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Abstract
We introduce an anisotropic global wave front set of Gelfand–Shilov ultradistributions with
different indices for regularity and decay at infinity. The concept is defined by the lack
of super-exponential decay along power type curves in the phase space of the short-time
Fourier transform. This wave front set captures the phase space behaviour of oscillations
of power monomial type, a k a chirp signals. A microlocal result is proved with respect to
pseudodifferential operators with symbol classes that give rise to continuous operators on
Gelfand–Shilov spaces. We determine the wave front set of certain series of derivatives of
the Dirac delta, and exponential functions.

Keywords Ultradistributions · Gelfand–Shilov spaces · Pseudodifferential operators ·Wave
front sets ·Microlocal analysis · Phase space · Anisotropy

Mathematics Subject Classification 46F05 · 46F12 · 35A27 · 47G30 · 35S05 · 35A18 ·
81S30 · 58J47

1 Introduction

Gelfand–Shilov spaces, for t > 0 and s > 0, are defined by

|xα Dβ f (x)| ≤ Ch|α+β|α!t β!s (1.1)

which we assume to be valid for every h > 0 and a suitable C > 0 depending on h
(spaces of Beurling type �s

t (R
d)), or else for some h > 0 and some C > 0 (Roumieu type

Ss
t (Rd)). The ultradistributions (�s

t )
′(Rd), (Ss

t )′(Rd) are defined as their respective topolog-
ical duals. Attention in our paper will be limited to the Beurling case under the assumption
t + s > 1 granting �s

t (R
d) �= {0}. The definition was introduced in [12], and then analyzed
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2380 L. Rodino, P. Wahlberg

in various contexts, with application to linear and nonlinear partial differential equations,
in connection also with problems in Mathematical Physics. The literature on the subject is
extremely wide, see for example [9, 27, 36] for recent contributions to the general theory,
and [3, 7, 22, 23] concerning travelling waves, Boltzmann and Schrödinger equations. In par-
ticular, Gelfand–Shilov spaces have been considered in the framework of pseudodifferential
operators. Namely, classes of pseudodifferential operatorswere introduced,with symbols sat-
isfying suitable factorial and exponential estimates, acting continuously on Gelfand–Shilov
spaces, see for example [1, 6].

In our paper we shall refer to the class of symbols satisfying

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Ch|α+β|α!s β!t eμ

(
|x | 1t +|ξ | 1s

)
(1.2)

for someμ > 0 and all h > 0, withC > 0 depending on h. This symbol class was introduced
in [1]. The corresponding Weyl operators aw(x, D) were proven to act continuously on
�s

t (R
d) and on (�s

t )
′(Rd) in [1, Theorem 3.15].

Our attention will be actually addressed to another ingredient of the microlocal analysis:
the wave front set. The classical definition of Hörmander [15] in the setting of Schwartz
distributions was extended in different ways. In particular Hörmander [16] introduced for
u ∈ S ′(Rd) the notion of WFg(u) adapted to the study of global regularity in T ∗Rd \ 0.
Let us recall the definition by using the short-time Fourier transform (Gabor transform) with
window ϕ ∈ S (Rd)\0, cf. [30]:

Vϕu(x, ξ) = (2π)−
d
2

∫
Rd

e−i〈y,ξ〉u(y)ϕ(y − x)dy.

We have z0 = (x0, ξ0) /∈WFg(u), z0 �= 0, if

sup
z∈	

〈z〉N |Vϕu(z)| <∞ ∀N ≥ 0 (1.3)

for a suitable conic neighborhood 	 of z0 in R2d\0.
Looking for a counterpart of (1.3) in the Gelfand–Shilov setting, we may start with the

equivalent definition of the �s
t (R

d) regularity of u ∈ (�s
t )
′(Rd) given by the estimates, with

window ϕ ∈ �s
t (R

d)\0,

|Vϕu(x, ξ)| � e−r(|x | 1t +|ξ | 1s ) ∀r > 0. (1.4)

For the equivalence with (1.1) see for example [37].
Hence in the case s = t we may define as �s

s (R
d) regularity at z0 ∈ T ∗Rd \ 0

sup
z∈	

er |z| 1s |Vϕu(z)| <∞ ∀r > 0 (1.5)

where again 	 is a conic neighborhood of z0 in R2d\0. Based on (1.5), the Gelfand–Shilov
wave front set for s = t was recently defined and used in applications to partial differential
equations [2, 5, 7]. Let us address for some early ideas to [16], and to the theory of Fourier
hyperfunctions [18, 19].

If s �= t , cones 	 ⊆ T ∗Rd \ 0 are not anymore appropriate to micro-localize the decay
of the Gabor transform in (1.4). The natural idea is to replace the standard cones with
anisotropic cones, namely we replace the straight lines through (x0, ξ0) ∈ T ∗Rd \ 0 with the
curves {x = λt x0, ξ = λsξ0, λ > 0} and we define the anisotropic cone as the union of
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Microlocal analysis for Gelfand–Shilov spaces 2381

such curves through a neighborhood U ⊆ T ∗Rd\0 of (x0, ξ0). The required decay to define
(x0, ξ0) /∈WFt,s(u) can then be expressed by

sup
λ>0, (x,ξ)∈U

erλ|Vϕu(λt x, λsξ)| <∞, ∀r > 0.

Let us describe in short the contents of the paper. Section2 is devoted to somepreliminaries.
We give in particular a new proof of the celebrated Peetre inequality; the optimality of the
constant in our formula seems new in the literature, surprisingly. The definition of WFt,s(u)

is reported in Sect. 3. We give there examples about WFs,s(u), i.e. the case s = t , and then
prove invariance properties under change of window and the action of certain metaplectic
operators.

Section 4 is devoted to chirp signals, providing an interesting example of anisotropic wave
front set. Namely in dimension d = 1, for

u(x) = eicxm
, m ∈ N \ {0, 1}, c ∈ R \ 0, (1.6)

we obtain if t(m − 1) > 1

WFt,t(m−1)(u) = {(x, ξ = cmxm−1) ∈ R2, x �= 0}. (1.7)

Section 5 is addressed to the relations between the Gelfand–Shilov wave front set and the
Gevrey wave front set WFs(u) for u ∈ (�s

t )
′(Rd), s > 1. We shall refer to [29], results given

there for the Roumieu case being easily translated to the present Beurling framework.
The main result of the paper is in Sect. 6, where we prove the microlocal inclusion

WFt,s(aw(x, D)u) ⊆WFt,s(u), u ∈ (�s
t )
′(Rd), (1.8)

for symbols satisfying (1.2). Several examples are then given. Namely in Sect. 7 we compute
WFt,s(u) for polynomials andfinite linear combinations of derivatives of the delta distribution
δ0. The analysis extends to ultradistributions of the form

u =
∑
α∈Nd

cα Dαδ0

under suitable bounds on the coefficients cα ∈ C, and their Fourier transforms.
In Sect. 8 we first consider e〈·,z〉 ∈ (�s

t )
′(Rd), with z ∈ Cd fixed, t ≤ 1. From (1.8) we

obtain
WFt,s(e〈·,z〉) = (Rd \ 0)× {0}.

Combining with the example (1.6) in dimension d = 1, we then consider

u(x) = ezx+icxm

and we deduce for WFt,s(u) the same identity (1.7).
In conclusion, wewould like to observe that anisotropic cones are not a novelty inmicrolo-

cal analysis. They were used as a partition of the space Rd of the dual variables by [21] and
[25], soon followed by other authors, see formore recent contributions [11] and its references.
In these papers the anisotropic cones in Rd are used as a suitable option in the microlocal
study of equations of parabolic type, whereas in our case the anisotropy in T ∗Rd is forced
by the very structure of the function spaces.

As background we mention recent works of ours (written after this paper) concerning
anisotropic global wave front sets and their propagation for certain evolution equations [31,
40, 41].
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2382 L. Rodino, P. Wahlberg

Applications to partial differential equations will be given in a sequel of this paper. We
are then inspired by [4], where the authors prove Gelfand–Shilov regularity for operators of
the type

P = −�+ |x |2m, m ∈ N \ 0.
We aim for microlocal versions of this result, as well as propagation of singularities for
Schrödinger operators of the form

Q = i∂t − P = i∂t +�− |x |2m .

2 Preliminaries

An open ball inRd of radius r > 0 centered at x ∈ Rd is denoted Br (x), and Br (0) = Br . The
unit sphere is denoted Sd−1 ⊆ Rd . The group of invertible matrices in Rd×d is GL(d,R),
and the determinant of A ∈ Rd×d is |A|. The transpose of A ∈ Rd×d is denoted AT and the
inverse transpose of A ∈ GL(d,R) is A−T . The derivative D j = −i∂ j is used extended to
multi-indices. We write f (x) � g(x) provided there exists C > 0 such that f (x) ≤ C g(x)

for all x in the domain of f and of g. We use the bracket 〈x〉 = (1 + |x |2) 1
2 for x ∈ Rd .

Peetre’s inequality is usually stated as

〈x + y〉s ≤ 2
|s|
2 〈x〉s〈y〉|s| x, y ∈ Rd , s ∈ R,

but in fact the constant can be improved as follows.

Lemma 2.1 We have

〈x + y〉s ≤
(

2√
3

)|s|
〈x〉s〈y〉|s| x, y ∈ Rd , s ∈ R,

where the constant is optimal.

Proof It suffices to show

sup
x,y∈Rd

1+ |x + y|2
(1+ |x |2)(1+ |y|2) =

4

3
.

If |x | = 2− 1
2 and y = x then

1+ |x + y|2
(1+ |x |2)(1+ |y|2) =

1+ 4|x |2
(1+ |x |2)2 =

4

3

so it remains to show

3(1+ |x + y|2) ≤ 4(1+ |x |2)(1+ |y|2), x, y ∈ Rd .

The latter inequality can be written

4〈x, y〉 ≤ 1+ |x − y|2 + 4|x |2|y|2

whose truth is a consequence of (2|x ||y| − 1)2 ≥ 0 and the Cauchy–Schwarz inequality. ��
The normalization of the Fourier transform is

F f (ξ) = f̂ (ξ) = (2π)−
d
2

∫
Rd

f (x)e−i〈x,ξ〉 dx, ξ ∈ Rd ,
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Microlocal analysis for Gelfand–Shilov spaces 2383

for f ∈ S (Rd) (the Schwartz space), where 〈 · , · 〉 denotes the scalar product on Rd .
The conjugate linear action of a (ultra-)distribution u on a test function φ is written (u, φ),
consistent with the L2 inner product ( · , · ) = ( · , · )L2 which is conjugate linear in the
second argument.

Denote translation by Tx f (y) = f (y− x) and modulation by Mξ f (y) = ei〈y,ξ〉 f (y) for
x, y, ξ ∈ Rd where f is a function or distribution defined onRd . The composition is denoted
�(x, ξ) = Mξ Tx . Let ϕ ∈ S (Rd)\{0}. The short-time Fourier transform (STFT) [8] of a
tempered distribution u ∈ S ′(Rd) is defined by

Vϕu(x, ξ) = (2π)−
d
2 (u, Mξ Txϕ) = F (uTxϕ)(ξ), x, ξ ∈ Rd .

Then Vϕu is smooth and polynomially bounded [13, Theorem 11.2.3]. When u ∈ S (Rd) it
is instead superpolynomially decreasing, that is

|Vϕu(x, ξ)| � 〈(x, ξ)〉−N , (x, ξ) ∈ T ∗Rd , ∀N ≥ 0.

The inverse transform is given by

u = (2π)−
d
2

∫∫
R2d

Vϕu(x, ξ)Mξ Txϕ dx dξ (2.1)

provided ‖ϕ‖L2 = 1, with action under the integral understood, that is

(u, f ) = (Vϕu, Vϕ f )L2(R2d ) (2.2)

for u ∈ S ′(Rd) and f ∈ S (Rd), cf. [13, Theorem 11.2.5].

2.1 Spaces of functions and ultradistributions

Let s, t, h > 0. The space denoted Ss
t,h(Rd) is the set of all f ∈ C∞(Rd) such that

‖ f ‖Ss
t,h
≡ sup

|xα Dβ f (x)|
h|α+β|α!t β!s (2.3)

is finite, where the supremum is taken over all α, β ∈ Nd and x ∈ Rd . The function space
Ss

t,h is a Banach space which increases with h, s and t , and Ss
t,h ⊆ S . The topological dual

(Ss
t,h)′(Rd) is a Banach space such that S ′(Rd) ⊆ (Ss

t,h)′(Rd).

The Beurling type Gelfand–Shilov space �s
t (R

d) is the projective limit of Ss
t,h(Rd) with

respect to h [12]. This means
�s

t (R
d) =

⋂
h>0

Ss
t,h(Rd) (2.4)

and the Fréchet space topology of �s
t (R

d) is defined by the seminorms ‖ · ‖Ss
t,h

for h > 0.

If s + t > 1 then �s
t (R

d) �= {0} [26]. The topological dual of �s
t (R

d) is the space of
(Beurling type) Gelfand–Shilov ultradistributions [12, Sect. I.4.3]

(�s
t )
′(Rd) =

⋃
h>0

(Ss
t,h)′(Rd). (2.4)′

The dual space (�s
t )
′(Rd) may be equipped with several topologies: the weak∗ topology,

the strong topology, the Mackey topology, and the topology defined by the union (2.4)′ as
an inductive limit topology [32]. The latter topology is the strongest topology such that the
inclusion (Ss

t,h)′(Rd) ⊆ (�s
t )
′(Rd) is continuous for all h > 0.
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2384 L. Rodino, P. Wahlberg

The Roumieu type Gelfand–Shilov space is the union

Ss
t (Rd) =

⋃
h>0

Ss
t,h(Rd)

equipped with the inductive limit topology [32], that is the strongest topology such that each
inclusion Ss

t,h(Rd) ⊆ Ss
t (Rd) is continuous. Then Ss

t (Rd) �= {0} if and only if s + t ≥ 1
[12]. The corresponding (Roumieu type) Gelfand–Shilov ultradistribution space is

(Ss
t )′(Rd) =

⋂
h>0

(S t
s,h)′(Rd).

For every s, t > 0 such that s + t > 1, and for any ε > 0 we have

�s
t (R

d) ⊆ Ss
t (Rd) ⊆ �s+ε

t+ε (Rd).

We will not use the Roumieu type spaces in this article but mention them as a service to a
reader interested in a wider context.

We write �s
s (R

d) = �s(Rd) and (�s
s )
′(Rd) = �′s(Rd). Then �s(Rd) �= {0} if and only

if s > 1
2 .

The Gelfand–Shilov (ultradistribution) spaces enjoy invariance properties, with respect
to translation, dilation, tensorization, coordinate transformation and (partial) Fourier trans-
formation. The Fourier transform extends uniquely to homeomorphisms on S ′(Rd), from
(Ss

t )′(Rd) to (S t
s)
′(Rd), and from (�s

t )
′(Rd) to (�t

s)
′(Rd), and restricts to homeomorphisms

on S (Rd), from Ss
t (Rd) to S t

s(R
d), and from �s

t (R
d) to �t

s(R
d), and to a unitary operator

on L2(Rd). Likewise (2.2) holds when u ∈ (�s
t )
′(Rd), f ∈ �s

t (R
d), ϕ ∈ �s

t (R
d) and

‖ϕ‖L2 = 1.
At one occasion we will need Gelfand–Shilov spaces defined on R2d which has possibly

different behavior with respect to the two Rd coordinates [1, 6, 12]. Then the seminorms
(2.3) are generalized into

‖ f ‖Ss1,s2
t1,t2,h

≡ sup
|xα1

1 xα2
2 Dβ1

x1 Dβ2
x2 f (x1, x2)|

h|α1+α2+β1+β2|α1!t1 α2!t2β1!s1β2!s2 (2.5)

for t j , s j > 0, j = 1, 2. The spaces �
s1,s2
t1,t2 (R2d) and (�

s1,s2
t1,t2 )′(R2d) are defined as above.

Working with Gelfand–Shilov spaces we will often need the inequality (cf. [6])

|x + y| 1s ≤ κ(s−1)(|x | 1s + |y| 1s ), x, y ∈ Rd , s > 0,

where

κ(t) =
{
1 if 0 < t ≤ 1
2t−1 if t > 1

,

which implies

er |x+y| 1s ≤ eκ(s−1)r |x | 1s eκ(s−1)r |y| 1s , x, y ∈ Rd , r > 0,

e−rκ(s−1)|x+y| 1s ≤ e−r |x | 1s eκ(s−1)r |y| 1s , x, y ∈ Rd , r > 0.

We will often use the following estimate where we use |α|! ≤ α!d |α| for α ∈ Nd [24,
Eq. (0.3.3)]. For any s > 0, h > 0 and any α ∈ Nd we have

α!−sh−|α| =
(

h−
|α|
s

α!

)s

≤
⎛
⎜⎝

(
dh− 1

s

)|α|
|α|!

⎞
⎟⎠

s

≤ esdh− 1
s
. (2.6)
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Microlocal analysis for Gelfand–Shilov spaces 2385

2.2 Weyl pseudodifferential operators

Finally we need some elements from the calculus of pseudodifferential operators [10, 15, 24,
34]. Let a ∈ C∞(R2d) and m ∈ R. Then a is a Shubin symbol of order m, denoted a ∈ 	m ,
if for all α, β ∈ Nd there exists a constant Cα,β > 0 such that

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β〈(x, ξ)〉m−|α+β|, x, ξ ∈ Rd . (2.7)

The Shubin symbols 	m form a Fréchet space where the seminorms are given by the smallest
possible constants in (2.7).

For a ∈ 	m a pseudodifferential operator in the Weyl quantization is defined by

aw(x, D) f (x) = (2π)−d
∫
R2d

ei〈x−y,ξ〉a
(

x + y

2
, ξ

)
f (y) dy dξ, f ∈ S (Rd), (2.8)

when m < −d . The definition extends to general m ∈ R if the integral is viewed as an
oscillatory integral. The operator aw(x, D) then acts continuously on S (Rd) and extends
uniquely by duality to a continuous operator on S ′(Rd). By Schwartz’s kernel theorem the
Weyl quantization proceduremay be extended to aweak formulationwhich yields continuous
linear operators aw(x, D) : S (Rd) → S ′(Rd), even if a is only an element of S ′(R2d).
Likewise aw(x, D) : �s(Rd)→ �′s(Rd) if a ∈ �′s(R2d) and s > 1

2 .
If s > 1

2 anda ∈ �′s(R2d) theWeyl quantization extends a continuous operator�s(Rd)→
�′s(Rd) that satisfies

(aw(x, D) f , g) = (2π)−d(a, W (g, f )), f , g ∈ �s(Rd), (2.9)

where the cross-Wigner distribution is defined as

W (g, f )(x, ξ) =
∫
Rd

g(x + y/2) f (x − y/2)e−i〈y,ξ〉dy, (x, ξ) ∈ R2d .

We have W (g, f ) ∈ �s(R2d) when f , g ∈ �s(Rd).
The real phase space T ∗Rd � Rd ⊕ Rd is a real symplectic vector space equipped with

the canonical symplectic form

σ((x, ξ), (x ′, ξ ′)) = 〈x ′, ξ 〉 − 〈x, ξ ′〉, (x, ξ), (x ′, ξ ′) ∈ T ∗Rd .

This form can be expressed with the inner product as σ(X , Y ) = 〈J X , Y 〉 for X , Y ∈ T ∗Rd

where

J =
(

0 Id

−Id 0

)
∈ R2d×2d . (2.10)

The real symplectic group Sp(d,R) is the set ofmatrices inGL(2d,R) that leaves σ invariant.
Hence J ∈ Sp(d,R).

To each symplectic matrix χ ∈ Sp(d,R) is associated an operator μ(χ) that is unitary on
L2(Rd), and determined up to a complex factor of modulus one, such that

μ(χ)−1aw(x, D) μ(χ) = (a ◦ χ)w(x, D), a ∈ S ′(R2d) (2.11)

(cf. [10, 15]). The operatorμ(χ) is a homeomorphismonS and onS ′. The same conclusions
hold if a ∈ �′s(R2d) in the functional framework �s , �′s if s > 1

2 . In fact μ(χ) is a
homeomorphism on �s(Rd) which extends uniquely to a homeomorphism on �′s(Rd) [7,
Proposition 4.4].

The mapping Sp(d,R) � χ → μ(χ) is called the metaplectic representation [10]. It is
in fact a representation of the so called 2-fold covering group of Sp(d,R), which is called
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2386 L. Rodino, P. Wahlberg

the metaplectic group. The metaplectic representation satisfies the homomorphism relation
modulo a change of sign:

μ(χχ ′) = ±μ(χ)μ(χ ′), χ, χ ′ ∈ Sp(d,R).

3 The Gabor and the t, s-Gelfand–Shilov wave front sets

First we define the Gabor wave front set WFg introduced in [16] and further elaborated in
[30].

Definition 3.1 Let ϕ ∈ S (Rd) \ 0, u ∈ S ′(Rd) and z0 ∈ T ∗Rd \ 0. Then z0 /∈ WFg(u) if
there exists an open conic set 	 ⊆ T ∗Rd \ 0 such that z0 ∈ 	 and

sup
z∈	

〈z〉N |Vϕu(z)| <∞, N ≥ 0. (3.1)

This means that Vϕu decays rapidly (super-polynomially) in 	. The condition (3.1) is
independent of ϕ ∈ S (Rd) \ 0, in the sense that super-polynomial decay will hold also for
Vψu if ψ ∈ S (Rd)\0, in a possibly smaller cone containing z0. The Gabor wave front set
is a closed conic subset of T ∗Rd\0. By [16, Proposition 2.2] it is symplectically invariant in
the sense of

WFg(μ(χ)u) = χWFg(u), χ ∈ Sp(d,R), u ∈ S ′(Rd). (3.2)

The Gabor wave front set is naturally connected to the definition of the C∞ wave front
set [15, Chapter 8], often called just the wave front set and denoted WF. For u ∈ D ′(Rd) a
point in the phase space (x0, ξ0) ∈ T ∗Rd such that ξ0 �= 0 satisfies (x0, ξ0) /∈WF(u) if there
exists ϕ ∈ C∞c (Rd) such that ϕ(0) �= 0, an open conical set 	2 ⊆ Rd\0 such that ξ0 ∈ 	2,
and

sup
ξ∈	2

〈ξ 〉N |Vϕu(x0, ξ)| <∞, N ≥ 0.

The difference compared to WFg(u) is that the C∞ wave front set WF(u) is defined in
terms of super-polynomial decay in the frequency variable, for x0 ∈ Rd fixed, instead of
super-polynomial decay in an open cone in the phase space T ∗Rd containing the point of
interest.

Pseudodifferential operatorswith Shubin symbols aremicrolocalwith respect to theGabor
wave front set. In fact we have by [16, Proposition 2.5]

WFg(a
w(x, D)u) ⊆WFg(u)

provided a ∈ 	m and u ∈ S ′(Rd).
Let u ∈ (�s

t )
′(Rd) with s + t > 1. If ψ ∈ �s

t (R
d)\0 then

|Vψu(x, ξ)| � er(|x | 1t +|ξ | 1s ) (3.3)

for some r > 0. We have u ∈ �s
t (R

d) if and only if

|Vψu(x, ξ)| � e−r(|x | 1t +|ξ | 1s ) (3.4)

for all r > 0. See e.g. [37, Theorems 2.4 and 2.5].
For u ∈ (�s

t )
′(Rd) we define the t, s-Gelfand–Shilov wave front set WFt,s(u) as a closed

subset of the phase space T ∗Rd \ 0 as follows.
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Definition 3.2 Let s, t > 0 satisfy s+t > 1, and supposeψ ∈ �s
t (R

d)\0 and u ∈ (�s
t )
′(Rd).

Then (x0, ξ0) ∈ T ∗Rd \ 0 satisfies (x0, ξ0) /∈ WFt,s(u) if there exists an open set U ⊆
T ∗Rd\0 containing (x0, ξ0) such that

sup
λ>0, (x,ξ)∈U

erλ|Vψu(λt x, λsξ)| <∞, ∀r > 0. (3.5)

Due to (3.3) it is clear that it suffices to check (3.5) for λ ≥ L where L > 0 can be
arbitrarily large, for each r > 0.

A consequence of Definition 3.2 is that we have the scaling invariance (here we assume
(x, ξ) ∈ T ∗Rd\0)

(x, ξ) ∈WFt,s(u) ⇐⇒ (λt x, λsξ) ∈WFt,s(u) ∀λ > 0. (3.6)

Another immediate consequence of Definition 3.2 is

WFt,s(u + v) ⊆WFt,s(u) ∪WFt,s(v), u, v ∈ (�s
t )
′(Rd). (3.7)

If t = s > 1
2 and u ∈ �′s(Rd) then WFs,s(u) = WFs(u), that is we recapture the s-

Gelfand–Shilov wave front set WFs(u) (which is a slightly modified version of Cappiello’s
and Schulz’s [5, Definition 2.1]), as defined originally in [7, Definition 4.1]:

Definition 3.3 Let s > 1/2, ψ ∈ �s(Rd)\0 and u ∈ �′s(Rd). Then z0 ∈ T ∗Rd\0 satisfies
z0 /∈WFs(u) if there exists an open conic set 	z0 ⊆ T ∗Rd \ 0 containing z0 such that

sup
z∈	z0

er |z| 1s |Vψu(z)| <∞, ∀r > 0.

In Definition 3.2 we ask for exponential decay with arbitrary parameter r > 0 (super-
exponential) of Vψu along the curve Cx,ξ ∈ T ∗Rd defined by R+ � λ→ (λt x, λsξ) which
passes through (x, ξ) ∈ T ∗Rd \ 0. This power type curve reduces to a straight line if t = s.
By (3.3) a generic point (x, ξ) ∈ T ∗Rd \ 0 has an exponential growth upper bound along
the curve Cx,ξ . Due to (3.4) we have WFt,s(u) = ∅ if and only if u ∈ �s

t (R
d). Thus

WFt,s(u) ⊆ T ∗Rd\0 can be seen as a measure of singularities of u ∈ (�s
t )
′(Rd): It records

the phase space points (x, ξ) ∈ T ∗Rd \ 0 such that Vψu does not decay super-exponentially
along the curve Cx,ξ , that is, does not behave like an element in �s

t (R
d) there.

We will soon show that Definition 3.2 does not depend on the window function ψ ∈
�s

t (R
d)\0 (see Proposition 3.5). If ǔ(x) = u(−x) then

V
ψ̌

ǔ(x, ξ) = Vψu(−x,−ξ). (3.8)

If u is even or odd we thus have the following symmetry:

ǔ = ±u �⇒ WFt,s(u) = −WFt,s(u). (3.9)

We also have
Vψu(x, ξ) = Vψu(x,−ξ). (3.10)

Remark 3.4 Suppose s j , t j > 0, j = 1, 2, s1 + t1 > 1, and t2/t1 = s2/s1 = a ≥ 1. Then we
have for u ∈ (�

s2
t2 )′(Rd) ⊆ (�

s1
t1 )′(Rd)

WFt2,s2(u) ⊆WFt1,s1(u).

In fact this follows directly from Definition 3.2 with ψ ∈ �
s1
t1 (Rd)\0, and λt2 = (λa)t1 ,

λs2 = (λa)s1 , and λ ≤ λa for λ ≥ 1.
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3.1 Examples of Gabor and s-Gelfand–Shilov wave front sets

In this subsectionwe compile known and deduce a few new results on the t, s-Gelfand–Shilov
wave front set.

We have

WFg(u) ⊆WFs(u), ∀s >
1

2
, u ∈ S ′(Rd). (3.11)

If 1
2 < s1 < s2 then

�s1(R
d) � �s2(R

d), (3.12)

�′s2(R
d) � �′s1(R

d) (3.13)

and
WFs2(u) ⊆WFs1(u), u ∈ �′s2(R

d).

The strictness of the inclusions (3.12) and (3.13) can be seen for instance from the Hilbert
sequence space characterizations of �s(Rd) and �′s(Rd) for series expansions in Hermite
functions (cf. e.g. [39]).

If u ∈ �s2(R
d) \�s1(R

d) then u ∈ �′s2(R
d) and

WFs2(u) = ∅ �=WFs1(u).

So given s2 > s1 > 1
2 there exists u ∈ �′s2(R

d) such that WFs2(u) �= WFs1(u). This gives

some motivation for the interest of the scale of wave front sets WFs(u) for s > 1
2 . In the

given example it is a measure of very fine singularities within S .
If on the other hand u ∈ �′s1(R

d)\�′s2(Rd) thenWFs1(u) is well defined, andWFs1(u) �=
∅ since u ∈ �s1 would imply u ∈ �′s2 . ButWFs2(u) is not well defined so we cannot compare
WFs1(u) and WFs2(u).

It is also clear that if u ∈ S (Rd)\�s(Rd) for some s > 1
2 then u ∈ �′s(Rd) and

∅ =WFg(u) �=WFs(u).

Nevertheless it seems that for most ultradistributions u for which WFs(u) can be
determined we have

WFg(u) =WFs(u) for all s >
1

2

(cf. [7, 28]). We collect a few examples. For any x ∈ Rd we have

WFg(δx ) =WFs(δx ) = {0} × (Rd \ 0) ∀s >
1

2
. (3.14)

For any ξ ∈ Rd we have

WFg(e
i〈·,ξ〉) =WFs(ei〈·,ξ〉) = (Rd \ 0)× {0} ∀s >

1

2
. (3.15)

For any A ∈ Rd×d symmetric we have

WFg(e
i〈x,Ax〉/2) =WFs(ei〈x,Ax〉/2) = {(x, Ax) : x ∈ Rd \ 0} ∀s >

1

2
. (3.16)

The latter formula can be generalized, by combining [28, Example 7.1] (generalized to the
Gelfand–Shilov framework) and [7, Corollary 9.2]. This gives the following formula when
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A ∈ Cd×d is symmetric and ImA ≥ 0:

WFg(e
i〈x,Ax〉/2) =WFs(ei〈x,Ax〉/2) = {(x,ReA x) : x ∈ Rd ∩ Ker(ImA) \ 0} ∀s >

1

2
.

(3.17)
If d = 1 then (cf. [28, Sect. 8]) for k ≥ 2 we have

WFg(e
ix2k

) = {0} × (R \ 0) (3.18)

and for k ≥ 1 we have
WFg(e

ix2k+1
) = {0} × R+. (3.19)

It also follows from the proof of [28, Proposition 8.2] that

WFg(e
i |x |p ) = {0} × (R \ 0) (3.20)

if p > 2.
We obtain from (3.11) if k ≥ 2

{0} × (R \ 0) ⊆WFs(eix2k
) ∀s >

1

2

In the same way we obtain from (3.19) if k ≥ 1

{0} × R+ ⊆WFs(eix2k+1
) ∀s >

1

2

and from (3.20)

{0} × (R \ 0) ⊆WFs(ei |x |p ) ∀s >
1

2

if p > 2.
In [33, Theorem 6.1] we prove that given any closed conic set 	 ⊆ T ∗Rd \ 0 there exists

u ∈ S ′(Rd) such that WFg(u) = 	. By a careful examination of the proof it follows that
WFg(u) =WFs(u) = 	 for all s > 1

2 .
A similar result is given in [5, Proposition 3.5] for awave front set that is similar toWFs(u)

albeit with the Roumieu choice of behaviour instead of Beurling.

3.2 Invariances of the t, s-Gelfand–Shilov wave front set

In [7, Proposition 4.3] it is shown that WFs(u) does not depend on the chosen window
function ψ ∈ �s(Rd)\0. The following result generalizes this statement to WFs,t (u) with
t �= s.

Proposition 3.5 Let s, t > 0 satisfy s+t > 1, and let u ∈ (�s
t )
′(Rd). Suppose z0 ∈ T ∗Rd \0.

If ψ ∈ �s
t (R

d)\0 and (3.5) holds for an open set U ⊆ T ∗Rd \ 0 containing z0, and
ϕ ∈ �s

t (R
d) \ 0 then there exists an open set V ⊆ U such that z0 ∈ V and

sup
λ>0, (x,ξ)∈V

erλ|Vϕu(λt x, λsξ)| <∞, ∀r > 0. (3.21)

Proof Since z0 ∈ U ⊆ R2d where U is open we may pick an open set V ⊆ U such that
z0 ∈ V and V + Bε ⊆ U for some 0 < ε ≤ 1, and we may assume

sup
z∈V
|z| ≤ |z0| + 1 := μ. (3.22)
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By (3.3) we have

|Vϕu(x, ξ)| � er1(|x | 1t +|ξ | 1s ) (3.23)

for some r1 > 0. By [13, Lemma 11.3.3] we have

|Vϕu(z)| ≤ (2π)−
d
2 ‖ψ‖−2

L2 |Vψu| ∗ |Vϕψ |(z), z ∈ R2d ,

and according to (3.4) we have

|Vϕψ(x, ξ)| � e−r2(|x | 1t +|ξ | 1s ) (3.24)

for any r2 > 0.
Let r > 0 and λ > 0. We have

erλ|Vϕu(λt x, λsξ)|
�

∫∫
R2d

erλ|Vψu(λt (x − λ−t y), λs(ξ − λ−sη))| |Vϕψ(y, η)| dy dη

= I1 + I2

where we split the integral into the two terms

I1 =
∫∫

R2d\�λ

erλ|Vψu(λt (x − λ−t y), λs(ξ − λ−sη))| |Vϕψ(y, η)| dy dη,

I2 =
∫∫

�λ

erλ|Vψu(λt (x − λ−t y), λs(ξ − λ−sη))| |Vϕψ(y, η)| dy dη

where
�λ = {(y, η) ∈ R2d : |y| 1t + |η| 1s < 2−

1
2v ε

1
v λ} ⊆ R2d

with v = min(s, t).
First we estimate I1 when (x, ξ) ∈ V . Set κ = max(κ(t−1), κ(s−1)). From (3.22), (3.23)

and (3.24) we obtain for some r1 > 0 and any r2 > 0

I1 � erλ

∫∫
R2d\�λ

er1λ|x−λ−t y| 1t +r1λ|ξ−λ−sη| 1s |Vϕψ(y, η)| dy dη

≤ erλ+κr1λ|x | 1t +κr1λ|ξ | 1s
∫∫

R2d\�λ

er1κ(|y| 1t +|η| 1s ) |Vϕψ(y, η)| dy dη

� e
λ
(

r+2r1κμ
1
v

) ∫∫
R2d\�λ

e(κr1−κr1−1−r2)(|y| 1t +|η| 1s ) dy dη

≤ e
λ
(

r+2r1κμ
1
v

)
−λ r22

− 1
2v ε

1
v

∫∫
R2d

e−(|y| 1t +|η| 1s ) dy dη

� e
λ

(
r+2r1κμ

1
v −r22

− 1
2v ε

1
v

)
≤ Cr

(3.25)

for any λ > 0, provided we pick r2 ≥ 2
1
2v ε− 1

v

(
r + 2r1κμ

1
v

)
. Here Cr > 0 is a constant

that depends on r > 0 but not on λ > 0. Thus we have obtained the requested estimate for
I1.

It remains to estimate I2. From |y| 1t + |η| 1s < 2− 1
2v ε

1
v λ we obtain

λ−t |y| < ε
t
v 2−

t
2v ≤ ε 2−

1
2 ,
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λ−s |η| < ε
s
v 2−

s
2v ≤ ε 2−

1
2

which gives (λ−t y, λ−sη) ∈ Bε . Hence if (x, ξ) ∈ V then (x − λ−t y, ξ − λ−sη) ∈ U and
we may use the estimate (3.5). This gives for a constant Cr > 0, using (3.24)

I2 =
∫∫

�λ

erλ|Vψu(λt (x − λ−t y), λs(ξ − λ−sη))| |Vϕψ(y, η)| dy dη

≤ Cr

∫∫
R2d
|Vϕψ(y, η)| dy dη

≤ C ′r

(3.26)

for all λ > 0. Thus we have obtained the requested estimate for I2, The statement follows
from (3.25) and (3.26). ��

3.3 Metaplectic properties

The s-Gelfand–Shilov wave front set is symplectically invariant as (cf. [7, Corollary 4.5])

WFs(μ(χ)u) = χWFs(u), χ ∈ Sp(d,R), u ∈ �′s(Rd), s >
1

2
. (3.27)

When t �= s the t, s-Gelfand–Shilov wave front set WFt,s(u) is not symplectically invari-
ant. Nevertheless, two of the generators of the symplectic group behave invariantly in certain
individual senseswhichwenowdescribe.By [10, Proposition4.10] eachmatrixχ ∈ Sp(d,R)

is a finite product of matrices in Sp(d,R) of the form

J ,

(
A−1 0
0 AT

)
,

(
I 0
B I

)
,

for A ∈ GL(d,R) and B ∈ Rd×d symmetric. The corresponding metaplectic operators are
μ(J ) = F ,

μ

(
A−1 0
0 AT

)
f (x) = |A| 12 f (Ax),

if A ∈ GL(d,R), and

μ

(
I 0
B I

)
f (x) = e

i
2 〈Bx,x〉 f (x),

if B ∈ Rd×d is symmetric.

Proposition 3.6 Let s, t > 0 satisfy s + t > 1, and suppose u ∈ (�s
t )
′(Rd). Then we have

(i)
WFs,t (̂u) = JWFt,s(u);

(ii) if A ∈ GL(d,R) and u A(x) = |A| 12 u(Ax) then

WFt,s(u A) =
(

A−1 0
0 AT

)
WFt,s(u).

Proof Let ψ ∈ �s
t (R

d) \ 0. We have from the proof of [7, Corollary 4.5]

|Vμ(χ)ψ(μ(χ)u)(χ(x, ξ))| = |Vψu(x, ξ)| (3.28)
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for all χ ∈ Sp(d,R). If χ = J we obtain

|Vψ̂ û(J (x, ξ))| = |Vψ̂ û(ξ,−x)| = |Vψu(x, ξ)|.
Note that ψ̂ ∈ �t

s(R
d)\0 and û ∈ (�t

s)
′(Rd). From this it follows that (x, ξ) /∈ WFt,s(u) if

and only if J (x, ξ) /∈WFs,t (̂u) which proves claim (i).
Next we insert u A for A ∈ GL(d,R) into (3.28) which gives

|VψA u A(A−1x, AT ξ)| = |Vψu(x, ξ)|.
Note that ψA ∈ �s

t (R
d)\0 and u A ∈ (�s

t )
′(Rd). We obtain (x, ξ) /∈WFt,s(u) if and only if

(A−1x, AT ξ) /∈WFt,s(u A) which shows claim (ii). ��
Remark 3.7 Proposition 3.6 implies that WFv,s when s �= v does not behave as WFs with
respect to Schrödinger type propagators, in the case of quadratic potential. In fact let Q ∈
R2d×2d be symmetric, let

q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉, x, ξ ∈ Rd ,

and consider the initial value Cauchy problem{
∂t u(t, x)+ iqw(x, Dx )u(t, x) = 0,

u(0, ·) = u0,
(3.29)

where qw(x, Dx ) acts on the x ∈ Rd variable. If u0 ∈ D(qw(x, D)) ⊆ L2(Rd), the domain
of the closure of qw(x, D) considered as an unbounded operator in L2(Rd), the equation is
solved by

u(t, x) = e−i tqw(x,D)u0

where e−i tqw(x,D) is the propagator one-parameter group of unitary operators indexed by
t ∈ R (cf. e.g.[7, 17]). The propagator is the metaplectic operator e−i tqw(x,D) = μ(e2tJ Q)

[10], which extends to a continuous operator on �′s(Rd) for s > 1
2 and the equation (3.29)

admits initial datum u0 ∈ �′s(Rd) [7, 39].
By themetaplectic invariance (3.27) we thus have the propagation of singularities equality

WFs(e−i tqw(x,D)u0) = e2tJ QWFs(u0), t ∈ R, u0 ∈ �′s(Rd), s >
1

2
. (3.30)

If Q = I2d then

e2tJ Q =
(
cos 2t sin 2t
− sin 2t cos 2t

)

so
WFs(e−i π

4 qw(x,D)u0) =WFs (̂u0) = JWFs(u0). (3.31)

If s �= v then the equality (3.30) cannot hold for WFv,s , since (3.31) for WFv,s(u) would
contradict Proposition 3.6 (i).

The next result reveals that if WFt (u) has empty intersection with the frequency axis
{0} × (Rd \ 0) then WFt,s is contained in the space axis (Rd\0)× {0} if s > t .

Proposition 3.8 If s > t > 1
2 , u ∈ (�s

t )
′(Rd) and

WFt (u) ∩ {0} × (Rd \ 0) = ∅ (3.32)

then
WFt,s(u) ⊆ (Rd \ 0)× {0}. (3.33)
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Proof We have (�s
t )
′(Rd) ⊆ �′t (Rd) since �t (Rd) ⊆ �s

t (R
d). By the assumption (3.32)

there exists C > 0 such that for the open conic set

	 = {(x, ξ) ∈ T ∗Rd \ 0 : |ξ | > C |x |} ⊆ T ∗Rd

we have

sup
z∈	

er |z| 1t |Vψu(z)| <∞ ∀r > 0

where ψ ∈ �t (Rd)\0 ⊆ �s
t (R

d)\0.
Let (x0, ξ0) ∈ T ∗Rd \0 where ξ0 �= 0. If x0 = 0 we pickU ⊆ 	 as an open set containing

(0, ξ0). Then if (x, ξ) ∈ U we have (λt x, λsξ) ∈ 	 for λ ≥ 1, since |ξ | > C |x | implies
λs−t |ξ | > C |x |. If instead x0 �= 0 then we pick as U ⊆ R2d an open set containing (x0, ξ0)
such that ε < |x | < 2|(x0, ξ0)| and ε < |ξ | < 2|(x0, ξ0)| when (x, ξ) ∈ U where ε > 0. If
(x, ξ) ∈ U then

C |x ||ξ |−1 < 2|(x0, ξ0)|Cε−1 ≤ λs−t

if λ ≥ L > 0 provided L is sufficiently large. This gives (λt x, λsξ) ∈ 	 for λ ≥ L .
If necessary we increase L > 0 such that |(x, λs−tξ)| ≥ 1 when λ ≥ L and (x, ξ) ∈ U .

This gives for any r > 0

sup
λ≥L, (x,ξ)∈U

erλ|Vψu(λt x, λsξ)| ≤ sup
λ≥L, (x,ξ)∈U

erλ|(x,λs−t ξ)| 1t |Vψu(λt x, λsξ)|

≤ sup
λ≥L, (x,ξ)∈U

er |(λt x,λsξ)| 1t |Vψu(λt x, λsξ)|

≤ sup
z∈	

er |z| 1t |Vψu(z)| <∞.

We have shown (x0, ξ0) /∈WFt,s(u) which proves (3.33). ��

4 The t, s-Gelfand–Shilov wave front set of oscillatory functions

Amain reason for the introduction of thewave front setWFt,s(u) is that it describes accurately
the phase space singularities of oscillatory functions of the form

u(x) = eicxm
, x ∈ R, m ∈ N \ {0, 1} (4.1)

or
u(x) = eic|x |α , x ∈ R, α ∈ R \ 2N, α > 1 (4.2)

where c ∈ R \ 0 in both cases. These functions are known as chirp signals. Here we work in
dimension d = 1. In (4.2) we ask α /∈ 2N since α ∈ 2N is covered by (4.1).

If u is defined by (4.1), and s is chosen adapted to t and m, we will see that WFt,s(u) is
the curve in phase space described by the instantaneous frequency of u, that is the derivative
of the phase function.

We will need a lemma.

Lemma 4.1 Suppose s, t, ε > 0, U ⊆ R2d\0 is open and f ∈ C∞(R2d). If the estimate

sup
(x,ξ)∈U

λskε2k | f (λt x, λsξ)| ≤ Chλt hkk!s
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holds for all h > 0, all λ ≥ 1 and all k ∈ N, then for any r > 0 and any λ ≥ 1 we have

sup
(x,ξ)∈U

erλ
∣∣ f (λt x, λsξ)

∣∣ ≤ Cr ,ε,t .

Proof Let r > 0. We have if (x, ξ) ∈ U

e
rλ
s ε

2
s

∣∣ f (λt x, λsξ)
∣∣ 1s =

∞∑
k=0

2−kk!−1
(
2r

s
(λsε2)

1
s

)k ∣∣ f (λt x, λsξ)
∣∣ 1s

≤ 2

(
sup
k≥0

k!−s
((

2r

s

)s

λsε2
)k ∣∣ f (λt x, λsξ)

∣∣
) 1

s

≤ 2C
1
s

h λ
t
s sup

k≥0

((
2r

s

)s

h

) k
s

≤ C
1
s

r λ
t
s

for all λ ≥ 1, provided we pick

0 < h ≤
( s

2r

)s
.

Thus for any r > 0, (x, ξ) ∈ U and λ ≥ 1

erλε
2
s

∣∣ f (λt x, λsξ)
∣∣ ≤ Crλ

t

which gives finally

erλ
∣∣ f (λt x, λsξ)

∣∣ = e−rλe2rε− 2
s λε

2
s

∣∣ f (λt x, λsξ)
∣∣

≤ Cr ,ελ
t e−rλ

≤ Cr ,ε,t

(4.3)

for all λ ≥ 1 and (x, ξ) ∈ U . ��
The next result generalizes (3.16) for d = 1.

Theorem 4.2 Suppose c ∈ R \ 0.

(i) If u is defined by (4.1) and t > 1
m−1 then

WFt,t(m−1)(u) = {(x, cmxm−1) ∈ R2 : x �= 0}. (4.4)

(ii) If u is defined by (4.2) and t > 1
α−1 then

{0}× (R \ 0) ⊆WFt,t(α−1)(u) ⊆ {(x, cα sgn(x)|x |α−1) ∈ R2 : x �= 0} ∪ {0}× (R \ 0).
(4.5)

Proof Case (i): Set s = t(m − 1) > 1. This implies that there are compactly supported
Gevrey functions [29] of order s in the space �s

t (R). Set

W = {(x, cmxm−1) ∈ R2 : x �= 0} ⊆ R2 \ 0.
Suppose (x0, ξ0) ∈ R2\0 and (x0, ξ0) /∈ W . Then there exists an open set U such that

(x0, ξ0) ∈ U , and 0 < ε ≤ 1, δ > 0, such that

(x, ξ) ∈ U , |x − y| ≤ δ �⇒ |ξ − cmxm−1| ≥ 2ε, m |c| |xm−1 − ym−1| ≤ ε.
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Then if (x, ξ) ∈ U and |x − y| ≤ δ

|ξ − cmym−1| ≥ |ξ − cmxm−1| − m |c| |ym−1 − xm−1 | ≥ ε. (4.6)

Let ψ ∈ �s
t (R) \ 0 be such that suppψ ⊆ Bδ . From the stationary phase theorem [15,

Theorem 7.7.1] this gives for any k ∈ N, any h > 0 and any λ ≥ 1, if (x, ξ) ∈ U , using (4.6)
and (2.6),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(cym−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
R

eiλmt (cym−yξ))ψ(λt (y − x))dy

∣∣∣∣
≤ Cλt

k∑
n=0

λnt sup
|x−y|≤δ

|(Dnψ)(λt (y − x))| |ξ − cmym−1|n−2kλmt(n−2k)

≤ Cλtε−2k
k∑

n=0
sup

|x−y|≤δ

|(Dnψ)(λt (y − x))|λ−tk(m−1)λt(1+m)(n−k)

≤ Cλtε−2kλ−sk
k∑

n=0
sup

|x−y|≤δ

|(Dnψ)(λt (y − x))|

≤ Chλtε−2kλ−sk
k∑

n=0
hnn!s

= Chλtε−2kλ−skhk
k∑

n=0
h−(k−n)n!s

≤ Chλtε−2kλ−skhkesh− 1
s

k∑
n=0

(n!(k − n)!)s

≤ Cs,hλtε−2kλ−skhkk!s
k∑

n=0
≤ Cs,hλtε−2kλ−sk(2h)kk!s .

(4.7)
Since h > 0 is arbitrary we obtain

λskε2k |Vψu(λt x, λsξ)| ≤ Chλt hkk!s, (x, ξ) ∈ U , (4.8)

for all h > 0, all λ ≥ 1 and all k ∈ N. Applying Lemma 4.1 it follows that

(x0, ξ0) /∈WFt,t(m−1)(u)

and we may conclude
WFt,t(m−1)(u) ⊆ W . (4.9)

In order to prove (4.4) for Case (i) it hence remains to strengthen the above inclusion into an
equality.

If m is even then u is even and W = −W , so by (3.9) we have either WFt,t(m−1)(u) = ∅
or WFt,t(m−1)(u) = W . The former is not true since u /∈ �s

t (R). Thus we have proved (4.4)
for Case (i) and m even.
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If m is odd then ǔ(x) = u(x) = e−icxm
. Again WFt,t(m−1)(u) = ∅ cannot hold since

u /∈ �s
t (R). If we assume that the inclusion (4.9) is strict we get a contradiction from (3.8)

to (3.10). Indeed suppose e.g.

WFt,t(m−1)(u) = {(x, cmxm−1) ∈ R2 : x > 0}.
By (3.8) and (3.10) we then get the contradiction

WFt,t(m−1)(ǔ) = {(x,−cmxm−1) ∈ R2 : x < 0}
= {(x,−cmxm−1) ∈ R2 : x > 0} =WFt,t(m−1)(u).

This proves (4.4) for Case (i) when m is odd.
Case (ii): In this case u(x) = eic|x |α is not smooth at x = 0 which causes some problems.

Set again s = t(α − 1) > 1, and

W = {(x, cα sgn(x)|x |α−1) ∈ R2 : x �= 0} ⊆ R2 \ 0.
Suppose (x0, ξ0) ∈ R2\0, (x0, ξ0) /∈ W and (x0, ξ0) �= {0}× (R\0). There exists an open

set U such that (x0, ξ0) ∈ U , and 0 < 2δ ≤ ε ≤ 1, such that

(x, ξ) ∈ U , |x − y| ≤ δ �⇒ |ξ − cα sgn(x)|x |α−1| ≥ 2ε, |x | ≥ ε,

α |c| | sgn(y)|y|α−1 − sgn(x)|x |α−1| ≤ ε.

Then if (x, ξ) ∈ U and |x − y| ≤ δ

|ξ − cα sgn(y)|y|α−1| ≥ |ξ − cα sgn(x)|x |α−1| −α |c| | sgn(y)|y|α−1− sgn(x)|x |α−1| ≥ ε.

(4.10)
Let ψ ∈ �s

t (R) \ 0 be such that suppψ ⊆ Bδ . Then if λ ≥ 1, λt (y − x) ∈ suppψ and
|x | ≥ ε we have |y| ≥ ε/2. From the stationary phase theorem [15, Theorem 7.7.1] this gives
for any k ∈ N, any h > 0 and any λ ≥ 1, if (x, ξ) ∈ U , using (4.10) and the final estimates
in (4.7),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(c|y|α−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
|y|≥ε/2

eiλtα(c|y|α−yξ))ψ(λt (y − x)) dy

∣∣∣∣

≤ Cλt
k∑

n=0
λnt sup

|x−y|≤δ

|(Dnψ)(λt (y − x))|

× |ξ − cαsgn(y)|y|α−1|n−2kλtα(n−2k)

≤ Cλtε−2k
k∑

n=0
sup

|x−y|≤δ

|(Dnψ)(λt (y − x))|λ−tk(α−1)λt(1+α)(n−k)

≤ Cλtε−2kλ−sk
k∑

n=0
sup

|x−y|≤δ

|(Dnψ)(λt (y − x))|

≤ Cs,hλtε−2kλ−sk(2h)kk!s .
Appealing to Lemma 4.1 it follows that

(x0, ξ0) /∈WFt,t(α−1)(u)
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and we may conclude
WFt,t(α−1)(u) ⊆ W ∪ {0} × (R \ 0)

which is the right inclusion in (4.5) for Case (ii).
It remains to show the left inclusion in (4.5), that is

{0} × (R \ 0) ⊆WFt,t(α−1)(u). (4.11)

We have for ξ > 0

|Vψu(0,±λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(c|y|α∓yλsξ)ψ(y) dy

∣∣∣∣ = |F (ψ e−ic|·|α )(∓λsξ)|.

Let ψ be even and satisfy ψ(0) �= 0. ThenF (ψ e−ic|·|α ) is also even. If we assume (0, ξ) /∈
WFt,t(α−1)(u) or (0,−ξ) /∈WFt,t(α−1)(u) then

|F (ψ e−ic|·|α )(ξ)| � e−r |ξ | 1s , ξ ∈ R,

for all r > 0. But this implies ψ e−ic|·|α ∈ C∞ which is a contradiction as α /∈ 2N\0 and
ψ(0) �= 0. This shows (4.11) and thus (4.5) for Case (ii) has been proven. ��
Remark 4.3 The wave front set WFt,t(α−1)(u) is well defined if t + t(α − 1) = tα > 1 for
u ∈ (�

t(α−1)
t )′(R). If we weaken the assumption t > 1

m−1 (t > 1
α−1 ) into t > 1

m (t > 1
α
) in

Theorem 4.2, then we obtain from Theorem 4.2 to Remark 3.4 if m ∈ N\{0, 1}
{(x, c mxm−1) ∈ R2 : x �= 0} ⊆WFt,t(m−1)(u) (4.12)

and if α ∈ R\2N, α > 1
{0} × (R \ 0) ⊆WFt,t(α−1)(u). (4.13)

Thus (4.12) has been weakened into an inclusion instead of the equality (4.4), and (4.13)
gives a lower bound only as compared to (4.5).

Remark 4.4 The Fourier transform û of a chirp (4.1) with m ∈ N \ {0, 1} is known explicitly
for m = 2. It is û(ξ) = (2|c|)− 1

2 ei π
4 sgn(c)e− i

4c ξ2 [15, Theorem 7.6.1]. For larger m one
has û ∈ S ′(R). From the discussion concerning the Airy function (m = 3, c = 1

3 ) [15,
Chapter 7.6] it can be seen that û is actually real analytic provided m is odd, and extends
to an entire function on C. But if m is even it seems difficult to obtain explicit information
about û. Nevertheless, combining Theorem 4.2 with Proposition 3.6, we obtain the following
identity for its anisotropic Gelfand–Shilov wave front set when t > 1

m−1 :

WFt(m−1),t (̂u) = {((−1)m−1cmxm−1, x) ∈ R2 : x �= 0}.
If m = 3 and c = 1/3 then u(x) = eix3/3 and v(ξ) = (2π)

1
2F−1u(ξ) = (2π)

1
2 û(−ξ) is

the Airy function [15]. Using (3.8) we conclude

WF2t,t (v) = −WF2t,t (̂u) = {(−x2, x) ∈ R2 : x �= 0}
when t > 1

2 .

We would also like to determineWFt,s(u)when s �= t(α−1) for the chirp functions. The
following two results treat this question and show that WFt,s(u) does not give a meaningful
result then.
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Proposition 4.5 Suppose c ∈ R \ 0.

(i) If u is defined by (4.1) and s > t(m − 1) > 1 then

WFt,s(u) = (R \ 0)× {0}. (4.14)

(ii) If u is defined by (4.2) and s > t(α − 1) > 1 then

{0} × (R \ 0) ⊆WFt,s(u) ⊆ (R \ 0)× {0} ∪ {0} × (R \ 0). (4.15)

Proof Case (i): Suppose (x0, ξ0) ∈ R2 and ξ0 �= 0. There exists U ⊆ R2 such that (x0, ξ0) ∈
U , and 0 < ε ≤ 1, L ≥ 1 such that

|ξ − cmλt(m−1)−s ym−1| ≥ ε

when (x, ξ) ∈ U , |x − y| ≤ 1 and λ ≥ L , due to the assumption t(m − 1)− s < 0.
Let ψ ∈ �s

t (R) \ 0 be such that suppψ ⊆ B1. From the stationary phase theorem [15,
Theorem 7.7.1] we have for any k ∈ N, any h > 0 and any λ ≥ L , if (x, ξ) ∈ U , again using
(4.7),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(cym−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
R

eiλt+s (λt(m−1)−s cym−yξ))ψ(λt (y − x)) dy

∣∣∣∣
≤ Cλt

k∑
n=0

λnt sup
|x−y|≤1

|(Dnψ)(λt (y − x))|

× |ξ − cmλt(m−1)−s ym−1|n−2kλ(t+s)(n−2k)

≤ Cλtε−2k
k∑

n=0
sup

|x−y|≤1
|(Dnψ)(λt (y − x))|λ−skλs(n−k)+2t(n−k)

≤ Cλtε−2kλ−sk
k∑

n=0
sup

|x−y|≤1
|(Dnψ)(λt (y − x))|

≤ Cs,hλtε−2kλ−sk(2h)kk!s .
Lemma 4.1 gives

WFt,s(u) ⊆ (R \ 0)× {0}
which shows the inclusion “⊆” in (4.14). Equality in (4.14) again follows from (3.8), (3.10),
u /∈ �s

t (R), and ǔ = u if m is odd.
Case (ii): Suppose (x0, ξ0) ∈ R2, x0 �= 0 and ξ0 �= 0. Then there exists U ⊆ R2 such that

(x0, ξ0) ∈ U , and 0 < ε ≤ 1, L ≥ 1, such that

inf
(x,ξ)∈U

|x | = ε

and
|ξ − cα sgn(y)λt(α−1)−s |y|α−1| ≥ ε

when (x, ξ) ∈ U , |x − y| ≤ ε/2 and λ ≥ L .
Pick ψ ∈ �s

t (R)\0 such that suppψ ⊆ Bε/2. Then if λ ≥ L , λt (y − x) ∈ suppψ and
|x | ≥ ε we have |y| ≥ ε/2. From the stationary phase theorem [15, Theorem 7.7.1] this gives
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for any k ∈ N, any h > 0 and any λ ≥ L , if (x, ξ) ∈ U , using (4.7),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(c|y|α−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
|y|≥ε/2

eiλt+s (cλt(α−1)−s |y|α−yξ))ψ(λt (y − x)) dy

∣∣∣∣

≤ Cλt
k∑

n=0
λnt sup

|x−y|≤ε/2
|(Dnψ)(λt (y − x))|

× |ξ − cαsgn(y)λt(α−1)−s |y|α−1|n−2kλ(t+s)(n−2k)

≤ Cs,hλtε−2kλ−sk(2h)kk!s .
Using Lemma 4.1 we obtain

WFt,s(u) ⊆ (R \ 0)× {0} ∪ {0} × (R \ 0).
Finally {0} × (R \ 0) ⊆ WFt,s(u) follows recycling the argument at the end of the proof of
Theorem 4.2. ��
Proposition 4.6 Suppose c ∈ R \ 0.

(i) If u is defined by (4.1) and t(m − 1) > s > 1 then

WFt,s(u) ⊆ {0} × (R \ 0) (4.16)

and if m is even then
WFt,s(u) = {0} × (R \ 0). (4.17)

(ii) If u is defined by (4.2) and t(α − 1) > s > 1 then

{0} × (R \ 0) ⊆WFt,s(u) ⊆ (R \ 0)× {0} ∪ {0} × (R \ 0). (4.18)

Proof Case (i): Suppose (x0, ξ0) ∈ R2 and x0 �= 0. There exists U ⊆ R2 such that (x0, ξ0) ∈
U , and 0 < ε ≤ 1, L ≥ 1, such that

|cmym−1 − λs−t(m−1)ξ | ≥ ε

when (x, ξ) ∈ U , |x − y| ≤ ε and λ ≥ L , due to the assumption s − t(m − 1) < 0.
If 0 ≤ n ≤ k we have

sk + nt + tm(n − 2k) < t(k(m − 1)+ n − mk) ≤ 0.

Let ψ ∈ �s
t (R) \ 0 be such that suppψ ⊆ Bε. From the stationary phase theorem [15,

Theorem 7.7.1] we have for any k ∈ N, any h > 0 and any λ ≥ L , if (x, ξ) ∈ U , again
reusing (4.7),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(cym−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
R

eiλtm (cym−λs−t(m−1) yξ))ψ(λt (y − x)) dy

∣∣∣∣
≤ Cλt

k∑
n=0

λnt sup
|x−y|≤ε

|(Dnψ)(λt (y − x))|

× |cmym−1 − λs−t(m−1)ξ |n−2kλtm(n−2k)
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≤ Cλtε−2kλ−sk
k∑

n=0
sup

|x−y|≤ε

|(Dnψ)(λt (y − x))|

≤ Cs,hλtε−2kλ−sk(2h)kk!s .
Lemma 4.1 gives

WFt,s(u) ⊆ {0} × (R \ 0)
which is (4.16). The equality (4.17) when m is even follows from (3.9) and u /∈ �s

t (R).
Case (ii): Suppose (x0, ξ0) ∈ R2, x0 �= 0 and ξ0 �= 0. Then there exists U ⊆ R2 such that

(x0, ξ0) ∈ U , and 0 < ε ≤ 1, L ≥ 1, such that

inf
(x,ξ)∈U

|x | = ε

and
|ξ − cα sgn(y)λt(α−1)−s |y|α−1| ≥ ε

when (x, ξ) ∈ U , |x − y| ≤ ε/2 and λ ≥ L .
If n ≤ k then

sk + nt + (t + s)(n − 2k) ≤ sk + nt − (t + s)k ≤ 0.

Let ψ ∈ �s
t (R) \ 0 be such that suppψ ⊆ Bε/2. Then if λ ≥ L , λt (y − x) ∈ suppψ

and |x | ≥ ε we have |y| ≥ ε/2. From the stationary phase theorem [15, Theorem 7.7.1] this
gives for any k ∈ N, any h > 0 and any λ ≥ L , if (x, ξ) ∈ U and the final estimates in (4.7),

|Vψu(λt x, λsξ)| = (2π)−
1
2

∣∣∣∣
∫
R

ei(c|y|α−yλsξ)ψ(λt (λ−t y − x)) dy

∣∣∣∣
= (2π)−

1
2 λt

∣∣∣∣
∫
|y|≥ε/2

eiλt+s (cλt(α−1)−s |y|α−yξ))ψ(λt (y − x)) dy

∣∣∣∣

≤ Cλt
k∑

n=0
λnt sup

|x−y|≤ε/2
|(Dnψ)(λt (y − x))|

× |ξ − cαsgn(y)λt(α−1)−s |y|α−1|n−2kλ(t+s)(n−2k)

≤ Cs,hλtε−2kλ−sk(2h)kk!s .
Lemma 4.1 gives again

WFt,s(u) ⊆ (R \ 0)× {0} ∪ {0} × (R \ 0).
Finally {0} × (R \ 0) ⊆ WFt,s(u) follows again using the argument at the end of the proof
of Theorem 4.2. ��
Remark 4.7 By using Theorem 4.2, Proposition 4.5 and Proposition 4.6 we may now give a
counterpart of Remark 3.7, showing that the anisotropic wave front set turns out to be needed
when treating Schrödinger propagators in the case of non-quadratic potentials.

Consider theCauchy problem for the anisotropic free particle equation in dimension d = 1{
∂t u(t, x)+ i Dm

x u(t, x) = 0, m ∈ N \ {0, 1},
u(0, ·) = u0.

(4.19)

The Hamilton flow, along which we expect propagation of microlocal singularities, is given
by

(x, ξ) = χt (x0, ξ0) = (x0 + mtξm−1
0 , ξ0), t ∈ R, (4.20)
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and we are looking for parameters v, s > 0 such that v + s > 1 and

WFv,s(e−i t Dm
x u0) = χt (WFv,s(u0)). (4.21)

The explicit solution to (4.19) is given by

u(t, x) = e−i t Dm
x u0 = (2π)−

1
2

∫
R

eixξ−i tξm
û0(ξ)dξ. (4.22)

For simplicity let us test (4.21) on the case u0 = δ0, and denote by wt the solution to
(4.19). It is easy to prove that

WFv,s(w0) =WFv,s(δ0) = {0} × (R \ 0)
for any v, s > 0 with v + s > 1, cf. (3.14) for v = s and Proposition 7.1, and from (4.22)

ŵt (ξ) = (2π)−
1
2 e−i tξm

. (4.23)

Hence from (4.20) and (4.21) we expect

WFv,s(wt ) = χt ({0} × (R \ 0)) = {(mtξm−1, ξ) ∈ R2, ξ �= 0}. (4.24)

This shows that the correct choice is v = s(m − 1) > 1, s > 0. In fact from Theorem 4.2
applied to (4.23) we have for v(m − 1) > 1 and t �= 0

WFv,v(m−1)(ŵt ) = {(ξ,−mtξm−1) ∈ R2, ξ �= 0} (4.25)

and hence, in view of Proposition 3.6, swapping the roles of s and v,

WFs(m−1),s(wt ) = {(mtξm−1, ξ) ∈ R2, ξ �= 0} (4.26)

if s(m − 1) > 1, as expected from (4.24).
Other choices of v > 0 do not work. In fact by applying Proposition 4.5 to (4.23) we have

if v > s(m − 1) > 1
WFs,v(ŵt ) = (R \ 0)× {0}

and hence
WFv,s(wt ) = {0} × (R \ 0)

for every t ∈ R.
Whereas by applying Proposition 4.6 to (4.23) we have if 1 < v < s(m−1), in particular

if v = s > 1, we obtain
WFs,v(ŵt ) ⊆ {0} × (R \ 0),

hence
WFv,s(wt ) ⊆ (R \ 0)× {0}, t �= 0.

(These inclusions are equalities if m is even.) This is not consistent with (4.24).

Remark 4.8 Addendum at revision. After finishing this work we have proved a generalization
of the conjecture (4.24) with v = s(m − 1) > 1, see [40, Theorem 7.1].
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5 Relations between the t, s-Gelfand–Shilov wave front set and the
s-Gevrey wave front set

Next we show a few results that are valid when s > 1. Then Gevrey functions of order
s and of compact support exist [29]. We define Gevrey functions of order s > 1 slightly
differently from [29], using again Beurling instead of Roumieu type. Let � ⊆ Rd be open.
Then f ∈ Gs(�) provided f ∈ C∞(�) and for each compact K ⊆ � we have

|∂α f (x)| ≤ CK ,hh|α|α!s, x ∈ K , α ∈ Nd , ∀h > 0.

The topology on Gs(�) is defined first as the projective limit with respect to h > 0, and
then as the inductive limit with respect to an exhaustive increasing sequence of compact sets
K ⊆ �. In the sequel we limit attention to � = Rd .

The space of compactly supported Gevrey functions is embedded in the usual test func-
tion space as Gs

c(R
d) ⊆ C∞c (Rd). The topological duals therefore satisfy the embedding

D ′(Rd) ⊆ D ′s(Rd) where D ′s(Rd) is the space of Gevrey ultradistributions of order s > 1.
With small modifications of the proof of [29, Theorem 1.6.1] we obtain that for f ∈

C∞c (Rd) we have f ∈ Gs
c(R

d) if and only if the Fourier transform satisfies

| f̂ (ξ)| � e−r |ξ | 1s ∀r > 0.

Denoting E ′s (Rd) the subspace of D ′s(Rd) of ultradistributions of compact support, we also
have f ∈ E ′s (Rd) if and only if

∃r > 0 : | f̂ (ξ)| � er |ξ | 1s

cf. [20, 35] and [29, Theorems 1.6.1 and 1.6.7].
This is the basis of the definition of the Gevrey wave front set WFs(u) of u ∈ D ′s(Rd)

[29]. A phase space point (x0, ξ0) ∈ Rd × (Rd \0) satisfies (x0, ξ0) /∈WFs(u) if there exists
ϕ ∈ Gs

c(R
d) such that ϕ(x0) = 1 and an open conical neighborhood 	 ⊆ Rd\0 containing

ξ0 such that

sup
ξ∈	

er |ξ | 1s |ûϕ(ξ)| <∞ ∀r > 0.

Hence WFs(u) = ∅ if and only if u ∈ Gs(Rd). Note that for every s > 1 and any t > 0
we have

Gs
c(R

d) ⊆ �s
t (R

d) ⊆ Gs(Rd),

E ′s (Rd) ⊆ (�s
t )
′(Rd) ⊆ D ′s(Rd).

Inspired by the proofs in [38] we obtain the following results. Here π2(x, ξ) = ξ for
(x, ξ) ∈ T ∗Rd .

Proposition 5.1 If t ≥ s > 1 and u ∈ (�s
t )
′(Rd) then

{0} × π2WFs(u) ⊆WFt,s(u).

Proof Suppose ξ0 ∈ Rd\0 and (0, ξ0) /∈ WFt,s(u). By (3.6) we may assume that |ξ0| = 1.
Let ϕ ∈ Gs

c(R
d) ⊆ �s

t (R
d) satisfy ϕ(0) = 1. We have for some ε > 0, for any r > 0

erλ|Vϕu(λt x, λs(ξ0 + ξ))| ≤ Cr <∞
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if (x, ξ) ∈ Bε and λ > 0. Define the open set

	 = {(λt x, λs(ξ0 + ξ)) ∈ R2d : (x, ξ) ∈ Bε, λ > 0} ⊆ R2d .

We have to show that (x0, ξ0) /∈ WFs(u) for all x0 ∈ Rd . Let x0 ∈ Rd . Define for δ > 0
the open conic set containing ξ0

	δ =
{
ξ ∈ Rd \ 0 :

∣∣∣∣ ξ

|ξ | − ξ0

∣∣∣∣ < δ

}
⊆ Rd \ 0.

Pick δ > 0 sufficiently small so that δ(1+ |x0|) ≤ 1 and

δ2
(
1+ |x0|2

(1− δ|x0|)2
)
≤ ε2.

Then we have
({x0} × 	δ) \ Bδ−1 ⊆ 	. (5.1)

In fact let η ∈ 	δ and |(x0, η)| ≥ δ−1. Then |η| ≥ δ−1 − |x0| ≥ 1. We write for λ > 0

(x0, η) = (λt x, λs(ξ0 + ξ))

that is x = λ−t x0 and ξ = λ−sη−ξ0. In order to show (5.1) we have to show that (x, ξ) ∈ Bε

for some λ > 0.
If we set λ = |η| 1s > 0 then |ξ | < δ and we obtain using the assumption t ≥ s

|x |2 + |ξ |2 < λ−2t |x0|2 + δ2 = |η|− 2t
s |x0|2 + δ2 ≤ |η|−2|x0|2 + δ2

≤ (δ−1 − |x0|)−2|x0|2 + δ2 = δ2
(
1+ |x0|2

(1− δ|x0|)2
)
≤ ε2.

Thus (x, ξ) ∈ Bε and we have shown (5.1).
Finally let η ∈ 	δ and |η| ≥ δ−1 + |x0|, which implies |(x0, η)| ≥ δ−1. By (5.1) we have

(x0, η) ∈ 	, that is (x0, η) = (λt x, λs(ξ0+ ξ)) for some λ > 0 and some (x, ξ) ∈ Bε . Since

|η| 1s = λ|ξ0 + ξ | 1s ≤ λκ(s−1)
(
|ξ0| 1s + ε

1
s

)

we obtain for any r > 0

sup
η∈	δ, |η|≥δ−1+|x0|

er |η| 1s |Vϕu(x0, η)|

≤ sup
(x,ξ)∈Bε, λ>0

e
λrκ(s−1)

(
|ξ0| 1s +ε

1
s
)
|Vϕu(λt x, λs(ξ0 + ξ))|

≤ C
rκ(s−1)(|ξ0| 1s +ε

1
s )

which shows that (x0, ξ0) /∈WFs(u). ��

The following result gives a sufficient condition for the opposite inclusion.

Proposition 5.2 If s > 1, t > 0 and u ∈ E ′s (Rd)+�s
t (R

d) then

WFt,s(u) ⊆ {0} × π2WFs(u). (5.2)
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Proof We may assume u ∈ E ′s (Rd) ⊆ (�s
t )
′(Rd). We start with the less precise inclusion

WFt,s(u) ⊆ {0} × (Rd \ 0). (5.3)

Suppose (x0, ξ0) ∈ R2d with x0 �= 0. We pick a neighborhood U ⊆ R2d such that (x0, ξ0) ∈
U and

inf
(x,ξ)∈U

|x | = δ > 0.

If we pick ϕ ∈ Gs
c(R

d) ⊆ �s
t (R

d) we have Vϕu(x, ξ) = 0 if |x | ≥ r for r > 0 sufficiently
large due tou ∈ E ′s (Rd). This implies thatVϕu(λt x, λsξ) = 0 ifλt ≥ rδ−1, for all (x, ξ) ∈ U .
Hence (x0, ξ0) /∈WFt,s(u) and we have shown (5.3).

In order to show the sharper inclusion (5.2), suppose 0 �= (x0, ξ0) /∈ {0} × π2WFs(u).
Then either x0 �= 0 or ξ0 /∈ π2WFs(u). If x0 �= 0 then by (5.3) we have (x0, ξ0) /∈WFt,s(u).
Therefore we may assume that x0 = 0, ξ0 /∈ π2WFs(u) and ξ0 �= 0, and our goal is to show
(0, ξ0) /∈WFt,s(u), which will prove (5.2).

By a slight modification to the Gevrey framework of the proof of [15, Proposition 8.1.3]
we have π2WFs(u) = Vs(u), where Vs(u) ⊆ Rd\0 is a closed conic set defined as follows
for u ∈ E ′s (Rd). A point η ∈ Rd \ 0 satisfies η /∈ Vs(u) if η ∈ 	2 where 	2 ⊆ Rd\0 is open
and conic, and

sup
ξ∈	2

er |ξ | 1s |̂u(ξ)| <∞ ∀r > 0. (5.4)

Thus we have ξ0 /∈ Vs(u), so there exists an open conic set 	2 ⊆ Rd\0 such that ξ0 ∈ 	2,
and (5.4) holds. Let ε > 0 be small enough so that ξ0 + B2ε ⊆ 	2. We assume ε ≤ 1

2 |ξ0|
which gives |ξ0 + ξ | > 1

2 |ξ0| when |ξ | < ε.
We have

Vϕu(x, ξ) = ûTxϕ(ξ) = (2π)−
d
2 û ∗ T̂xϕ(ξ)

which gives
|Vϕu(x, ξ)| � |̂u| ∗ |g|(ξ), x, ξ ∈ Rd , (5.5)

where g(ξ) = ϕ̂(−ξ) ∈ �t
s(R

d). Since u ∈ E ′s (Rd) we obtain from the Paley–Wiener–
Schwartz theorem (Gevrey version cf. [20, 35] and [29, Theorems 1.6.1 and 1.6.7]) for some
a > 0

|̂u(ξ)| � ea|ξ | 1s , ξ ∈ Rd , (5.6)

and we have

|g(ξ)| � e−r |ξ | 1s , ξ ∈ Rd , ∀r > 0. (5.7)

Let (x, ξ) ∈ Bε , r > 0 and λ > 0. We have

erλ|Vϕu(λt x, λs(ξ0 + ξ))| � erλ

∫
Rd
|̂u(λs(ξ0 + ξ − λ−sη))| |g(η)| dη = I1 + I2

where we split the integral into the two terms

I1 = erλ

∫
Rd\�λ

|̂u(λs(ξ0 + ξ − λ−sη))| |g(η)| dη,

I2 = erλ

∫
�λ

|̂u(λs(ξ0 + ξ − λ−sη))| |g(η)| dη

where
�λ = {η ∈ Rd : |η| 1s < λε

1
s } ⊆ Rd .
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For I1 we use (5.6) which together with (5.7) give for any r1 > 0

I1 �erλ

∫
Rd\�λ

ea|λs (ξ0+ξ)−η)| 1s |g(η)| dη

≤ eλ(r+aκ(s−1)|ξ0+ξ | 1s )

∫
Rd\�λ

eκ(s−1)a|η| 1s |g(η)| dη

≤ eλ(r+aκ(s−1)(|ξ0|+ε)
1
s )

∫
Rd\�λ

e(κ(s−1)a−κ(s−1)a−r1−1)|η| 1s dη

≤ eλ(r+aκ(s−1)(|ξ0|+ε)
1
s −r1ε

1
s )

∫
Rd

e−|η|
1
s dη

≤ Cr

provided we pick r1 ≥ ε− 1
s (r + aκ(s−1)(|ξ0| + ε)

1
s ).

It remains to estimate I2. If η ∈ �λ then λ−s |η| < ε which implies ξ − λ−sη ∈ B2ε, and
thus ξ0 + ξ − λ−sη ∈ 	2. Since 	2 is conic we have λs(ξ0 + ξ − λ−sη) ∈ 	2. Thus we may
use (5.4), which together with (5.7) give for any r1, r2 > 0

I2 � erλ

∫
�λ

e−κ(s−1)r1|λs (ξ0+ξ−λ−sη)| 1s |g(η)| dη

≤ erλ

∫
�λ

e−r1λ|ξ0+ξ | 1s +κ(s−1)r1|η| 1s |g(η)| dη

≤ eλ(r−r12
− 1

s |ξ0| 1s )

∫
Rd

eκ(s−1)r1|η| 1s |g(η)| dη

� eλ(r−r12
− 1

s |ξ0| 1s )

∫
Rd

e(κ(s−1)r1−r2)|η| 1s dη

≤ Cr

if we first pick r1 ≥ 2
1
s |ξ0|− 1

s r and then pick r2 > κ(s−1)r1. We have shown (0, ξ0) /∈
WFt,s(u). ��
Corollary 5.3 If t ≥ s > 1 and u ∈ E ′s (Rd)+�s

t (R
d) then

WFt,s(u) = {0} × Vs(u).

The following result is a sort of converse to Corollary 5.3.

Proposition 5.4 Let s, t > 0 satisfy s + t > 1, and let u ∈ (�s
t )
′(Rd). If

WFt,s(u) ∩ {0} × (Rd \ 0) = ∅
then u ∈ C∞(Rd) and there exist C, r > 0 such that

|∂αu(x)| ≤ C1+|α|α!ser |x | 1t , x ∈ Rd , α ∈ Nd . (5.8)

Proof Let ϕ ∈ �s
t (R

d) satisfy ‖ϕ‖L2 = 1. Using the compactness of Sd−1 ⊆ Rd we obtain
the following conclusion from the assumption. There exists ε > 0 such that

sup
(x,ξ)∈Bε, ξ0∈Sd−1, λ>0

erλ|Vϕu(λt x, λs(ξ0 + ξ))| <∞ ∀r > 0. (5.9)

Set
	 = {(λt x, λs(ξ0 + ξ)) ∈ R2d \ 0 : ξ0 ∈ Sd−1, (x, ξ) ∈ Bε, λ > 0}.
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If (y, η) ∈ 	 then η = λs(ξ0 + ξ) and y = λt x for some ξ0 ∈ Sd−1, (x, ξ) ∈ Bε , and λ > 0,

so |η| 1s = λ|ξ0 + ξ | 1s < λ(1+ ε)
1
s and |y| 1t = λ|x | 1t < λε

1
t . Thus from (5.9) it follows that

we have

sup
(x,ξ)∈	

er(|x | 1t +|ξ | 1s )|Vϕu(x, ξ)| <∞ ∀r > 0. (5.10)

We claim that if (y, η) ∈ R2d \ 0 then

|y| 1t < ε
1
t |η| 1s �⇒ (y, η) ∈ 	. (5.11)

In fact suppose |y| 1t < ε
1
t |η| 1s . Since η �= 0 we may define λ = |η| 1s > 0 and ξ0 = λ−sη ∈

Sd−1, whence η = λsξ0. Set x = λ−t y so that y = λt x . We have

|x | 1t = |η|− 1
s |y| 1t < ε

1
t

so x ∈ Bε which proves that (y, η) ∈ 	.
From (5.11) we may conclude

	 ∪� = R2d \ 0 (5.12)

where
� = {(y, η) ∈ R2d \ 0 : |η| 1s ≤ C |y| 1t }

for some C > 0.
We use (2.1) for u ∈ (�s

t )
′(Rd) and ϕ ∈ �s

t (R
d) with ‖ϕ‖L2 = 1, cf. [37], and show that

the integral for ∂αu is absolutely convergent for any α ∈ Nd . Thus we write formally

∂αu(y) = (2π)−
d
2

∑
β≤α

(
α

β

) ∫
R2d

Vϕu(x, ξ) (iξ)βei〈ξ,y〉∂α−βϕ(y − x) dx dξ. (5.13)

We will need the estimate for any r > 0

|ξ |β =
(

ds

r

)s|β|
β!s

⎛
⎜⎝

(
r

ds |ξ |
1
s

)|β|
β!

⎞
⎟⎠

s

≤
(

ds

r

)s|β|
β!s

⎛
⎜⎝

(
r
s |ξ |

1
s

)|β|
|β|!

⎞
⎟⎠

s

≤
(

ds

r

)s|β|
β!ser |ξ | 1s

as well as

|Dβϕ(x)| ≤ Cr ,hh|β|β!se−r |x | 1t , β ∈ Nd , x ∈ Rd , (5.14)

for any h, r > 0.
In order to prove (5.14) we may use the seminorms (2.3) with h|α+β| replaced by h|α|1 h|β|2

for two different arbitrary h1, h2 > 0. The argument is known but we repeat it for the benefit
of the reader.

If r > 0 then we obtain from (2.3) for any h1, h2 > 0

e
r
t |x |

1
t |Dβϕ(x)| 1t =

∞∑
n=0

2−n

(( 2r
t

)tn

n!t |x |n |Dβϕ(x)|
) 1

t

≤ 2

(
sup
n≥0

( 2r
t

)tn
d

n
2

n!t max|α|=n
|xα Dβϕ(x)|

) 1
t
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≤
(

Ch1,h2h|β|2 β!s sup
n≥0

((
2r

t

)t

d
1
2 h1

)n
) 1

t

≤
(

Ch2,r h|β|2 β!s
) 1

t

provided h1 ≤
( t
2r

)t
d− 1

2 . We have proved (5.14) for any h, r > 0.
We split the integral (5.13) in two parts. We obtain using (5.10) for any r1, r2, r3 > 0 and

0 < h ≤ 1
∣∣∣∣
∫

	

Vϕu(x, ξ) (iξ)βei〈ξ,y〉∂α−βϕ(y − x) dx dξ

∣∣∣∣
≤

∫
	

|Vϕu(x, ξ)| |ξ ||β| |∂α−βϕ(y − x)| dx dξ

� h|α−β|
(

ds

r2

)s|β|
(α − β)!sβ!s

∫
	

e−r1(|x | 1t +|ξ | 1s )+r2|ξ | 1s −κ(t−1)r3|y−x | 1t dx dξ

�
(

h−1
(

ds

r2

)s)|β|
α!se−r3|y| 1t

∫
R2d

e−r1(|x | 1t +|ξ | 1s )+r2|ξ | 1s +κ(t−1)r3|x | 1t dx dξ

�
(

h−1
(

ds

r2

)s)|α|
α!se−r3|y| 1t

(5.15)

provided h ≤
(

ds
r2

)s
and r1 > max(r2, κ(t−1)r3).

For the remaining part of the integral we may by (5.12) assume that (x, ξ) ∈ �. Using
(3.3) we obtain for some r1 > 0 and any r2, r3 > 0 and 0 < h ≤ 1

∣∣∣∣
∫

�

Vϕu(x, ξ) (iξ)βei〈ξ,y〉∂α−βϕ(y − x) dx dξ

∣∣∣∣
�

∫
|ξ | 1s ≤C |x | 1t

er1(|x | 1t +|ξ | 1s )|ξ ||β| |∂α−βϕ(y − x)| dx dξ

� h|α−β|
(

ds

r2

)s|β|
(α − β)!sβ!s

∫
|ξ | 1s ≤C |x | 1t

er1(|x | 1t +|ξ | 1s )+r2|ξ | 1s −κ(t−1)r3|y−x | 1t dx dξ

�
(

h−1
(

ds

r2

)s)|β|
α!seκ(t−1)r3|y| 1t

∫
|ξ | 1s ≤C |x | 1t

er1(|x | 1t +|ξ | 1s )+r2|ξ | 1s −r3|x | 1t dx dξ

≤
(

h−1
(

ds

r2

)s)|α|
α!seκ(t−1)r3|y| 1t

∫
|ξ | 1s ≤C |x | 1t

e−|ξ |
1
s +(r1−r3)|x | 1t +(1+r1+r2)|ξ | 1s dx dξ

≤
(

h−1
(

ds

r2

)s)|α|
α!seκ(t−1)r3|y| 1t

∫
|ξ | 1s ≤C |x | 1t

e−|ξ |
1
s +(r1+C(1+r1+r2)−r3)|x | 1t dx dξ

�
(

h−1
(

ds

r2

)s)|α|
α!seκ(t−1)r3|y| 1t (5.16)

provided h ≤
(

ds
r2

)s
and r3 > r1 + C(1+ r1 + r2).

Combining (5.15) and (5.16) shows in view of (5.13) that u ∈ C∞(Rd) and the estimate
(5.8) follows. ��
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6 Microlocality

The next result concerns microlocality with respect to WFt,s of pseudodifferential operators.
We use a space of smooth symbols originally introduced in [1, Definition 1.8] and denoted

	
s,t;0
t,s (R2d). For s, t > 0 such that s+ t > 1, a ∈ 	

s,t;0
t,s (R2d) means that a ∈ C∞(R2d) and

|∂α
x ∂

β
ξ a(x, ξ)| � h|α+β|α!sβ!t eμ(|x | 1t +|ξ | 1s ), α, β ∈ Nd , x, ξ ∈ Rd , (6.1)

for some μ > 0 and for all h > 0. The space 	
s,t;0
t,s (R2d) is characterized in [1, Proposi-

tion 2.3] using the STFT as follows. Let� ∈ �
s,t
t,s (R

2d)\0 be arbitrary. Then a ∈ 	
s,t;0
t,s (R2d)

if and only if

|V�a(z1, z2, ζ1, ζ2)| � eμ(|z1| 1t +|z2| 1s )−b(|ζ1| 1s +|ζ2| 1t ), z1, z2, ζ1, ζ2 ∈ Rd , (6.2)

for some μ > 0 and all b > 0.
If a ∈ 	

s,t;0
t,s (R2d) then aw(x, D) : �s

t (R
d) → �s

t (R
d) is continuous and extends

uniquely to a continuous operator aw(x, D) : (�s
t )
′(Rd) → (�s

t )
′(Rd) according to [1,

Theorem 3.15].
By the following result it is also microlocal with respect to the t, s-Gelfand–Shilov wave

front set.

Theorem 6.1 If s, t > 0 satisfy s + t > 1 and a ∈ 	
s,t;0
t,s (R2d) then

WFt,s(aw(x, D)u) ⊆WFt,s(u), u ∈ (�s
t )
′(Rd). (6.3)

Proof Pick ϕ ∈ �s
t (R

d) such that ‖ϕ‖L2 = 1. Recall the notation �(x, ξ) = Mξ Tx for
(x, ξ) ∈ R2d . Denoting the formal adjoint of aw(x, D) by aw(x, D)∗, (2.2) gives for u ∈
(�s

t )
′(Rd) and z ∈ R2d

(2π)
d
2 Vϕ(aw(x, D)u)(z) = (aw(x, D)u,�(z)ϕ)

= (u, aw(x, D)∗�(z)ϕ)

=
∫
R2d

Vϕu(w) (�(w)ϕ, aw(x, D)∗�(z)ϕ) dw

=
∫
R2d

Vϕu(w) (aw(x, D)�(w)ϕ,�(z)ϕ) dw

=
∫
R2d

Vϕu(z − w) (aw(x, D)�(z − w)ϕ,�(z)ϕ) dw.

By e.g. [14, Lemma 3.1], or a direct computation involving (2.9), we have

|(aw(x, D)�(z − w)ϕ,�(z)ϕ)| =
∣∣∣V�a

(
z − w

2
,Jw

)∣∣∣
where � is the Wigner distribution � = W (ϕ, ϕ).

Wehave� ∈ �
s,t
t,s (R

2d). In factwehaveϕ⊗ϕ ∈ �
s,s
t,t (R2d) and therefore also (ϕ⊗ϕ)◦κ ∈

�
s,s
t,t (R2d) where κ(x, y) = (x + y/2, x − y/2). Since W (ϕ, ϕ) = (2π)

d
2 F2((ϕ ⊗ ϕ) ◦ κ)

we obtain from [1, Proposition 1.1] the conclusion � ∈ �
s,t
t,s (R

2d).
Combining the preceding identities we deduce

|Vϕ(aw(x, D)u)(z)| �
∫
R2d
|Vϕu(z − w)|

∣∣∣V�a
(

z − w

2
,Jw

)∣∣∣ dw.

123



Microlocal analysis for Gelfand–Shilov spaces 2409

Suppose z0 ∈ R2d\0 and z0 /∈WFt,s(u). There exists an open set V such that z0 ∈ V and
(3.21) holds. We pick an open set U such that z0 ∈ U and U +Bε ⊆ V for some 0 < ε ≤ 1,
and we may assume

sup
z∈U

|z| ≤ |z0| + 1 := α. (6.4)

Let r > 0 and λ > 0. We have

erλ|Vϕ(aw(x, D)u)(λt x, λsξ)|
�

∫∫
R2d

erλ|Vϕu(λt (x−λ−t y), λs(ξ−λ−sη))|
∣∣∣V�a

(
λt x− y

2
, λsξ− η

2
, η,−y

)∣∣∣ dy dη

= I1 + I2

where we split the integral into the two terms

I1 =
∫∫

R2d\�λ

erλ|Vϕu(λt (x − λ−t y), λs(ξ − λ−sη))|
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη,

I2 =
∫∫

�λ

erλ|Vϕu(λt (x − λ−t y), λs(ξ − λ−sη))|
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

where
�λ = {(y, η) ∈ R2d : |y| 1t + |η| 1s < 2−

1
2v ε

1
v λ}

with v = min(s, t).
First we estimate I1 when (x, ξ) ∈ U . Set κ = max(κ(t−1), κ(s−1)). From (3.3), (6.2)

and (6.4) we obtain for some r1, μ > 0 and any b > 0

I1 � erλ

∫∫
R2d\�λ

er1λ|x−λ−t y| 1t +r1λ|ξ−λ−sη| 1s
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

≤ erλ+κr1λ|x | 1t +κr1λ|ξ | 1s
∫∫

R2d\�λ

er1κ(|y| 1t +|η| 1s )
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

� erλ+r1λκ(α
1
t +α

1
s )

∫∫
R2d\�λ

e
r1κ(|y| 1t +|η| 1s )+μ

(
|λt x− y

2 | 1t +|λsξ− η
2 | 1s

)
−(b+1)

(
|η| 1s +|y| 1t

)
dy dη

� e
λ

(
r+(r1+μ)κ(α

1
t +α

1
s )

) ∫∫
R2d\�λ

e
κ(r1+2− 1

t μ−b)|y| 1t +κ(r1+2− 1
s μ−b)|η| 1s −

(
|η| 1s +|y| 1t

)
dy dη

≤ e
λ
(

r+2(r1+μ)κα
1
v

) ∫∫
R2d\�λ

e
κ(r1+μ−b)(|y| 1t +|η| 1s )−

(
|η| 1s +|y| 1t

)
dy dη

≤ e
λ

(
r+2(r1+μ)κα

1
v +κ(r1+μ−b)2−

1
2v ε

1
v

) ∫∫
R2d

e
−

(
|η| 1t +|y| 1s

)
dy dη

� e
λ

(
r+2(r1+μ)κα

1
v +κ(r1+μ−b)2−

1
2v ε

1
v

)
≤ Cr

(6.5)

for any λ > 0, provided we pick b ≥ r1 + μ + κ−12 1
2v ε− 1

v

(
r + 2(r1 + μ)κα

1
v

)
. Here

Cr > 0 is a constant that depends on r > 0 but not on λ > 0. Thus we have obtained the
requested estimate for I1.

It remains to estimate I2. From |y| 1t + |η| 1s < 2− 1
2v ε

1
v λ we obtain

λ−t |y| < ε
t
v 2−

t
2v ≤ ε 2−

1
2 ,

λ−s |η| < ε
s
v 2−

s
2v ≤ ε 2−

1
2
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2410 L. Rodino, P. Wahlberg

which gives (λ−t y, λ−sη) ∈ Bε . Hence if (x, ξ) ∈ U then (x − λ−t y, ξ − λ−sη) ∈ V and
we may use the estimate (3.21). This gives for some μ > 0, any b > 0 and a constant
Cr = Cr ,μ,s,t > 0, using (6.2) and (6.4)

I2 =
∫∫

�λ

erλ|Vϕu(λt (x − λ−t y), λs(ξ − λ−sη))|
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

= e−λκμ2α
1
v

∫∫
�λ

e(r+κμ2α
1
v )λ|Vϕu(λt (x − λ−t y), λs(ξ − λ−sη))|

×
∣∣∣V�a

(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

≤ Cr e−λκμ2α
1
v

∫∫
�λ

∣∣∣V�a
(
λt x − y

2
, λsξ − η

2
, η,−y

)∣∣∣ dy dη

� Cr e−λκμ2α
1
v

∫∫
R2d

e
μ

(
|λt x− y

2 | 1t +|λsξ− η
2 | 1s

)
−b

(
|η| 1s +|y| 1t

)
dy dη

≤ Cr e−λκμ2α
1
v +λκμ2α

1
v

∫∫
R2d

e
μκ

(
|y| 1t +|η| 1s

)
−b

(
|η| 1s +|y| 1t

)
dy dη

= Cr

∫∫
R2d

e
(κμ−b)

(
|η| 1s +|y| 1t

)
dy dη

� Cr

(6.6)

provided b > κμ, for all λ > 0. Thus we have obtained the requested estimate for I2.
Combining (6.5) and (6.6) we may conclude that z0 /∈ WFs,t (aw(x, D)u) and hence we
have proven (6.3). ��

As a corollary we obtain the following generalization of [7, Proposition 4.10]. Here we use
a space of smooth symbols originally introduced in [6, Definition 2.4] and denoted	∞0,s(R2d),

and which is identical to 	
s,s;0
s,s (R2d). For s > 1

2 , a ∈ 	∞0,s(R2d) means that a ∈ C∞(R2d)

and

|∂αa(z)| � h|α|α!seμ|z| 1s , α ∈ N2d , z ∈ R2d , (6.7)

for someμ > 0 and for all h > 0. The space	∞0,s(R2d) is characterized in [6, Proposition 3.2]

using the STFT as follows. Let � ∈ �s(R2d) \ 0 be arbitrary. Then a ∈ 	∞0,s(R2d) if and
only if

|V�a(z, ζ )| � eμ|z| 1s −b|ζ | 1s , z, ζ ∈ R2d , (6.8)

for some μ > 0 and all b > 0.
If a ∈ 	∞0,s(R2d) then aw(x, D) : �s(Rd)→ �s(Rd) is continuous and extends uniquely

to a continuous operator aw(x, D) : �′s(Rd)→ �′s(Rd) according to [6, Proposition 4.10].

Corollary 6.2 If s > 1
2 and a ∈ 	∞0,s(R2d) then

WFs(aw(x, D)u) ⊆WFs(u), u ∈ �′s(Rd).

Remark 6.3 It is interesting to compare the assumption a ∈ 	∞0,s(R2d), which is equivalent
to the STFT estimates

|V�a(z, ζ )| � eμ|z| 1s −b|ζ | 1s (6.9)
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for some μ > 0 and all b > 0, with the estimates

|V�a(z, ζ )| � e
b
4 |z|

1
s −b|ζ | 1s (6.10)

for all b > 0.
Condition (6.10) for all b > 0 has been shown to imply continuity aw(x, D) : �s(Rd)→

�s(Rd) [39, Lemma 6.5 and Proposition 6.6], but it does not implymicrolocality with respect
to WFs . In fact microlocality for operators of this type is contradicted by [7, p. 556] with
Q = i I2d and t /∈ πZ.

The next result is another consequence of Theorem 6.1.

Corollary 6.4 Suppose s, t > 0 satisfy s + t > 1. For any z ∈ R2d and any u ∈ (�s
t )
′(Rd)

we have
WFt,s(�(z)u) =WFt,s(u).

Proof By a calculation it is verified that �(x, ξ) = aw
x,ξ (x, D) where

ax,ξ (y, η) = e
i
2 〈x,ξ〉+i(〈y,ξ〉−〈x,η〉), (y, η) ∈ R2d .

Using (2.6) we may estimate
∣∣∣∂α

y ∂β
η ax,ξ (y, η)

∣∣∣ = |ξαxβ | ≤ esdh− 1
s +tdh−

1
t
(|(x, ξ)|h)|α+β|α!sβ!t

= Ct,s,h,d(|(x, ξ)|h)|α+β|α!sβ!t

for any h > 0 and α, β ∈ Nd . This implies that ax,ξ ∈ 	
s,t;0
t,s (R2d). Thus we may apply

Theorem 6.1 which gives
WFt,s(�(z)u) ⊆WFt,s(u).

The opposite inclusion follows from u = e−i〈x,ξ〉�(−(x, ξ))�(x, ξ)u. ��

7 Global wave front sets of polynomials and generalizations

Proposition 7.1 If s, t > 0 satisfy s + t > 1 then:

(i) for any x ∈ Rd and any α ∈ Nd

WFg(∂
αδx ) =WFt,s(∂αδx ) = {0} × (Rd \ 0); (7.1)

(ii) for any α ∈ Nd

WFg(xα) =WFt,s(xα) = (Rd \ 0)× {0}; (7.2)

(iii) for any ξ ∈ Rd

WFg(e
i〈·,ξ〉) =WFt,s(ei〈·,ξ〉) = (Rd \ 0)× {0}. (7.3)

Proposition 7.1 follows from the arguments in Sect. 3, the details of the proof are left to
the reader. We fix attention on the following generalizations of Proposition 7.1.

Consider a polynomial on Rd

p(x) =
∑

α∈Nd , |α|≤m

cαxα, x ∈ Rd , (7.4)

with cα ∈ C and m ∈ N \ 0.
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2412 L. Rodino, P. Wahlberg

Proposition 7.2 Suppose s, t > 0 satisfy s + t > 1, let p be the polynomial (7.4) and define

u =
∑

α∈Nd , |α|≤m

cα Dαδ0 ∈ S ′(Rd).

Then
WFg(u) =WFt,s(u) = {0} × (Rd \ 0) (7.5)

and
WFg(p) =WFt,s(p) = (Rd \ 0)× {0}. (7.6)

Proof Fourier transformation gives û = (2π)− d
2 p so (7.6) is a consequence of (7.5) and the

Fourier invariances (3.2) and Proposition 3.6 (i). Thus it suffices to show (7.5).
From Proposition 7.1 (i) and (3.7) we obtain

WFt,s(u) ⊆ {0} × (Rd \ 0)
and (3.11) gives

WFg(u) ⊆WFv,v(u) ⊆ {0} × (Rd \ 0)
where v = max(t, s) > 1

2 . Hence it suffices to show

{0} × (Rd \ 0) ⊆WFt,s(u) (7.7)

and
{0} × (Rd \ 0) ⊆WFg(u). (7.8)

Let ϕ ∈ �s
t (R

d) \ 0 satisfy ϕ(0) �= 0. We have

Vϕu(0, ξ)

= (2π)−
d
2

∑
|α|≤m

cα

∑
β≤α

(
α

β

)
ξβ Dα−βϕ(0)

= (2π)−
d
2

⎛
⎝ ∑
|α|=m

cαξαϕ(0)+
∑
|α|=m

cα

∑
β<α

(
α

β

)
ξβ Dα−βϕ(0)+

∑
|α|<m

cα

∑
β≤α

(
α

β

)
ξβ Dα−βϕ(0)

⎞
⎠ .

Define the principal part of p as

pm(x) =
∑
|α|=m

cαxα.

If ξ ∈ Rd\0, pm(ξ) �= 0 and λ > 0 then

(2π)
d
2 Vϕu(0, λsξ)

= λsm pm(ξ)ϕ(0)+
∑
|α|=m

cα

∑
β<α

(
α

β

)
λs|β|ξβ Dα−βϕ(0)+

∑
|α|<m

cα

∑
β≤α

(
α

β

)
λs|β|ξβ Dα−βϕ(0)

︸ ︷︷ ︸
:=R

.

Since R contains terms λsk where k < m this implies that (0, ξ) ∈ WFg(u) and (0, ξ) ∈
WFt,s(u).

If instead ξ ∈ Rd\0 and pm(ξ) = 0, then for any ε > 0 the ball Bε(ξ) contains η ∈ Rd\0
such that pm(η) �= 0. In fact pm extends to an entire function onCd whose zeros are isolated.
From the argument above it follows that (0, η) ∈WFg(u) and (0, η) ∈WFt,s(u). It follows
that (0, ξ) ∈WFg(u) and (0, ξ) ∈WFt,s(u). We have now shown (7.7) and (7.8). ��
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In order to generalize Propositions 7.1 and 7.2 we would like to study series of the form

u =
∑
α∈Nd

cα Dαδ0 (7.9)

containing infinitely many nonzero terms cα ∈ C, and the corresponding power series

f (x) =
∑
α∈Nd

cαxα, (7.10)

under suitable hypotheses on the coefficients cα ∈ C.
First we note that u /∈ S ′(Rd). In fact we have for ϕ ∈ S (Rd)

(u, ϕ) =
∑
α∈Nd

cαi |α|∂αϕ(0) (7.11)

and it is known that a smooth function ϕ may have arbitrary growth of α "→ ∂αϕ(0) (Borel’s
lemma [15, Theorem 1.2.6]). Thus the sum (7.11) is not guaranteed to converge for ϕ ∈
S (Rd), unless the series is finite. The series (7.9) does not converge in S ′(Rd), and u /∈
S ′(Rd) if the series is infinite. For the same reason (7.10) does not converge inS ′(Rd), and

f /∈ S ′(Rd). (Note that û = (2π)− d
2 f when the series is finite.)

Nevertheless it is possible to state conditions on {cα}α∈Nd that are sufficient for u ∈
(�s

t )
′(Rd). Suppose s > 0 and

∑
α∈Nd

|cα| r |α|α!s <∞ (7.12)

for some r > 0. Then for t > 0 such that s + t > 1, and ϕ ∈ �s
t (R

d), we have

|(u, ϕ)| ≤
∑
α∈Nd

|cα| |∂αϕ(0)| ≤ ‖ϕ‖Ss
t,h

∑
α∈Nd

|cα|α!sh|α| � ‖ϕ‖Ss
t,h

provided h ≤ r . Thus the series (7.9) converges in (�s
t )
′(Rd) and u ∈ (�s

t )
′(Rd). We may

also conclude that (7.10) converges in (�t
s)
′(Rd), f ∈ (�t

s)
′(Rd), and the Fourier transform

acts termwise as û = (2π)− d
2 f ∈ (�t

s)
′(Rd).

We may distinguish two rather different situations under condition (7.12). Namely, if
s > 1 then u ∈ E ′s (Rd), with support in the origin, cf. [29, Example 1.5.3 and 1.6.5]. The
absolutely convergent series f satisfies

| f (x)| � ea|x | 1s , x ∈ Rd ,

for some a > 0 in Rd , cf. (5.6), and more precise bounds in Cd can be deduced from the
Paley–Wiener–Schwartz theorem in E ′s (Rd), cf. [29, Theorem 1.6.7], [20, 35].

If instead 0 < s ≤ 1 the series (7.10) also converges absolutely for any x ∈ Rd , and is an
entire function. In fact

∑
α∈Nd

∣∣cαxα
∣∣ ≤ ∑

α∈Nd

|cα| r |α|α!s
(

(r−1|x |) |α|s

α!

)s

≤
∑
α∈Nd

|cα| r |α|α!s
⎛
⎜⎝

(
d(r−1|x |) 1

s

)|α|
|α|!

⎞
⎟⎠

s
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≤ esdr− 1
s |x | 1s ∑

α∈Nd

|cα| r |α|α!s

� esdr− 1
s |x | 1s

which also reveals the growth bound

| f (x)| � esdr− 1
s |x | 1s , x ∈ Rd .

But the definition of support of u ∈ (�s
t )
′(Rd) breaks down if s ≤ 1. Consider as an

example for z ∈ Cd

u =
∑
α∈Nd

(−z)α

α! Dαδ0.

Condition (7.12) is satisfied if r < |z|−1, and thus u ∈ (�s
t )
′(Rd). The corresponding test

functions ϕ ∈ �s
t (R

d) extend to entire functions onCd . FromMaclaurin expansion we have

(u, ϕ) =
∑
α∈Nd

(−z)α

α! Dαϕ(0) =
∑
α∈Nd

(i z)α

α! ∂αϕ(0) = ϕ(i z).

Thus u may be regarded as a delta distribution at the point i z ∈ Cd .
In the following result we require that (7.12) holds for all r > 0 which precludes the

preceding example.

Proposition 7.3 Let s, t > 0 satisfy s + t > 1, suppose that (7.12) holds for all r > 0, and
define u ∈ (�s

t )
′(Rd) and f ∈ (�t

s)
′(Rd) by (7.9) and (7.10) respectively. Then

WFt,s(u) ⊆ {0} × (Rd \ 0) (7.13)

and
WFs,t ( f ) ⊆ (Rd \ 0)× {0}. (7.14)

Proof Since û = (2π)− d
2 f ∈ (�t

s)
′(Rd) it again suffices to show (7.13) by the Fourier

invariance Proposition 3.6 (i). If s > 1 the result follows from Proposition 5.2, cf. (5.3).
Consider the general case s > 0.

Let ϕ ∈ �s
t (R

d) \ 0, let (x0, ξ0) ∈ T ∗Rd\0 satisfy x0 �= 0, and let (x0, ξ0) ∈ U where
U ⊆ R2d is open and satisfies

sup
(x,ξ)∈U

|ξ | ≤ |ξ0| + 1 := a, inf
(x,ξ)∈U

|x | ≥ ε > 0.

If (x, ξ) ∈ U then we obtain, using the estimates (5.14), for any h, r , λ > 0

(2π)
d
2 |Vϕu(λt x, λsξ)| =

∣∣∣∣∣∣
∑
α∈Nd

cα

∑
β≤α

(
α

β

)
λs|β|ξβ Dα−βϕ(−λt x)

∣∣∣∣∣∣
≤ Cr ,h

∑
α∈Nd

|cα|
∑
β≤α

(
α

β

)
λs|β||ξ ||β|h|α−β|(α − β)!se−2rε−

1
t λ|x | 1t

≤ Cr ,he−2rλ
∑
α∈Nd

|cα| h|α|α!s
∑
β≤α

(
α

β

)
a|β|

⎛
⎜⎝

(
λh− 1

s

)|β|
β!

⎞
⎟⎠

s
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≤ Cr ,he−2rλ
∑
α∈Nd

|cα|h|α|α!s
∑
β≤α

(
α

β

)
a|β|

⎛
⎜⎝

(
dλh− 1

s

)|β|
|β|!

⎞
⎟⎠

s

≤ Cr ,he−2λr+λsdh− 1
s

∑
α∈Nd

|cα|h|α|α!s
∑
β≤α

(
α

β

)
a|β|

= Cr ,he−2λr+λsdh− 1
s

∑
α∈Nd

|cα|((a + 1)h)|α|α!s .

If we pick h = r−sssds and use (7.12) then

|Vϕu(λt x, λsξ)| ≤ Cr e−λr
∑
α∈Nd

|cα|((a + 1)h)|α|α!s

≤ C ′r e−λr

for a new constant C ′r > 0. Since (x, ξ) ∈ U and r > 0 are arbitrary we have shown
(x0, ξ0) /∈WFt,s(u) which proves (7.13). ��
Remark 7.4 In dimension d = 1 we can state conditions that are sufficient for equality in
(7.13) and (7.14). In fact suppose

u =
∞∑

k=0
ck Dkδ0

where (7.12) is satisfied for all r > 0, and either c2k = 0 for all k ≥ 0 or c2k+1 = 0 for all
k ≥ 0. Then for ϕ ∈ �s

t (R)

(ǔ, ϕ) =
∞∑

k=0
ck(Dkδ0, ϕ̌) =

∞∑
k=0

ck(−1)k(Dkδ0, ϕ) = ±(u, ϕ)

which means that u is either even or odd. By (3.9) we have WFt,s(u) = −WFt,s(u), and
since WFt,s(u) �= ∅ due to u /∈ �s

t (R), we must have

WFt,s(u) = {0} × (R \ 0).
Equality in (7.14) follows.

We can also get equalities forWFt,s(u) andWFs,t ( f ) in terms of the subset Vs(u) defined

in (5.4). Using û = (2π)− d
2 f ∈ (�t

s)
′(Rd) we may rephrase (5.4) as follows: x0 ∈ Rd\0

satisfies x0 /∈ Vs(u) if there exists an open set U ⊆ Rd\0 such that x0 ∈ U and

sup
x∈U , λ>0

erλ| f (λs x)| <∞ ∀r > 0. (7.15)

Thus Vs(u) consists of the directions in Rd \ 0 in which û(x) does not decay like e−r |x | 1s
for all r > 0. Note that we assume s > 1 in the following result. This depends on the fact
that we need a window function with certain properties.

Proposition 7.5 Let s > 1 and t > 0. Suppose that (7.12) holds for all r > 0 and define
u ∈ (�s

t )
′(Rd) and f ∈ (�t

s)
′(Rd) by (7.9) and (7.10) respectively. Then

WFt,s(u) = {0} × Vs(u) (7.16)
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and
WFs,t ( f ) = Vs(u)× {0}. (7.17)

Proof Again Fourier transformation gives û = (2π)− d
2 f so again by Proposition 3.6 (i) it

suffices to show (7.16).
As for the inclusion

WFt,s(u) ⊆ {0} × Vs(u)

it is a direct consequence of Proposition 5.2 since Vs(u) = π2WFs(u).
The opposite inclusion cannot be deduced from Proposition 5.1 to Corollary 5.3, because

of the restrictive assumption t ≥ s there. Instead we argue as follows. We know from
Proposition 7.3 that WFt,s(u) ⊆ {0}× (Rd \ 0). Assume ξ0 ∈ Rd\0 and (0, ξ0) /∈WFt,s(u).
Let ϕ ∈ �s

t (R
d) satisfy ϕ(0) = 1 and ∂αϕ(0) = 0 for all α �= 0, which is possible since

s > 1. If we fix x = 0 in (3.5) and assume there U = A × B ⊆ R2d where A ⊆ Rd is a
neighborhood of 0 and B ⊆ Rd is a neighborhood of ξ0, we obtain

sup
λ>0, ξ∈B

erλ|Vϕu(0, λsξ)| < +∞ ∀r > 0.

Since

Vϕu(0, ξ) = (2π)−
d
2

∑
α∈Nd

cα

∑
β≤α

(
α

β

)
ξβ Dα−βϕ(0)

= (2π)−
d
2

∑
α∈Nd

cαξα = (2π)−
d
2 f (ξ),

(7.15) is satisfied with U = B and we conclude ξ0 /∈ Vs(u). Thus {0} × Vs(u) ⊆WFt,s(u).
��

8 The t, s-Gelfand–Shilov wave front set of an exponential function

For z ∈ Cd fixed consider the exponential function Rd � x "→ a(x) = e〈x,z〉. If s > 0,
0 < t ≤ 1, s + t > 1 and ϕ ∈ �s

t (R
d) then by (5.14) we have for some h > 0

∣∣∣∣
∫
Rd

a(x)ϕ(x)dx

∣∣∣∣ ≤ ‖ϕ‖Ss
t,h

∫
Rd

e|z||x |−(|z|+1)|x | 1t dx � ‖ϕ‖Ss
t,h

which implies a ∈ (�s
t )
′(Rd). We consider a as the multiplier operator T f = a f . Then

T = aw(x, D) with a(x, ξ) = a(x) = e〈x,z〉. From (2.6) for any h > 0 we obtain for any
α ∈ Nd

|∂αa(x)| = |zα|eRe〈x,z〉 ≤ Cs,d,h(h|z|)|α|α!se|Rez||x |.

This means that a ∈ 	
s,t;0
t,s (R2d) for all 0 < t ≤ 1, s > 0, s + t > 1.

Theorem 6.1 combined with Proposition 7.1 now gives

WFt,s(e〈·,z〉) ⊆ (Rd \ 0)× {0} (8.1)

for any z ∈ Cd .
By considering the operator T−1 with symbol e−〈x,z〉 ∈ 	

s,t;0
t,s (R2d), so that T−1(e〈·,z〉) =

1, we deduce the opposite inclusion. We have obtained:
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Proposition 8.1 If 0 < t ≤ 1, s > 0, s + t > 1, and z ∈ Cd then

WFt,s(e〈·,z〉) = (Rd \ 0)× {0}.
Corollary 8.2 If 0 < t ≤ 1, s > 0, s + t > 1, z ∈ Cd and

u =
∑
α∈Nd

zα

α! (−D)αδ0

then u ∈ (�t
s)
′(Rd) and

WFs,t (u) = {0} × (Rd \ 0).
Proof We have the Maclaurin series

f (x) = e〈x,z〉 =
∑
α∈Nd

zα

α! x
α, x ∈ Rd , (8.2)

which converges in (�s
t )
′(Rd) to f ∈ (�s

t )
′(Rd). We apply the Fourier transform termwise

with convergence in (�t
s)
′(Rd) which gives

f̂ =
∑
α∈Nd

zα

α!F (xα)

= (2π)
d
2

∑
α∈Nd

zα

α! (−D)αδ0 = (2π)
d
2 u ∈ (�t

s)
′(Rd).

Proposition 3.6 (i) and Proposition 8.1 now give

WFs,t (u) = JWFt,s( f ) = {0} × (Rd \ 0).
��

Remark 8.3 Note that u may be considered as the Dirac distribution

(u, ϕ) = ϕ(i z), ϕ ∈ �t
s(R

d),

which makes sense since ϕ extends to an entire function on Cd as t ≤ 1. If z = iξ with
ξ ∈ Rd we recapture the well-known identity

F (ei〈·,ξ〉) = f̂ = (2π)
d
2 u = (2π)

d
2 δξ ∈ D ′(Rd).

Remark 8.4 Proposition 7.3 contains the “⊆” inclusion of Proposition 8.1 and Corollary 8.2,
under the restriction 0 < t < 1 (that is avoiding t = 1), as a particular case. In fact comparing
(8.2) with (7.10) we can identify the Maclaurin coefficients for f = e〈·,z〉 where z ∈ Cd .
They are cα = zα/α!. If 0 < s < 1 we have for any r > 0, and 0 < a < 1

∑
α∈Nd

|cα| r |α|α!s ≤
∑
α∈Nd

(|z|r)|α|α!s−1 =
∑
α∈Nd

a|α|
(

(|z|ra−1)
|α|
1−s

α!

)1−s

≤
∑
α∈Nd

a|α|

⎛
⎜⎝

(
d(|z|ra−1)

1
1−s

)|α|
|α|!

⎞
⎟⎠

1−s

≤ (1− a)−d exp
(
(1− s)d(|z|ra−1)

1
1−s

)
.
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By Proposition 7.3 we may conclude

WFs,t (e〈·,z〉) ⊆ (Rd \ 0)× {0}
and

WFt,s(u) ⊆ {0} × (Rd \ 0)
where

u =
∑
α∈Nd

zα

α! (−D)αδ0.

By combining with the results of Sect. 4 we finally consider in dimension d = 1

v(x) = ezx+icxm
(8.3)

with z ∈ C, c ∈ R\0, m ∈ N, m ≥ 2. Then v ∈ (�s
t )
′(Rd) if 0 < t ≤ 1, s > 0, s + t > 1.

Proposition 8.5 If 1
m−1 < t ≤ 1 then for v defined by (8.3) we have

WFt,t(m−1)(v) = {(x, cmxm−1) ∈ R2, x �= 0}. (8.4)

Proof Asbefore define T = aw(x, D)with a(x, ξ) = ezx regarded as a symbol in	
s,t;0
t,s (R2),

for any s > 0 such that s + t > 1 and t ≤ 1. Set

w(x) = eicxm ∈ S ′(R) ⊆ (�s
t )
′(R).

We have v = T w. From Theorem 6.1 we deduce

WFt,s(v) ⊆WFt,s(w).

By considering the operator T−1 we deduce the opposite inclusion, hence WFt,s(v) =
WFt,s(w). Under the assumption t > 1

m−1 we may apply Theorem 4.2, and obtain (8.4). ��
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