimization, engineering and finance because of its wide applica-
bility, see e.g. [25] and references therein. The minimum convex order corresponds to the minimum
risk distribution and it is relevant for example in credit risk, where univariate marginal distributions
represent the probability of default of obligors in a credit portfolio (a classical reference for credit risk
modelling is [24]). If obligors belong to the same class of rating, they have the same marginal default
probability. Therefore it is important to assess the risk associated to possible dependence among oblig-
ors, especially nowadays since the global economy and risks are highly interconnected. For sums of
Bernoulli variables this problem is solved in the class of exchangeable Bernoulli variables or only if
pd < 1, which is a restrictive hypothesis for credit portfolios because banks usually handle hundreds of
obligors.
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The main application of our theoretical results is to solve the problem of finding lower bounds for
sums of the components of random vectors with probability mass function (pmf) in Fd(p) for any p
and d. We proceed in two steps. First we find the minimal distribution of sums in the convex order
by building on the geometrical structure of discrete distributions. In this first step we immediately
obtain one corresponding pmf in the class of exchangeable Bernoulli distributions (see [11]). To have
a minimal pmf that is not-exchangeable is not trivial, and this is our second step. We find one pmf
in Fd(p) that is minimal and not-exchangeable by combining what we will define as fundamental
polynomials. The proof of this result shows how we can work with polynomials to obtain pmfs that
satisfy some conditions. We are confident that this approach can be used to address many other issues.
We also prove that the minimum convex order corresponds to the minimal mean correlation. It is
well known that the minimal convex order is associated to negative dependence. In fact for pd < 1
the minimum convex order of sums is the lower Fréchet bound of the class, that is the distribution
of the mutually exclusive random variables. Mutual exclusivity was first studied by [8] in the context
of insurance and finance. It was called the safest dependence structure and was characterized as the
strongest negative dependence structure by [4]. We also propose a generalization of mutual exclusivity
for pd > 1 and we study its relationship with the minimum convex order, to attempt to find a general
notion of the safest dependence structure.

Statistical research extensively investigates classes of multivariate Bernoulli distributions and its
properties (see e.g. [6,23] and [3]) because of the importance of binary data in applications. Issues
such as high dimensional simulation - see e.g. [17,20] and [30] - and estimate - [21] - are very impor-
tant for many applications and our novel representation is particularly convenient for working in high
dimensions. High dimensional simulation and testing is possible for some classes and under some con-
ditions, for example see [10,20,27,30]. High dimensional simulation for exchangeable Bernoulli pmfs
is addressed in [14]. Exchangeable Bernoulli pmfs are points in a convex polytope whose extremal
points are analytically known ([11,13]) and high dimensional simulations is possible because we know
how to sample from a polytope [14]. To use this approach extremal points are necessary. In [12] the
authors provide a method to explicitly find the extremal points of Fd(p), but computational complex-
ity increases very quickly and they can not be found in high dimensions. We prove that fundamental
polynomials are associated to extremal points in the polytope, thus this representation also helps in
finding analytically a huge number of extremal points in any dimension. We provide an algorithm. In
this application it is evident that working with polynomials is simpler than with pmfs.

The paper is organized as follows. Section 2 introduces the setting and formalizes the problem.
The main theoretical results are given in Section 3, where we provide an algebraic representation of
Fd(p). Section 4 uses the algebraic representation to address the issue to find the extremal points and
provides an algorithm to find them in any dimension. Section 5 applies the theoretical results to solve
the problem of finding bounds in the convex order for sums of variables with pmf in Fd(p) if pd > 1.
We conclude this section proving that for pd > 1 the minimal convex order corresponds to the minimal
mean correlation. We also extend the notion of mutually exclusive random vectors to the case pd > 1
and we study its connection with minimality in the convex order in Section 6. Section 7 concludes.

2. Preliminaries and motivation

We build on the geometrical representation of the class Fd(p) as a convex polytope to map it into
a ring of polynomials. This approach requires the introduction of some notation from computational
geometry, algebra and algebraic geometry. A standard reference for these topics is [5].
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2.1. Notation

Let Fd be the set of d-dimensional probability mass functions (pmfs) which have Bernoulli univariate
marginal distributions. Let us consider the Fréchet class Fd(p) ⊆ Fd of pmfs in Fd which have the
same Bernoulli marginal distributions of parameter p, B(p). We assume throughout the paper that p is
rational, i.e. p ∈ Q. Since Q is dense in R, this is not a limitation in applications.

If X = (X1, . . . ,Xd) is a random vector with pmf in Fd , we denote

• its cumulative distribution function by F and its mass function by f ;
• the column vector which contains the values of F and f over X = {0,1}d , by F = (F1, . . . ,FD) =

(Fx : x ∈ X) := (F(x) : x ∈ X), and f = ( f1, . . . , fD) = ( fx : x ∈ X) := ( f (x) : x ∈ X), D =
2d , respectively; we make the non-restrictive hypothesis that the set X of 2d binary vec-
tors is ordered according to the reverse-lexicographical criterion. For example we have S3 =

{000,100,010,110,001,101,011,111}.

The notation X ∈ Fd(p) or F ∈ Fd(p) indicates that X has pmf f ∈ Fd(p). Given a vector x we denote
by |x | the number of elements of x which are different from 0. If x is binary, |x | =

∑d
i=1 xi . We assume

that vectors are column vectors and we denote by A� the transpose of a matrix A. Given two matrices
A ∈M(n × m) and B ∈M(d × l):

• the matrix A⊗ B = ((ai jB)1≤i≤n,1≤ j≤m) ∈ M(nd×ml) indicates their Kronecker product and A⊗n

is A ⊗ · · · ⊗ A︸��������︷︷��������︸
n times

;

• if n = d, A| |B denotes the row concatenation of A and B;
• if m = l, A//B denotes the column concatenation of A and B.

Finally, we denote by P(x) =
∑

α∈A aαxα a polynomial in Q[x1, . . . , xd], where xα = xα1
1 · · · xαd

d
, α =

(α1, . . . ,αd) ∈ A and A is a proper set of multi-indexes. We often use A = {0,1}d . In some cases
we write asupp(α), where supp(α) = {i ∈ {1, . . . ,d} : αi � 0} to simplify the notation, i.e a{1,4} ≡ a1,4
instead of a(1,0,0,1) and a∅ instead of a(0,...,0). Finally, if no confusion arises aj, j = 1, . . .D stands for
aα where α ∈ {0,1}d is the j-th term in reverse lexicographic order, i.e. a10 instead of a1,4 = a(1,0,0,1).

2.2. The convex polytope Fd(p)

Let X be a multivariate Bernoulli random vector whose distribution belongs to the Fréchet class
Fd(p) ⊆ Fd , X ∈ Fd(p). As described in [12], we can write

E(Xi) = x�i f ,

where xi is the vector which contains only the i-th element of x ∈ X, i ∈ {1, . . . ,d}, e.g for the bivariate
case xT1 = (0,1,0,1) and xT2 = (0,0,1,1). For f ∈ Fd(p) we have{

x�i f = p
(1 − xi)

� f = q,

where 1 is the vector with all the elements equal to 1 and q = 1− p. If we consider the odds of the event
Xi = 0, c = 1

γ = q/p, we have

((1 − xi)
� − cx�i ) f = 0.
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Let H be the d × D matrix whose rows, up to a non-influential multiplicative constant, are ((1− xi)
� −

cx�i ), i ∈ {1, . . . ,d}. The probability mass functions f in Fd(p) are the positive normalized solutions
of the linear system, i.e. fi ≥ 0,

∑D
i=1 fi = 1

H f = 0. (1)

From the standard theory of linear equations we know that all the positive, normalized solutions of (1)
are the elements of a convex polytope, thus

Fd(p) = { f ∈ R2d : H f = 0, fi ≥ 0,
D∑
i=1

fi = 1}. (2)

The solutions of the linear system in Equation (1) are convex combinations of a set of generators
which are referred to as extremal points of the convex polytope. Formally, for any f ∈ Fd(p) there exist
λ1 ≥ 0, . . . ,λn ≥ 0 summing up to one and extremal points r ∈ Fd(p) such that

f =
n∑
i=1

λi r i .

We call r i extremal points or extremal pmfs. We denote with Ri a random vector with pmf r i . The
proof of the Proposition 2.1 follows from Carathéodory’s Theorem, see [28] for a general reference on
convex analysis and Lemma 2.3 in [31].

Proposition 2.1. Let us consider the linear system

Az = 0, z ∈ Rm,

where A is a n × m matrix, n ≤ m and rank(A) = n. The extremal points of the polytope

PA := {z ∈ Rm : Az = 0, zi ≥ 0,
m∑
i=1

zi = 1} (3)

have at most n + 1 non-zero components.

Example 1. As an illustrative example we consider the class F3(2/5), i.e. d = 3 and p = 2
5 . We have

c = 3
2 and

H = 	
�
1 − 3

2 1 − 3
2 1 − 3

2 1 − 3
2

1 1 − 3
2 − 3

2 1 1 − 3
2 − 3

2
1 1 1 1 − 3

2 − 3
2 − 3

2 − 3
2

�� . (4)

In this case the extremal points can be found using 4ti2 (see [1]). Giving H as input, we generate the
matrix R whose columns are the extremal pmfs r i , i = 1, . . . ,9, which are reported in Table 1.

The dimension of the system (1) increases very fast because the number of unknowns is D = 2d ,
and finding all the extremal generators of the system becomes computationally infeasible. For example
for the moderate-size case d = 6 and p = 2

5 there are 1,251,069 extremal pmfs. Proposition 2.1 states
that the support of an extremal pmf has at most d + 1 points. One possible approach for finding some
extremal pmfs could be based on the selection of d + 1 components of f and set the others equal to
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x1 x2 x3 r1 r2 r3 r4 r5 r6 r7 r8 r9

0 0 0 1
5

1
5

1
5

2
5

3
5 0 0 0 0

1 0 0 0 0 2
5 0 0 1

5
1
5

2
5

3
10

0 1 0 0 2
5 0 0 0 1

5
2
5

1
5

3
10

1 1 0 2
5 0 0 1

5 0 1
5 0 0 0

0 0 1 2
5 0 0 0 0 2

5
1
5

1
5

3
10

1 0 1 0 2
5 0 1

5 0 0 1
5 0 0

0 1 1 0 0 2
5

1
5 0 0 0 1

5 0
1 1 1 0 0 0 0 2

5 0 0 0 1
10

Table 1. Extremal pmfs of Fd(p) where d = 3 and p = 2
5 . There are nine extremal pmfs.

zero. This is equivalent to consider a submatrix H1 of H made by d + 1 columns of H. The extremal
points of H1 must be computed. The problem is that we are interested in the positive solutions of the
system H1 z, z ∈ R

d+1
+ . As we show in Example 2 this approach could be extremely inefficient because

many choices of H1 do not have positive solutions.

Example 2. We consider the class F5(2/5), i.e. the case d = 5 and p = 2
5 . In this case the matrix H

has d = 5 rows and D = 32 columns. We can compute all the extremal pmfs of H. There are 5,162
extremal pmfs. For 1,000 times we repeat the random selection of the submatrix H1 of H (H1 is made
by d + 1 = 6 columns of H) and the computation of the extremal pmfs of H1. We find a non-empty set
of extremal pmfs only in 162 cases, providing an estimate of the success of this simple approach equal
to 16.2%.

Given the computational limitation of the above representation, we propose a different approach. The
next section describes an algebraic representation of the class Fd(p) that reduces the complexity of the
problem and provides a new analytical class of generators. The new generators are extremal points.
They are very simple and allow us to easily find pmfs in the class.

3. Main results

We make the non-restrictive hypothesis that p ≤ 1/2. Since p ∈ Q, let p = s/t with s ≤ t. We get
c = q/p = (t − s)/s. Let x = (x1, . . . , xd−1)

T and xi = (1, xi)T . Let us consider the row vectors m+(x) =
(m1(x), . . . ,mD/2(x))

T := xd−1 ⊗ . . . ⊗ x1 and m−(x) = (−mD/2(x) +
2s−t
s , . . . ,−m1(x) +

2s−t
s )T and

finally let m(x) = (m+(x)| |m−(x)), the row vector obtained concatenating m+(x) and m−(x).
We define the map H from Fd(p) to the polynomial ring with rational coefficients Q[x1, . . . , xd] as:

H : Fd(p) →Q[x1, . . . , xd−1]

H : f → Pf (x) = m(x) f .
(5)

We call CH the image of Fd(p) through H. By construction, a rearrangement of the coefficient of Pf (x)
gives

Pf (x) = m(x) f =
∑

α∈{0,1}d
aαxα, (6)
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Table 2. The m+(x) matrix for the case d = 3 and p = 2/5.

m+(x) = 1 x1 x2 x1x2

m+(−3/2,1) = 1 − 3
2 1 − 3

2 = H[1, {1,2,3,4}]
m+(1,−3/2) = 1 1 − 3

2 − 3
2 = H[2, {1,2,3,4}]

m+(1,1) = 1 1 1 1 = H[3, {1,2,3,4}]

where aα ∈ Q are linear combinations of the elements of f . Specifically, it holds

a =Q f ,

where a = (aα : α ∈ {0,1}d−1),

Q = (I(2d−1)| | Ĩ(2d−1) + Ã), (7)

I(2d−1) is the 2d−1 dimensional identity matrix, Ĩ(2d−1) is the 2d−1 dimensional matrix with −1 on the
secondary diagonal and all other entries equal to zero and Ã is a 2d−1 square matrix whose entries are
ã1j = (2s − t)/s, j = 1, . . . 2d−1 and ãi j = 0, j = 2, . . . ,2d−1.

Example 3. As in Example 1 we consider F3(2/5), thus d = 3, s = 2, t = 5, p = 2
5 , c = 3

2 and 2s−t
s = −

1
2 .

Given f ∈ F3(2/5), we have a =Q f , where

Q =
	


�

1 0 0 0 − 1
2 − 1

2 − 1
2 −1 − 1

2
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0

�� .
For example the image of r9 (one of the extremal pmfs listed in Table 1) is Pr9 (x) = −0.3(1− x1 − x2 +

x1x2). In the view of the proof of Theorem 3.1, we observe that the elements of m+(x) = m+(x1, x2) =

(1, x1) ⊗ (1, x2) = (1 x1 x2 x1x2) computed in x = (−3/2,1), x = (1,−3/2) and x = (1,1) can be put
in a one-to-one correspondence with the first D/2 = 4 columns of the matrix H of Equation (4) as
represented in Table 2, where H[i, {1,2,3,4}] is the i-th row of the matrix containing the columns
{1,2,3,4} of H, i = 1,2,3. Similarly we observe that the elements of m−(x) = m−(x1, x2) = (−x1x1 −

1/2 − x2 − 1/2 − x1 − 1/2 − 1 − 1/2) computed in x = (−3/2,1), x = (1,−3/2) and x = (1,1) can
be put in a one-to-one correspondence with the last D/2 = 4 columns of the matrix H of Equation
(4) as reported in Table 3, where H[i, {5,6,7,8}] is the i-th row of the matrix containing the columns
{5,6,7,8} of H, i = 1,2,3.

Table 3. The m−(x) matrix for the case d = 3 and p = 2/5.

m−(x) = −x1x2 −
1
2 −x2 −

1
2 −x1 −

1
2 − 3

2

m−(−3/2,1) = 1 − 3
2 1 − 3

2 = H[1, {5,6,7,8}]
m−(1,−3/2) = 1 1 − 3

2 − 3
2 = H[2, {5,6,7,8}]

m−(1,1) = − 3
2 − 3

2 − 3
2 − 3

2 = H[3, {5,6,7,8}]
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Theorem 3.1. The map H maps Fd(p) into polynomials
∑

α aαxα ∈ Q[x1, ..., xd−1], α ∈ {0,1}d−1

of the ideal IP of polynomials which vanish at points P = {1d−1, c j, j = 1, . . . ,d − 1}, where 1d−1 =

(1, . . . ,1) and c j = (1, . . . ,1, −c︸︷︷︸
j-th element

,1, . . . 1).

Proof. Let H(d), md
+(x) and md

+(x) be the matrices H associated to Fd(p), m+(x) and m−(x) in
dimension d, respectively. Let f ∈ Fd(p) and Hj.(d) be the j-th row of H(d). We show that Hj.(d) f
is the polynomial Pf (x) evaluated at x = c j , that is Hj.(d) f = Pf (c j ), j = 1, . . . ,d − 1, and Hd.(d) f =
Pf (1d−1). Let H+(d) be the submatrix of the first 2d−1 columns of H(d) and H−(d) the submatrix of
the last 2d−1 columns of H(d), i.e. H(d) = (H+(d)| |H−(d)).

We consider the following two steps. Step one proves by induction that H+j.(d) = md
+(c j), for j =

1, . . . ,d−1 and H+
d.
(d) = md

+(1d−1). We consider d = 2. It holds c1 = −c, 1d−1 = 1 and m2
+(x) = (1, x)

T .
We have m2

+(c1) = (1,−c)T and m2
+(11) = (1,1)T . Since H+1. = (1,−c)T and H+2. = (1,1)

T , the case d = 2
is proved. Let us assume that the assert is true for d. We prove it for d + 1. We consider separately three
cases: j = 1, . . . d − 1, j = d and j = d + 1. For j = 1, . . . d − 1, we have xj = −c and then it must be
xd = 1 by construction. Therefore,

H+j.(d + 1) = (1,1)T ⊗ H+j.(d) = (1,1) ⊗ md
+(c j ) = (m

d
+(c j )| |1) = md+1

+ (c j).

For j = d we have xd = −c and

H+d.(d + 1) = (1,−c)T ⊗ H+d (d) = (1,−c) ⊗ md
+(1d) = md+1

+ (cd).

Finally, for j = d + 1 we have

H+d+1.(d + 1) = (1,1)T ⊗ H+d.(d) = (1,1) ⊗ md
+(1d) = md+1

+ (1d)

and the step one is proved. Step two proves that H−
j.(d) = md

−(c j ), for j = 1, . . . ,d − 1 and H−
d.
(d) =

md
−(1d−1). It is sufficient to observe that md

−(x) = (−mD/2(x) +
2s−t
s , . . . − m1(x) +

2s−t
s )T and

H− = (−H+1. +
2s−t
s , . . . ,−H+

d.
+ 2s−t

s ) and the assert of step two easily follows. As a consequence
Hj(d) = md(c j ), j = 1, . . . ,d − 1 and Hd(d) = md(1d−1). Since f ∈ Fd(p) iff H(d) f = 0 we have
md(c j) f = 0 and md(1d−1) f = 0. Therefore Pf (x) = md(x) f ∈ IP and by construction (see (6))
md(x) f =

∑
α aαxα, α ∈ {0,1}d−1, with a =Q f .

Remark 1. The map H is not injective. In Example 1, we have H(r1) = 1/5 + 2/5xy − 2/5(xy +
1/2) = 0, H(r2) = 1/5 + 2/5y − 2/5(y + 1/2) = 0 and similarly H(r3) = H(r4) = H(r5) = 0, thus
{r1, r2, r3, r4, r5} ⊆ Ker(H).

Since H is not injective, as observed in Remark 1, given a polynomial P(x) =
∑

α aαxα ∈ IP , α ∈
{0,1}d−1 there are many pmfs in H−1(P(x)) as we study in the remaining part of this section. We
provide a three steps algorithm to find one pmf f P = ( f1, . . . , fD) ∈ Fd(p) associated to a given P(x) =∑

α∈{0,1}d−1 aαxα ∈ IP . It is easy to verify that f p ∈ Fd(p) and that H( f p) = P(x). We call f p the
type-0 pmf associated to the polynomial P. We describe the use of this algorithm in Example 4.

Example 4. We consider two polynomials: the first one has a positive constant term, the second one a
negative constant term. Consider the case of Example 1 (d = 3,p = 2/5) and let P(x) be the polynomial
P(x) = x1x2 − x1 − x2 + 1 ∈ CH . We have a1 = 1, a2 = a3 = −1, a4 = 1 and then:
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Algorithm 1

Input: A polynomial P(x) =
∑
α∈{0,1}d−1 aαxα ∈ IP .

1 )For each j ∈ {2, . . . ,D/2}:
if aj ≥ 0, then fj = aj and fD+1−j = 0;
if aj < 0 then fj = 0 and fD+1−j = −aj .

2) Let c0 =
∑d/2

j=1,a j<0 aj 2s−t
s + a1.

If c0 ≥ 0 then f1 = c0 and fD = 0;
if c0 < 0 then f1 = 0 and fD = −

c0
c , where c = q

p ;
3) normalize f p getting, with a small abuse of notation f p := f p/(

∑D
j=1 fj ).

Output: a pmf f P = ( f1, . . . , fD) ∈ Fd(p).

1. step 1 immediately gives f P = ( f1,0,0,1,0,1,1, f8);
2. from step 2 we get c0 =

1
2 +

1
2 + 1 = 2, thus f1 = c0 = 2, f8 = 0 and f P = (2,0,0,1,0,1,1,0);

3. the normalization step gives f P = (
2
5 ,0,0,

1
5 ,0,

1
5 ,

1
5 ,0). We observe that f P = r4, see Table 1.

Consider now the polynomial P(x) = −x1x2 + x1 + x2 −1 ∈ CH . We have a1 = −1, a2 = a3 = 1, a4 = −1
and then:

1. step 1 immediately gives f P = ( f1,1,1,0,1,0,0, f8);
2. from step 2 we get c0 = −1/2, thus f1 = 0, fD = 1

2 · 2
3 =

1
3 and f P = (0,1,1,0,1,0,0,

1
3 );

3. the normalization step gives f P = (0,
3
10 ,

3
10 ,0,

3
10 ,0,0,

1
10 ). We observe that f P = r9, see Table 1.

In Proposition 3.1 given a polynomial P(x) ∈ IP we determine all the pmfs such that H( f ) = P(x).

Proposition 3.1. Given a polynomial P(x) =
∑

α aαxα ∈ IP , α ∈ {0,1}d−1,

H−1(P(x)) = { f p + ek, ek ∈ Ker(H)},

where f p is the type-0 pmf associated to P(x). A basis of Ker(H) is

BK = {(q,0, . . . ,0,p); (1 − 2p,p,0, . . . ,0,p,0); (1 − 2p,0,p,0, . . . 0,,p,0,0);

. . . (1 − 2p,0, . . . ,0,p,p,0 . . . ,0)}.

Proof. Notice that Ker(H) in (5) coincides with Ker(Q), where Q is the matrix given in (7) which is
the coefficient matrix of the linear application H between RD and RD/2. Since rank(Q) = D/2 (it is
enough to observe that the first D/2 columns of Q are the identity matrix), we have rank(Ker(Q)) =

D/2. Now it is sufficient to observe that BK is a set of D/2 linearly independent vectors.

We observe that type-0 pmfs are characterized by the condition that only one of the components fi
or fD−i+1 of f p can be different from zero. We can now classify the pmfs in Fd(p) as follows.

Definition 3.2. We say that f = ( f1, . . . , fD) is of type-0 if it is the particular solution f P corresponding
to a polynomial P(x) ∈ IP , it is of type-1K if f ∈ Ker(H) and it is of type-1 otherwise.
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Example 5. In the Example 1 the extremal point r9 = (0, 3
10 ,

3
10 ,0,

3
10 ,0,0,

1
10 ) is of type-0 and r5 =

( 3
5 ,0,0,0,0,0,0,

2
5 ) is of type-1K, while r6 = (0, 15 ,

1
5 ,

1
5 ,

2
5 ,0,0,0) is of type-1, since f4 = f8−3 = f5. Notice

that H(r6) = 1/5(1 − x1 + x2 − x1x2) and H(r5) = 0.

Proposition 3.2. The Gröbner basis of IP with respect to the lexicographic order is GB = {Gi(x) =
(xi − 1)(xi + c),Gik(x) = 1 − xi − xx + xi xk,i, k =, . . . ,2d−1,i < k}. A basis of the quotient space
Q[x1, . . . , xd−1]/IP is {1, x1, . . . , xd−1}.

Proof. Let IP = 〈Gi(x)〉. We prove that the variety V(IP) of IP is P. P ⊂ V(IP) is easy to verify, so
we prove the other inclusion. If x ∈ V(IP), then xj = 1 or xj = −c. In fact if there is k : xk � 1,−c then
Gk(x) = (xk −1)(xk + c) � 0. If xk = −c then xj = 1,∀ j � k, j = 1, . . . ,d−1. In fact if there is i : xi = −c,
then Gik(x) = xi xk − x1 − xk + 1 � 0 and x � V(IP). Thus x = 1d−1 or x = c j, j = 1, . . . d − 1 that is
x ∈ P.

GB is a Gröebner basis for IP . Let A(x) ∈ IP and let ãxα its leading term. If x2
i � |ãxα and xi xj � |ãxα,

that is xi xj does not divide ãxα, for any i, j then ãxα = ãxk for a k = 1, . . . d − 1. Thus A(x) has degree
one and cannot be zero both in ck and 1d−1. Thus, since A(x) ∈ IP , its leading term LT(A(x)) must be
divisible by one of the LT(G(x)),G(x) ∈ GB and GB is a Gröebner basis.

Proposition 3.3. For each n ∈ N, 2 ≤ n ≤ d −1, the monomials πj1 ,..., jn (x) =
∏n

i=1 xji have remainder
Rj1,..., jn (x) =

∑n
i=1 xji − (n − 1).

Proof. Without loss of generality we consider the monomials πn(x) := π1,...,n(x) = x1 · · · xn and
Rn(x) := R1,...,n(x). We prove this proposition by induction. If n = 2 Gi j(x) = xi xj − xi − xj + 1 ∈ IP
and therefore xi xj has the remainder xi + xj −1. We now prove that n ⇒ n+1. By inductive hypothesis

n+1∏
i=1

xj = xn+1

n∏
j=1

xj = xn+1(I(x) +
n∑
j=1

xj − (n − 1)),

where I(x) = x1 · . . . · xn −
∑n

i=1 xi + n − 1 ∈ IP . Thus

n+1∏
i=1

xj = xn+1(I(x) +
n∑
j=1

xj − (n − 1))

= xn+1I(x) +
n∑
j=1

xn+1xj − xn+1(n − 1)

= Ĩ(x) +
n∑
j=1

(Gn+1, j(x) + xn+1 + xj − 1) − xn+1(n − 1),

where Ĩ(x) ∈ I. It follows that

n+1∏
i=1

xj = Ĩ(x) +
n∑
j=1

Gn+1, j(x) + nxn+1 +

n∑
j=1

xj − n − nxn+1 + xn+1

= Ĩ∗(x) +
n∑
j=1

xj − n + xn+1 = Ĩ∗(x) +
n+1∑
j=1

xj − n,
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where Ĩ∗(x) = Ĩ(x) +
∑n

j=1 Gn+1, j(x) ∈ I, and the assert is proved.

We call the polynomials

Fj1,..., jn (x) = πj1 ,..., jn (x) − Rj1,..., jn (x) = xj1 · · · xjn −

n∑
i=1

xji + n − 1

fundamental polynomials of the ideal IP . In particular we denote by Fn(x) the fundamental polynomial
Fn(x) := F1,...,n(x), n = 2, . . . ,d − 1. The proof of Corollary 3.1 is in the supplemetary material [15].

Corollary 3.1. The polynomials Pf (x) = m(x) f ∈ CH are linear combinations of the fundamental
polynomials. In particular they have the form Pf (x) =Q(x) − R(x), where

Q(x) =
∑

k=2,...,d−1, j1< j2...< jk

aj1... jk xj1 . . . xjk

and R(x) = b0 +
∑d−1

j=1 bj xj is the remainder.

Notice that the polynomials in CH are the same for each marginal probability p. The probability p
defines the points P of the variety V(IP). We have proved that the set of fundamental polynomials is
a set of generators of CH and therefore we can use them to generate Fd(p). All pmfs can be generated
as linear combinations of the fundamental polynomials, computing the corresponding type-0 pmf and
eventually adding an element of Ker(H). We now use fundamental polynomials to address two open
issues. The first is the search of the extremal generators of the convex polytope Fd(p) and the second
is the study of bounds for the distributions in Fd(p). We provide an algorithm to find extremal points,
all in principle and many in practice. We find an analytical solution of the second problem under the
convex order of sums.

4. An algorithm to find extremal pmfs

The first step to construct an algorithm for generating extremal pmfs is to prove that type-0 pmfs
associated to fundamental polynomials are extremal themselves.

Proposition 4.1. Let f ∈ Fd(p) be the type-0 pmf associated to a fundamental polynomial. The pmf f
is an extremal probability mass function.

Proof. Let f such that H( f ) = Fn(x),2 ≤ n ≤ d − 1 is a fundamental polynomial, Fn(x) =
∏n

i=1 xi −∑n
i=1 xi + (n−1). Then f has support on n+2 points supp( f ) = {i1, . . . ,in+2} ⊂ {1, . . . ,D}, correspond-

ing to the monomials −xj − 2s−t
s , j = 1, . . . ,n,

∏n
i=1 xi and the constant term. Let I∗ ∈ M((2d − (n +

2)) × 2d) be the submatrix of ID so that I∗ f = 0 (it contains the rows ID[i,] of ID such that fi = 0). Let
us define the matrix

H/I := H//I∗ =

[
H

I∗

]
.
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Let us consider the columns of H/I. The pmf f has mass on n + 2 points and the corresponding n + 2
columns H/I[, j] of H/I, that we call H/Ij, j = i1, . . . ,in+2 have all zeros below the rows of H,

H/Ij =

[
Hj

0

]
,

where 0 is the 2d − (n+ 2)-vector with all zeros. Among them, we consider the columns corresponding
to −xj − 2s−t

s , j = 1, . . . ,n and constant term. These are n + 1 independent columns of H/I because
it can be proved that

∑n
j=1 γj(−xj − 2s−t

s ) + γn+1 = 0 for x ∈ P iff γ1 = . . . = γn+1 = 0. The column
corresponding to

∏n
i=1 xi is linearly dependent by these n + 1 independent columns of H/I because

Fn(x) belongs to the ideal IP , that is Fn(x) = 0, x ∈ P. It follows that
∏n

i=1 xi =
∑n

i=1 xi − n + 1
and then

∏n
i=1 xi = −

∑n
i=1(−xi − 2s−t

s ) − n 2s−t
s − n + 1. The 2d − (n + 2) remaining columns H/Ij, j ∈

{1, . . . 2d}, j � i1, . . . ,in+2 of H/I are independent because I∗[, j ∈ {1, . . . 2d}, j � i1, . . . ,in+2] is an iden-
tity matrix. Therefore we have 2d − (n + 2) + n + 1 = 2d − 1 independent columns. It follows that

rank(H/I) = 2d − 1.

From Lemma 2.3 in [31], f is an extremal point.

Example 6. Let us consider d = 3, p = 2/5 and F2(x1, x2) = x1x2 − x1 − x2 + 1. As shown in Example
4, the corresponding pmf is f = ( 2

5 ,0,0,
1
5 ,0,

1
5 ,

1
5 ,0) and it is an extremal pmf. The H/I matrix is

H/I =

	








�

1 − 3
2 1 − 3

2 1 − 3
2 1 − 3

2
1 1 − 3

2 − 3
2 1 1 − 3

2 − 3
2

1 1 1 1 − 3
2 − 3

2 − 3
2 − 3

2
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

��
and rank(H/I) = 23 − 1 = 7.

Analogously, we can be prove the following.

Corollary 4.1. If H( f ) = −F(x), where F(x) is a fundamental polynomial, then f is an extremal mass
function.

Remark 2. The extremal points associated to F(x) and −F(x) are different and they are not symmetric.
We can see from Example 1 that H(r4) = x1x2 − x1 − x2 + 1 and H(r9) = −x1x2 + x1 + x2 − 1. This
is a consequence of the role played by the constant terms arising from the monomials with negative
coefficients, i.e. the monomials in m−(x).

We proved that to find a point in Fd(p) it is sufficient to pick a polynomial in CH . From Corollary
3.1 we have that any Pf (x) ∈ CH can be obtained as a linear combination of fundamental polynomials.
Proposition 2.1 gives a necessary condition for a point to be an extremal point, it must have support on
at most d+1 points. Therefore to find an extremal point not associated to a fundamental polynomial we
have to choose a linear combination of at most d + 1 fundamental polynomials, find a corresponding
pmf in Fd(p) and finally check if it is an extremal point by means of Lemma 2.3 in [31].
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Proposition 3.1 provides a way to easily build extremal points of type-1 as f + e where f is a type-0
pmf and e ∈ ker(H). It is enough to choose e in a way that all the components of f + e are non-negative
and then the corresponding type-1 pmf are obtained normalizing f + e. To find type-0 extremal points
not associated to the fundamental polynomials is more challenging. We show an algorithm to find type-
0 extremal points which requires the construction of a matrix whose columns are the coefficients of the
remainders of the monomials of degree greater than one, xj1 . . . xjk , with k ≥ 2.

Let π = (x1x2, . . . , x1 . . . xd−1)
T be the row vector of the 2d−1 − d monomials of degree greater than

one ordered according to the reverse-lexicographical criterion. Let B be the matrix whose elements of
the j-th column are the coefficients of the remainders of π j corresponding to the basis {1, x1, . . . , xd−1}

of the quotient space, as illustrated in Table 4. We look for a (column) vector a = (a12, . . . ,a12,...d−1),
so that

P(x) =
d−1∑
k=2

∑
j1<...< jk

aj1... jk Fj1... jk (x) = b∅ +
d−1∑
k=1

bk xk +
d−1∑
k=2

∑
j1<...< jk

aj1... jk xj1 . . . xjk

is associated to an extremal point. The term −(b∅ +
∑d−1

k=1 bk xk) is the remainder of

d−1∑
k=2

∑
j1<...< jk

aj1... jk xj1 . . . xjk .

By construction, the product Ba is the column vector of the coefficients of the remainder of∑d−1
k=2

∑
j1<...< jk

aj1... jk xj1 . . . xjk , that is Ba = −(b∅,b1, . . . ,bd−1). If the k-th row of Ba is zero, the
k-th term of the remainder of

∑d−1
k=2

∑
j1<...< jk

aj1... jk xj1 . . . xjk is zero. The k-th row of (Ba)k · is Bk ·a,
where Bk · is the k-th row of B, thus Bk ·a is −bk−1, and B1·a is −b∅.

The solutions of Bk ·a = 0 give the coefficients of all the polynomials P(x) which are associated
to pmfs in Fd(p) without the components corresponding to xk−1 and −xk−1 +

2s−t
s . We observe that

b∅ is not immediately related to f1 and fD . For example, in the case d = 4, p = 2/5, the polynomial
1
5 x1x2 +

1
5 x1x3 +

1
5 x2x3 −

2
5 x1x2x3 −

1
5 corresponds to the pmf f = (0,0,0, 15 ,0,

1
5 ,

1
5 ,0,

2
5 ,0,0,0,0,0,0,0).

We have b∅ = −1/5 � 0 and f1 = f16 = 0. Or the polynomial x1x2 − x1x3 + x2 + x3 corresponds to
the pmf f = ( 1

5 ,0,0,
1
5 ,

1
5 ,0,0,0,0,0,

1
5 ,0,0,

1
5 ,0,0). We have b∅ = 0 and f1 = 1/5 � 0. For this reason

we do not consider the equation B1·a = 0. Let us suppose that we are interested in polynomials P(x)
where only some aj1... jk can be different from zero. We define J as the corresponding set of indexes,
j1 . . . jk ∈ J ↔ aj1... jk � 0. Let B·J be the matrix whose columns are B· j , j ∈ J and aJ the sub-vector
of a whose elements are aj, j ∈ J. The elements of the kernel of the linear application

(B·J aJ )K ·,

where (B·J aJ )K · are the rows (B·J aJ )k · of (B·J aJ ), k ∈ K ⊆ {2, . . . ,d}, are the coefficients a such that
the polynomial P(x) does not have the terms xk−1, k ∈ K ⊆ {2, . . . ,d}.

The polynomials P(x) associated to extremal points must have at most d + 2 non-zero coefficient
(d + 2 because the constant term b∅ does not always correspond to have f1 or fD in the support of the
corresponding pmf). Therefore, we choose #J monomials in π, with #J ≤ d+2, that means #J columns
of the matrix in Table 4. Then we look for the polynomials P(x) so that the remainder has 1, . . . ,d − 1
terms equal zero. Formally we have the following steps:

1. choose J and K with #J + d − #K ≤ d + 2;
2. find a set of kernel generators of

(BJ ·a
T )K ·;
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Table 4. Matrix representation of the remainders of the monomials xj1 . . . xjk , general case.

π(x)

R(x) B
=

x1x2 x1x3 · · · x1 · · · xd−1

1 −1 −1 . . . −(d − 1)
x1 1 1 . . . 1
x2 1 0 . . . 1
. . . . . .

xd−1 0 0 0 1

3. for each kernel generator a(i) consider the corresponding polynomial P(i)(x);
4. construct the corresponding pmf in Fd(p);
5. check if it is an extremal point of the polytope.

The above steps find all the type-0 extremal points corresponding to each generator of the set of kernel
generators found in point 3. If we use linear combinations of the kernel generators we can potentially
find all the type-0 extremal points, but an efficient choice of a good linear combination is not considered
in this algorithm and it will be part of our future research. It is worth noting that the set of generators
does not depend on p (up to point 3 the algorithm is independent of p). Then the kernel generators
and the corresponding polynomials can be computed once for all. Another positive aspect is that the
available algorithms for finding set of generators of linear system kernels are extremely efficient. On
the other hand if the dimensionality d increases the computational effort increases also for the high
number of choices of J and K in step 1.

To the only purpose of illustrating the procedure, in Example 7 we look for the type-0 extremal
points for d = 4, because the case d = 3 has only two fundamental polynomials (opposite signs) and it
is trivial.

Example 7. Consider F4(2/5), d = 4 and p = 2/5.
The extremal pmfs have support on at most d + 1 = 5 points. Since the remainder has 4 terms, if

we decide to combine two fundamental polynomials we have to eliminate at least one monomial of
the remainder. By so doing, the remainder has at most 3 terms and the polynomial has at most 5
coefficients. As an example we choose the first two columns, i.e. J = {1,2}. We have a = (a12,a13) and

B·J =

	


�
−1 −1

1 1
1 0
0 1

�� .

Table 5. Matrix representation of the remainders of the monomials x1x2, x1x3, x2x3, x1x2x3, case d = 4.

π(x)

R(x) B
=

x1x2 x1x3 x2x3 x1x2x3

1 −1 −1 −1 −2
x1 1 1 0 1
x2 1 0 1 1
x3 0 1 1 1
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We have

B·J a =
	


�

−1 −1
1 1
1 0
0 1

�� a =
	


�

−a12 − a23
a12 + a23

a12
a23

�� .
We look for the polynomial without the term corresponding to x1, that is K = 2. These are the solutions
of the homogeneous system:

(B·J AT )2 = a12 + a23 = 0.

We can choose a = (1,−1) and we obtain P(x) = x1x2 − x1x3 + x2 − x3. The associated pmf is
( 1

5 ,0,0,
1
5 ,

1
5 ,0,0,0,0,0,

1
5 ,0,0,

1
5 ,0,0) and we can verify that is an extremal point.

In the Section 5 we use fundamental polynomials to find a pmf in Fd(p) that satisfies a given con-
dition. We show that it is convenient to set the condition in terms of coefficient of a polynomial in CH

and find one corresponding pmf.

5. Lower bounds for the convex order

Finding upper and lower bounds for sums S = X1 + . . . + Xd of random variables Xi of which the
marginal distributions are known but the joint distribution is unspecified is a problem extensively ad-
dressed in statistics and applied probability [19]. These bounds are linked to the highest and lowest
dependence structure and they are actually bounds in the sense of the convex order. We recall the
definition of the convex order.

Definition 5.1. Given two random variables X and Y with finite means, X is said to be smaller than Y
in the convex order (denoted X ≤cx Y ) if

E[φ(X)] ≤ E[φ(Y )]

for all real-valued convex functions φ for which the expectations exist.

The convex order is a variability order, in fact it is easy to verify that X ≤cx Y implies E[X] = E[Y ],
and V[X] ≤ V[Y ]. It can also be proved, see e.g. [29], that

X ≤cx Y iff E[X] = E[Y ] and E[(X − l)+] ≤ E[(Y − l)+] for all l ∈ R+,

where x+ = max{x,0}. The last inequality defines the so called stop-loss order, that is important in
insurance. See [7] for a discussion on the relationship between convex and stop-loss orders. We look
for the minimum convex order for sums of Bernoulli variables with mean p, when the joint distribution
is unspecified. The problem to find the upper bound is solved and it is well known that the upper bound
is the upper Fréchet bound of the class, that is the extremal point rU with support on the two points
(0, . . . ,0) and (1, . . . ,1). We look for X ∈ Fd(p) such that S =

∑d
i=1 Xi is minimal in the sense of the

convex order. Following the notation in [26], we call the pmf f of a vector X in Fd(p) whose sums are
minimal in the sense of the convex order a Σcx-smallest element of Fd(p). Since we consider X ∈ Fd(p)
the sums have all the same mean dp, thus our problem reduce to find X∗ such that for any Y ∈ Fd(p)

E[(S∗ − l)+] ≤ E[(SY − l)+], ∀l ∈ R+, (8)
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where S∗ =
∑d

i=1 X∗
i and SY =

∑d
i=1 Yi

Let D(dp) be the class of discrete distributions on {0, . . . ,d} with mean dp, clearly S ∈ D(dp). The
paper [11] proves that the class of sums of exchangeable Bernoulli distributions with the same mean p
coincides with the entire class of discrete distributions with mean dp, Dd(dp). Therefore the map

H : Fd(p) →D(dp)

f → p,

where p is the pmf of S =
∑d

i=1 Xi , is onto on D(dp).
Thanks to the above result we can look for the convex order bounds in Dd(dp) to find firstly the

bounds for the sums and then the corresponding multivariate Bernoulli distributions. Formally, we
look for S∗ such that for any S ∈ D(dp)

E[(S∗ − l)+] ≤ E[(S − l)+], ∀l ∈ R+. (9)

Then, by means of the results in previous sections, we characterize the points X ∈ Fd(p) so that∑d
i=1 Xi = S∗. In [11] the authors prove that the class Dd(dp) is a convex polytope and they explic-

itly found its generators. This result is stated in Proposition 5.1.

Proposition 5.1. The extremal pmfs of D(dp), sj1, j2 have support on two points ( j1, j2) with j1 =
0,1, . . . , jM1 , j2 = jm2 , j

m
2 + 1, . . . ,d, jM1 is the largest integer less than pd and jm2 is the smallest integer

greater than pd. They are

sj1 , j2(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j2−pd
j2−j1

y = j1
pd−j1
j2−j1

y = j2
0 otherwise.

(10)

If pd is integer the extremal densities contain also

spd(y) =
{

1 y = pd
0 otherwise. (11)

If pd is not integer there are np = ( jM1 + 1)(d − jM1 ) extremal points. If pd is integer there are np =

d2p(1 − p) + 1 extremal points.

For any φ the extremal values for E[φ(S)] are reached on the extremal points (see [14]). Thus, the
bounds for the convex order are reached on the extremal points. In particular, the upper bound of convex
order is on the extremal point sU = s0,d . This is a straightforward consequence of the well known fact
that the upper bound for S =

∑d
i=1 Xi is the upper Frechét bound rU ∈ Fd(p) and SU =

∑d
i=1 RU

i with
pmf s0,d . On the contrary the lower bound in Fd(p) is still an open issue. [8] proved that if pd < 1 the
lower Fréchet bound belongs to Fd(p) and corresponds to the lower bound for convex order. Here we
generalize their result for each p and d. [16] found the lower bound in the subclass of exchangeable
pmfs. We first find the solution of Equation (9) and then using the algebraic representation we find a
corresponding pmf in Fd(p). The proofs of Proposition 5.2 and 5.3 are in the supplementary material.

Proposition 5.2. The solution of equation (9), i.e.

E[(S∗ − l)+] ≤ E[(S − l)+], ∀l ∈ R+,

for any S ∈ D(dp), is S∗ = SjM , jm , where SjM , jm is the random variable with pmf sjM , jm .
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Therefore the solutions of (8), that is

E[(S∗ − l)+] ≤ E[(S − l)+], ∀l ∈ R+,

for any S ∈ D(dp), are the pmfs of X with X in χ∗ = {X ∈ Fd(p) :
∑d

i=1 Xi = S∗ = SjM , jm }. As usual
with a small abuse of notation if f is the vector pmf of X ∈ χ∗ we also write f ∈ χ∗. A pmf f ∈ χ∗ is
a Σcx-smallest element in Fd(p).

Proposition 5.3. If X ∈ X∗, then its pmf f is such that

f =
n∗∑
i1

λi r
∗
i , λi � 0,

where r∗i are the extremal points of Fd(p) in X∗.

Remark 3. By Jensen’s inequality it is known that for any l ∈ R+, minS∈D(pd) E[(S − l)+] ≥ (pd − l)+.
The proof of Proposition 5.2 shows that this bound is not sharp for all the values of l ∈ R+, namely
l ∈ ( jM , jm). Indeed, if l ≤ jM we have minS∈D(dp) E[(S − l)+] = pd − l, if l ∈ ( jM , jm) we have
minS∈D(dp) E[(S − l)+] = (pd − jM )( jm − l) and if l ≥ jm we have minS∈D(dp)E[(S − l)+] = 0. In
the supplementary material (S.1) we provide an example where we explicitly compare the sharp bound
with Jensen’s one.

We therefore look for the multivariate Bernoulli variables X ∈ Fd(p) such that P(SX = k) = 0 for
k � jM , jm, where SX =

∑d
i=1 Xi . This is equivalent to look for the pmfs with support χM ∪ χm, where

χk = {x ∈ χ :
∑d

i=1 xi = k}.
We have proved that minimal convex sums correspond to a family χ∗ of multivariate Bernoulli pmf.

In [11] the authors prove that there is a one-to-one map between Dd(dp) and the class of exchangeable
Bernoulli distributions with mean p, Ed(p) ⊆ Fd(p). Therefore, there is exactly one pmf in f ∗ ∈ Ed(p)
with minimal convex sums. It is the pmf of the unique exchangeable random vector X∗ such that∑d

i=1 X∗ = S∗, then we have X∗ ∈ χ∗. In [11] the authors also proved that the exchangeable pmf f ∗

associated to S∗ is the pmf with minimal correlation. Therefore, under exchangeability, minimal convex
sums corresponds to minimal correlation.

Proposition 5.4 proves that if f ∈ χ∗ then its mean correlation, i.e. the mean of the correlations
ρ(Xi,Xj ) of each pair of variables Xi and Xj , i, j = 1, . . . ,d, i < j, is constant and equal to the correlation
of f ∗. Therefore the extremal points belonging to χ∗ generate the pmf with the lower mean correlation.
In particular, Proposition 5.4 states that the sum of the second-order crossed moments of X is equal to

the 2nd binomial moment of S, i.e. S2 = E[

(
S
2

)
]. Proposition 5.5 and Corollary 5.1 are known results,

see e.g. [2]. Nevertheless we report a proof of Proposition 5.4 in the supplementary material.

Proposition 5.4. Let f ∈ Fd be the pmf of a d-dimensional multivariate Bernoulli random variable
X = (X1, . . . ,Xd) and pS the pmf of the sum S =

∑d
i=1 Xi , with pS(k) = pk = P(S = k), k = 0, . . . ,d. The

sum of the second-order crossed moments of X can be written as a linear combination of the values
pk, k = 2, . . . ,d of the pmf pS of S: ∑

1≤i< j≤d

E[XiXj ] =

d∑
k=2

(
k
2

)
pk .
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Proposition 5.4 can be generalized to τ-order crossed moments, for τ = 2, . . . ,d as stated in Proposi-
tion 5.5.

Proposition 5.5. Let f ∈ Fd be the pmf of a d-dimensional multivariate Bernoulli random variable
X = (X1, . . . ,Xd) and pS the pmf of the sum S =

∑d
i=1 Xi , with pS(k) = pk = P(S = k), k = 0, . . . ,d. The

sum of the τ-order crossed moments of X , τ ≥ 2, can be written as a linear combination of the values
pk, k = τ, . . . ,d of the pmf pS of S: ∑

1≤i1<...<iτ ≤d

E[Xi1 · · · Xiτ ] =

d∑
k=τ

(
k
τ

)
pk . (12)

Corollary 5.1 of Proposition 5.4 characterizes the second order cross moments for pmfs of the sums
of X with support included in {0,1}.

Corollary 5.1. Let f ∈ Fd be the pmf of a d-dimensional multivariate Bernoulli random variable
X = (X1, . . . ,Xd) and pS the pmf of the sum S =

∑d
i=1 Xi , with pS(k) = pk = P(S = k), k = 0, . . . ,d. If

pk = 0 for k ≥ 2 then E[XiXj ] = 0 for 1 ≤ i < j ≤ d.

The next Corollary provides the average second-order cross moment μ̄2 of the sums of d-dimensional
multivariate Bernoulli random variable X = (X1, . . . ,Xd) ∈ A∗.

Corollary 5.2. Given S∗, a discrete random variable defined over {0,1, . . . ,d} with pmf pS , pS(k) =
pk = P(S = k), k = 0, . . . ,d, let f ∈ Fd be the pmf of a d-dimensional multivariate Bernoulli random
variable X = (X1, . . . ,Xd) ∈ A∗, where A∗ = {X ∈ Fd :

∑d
i=1 Xi = S∗}. The average second-order cross

moment μ̄2 =

∑
1≤i< j≤d E[XiXj ](

d
2

) can be computed as

μ̄2 =
1

d(d − 1)

d∑
k=2

k(k − 1)pk .

We observe that for an exchangeable multivariate Bernoulli random variable the average second-
order cross moment μ̄2 coincides with any second-order cross moment E[XiXj],1 ≤ i < j ≤ d.

Corollary 5.3. If pd is not integer, given S∗ = SJM , jm ∈ Dd(dp), let f ∈ Fd be the pmf of a d-
dimensional multivariate Bernoulli random variable X = (X1, . . . ,Xd) ∈ A∗, where A∗ = {X ∈ Fd :∑d

i=1 Xi = S∗}. The average second-order cross moment μ̄2 =

∑
1≤i< j≤d E[XiXj ](

d
2

) can be computed as

μ̄2 =
1

d(d − 1)
(JM (2pd − JM − 1)). (13)

If pd is integer we have μ̄2 =
1

d(d−1) (pd(pd − 1)) = 1
(d−1) (p(pd − 1)).

Example 8. Let p = 11/20 and d = 5. We have pd = 11/4 = 2.75 and JM = 2. Using Equation (13)
we get μ̄2 = 0.25. We also have S∗ = SJM , jm ≡ S(2,3). The pmf pS = (p0, . . . ,p5) of S2,3 is defined as
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p2 = 0.25, p3 = 0.75 and pk = 0, k = 0,1,4,5. It follows that all the 5-dimensional multivariate Bernoulli
random variables X = (X1, . . . ,X5) such that

∑5
i=1 Xi = S2,3 have the average of its second-order cross

moments equal to 0.25.

The exchangeable case is quite simple because the geometrical representation is simpler than that of
the general one. The generators of the exchangeable polytope are known in closed form and in a one-
to-one correspondence with the generators of Dd(dp). Using the simple algebraic approach proposed
here, we can solve the more challenging problem to explicitly find a polynomial corresponding to a
non-exchangeable Bernoulli pmf f ∈ χ∗. This means that if X has pmf f then its sum S =

∑d
i=1 has

support on jM , jm. The vector X correspond to the minimum convex order and to the minimal mean
correlation. Notice that pmfs corresponding to fundamental polynomials Fj1 ,..., jn (x) are not in χ∗, for
n � d − 1, because the pmfs of their sums have support on the three points: {0,n,d − 1}. The pmf of the
sum corresponding to Fd−1 has support on {0,d−1,d−1} ≡ {0,d−1} and then it is not of interest apart
from the simple case d = 2. Similarly, pmfs corresponding to fundamental polynomials −Fj1 ,..., jn (x)
are not in χ∗, for n � d, because their sums have support on three points: {1,d − n,d}. The pmf of the
sum corresponding to −Fd−1 has support on {1,d − (d − 1),d} ≡ {1,d} and then it is not of interest
apart from the simple case d = 2.

We would like to build a non-exchangeable random variable X ∈ Fd(p) whose pmf f� has support
only on the points x ∈ {0,1}d with |x | = jM or |x | = jm. Consequently, the corresponding

∑d
i=1 Xi has

support only on jM and jm. A possible way for building f� is based on a well-known tool in algebraic
statistics, see [9]. We build the exchangeable f e corresponding to the discrete random variable SjM , jm .
This can be easily done taking into consideration Equation (10) and Equation (11). Then f� can be built
as f e + εm, ε ∈ (−1,+1), where the move m must satisfy the constraints Hm = 0, f e + εm ≥ 0, and∑D

i=1( f e + εm)i = 1. The move m can be built using the Markov Basis of the matrix H. This method
works well for small dimensions but become computationally unfeasible for large dimensions d. We
now prove that making use of the polynomial structure of the generators of Fd(p) we find a method
that provides an analytical solution of the problem and therefore works also for large dimensions. We
find a non-exchangeable pmf f ∈ χ∗ as the type-0 pmf associated to a specific linear combination of
fundamental polynomials, as stated in Theorem 5.2.

Theorem 5.2. Let p = s/t ≤ 1/2, a = 2s−t
s , a1 = |2s− t | = t − 2s and a2 = s. If p = 1/2 we obtain a = 0,

a1 = 0, a2 = 1.

1. We first consider the case pd not integer.
a) If pd + p < jm there are αi, βi ∈ {0,1}d with |αi | = jM , and |βi | = jm such that the polynomial

Pd−jM (x) = −a2

d−jM∏
i=1

xi +
h∑

i=1, |αi |=jM

xαi +

k∑
i=1, |βi |=jm

xβi − a1,

where

k = a2d − 2a2 jM − a1 jM

h = a1 + a2 − k

belongs to the ideal IP and the corresponding X ∈ Fd(p) has sum S∗ =
∑d

i=1 Xi with support
on { jM , jm}.



High dimensional Bernoulli distributions 843

b) If pd+ p ≥ jm, there are αi, βi ∈ {0,1}d with |αi | = jM , and |βi | = jm such that the polynomial

Pd−jm (x) = −a2

d−jm∏
i=1

xi +
h∑

i=1, |αi |=jM

xαi +

k∑
i=1, |βi |=jm

xβi − a1,

where

k = a2d − 2a2 jM − a1 jM − a2

h = a1 + a2 − k

belongs to the ideal IP and the corresponding X ∈ Fd(p) has sum S∗ =
∑d

i=1 Xi with support
on { jM , jm}.

2. If pd is integer the polynomial

Ppd(x) = −a2

d−pd∏
i=1

xi +
a1+a2∑

i=1, |αi |=jM

xαi − a1,

belongs to the ideal I and the corresponding X ∈ Fd(p) has sum with support on {pd}.

Proof. Assume pd not integer. To simplify the notation let jM = m. We have jm = m + 1 and pd ∈

(m,m + 1). The basic idea is to build P(x), a linear combination of fundamental polynomials (which
belongs to the ideal IP by construction) and that could be rewritten as a polynomial Pd−m(x) (or
Pd−(m+1)(x)) whose corresponding type-0 pmf has support only on points x, with |x | = m or |x | =
m + 1. We consider two different cases, pd + p < m + 1 and pd + p ≥ m + 1.

Let pd + p < m + 1 and let P(x) be the following linear combination of fundamental polynomials

P(x) = −a2Fd−m(x) +
h∑

i=1, |αi |=m

Fαi (x) +
k∑

i=1, |αi |=m+1

Fβi (x),

where Fαi (x) ≡ Fi1 ,...,in (x), i1, . . . ,in are the positions where αi is one, and Fβi (x) is similarly defined.
We recall that Fi1 ,...,in (x) = xi1 · · · xin −

∑n
j=1 xi j + (n − 1). Clearly, P(x) ∈ I.

We define Pd−m(x) = −a2
∏d−m

i=1 xi +
∑h

i=1, |αi |=m
xαi +

∑k
i=1, |βi |=m+1 x

βi − a1 and we look for h, k,
αi, βi such that P(x) = Pd−m(x). It follows that:

1. the constant term of Pd−m(x), that is −a1 must be equal to the constant term of P(x), that is
−a2(d − m − 1) + h(m − 1) + km;

2. because Pd−m(x) has not linear terms, the linear terms of P(x) must be zero. It follows that
the (positive) linear terms of −a2Fd−m(x) have to be cancelled by the (negative) linear terms of
Fαi (x) and Fβi (x). It is worth noting that in this proof given the term γi xi , γi integer, we say that
there are γi linear terms, i.e. we consider γi xi = xi + . . . + xi︸��������︷︷��������︸

γi times

if γi > 0 and γi xi = −xi − . . . − xi︸�����������︷︷�����������︸
γi times

if

γi < 0.

Condition 1 is satisfied for any choice of αi,i = 1, . . . , k, |αi | = m, and βi,i = 1, . . . , k, |βi | = m + 1 if
h, and k are positive solutions of:

h(m − 1) + km = a2(d − m − 1) − a1.
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To satisfy Condition 2 we first look for h, k such that the total number of linear terms in Fαi (x)
and Fβi (x) is equal to the total number of linear terms in −a2Fd−m(x). Then we show that by properly
choosing the h polynomials Fαi of degree m and the k polynomials Fβi of degree m+1 we can simplify
all the linear terms in P(x). Since all Fαi (x) have the same number m of linear terms for any i, all Fβi (x)
have the same number m + 1 of linear terms for any i, and the number of linear terms of −a2Fd−m(x)
is a2(d − m), h and k must be positive solutions of:

hm + k(m + 1) = a2(d − m).

From Conditions 1 and 2 we have to find the solutions of{
h(m − 1) + km = a2(d − m − 1) − a1

hm + k(m + 1) = a2(d − m).

Standard computations give

k = a2d − 2a2m − a1m

h = a1 + a2 − k .

We must check that solutions are positive integers. It is possible to verify that the solutions are integer
since (m − 1)(m + 1) − m2 = −1 and that the solutions are positive iff pd + p < m + 1 = jm.

A possible not unique choice for αi and βi can be obtained using the following steps.

1. The a2 copies of the linear terms x1, . . . , xd−m must be ordered, repeating the sequence “x1, . . . ,
xd−m” a2 times

x1, . . . , xd−m︸���������︷︷���������︸
1st time

, x1, . . . , xd−m︸���������︷︷���������︸
2nd time

, . . . , x1, . . . , xd−m︸���������︷︷���������︸
a2-th time

. (14)

2. The αi,i = 1, . . . ,h, |αi | =m are determined. This is equivalent to build h mononomials of degree
m. The first monomial is built as the product of the first m linear terms (i.e. variables) in the list
shown in Equation (14), i.e. x1 · · · xm, the second monomial with the subsequent m variables, i.e.
xm+1 · · · x2m(mod(d−m))+1, and so on for the first h mononomials.

3. Then, in an analogous way, starting from the position hm + 1 to the end of the list shown in
Equation (14) we build k monomials of degree m + 1.

Let us now consider the case pd + p ≥ jm. The proof is similar to the case pd + p > jm and we look
for the positive solutions of {

h(m − 1) + km = a2(d − m − 2) − a1

hm + k(m + 1) = a2(d − m − 1).

Easy computations give

k = a2d − 2a2m − a1m − a2

h = a1 + a2 − k .

If pd + p ≥ m + 1 = jm then pd − m ≥ 1 − p and since p < 1/2, pd − m > p. It is easy to verify that if
pd −m > p, h and k are both integers and positives. Notice that p = 1/2 implies pd + p ≥ jm for d ≥ 2,
thus it is included in this case.
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The case pd integer can be proved similarly by proving that Ppd(x) is the following linear combina-
tion of fundamental polynomials:

Ppd(x) = −a2Fd−pd(x) +

a1+a2∑
i=1, |αi |=pd

Fαi (x).

This completes the proof.

The proof of Proposition 5.2 provides a way to find αi and βi with a very simple algorithm. Therefore,
we can easily find a pmf f ∈ Fd(p) minimal with respect to the convex order in any dimension d and
for any p. From Lemma 2.3 in [31], we can also check if the density found is an extremal point - we
know that the minimum is reached on at least one extremal point.

We conclude this section with some examples. Example 9 of Pd−jM (x) in a case where pd+ p < jm.
Examples 10 and 12 show the polynomials corresponding to X ∈ χ∗ in high dimensions and with
different choices for p. Example 11 shows the case pd integer. In all cases, given the final polynomial,
the corresponding type-0 pmf can be easily found using the steps in the algorithm described in Section
3.

Example 9. Let d = 7, s = 2, and t = 5. We have p = s/t = 2/5, pd = 14/5 = 2.8, jM ≡ m = 2, jm ≡

m + 1 = 3, a = (2s − t)/s = −1/2, a1 = 1, and a2 = 2.
Since pd + p = 16

5 > 3, we have to consider Pd−jm (x) ≡ P7−3(x) = P4(x). Thus we have to find h, k
such that {

h + 2k = 5
2k + 3k = 8.

We find h = 1, k = 2.
Since the linear term of −2F1,...,4(x) is 2

∑4
i=1 xi we have split the 2 · 4 = 8 variables listed in the

first row of Table 7 using h = 1 group with m = 2 variables and k = 2 groups with m + 1 = 3 variables.
The second row of Table 7 reports the corresponding monomials.

The resulting polynomial is: P4(x) = −2x1x2x3x4 + x1x2 + x1x3x4 + x2x3x4 − 1.

Example 10. Consider the following two cases:

1. Let d = 9, s = 2, and t = 5. We have p = s/t = 2/5, pd = 18/5 = 3.6, jM ≡ m = 3, jm ≡ m + 1 = 4,
a = (2s− t)/s = −1/2, a1 = 1, and a2 = 2. Since pd + p = 20

5 = 4, we have to consider Pd−jm (x) =
P5(x). We find h = 2, k = 1 and P5(x) = −2x1 · · · x5 + x1x2x3 + x1x4x5 + x2x3x4x5 − 1.

2. Let d = 9, s = 2, and t = 7. We have p = s/t = 2/7, pd = 18/7 ≈ 2.57, jM ≡ m = 2, jm ≡ m+1 = 3,
a = (2s − t)/s = −3/2, a1 = 3, and a2 = 2. Since pd + p = 20

7 < 3, we have to consider Pd−m(x) =
P7(x). We find h = 1, k = 4 and

P7(x) = −2x1 · · · x7 + x1x2 + x3x4x5 + x1x6x7 + x2x3x4 + x5x6x7 − 3.

S xαi constant dj = d − j xd j
constant a

S = 2 xi1 xi2 +1 5 −x1 · · · x5 −4 − 1
2

S = 3 xi1 xi2 xi3 +2 4 −x1 · · · x4 −3 − 1
2

Table 6. Monomial terms to be balanced in the case d = 7 and p = 2/5.
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Linear terms x1 x2 x3 x4 x1 x2 x3 x4

Monomials x1x2 x3x4x1 x2x3x4
Table 7. Linear terms and the corresponding monomials for the case d = 7 and p = 2/5.

Example 11. Let d = 5, s = 2, and t = 5. We have p = s/t = 2/5, pd = 2 a = (2s − t)/s = −1/2, a1 = 1,
and a2 = 2. The value of pd is integer and then we have to consider Pd−pd(x) = P3(x).

P3(x) = −2x1x2x3 + x1x2 + x1x3 + x2x3 − 1.

Example 12. Let d = 216, s = 2, and t = 5. We have p = s/t = 2/5, pd = 432/5 = 86.4, jM ≡ m = 86,
jm ≡ m+ 1 = 87, a = (2s− t)/s = −1/2, a1 = 1, and a2 = 2. Since pd + p = 86.8 is less than m+ 1 = 87,
we have to consider Pd−m(x) = P130(x). We find h = 1, k = 2 and

P130(x) = −2x1 · · · x130 + x1 · · · x86 + x1 · · · x43 · x87 · · · x130 + x44 · · · x130 − 1.

We have proved that f ∈ χ∗, i.e. f is a Σcx-smallest element in Fd(p), implies that f has the lowest
mean correlation. The relationship between minimal convex sum and minimal dependence, also called
strongest negative dependence, has been addressed in the literature (see [26] for a complete discussion
on this matter). The main notion of negative dependence is countermonotonicity, that is defined for ran-
dom vectors X of dimension d = 2 and that means that the components of X are oppositely ordered (see
[26] and [22] for a formal definition of countermonotonicity). Minimal convex sums imply a negative
dependence that is an extension of countermonotonicity to any d. The notion of Σ-countermonotonicity
has been introduced in [26] (see also [18]) and exists for any Fréchet class.

Definition 5.3. A random vector X is Σ-countermonotonic if for any subset i ⊂ {1, . . . ,d}, we have
that the random variables

∑
j∈I Xj and

∑
j�I Xj are countermonotonic.

In [26] it is proved that if X is a Σcx-smallest element than it is Σ-countermonotonic. Therefore the
non-exchangeable pmf f ∗ ∈ χ∗ that we explicitly find in Theorem 5.2 is Σ-countermonotonic. We have
also seen that it has the lowest mean correlation in Proposition 5.4. Section 6 further investigates the
relationship between minimal convex sums and negative dependence for the class Fd(p).

6. The safest dependence structure

Since convex order is a variability order the minimal convex order correspond to a minimal risk random
variable and the minimal convex order can be thought as the safest dependence structure. If pd < 1 the
latter is linked to the strongest negative dependence, i.e. mutual exclusivity. This section generalizes the
notion of mutual exclusivity to the case pd > 1 and discusses its link with the minimal convex order and
with other notions of extreme negative dependence. In [4] the authors characterize mutual exclusivity
as the strongest negative dependence structure. When mutual exclusivity is possible, it corresponds to
the minimal convex order and in this light it can be considered the safest dependence structure. A vector
X ∈ Fd(p) is mutually exclusive if

P(Xi1 = 1,Xi2 = 1) = 0, ∀i1,i2 ∈ {1, . . . ,d}.

Remark 4. In dimension d = 2 a random vector X is mutually exclusive if and only if it is counter-
monotonic. If d > 2 there is not any concept of negative dependence that satisfies all the properties



High dimensional Bernoulli distributions 847

of countermonotonicity. The most intuitive extension of countermonotonicity is the notion of pairwise
countermonotonicity ([26]), that is equivalent to the above notion of mutual exclusivity.

In [4] the authors also show that the distribution of a mutually exclusive random vector is the lower
Fréchet bound of its Fréchet class, that in our framework is FL(x) =max(

∑d
i=1 Fi(xi) − d + 1,0). Nev-

ertheless, if pd > 1 mutual exclusivity is not possible and the lower Fréchet bound is not a cdf. We now
generalize the notion of mutual exclusivity to any p and d and discuss its link with negative correlation.
The proof of Proposition 6.1 is in the supplementary material.

Definition 6.1. Let X ∈ Fd(p), X is mutually exclusive of order m if

P(Xi1 = 1, . . . ,Xim = 1) = 0, ∀i1, . . . ,im ∈ {1, . . . ,d}.

If m = 2, X is mutually exclusive.

Proposition 6.1. Let X ∈ Fd(p) then X is mutually exclusive of order m iff P(S ≥ m) = 0.

The following result is a straightforward consequence of the fact that, to preserve the condition on
the mean, if dp ∈ ( jM , jm], then P(S ≥ jm) � 0.

Remark 5. Another notion of extreme negative dependence is the joint mixability ([26] and [22]). A
random vector X is said to be a joint mix if

P(S = k) = 1, (15)

where S =
∑d

i=1 Xi , for some k ∈ R, called the joint center of X . In our case, X ∈ Fd(p), thus
k ∈ {0, . . . ,d} and X has the same one dimensional margins (under this assumption we say that X
is completely mixable [22]). If X ∈ Fd(p), we have E[S] = dp, therefore X can be completely mixable
only with joint center pd and pd integer. If pd is integer the completely mixable random vector X has
sum Spd,pd that is the Σcx-smallest element of Fd(p), according to Theorem 5.2. The relation between
Σ-countermonotonicity, mixability and mutual countermonotonicity is discussed in [26].

Proposition 6.2. Let X ∈ Fd(p). If dp ∈ ( jM , jm] then X cannot be k-exclusive for all k ≤ jm.

This is in line with the condition that the lower Fréchet bound is a distribution and belongs to
the class Fd(p) iff pd < 1. In fact X can be 2-exclusive iff jm < 2 and therefore pd ≤ jm ≤ 1. Un-
der this condition if X is 2-exclusive it is also pairwise countermonotonic and its cdf is the Fréchet
lower bound. A consequence of the above results is that if pd ∈ ( jM , jm] the vector in Fd(p) cannot
be mutually exclusive of order lower than jm. Thus jm + 1-mutually exclusive pmfs have sums with
support on {0,1, . . . , jm}. Since the minimum of the convex order is reached on χ∗, the safest depen-
dence structure is jm + 1-mutually exclusive. Nevertheless, Proposition 5.2 implies that if pd > 1 not
all the jm + 1-mutually exclusive pmfs are minimal with respect to the convex order, but only the
ones with support on { jM , jm}. Only the pmfs with support on { jM , jm} are Σcx-smallest elements
in Fd(p). Therefore jm + 1-mutually exclusivity does not imply minimal convex sums, on the con-
trary Σ-countermonotonicity does. Since Σ-countermonotonicity implies minimal convex sums that
implies jm + 1-mutually exclusivity, Σ-countermonotonicity is a stronger notion than jm + 1-mutually
exclusivity. As already observed, fundamental polynomials of degree n and their opposite have sums
with support on three points: {0,n,d − 1} or {1,d − n,d}, respectively. This means that they cannot
be m-exclusive of order lower than m = d − 1 or m = d. The peculiarity of their support let us wonder
whether they are associated to specific dependence structures. Nevertheless, since they are generators
of the whole class they are able to generate all the admissible dependencies in the class itself.
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7. Conclusion
We map the class Fd(p) into an ideal of points and we show that in any dimension the class Fd(p) is
generated by a set of polynomials that we call fundamental polynomials. Each pmf in Fd(p) is asso-
ciated to a linear combination of fundamental polynomials. This representation turns out to be very
important to address open issues in the study of multivariate Bernoulli distributions. As a first applica-
tion, we prove that a specific linear combination of fundamental polynomials solves the open problem
to find a minimal distribution with respect to the convex order of sums and with respect to a measure of
negative dependence in Fd(p). Lower bounds in the convex order identify the safest dependence struc-
ture, that is important in many fields, such as insurance or finance. In particular we are interested in
applying our results to credit portfolio management, where multivariate Bernoulli distributions are used
to model indicators of default. In this framework sums represent aggregate defaults and their bounds in
the convex order are helpful to identify bounds for the risk associated to credit portfolios. Nowadays,
the real economy is highly interconnected and banks and financial intermediaries are exposed to losses
arising from defaults of obligors that are not independent. Since there are usually hundreds of obligors,
banks need to handle high dimensional portfolios, hence the importance of analytical results.

Our theoretical future research will focus on fundamental polynomials, as generators of the Fd(p),
and in particular on two open issues. First, fundamental polynomials of degree n, n < d − 1 and their
opposites have sums with support on three points: 0,n,d − 1 or 1,d − n,d, respectively. This means
that they cannot be m-exclusive of order lower than m = d − 1 or m = d. The peculiarity of their
support and its connection with a dependence notion puts in question if pmfs associated to fundamental
polynomials can be characterized in terms of their dependence structure and if we can then identify a
class of dependencies that are able to generate all the admissible dependencies in the class. Second,
fundamental polynomials correspond to extremal points of the polytope Fd(p) and we have used them
in this work to provide an algorithm to find extremal points in high dimensions. The connection between
algebraic and geometrical generators and also their connections with bounds for the class will be further
investigated.
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