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Abstract
The number of materials processed via additive manufacturing (AM) technologies has rapidly increased over the past decade. As of 
these emerging technologies, electron beam powder bed fusion (EB-PBF) process is becoming an enabling technology to manufacture 
complex-shaped components made of thermal-cracking sensitive materials, such as AISI H13 hot-work tool steel. In this process, a 
proper combination of process parameters should be employed to produce dense parts. Therefore, one of the first steps in the EB-PBF 
part production is to perform the process parameter optimization procedure. However, the conventional procedure that includes the 
image analysis of the cross-section of several as-built samples is time-consuming and costly. Hence, a new model is introduced 
in this work to find the best combination of EB-PBF process parameters concisely and cost-effectively. A correlation between the 
surface topography, the internal porosity, and the process parameters is established. The correlation between the internal porosity 
and the melting process parameters has been described by a high robust model (R2

adj = 0.91) as well as the correlation of topography 
parameters and melting process parameters (R2

adj = 0.77–0.96). Finally, a robust and information-rich prediction model for evaluating 
the internal porosity is proposed (R2

adj = 0.95) based on in situ surface topography characterization and process parameters. The 
information-rich prediction model allows obtaining more robust and representative model, yielding an improvement of about 4% 
with respect to the process parameter-based model. The model is experimentally validated showing adequate performances, with a 
RMSE of 2% on the predicted porosity. This result can support process and quality control designers in optimizing resource usage 
towards zero-defect manufacturing by reducing scraps and waste from destructive quality controls and reworks.

Keywords Electron beam melting · Electron beam powder bed fusion · H13 steel · Additive manufacturing · Porosity · 
Non-destructive quality control · Surface topography

1 Introduction

Additive manufacturing (AM) techniques are improving fast, 
thanks to the increasingly available materials and the quality 
of the final products. Among the various AM techniques, 
electron beam powder bed fusion (EB-PBF), also known 
as electron beam melting (EBM), is a powder bed fusion 
additive manufacturing technique that selectively melts layer 
by layer the powder bed using an electron beam in order to 
build the final components (see Fig. 1) [1]. EB-PBF pro-
duces metallic components with a density above 99.5% using 
optimized process parameters [2–6]. The detailed steps of 
the process can be found in the work of Murr et al. [1]. The 
two main characteristics of EB-PBF are the vacuum envi-
ronment and the preheating temperature (up to 1100 °C). 
The first limits the interstitial element content in the final 
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components [6, 7]. The second is a crucial characteristic for 
the processability of sensitive materials prone to thermal 
cracking [4, 8–12] since it enables the reduction of residual 
stresses in the final components [13]. These primary advan-
tages drive the increasing interest in the EB-PBF process.

An example of crack-sensitive material is the AISI H13 steel. 
This material is widely used to produce die-casting, and extrusion 
dies for hot working applications[14, 15]. Thanks to its microstruc-
ture consisting of martensite and Cr, Mo, and V-based secondary car-
bides, AISI H13 provides high thermal stability and hardness up to 
550–600 C [16]. Cormier et al. [5] firstly investigated the production of 
AISI H13 by the EB-PBF process. More recently, literature addressed 
the study of the microstructures and the mechanical properties of AISI 
H13 samples processed by the EB-PBF process [17, 18]. The EB-PBF 
production of AISI H13 components allows the possibility to produce 
novel optimized designs and conformal dies to increase the compo-
nents’ productivity and lifetime. These concepts were preliminarily 
studied by Rännar et al. [14] and Gibbons et al. [15].

AM is well known to increase material efficiency, although 
it is associated with high cost. It becomes competitively con-
venient with respect to conventional manufacturing processes 
for highly customized products, which characterizes the cus-
tomer demand. Despite the improved material consumption, 
on the route towards sustainability, the optimization process is 
still critical. In fact, process parameter optimization to reduce 
internal and external defects to comply with technical and 
functional specifications of geometry, material structure, and 

mechanical properties is still affected by a consistent amount 
of scraps and waste. Moreover, even when the process is opti-
mized, quality controls for internal defects, i.e., porosity, are 
most typically destructive or expensive.

The most diffused procedure to identify and quantify 
the internal defects consists of time-consuming destructive 
(D) methods, e.g., the cross-sectioning of the samples and 
subsequent optical microscope image analysis [18–20]. On 
the other hand, non-destructive (ND) testing methods, and 
among them Archimedes [21], gas pycnometers [20], and 
ultrasonic-based methods [22], can be very fast compared to 
the traditional destructive methods, but present some limita-
tions in the defect’s accurate identification and, consequently, 
their quantification [23]. The most advanced ND technique 
is X-ray computer tomography, which gives in-depth infor-
mation about internal defects [23–25]. Nonetheless, the high 
capital cost of investment and long analysis time of the com-
puter tomography limits its application in the defect analysis 
during the optimization process [26, 27].

Furthermore, all the above mentioned inspection techniques 
require post-processing of specimens and are thus off-line [23, 
28]. It is clear that during process optimization, off-line qual-
ity controls are inevitable. However, on the route towards sus-
tainability, zero waste, and zero defects, once the process has 
been optimized, destructive control shall be minimized, if not 
avoided entirely. This can be achieved by developing predictive 
models based on in-line and in situ quality controls that can 
source information while the process is still ongoing and give 
valuable feedback for on-line improvements. The equipment 
for some of these in situ techniques for powder bed fusion is 
commercially available and can give information on the internal 
defects during the process [29]. Such predictive models relate 
process parameters and other available information by in situ 
inspection techniques to defects and often can be obtained 
by advanced statistical techniques while relying on big data. 
Indeed, destructive quality controls are necessary to validate 
those predictive models. Such a framework allows the crea-
tion of adequate and information-rich non-destructive quality 
controls, whose advantages are definitive and twofold [28, 
29]: real-time process control and scrap reduction [30–33]. It 
is worth remarking that the informativeness of destructive or 
expensive inspection techniques is paramount when studying 
process parameters windows for innovative materials and set-
ting up the processes. However, during the process optimization 
and production, they lead to unnecessary costs if robust alterna-
tive routes of quality inspection are available.

In situ inspection methods rely on different signals, 
ranging from raw process parameters and embedded sen-
sors (level-0) to progressively refined and high-resolution 
measurement methods [29].

Surface characteristics are among the several aspects that 
in situ inspection techniques can tackle. In fact, due to the layer-
by-layer nature of the process, the final surface resembles the 

Fig. 1  Scheme of main element of electron beam melting (EBM) pro-
cess. During the process a layer of powder is laid on the build plate 
by the hoppers and levelled by the rake. The EB generated by the col-
umn, focused and directed by the lenses locally melt the powder to 
build the cross-section. The build platform is moved downward, and 
the process repeats to achieve the layer-by-layer manufacturing
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population of the internal defects with a certain confidence. This 
correspondence can be found in the literature [21, 34, 35], where 
a qualitative distinction between the different surfaces has been 
correlated with the internal porosity. However, design specifica-
tion and quality control require quantitative characterization [36, 
37], achievable by evaluating surface topography parameters [38, 
39]. Such quantitative characterization requires exploiting sur-
face topography measuring instruments. Several alternatives are 
available on the market, e.g., coherence scanning interferometry 
(CSI), focus variation, and confocal microscopy [40]. However, 
they differ in metrological performances in the AM field and 
the suitability for in-line quality controls. Literature reports that 
the CSI is the most accurate [40], but its working principle hin-
ders application in harsh environments such as the AM building 
chamber. Therefore, innovative systems based on focus variation 
[41] and fringe projection are developed for in-line control [42], 
and they are reported as level-1 in situ inspection methods [29].

The study of a potentially new EB-PBF-processable material 
involves optimizing the melting process parameters. This could 
be time- and cost-consuming due to the many combinations 
necessary to explore the possible process window. Melting 
optimization aims to achieve targeted geometrical design 
characteristics and minimize internal defects (if their complete 
avoidance is impossible) while maximizing productivity. 
Several studies reported the influence of process parameters on 
the final quality of the component for various materials [7, 12, 
29, 43]. Melting parameters and the powder’s quality influence 
the final component’s relative density and hence affect a wide 
range of mechanical properties [7, 12, 28]. Amongst the melting 
parameters, the melting strategy, the beam power, which depends 
on the voltage and the beam current, the scanning speed, and 
the line offset, are the most relevant. In addition, these process 
parameters are the key parameters that define the type and 
contents of the defects, e.g., lack of fusion and gas pores, as well 
as the as-built microstructure of the components [7, 44–46].

Generally, a design of experiment (DoE) is resorted to 
investigating the effect of melting parameters on the defects 
generated during the EB-PBF process. The DoE can be used 
to select statistically significant factors, i.e., parameters and 
their interactions, to be included in statistical models to relate 
process parameters, signals from in situ inspection, and qual-
ity characteristics of the components. These models can then 
be exploited for process optimization to find a proper process 
window where the parts can be produced with minimum inter-
nal defects. For example, Guo et al. [47] showed that the rela-
tive density of Ti-6Al-4 V specimens produced through the 
EB-PBF process is inversely proportional to scanning speed 

and directly proportional to the beam current. Additionally, 
they showed the qualitative dependence of the top surface on 
the internal porosity [47]. Although these studies have paved the 
way for understanding mechanisms, they all provide qualitative 
relationships between process parameters, microscale geometri-
cal properties, and internal defects of the EB-PBF parts.

This work aims to establish an information-rich predic-
tion model of the internal porosity from surface topography 
and input process parameters.

In this work, a mathematical model is proposed to 
correlate the topographical surface features (level-1 
inspection) and the process parameters (level-0 inspection). 
Similarly, a mathematical model correlating the internal 
porosity and process parameters is presented. Finally, these 
models are exploited to build the information-rich predictive 
model. The development of this model is essential for zero-
defect manufacturing and the creation of a digital twin of 
the processes to achieve complete real-time control of the 
process.

2  Materials and methods

2.1  Sample production

In this work, a gas atomized AISI H13 powder with a particle 
size range from 40 to 150 µm (d10 = 45, d50 = 57 µm, d90 = 70 µm) 
supplied by Sandvik was used as the feedstock material. The 
chemical composition of the powder is reported in Table 1. The 
particles are mainly spherical, with a high presence of satellites; 
in Fig. 2, an example of the powder is reported.

The samples were produced using an ARCAM A2X EB-PBF 
machine. The cubic AISI H13 specimens with a dimension of 
30 × 30 × 30  mm3 were built on a stainless-steel start plate. The 
preheating temperature was kept constant and set at 700 °C for all 
the specimens produced in this work. Two levels of layer thick-
ness (t) (50 µm and 90 µm) and the snake-like scan pattern with 
90° rotation per layer were used in the sample’s production. In the 
DoE, different combinations of process parameters were selected 
to study their individual influence and relative interactions. The 
considered process parameters were the focus offset (FO), the 
beam speed (v), the beam current (I), and line offset (LO). The 
experimental plan considered the five factors mentioned above, 
i.e., t, I, v, LO, and FO, which were varied on 2, 2, 10, 3, and 4 
levels, respectively. The levels for each factor were chosen based 
on the literature [5, 18]. According to industrial practices and 
relying upon authors’ experience [2, 48, 49], some conditions 

Table 1  Nominal chemical composition of AISI H13 powder, when available, the measured values are indicated by *

Alloy Fe (wt.%) C (wt.%) Cr (wt.%) Ni (wt.%) Mo (wt.%) Si (wt.%) Mn (wt.%) V (wt.%) O (wt.%) N (wt.%)

AISI H13 Bal 0.35* 4.75–5.50 0.3 1.10–1.75 0.8–1.2 0.2–0.5 0.8–1.2 0.19* 0.055*
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were removed or modified during the building process since they 
already showed a high presence of defects or could be harmful 
to the successful process completion. Some replications were 
introduced randomly to extend the number of data and improve 
the dataset robustness. This approach resulted in an unbalanced 
DoE, as reported in Table A1 in the Appendix, with 52 investi-
gated conditions.

2.2  Top surface topographical analysis

The top surface topography was measured by CSI. NewView 
9000 by Zygo and characterized according to the literature [38, 
39] following the ISO 25178–2:2018 standard. The measurement 
was set up considering literature best practices [50]: a Michel-
son × 5.5 objective lens with a numerical aperture of 0.15 was 
adopted, applying a 0.5 × digital zoom and resulting in a field of 
view (FOV) of 3.15 × 3.15  mm2 with a lateral sampling resolution 
of 3.15 µm/pixel. Stitching of 4 × 3 FOVs resulted in an investi-
gated area of at least 10 × 8  mm2. In addition, signal oversampling 
was applied [50] to reduce noise and non-measured points due 
to high surface roughness, typical of AM topographies. As men-
tioned in the introduction, CSI is the most accurate and precise 
measurement method, but the harsh build chamber environment 
hinders its application as an in situ measurement technique. How-
ever, literature has shown that other surface topography native 
measurement methods that can be mounted in the build chamber, 
e.g., focus variation and fringe projection systems, yield charac-
terization results compatible with CSI measurements [41, 42, 51].

The characterization includes a first correction of spikes and 
non-measured points [52, 53]. Then, the measured surface was 
filtered by applying a robust gaussian S-filter, i.e., a high-pass 

filter in the wavelength domain, to suppress measurement noise 
with a nesting index of 10 µm [53, 54]. Then, the F-operator 
removes the form by suppressing the least-square fitted plane. 
Subsequently, according to the state-of-the-art prescription 
[38, 39, 55], the waviness surface must be isolated. This is 
performed by applying a robust gaussian L-filter [53]. The 
nesting index is chosen as the topography’s smooth-to-rough 
crossover (SRC). This particular choice allows tailoring the 
separation of the waviness surface and the SL-Surface to the 
topography in analysis by identifying the separation scale, i.e., 
the wavelength, between the two surface topography content by 
scale-sensitive fractal-analysis [53, 56]. The waviness surface is 
then characterized by evaluating the Sa, Sq, and Sdq area field 
parameters [53]. This characterization step is relevant because the 
waviness surface can bear a low-scale manufacturing signature, 
e.g., swollen surfaces [21]. The residual of the waviness removal, 
i.e., the SL-Surface, is then exploited to perform a feature-based 
characterization that describes the globules and topographical 
pores on the surface. Globules and topographical pores are 
surface defects due to several causes, e.g., attached particles, 
Marangoni flow, internal cavities, and porosities causing surface 
recesses[21, 34, 38]. They can be identified by watershed 
segmentation, which in this work it is applied with a wolf-pruning 
at three times the standard deviation of the surface topography 
heights [38]. The overall volume characterizes globules and pores 
( Vg and Vp ) and the area percentage to the whole surface ( A%g and 
A%p [38, 39]). Once the features are identified, they are removed 
and the actual roughness surface, i.e. the actual SL-Surface, is 
then characterized by evaluating Sa, Sq, Sdq, Ssk, and Sku. Surface 
topography analysis is performed by the state-of-the-art software 
Mountains Lab v8.0.

Fig. 2  AISI H13 powder micro-
graphs obtained via SEM
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2.3  Internal porosity analysis

All the as-built specimens were cut parallel to the building 
direction and ground with SiC paper, up to 2500 grit. Then, all 
the samples were polished with diamond paste, down to 1 µm, to 
obtain a mirror-like surface. A Leica DMI 5000 M metallographic 
optical microscope (OM) was used to collect 20 images at 50 × per 
specimen. The micrographs were analyzed using ImageJ software, 
and the internal porosity content was determined following the 
procedure described in the ASTM E2109-01 standard [57]. Per 
each of the 52 examined specimens, 20 porosity data (percentage), 
pij, i = {1,… , i = 52} ⊂ ℕ and j = {1,… , J = 20} ⊂ ℕ , were 
collected per specimen. The resulting average porosity percentage 
for each condition, pi =

∑J

j=1
pij

J
 , was obtained prior the elimination 

of potential outliers, identified by the modified inter-quartile range 
(IQR) outlier method [58].

2.4  Statistical analysis

The unbalanced DoE outcomes are analyzed employing the 
Generalized Linear Model (GLM) technique to identify pro-
cess parameters and their interactions that statistically influ-
ence in a significative way the surface topographical param-
eters S

▪
 and the porosity p (let S

▪
 be any considered surface 

topography parameters introduced in Sect. 2.1 [59]). GLM is 
a supervised machine learning technique that allows drawing 
statistical models between a set of predictors, i.e., input vari-
ables, and some outputs whose probability distribution can be 
approximated by a density belonging to the exponential family 
and, in the case at hand, outputs are assumed to be normally 
distributed. The model is a linear combination of the predic-
tors, passing through a non-linear function [60]. In literature, 
the melting process parameters are generally expressed as line 
energy ( LE = (V ⋅ I)∕v ) or area energy ( AE = LE∕LO ) [61], 
where V is the voltage of the electron beam source, which is set 
to 60 kV in the Arcam A2X machine. Therefore, the LE and 
AE values have been calculated and introduced in the regres-
sion model to cater for a possible non-linear combination of the 
DOE factors. Another relevant process parameter is the speed 
function (SF). It is generally used during production with a 
positive value correlating the I and v with a black-box function 
developed by Arcam GE. This operative melting parameter 
aims to homogenize the heat distribution on the overall melting 
area of the specimen. However, it is preferable to use negative 
SF values that correspond to a linear ratio of v and I during 
the optimization step, i.e., SF = -v/I, allowing manual setup. 
The GLM estimates the coefficients of the models, i.e., of the 
linear combination of the input variables, by the least square 
method, i.e., maximizing the log-likelihood estimation [59, 
60]. Accordingly, GLM allows estimating the models h

▪
 and f:

(1)S
▪
= h

▪
(x)

where h
▪
 is the generic model for any S

▪
 , and 

x = {t, I, v,FO, LO, LE,AE, SF} is the input variable array. 
GLM is typically exploited in literature to quantitatively 
investigate the effect of process parameters on some quan-
tity of interests [62, 63].

Linear polynomial models of the third order with second-
order interactions are considered. However, not all the terms 
may be statistically significant. In this work, the statistical 
significance of the terms is set at the conventional confidence 
level of 95%, i.e., terms associated with a p-value greater than 5% 
are not statistically significant. Analysis of variance (ANOVA) 
is typically resorted to properly assess the statistical significance 
of the estimated parameters, accounting for the degrees of 
freedom of the estimation and the error, i.e., the fitting residuals. 
Consequently, the presence of statistically non-significant terms 
worsens the model’s predictive performance, for it reduces the 
degrees of freedom available to estimate the error. Therefore, 
variable reduction is a non-trivial issue primarily investigated in 
the literature. In this work, the variable reduction is tackled by 
the stepwise method, which obtains a model solely consisting 
of significant terms by adding and removing predictors in a 
sequence of steps according to selected alpha-to-enter and alpha-
to-remove thresholds [64–66], here both conventionally set at 
15% [64].

The application of GLM requires the verification of the 
base hypothesis, i.e., that the response variable is normally 
distributed and that the estimated model does not ignore 
systematic trends in the data, i.e., that the residuals are 
normally distributed. Normality tests are performed 
graphically by normal probability plot (NPP) and 
quantitatively by Anderson–Darling test, at a confidence level 
of 95%. The goodness of fit is evaluated by testing the normal-
ity of the residuals and by computing the R2

adj
 [59]. Here, the 

R2

adj
 is preferred to R2 to compare different models, because it 

normalises the latter with a factor proportional to the number 
of terms in the model, so that if two models are equally rep-
resentative, but one requires more terms, it is associated with 
a smaller R2

adj
.

2.5  Information‑rich prediction model

This work aims at establishing an information-rich prediction 
model of internal defectivity, intended as porosity, as a function 
of process parameters while also exploiting the characterization 
of surface topography to enrich informativeness and increase 
robustness. Thus, it tackles the estimation of the function fi-r:

The first step toward the model creation is analyzing the 
correlation between the porosity and surface topography 

(2)p = f (x)

(3)p = fi−r
(

x, S
▪

)
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parameters. This is essential to establish which parameters are 
correlated to and physically influenced by porosity. This step is 
conceptually essential for the creation of the information-rich 
prediction model. Only parameters that are correlated to porosity 
can be exploited to predict it. Correlation analysis is performed 
qualitatively through scatter plot and quantitatively by GLM, 
with variable selection performed by stepwise method. GLM is 
applied, considering as predictors the S

▪
 whose scatter plots suggest 

a possible correlation; this choice allows considering the most 
appropriate terms as regressors of Eq. 3. It is worth remarking here 
that, although the physical relation is S

▪
= S

▪
(p) if a correlation is 

present, the application at hand requires reversing that information. 
In fact, during the production, process parameters are set and 
controlled, and the resulting surface topography parameters can 
be inspected. These are the available input information exploited 
as regressors to estimate the model fi-r.

The functional form and related parameters of the 
information-rich prediction model of Eq. 3 is estimated by 
stepwise GLM. The goodness of fit is evaluated by testing 
the normality of the residuals and reporting the R2

adj
.

The analyzed process window is sufficiently far from the origin 
of the hyperspace described by the regressors. Therefore, evaluat-
ing the evaluated models’ intercept can be carried out merely based 
on mathematical discussions, i.e., to maximize the goodness of fit. 
From the process physics perspective, the discussion of the evaluated 
models’ behaviour in the origin neighbourhood is negligible.

The model is trained on the available dataset (see Appendix), 
excluding replicated conditions. The replications will be exploited 
to validate the model, by evaluating the prediction interval and 
performing hypothesis test to assess statistical compatibility of the 
predicted value with respect to the experimental measurement.

3  Results and discussion

Table 2 summarizes the measurement unit used in this work 
and to which the estimated parameters of the model refer.

Table 3 reports the investigated process window regarding 
the considered factors’ minimum and maximum levels.

3.1  Top surface analysis

Figure 3 shows some representative results of the top surface 
topography measurements according to the methodology described 

earlier. According to the literature, several types of topographies 
can be distinguished, characterized by more or less severe geo-
metrical errors, large topographical features, and deviation from 
nominal geometry. These can be classified into clean, wavy, and 
orange-peel topographies, which might also present some addi-
tional localized features, e.g., globules or pores [21, 34, 38].

The set of fields and feature surface parameters are 
evaluated following the previous methodology.

Stepwise, GLM is applied to the SRC, the field parameters 
evaluated on the waviness surface, i.e., Sa, Sq, and Sdq, and on 
the feature parameters evaluated on the SL-Surface, i.e. Vg , Vp , 
A%g and A%p . Table 4 reports the R2

adj
 and the mathematical 

models correlating the surface topography parameters to the 
process parameters. Only statistically significant interactions 
and parameters, at a confidence level of 95%, are present in the 
GLM model, thanks to the application of the stepwise variable 
reduction. Residuals of the models did not show any trend, and 
the Anderson–Darling normality test could not reject the null 
hypothesis of normality with a risk of error of 5%.

The resulting different surface regression models consider the 
combination of the melting process parameters. In particular, Sa 
and Sq regression model terms are the same. They indicate an inter-
action between the I and t since the melt pool depth is strongly 
dependent on the beam current [67], while FO, which influences 
the melt pool width, interacts with the LO of subsequent line scan. 
The Sdq regression model shows the correlation between the sur-
face waviness and melt pool geometry since the FO, SF, and I are 
the main process parameters defining the melt pool characteristics.

The identification and the removal by segmentation of the 
topographical features allow the characterization of the actual 
SL-Surface in terms of Sa, Sq, Sdq, Ssk, and Sku. Because a wide 
range of processing conditions is addressed, some of which are 
far from optimal, a few topographies may result dominated by 
features, e.g., orange peel topographies, that hinder the evaluation 

Table 2  Measurement unit of considered process parameters and quality control variables. Estimated statistical model parameters are homogene-
ous with these. “-” indicates adimensional values, “%” percentage in the 0–100 range

Parameter Lo FO SF I LE AE t SRC p

Unit mm mA mm/(mA·s) mA J/mm J/mm2 mm µm %
Parameter Sa Sq Sdq Ssk Sku Vg Vp A%g A%p

Unit µm µm - - - mm3 mm3 % %

Table 3  Factors considered in the unbalanced DOE with maximum 
and minimum levels

Factor Min. level Max. level

LO/mm 0.2 0.3
FO/mA 15 35
SF/mm/(mA·s)  − 400  − 46.7
I/mA 8 15
t/mm 0.05 0.09

1164 The International Journal of Advanced Manufacturing Technology (2023) 126:1159–1173
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of characterization parameters. Stepwise GLM modelling of 
the parameters is performed to investigate the correlation and 
the dependence of the actual SL-Surface area field parameters. 
Table 5 reports the results of such analysis. The ANOVA analy-
sis to test the significance of the terms included in the models 
showed the statistical significance with p-values smaller than 5% 
for any terms of any model reported in both Table 4 and Table 5. 
The robustness and representativeness of all the models benefit-
ted from constraining to zero the related intercept.

The results show that Sa and Sq are correlated to process 
parameters consistently to the common practice. However, the 
more robust modelling is obtained for the Sdq parameter. This is 
the average height gradient of the surface, and it describes how 
fast the surface slopes vary. Very low Sdq characterizes smoother 
surfaces, while rougher surfaces, rich in hills and dales, by higher 
values. Moreover, EB-PBF surfaces of not optimized process 

parameters are rich in topographical pores [38, 39]. Therefore, for 
AM native surfaces, it is quite an effective parameter to describe 
the quality of the process, although it is scarcely adopted [52]. 
Complementary information to Sdq is Sku which indicates the sur-
face’s degree and amount of spikiness, i.e., how many and how 
sharp the positive features are. Consistently, it is strongly corre-
lated to process parameters. The actual SL-Surface parameters 
shown in Table 4 depend mainly on the I, FO, and t, suggest-
ing that the more significant effect on the surface parameters is 
induced by the electron beam diameter and the melt pool depth, 
and, therefore, the ability to melt multiple layers of the thickness 
t. The results obtained and shown in former tables provide quan-
titative evidence in relating these surface topography parameters 
to process variables, supporting former qualitative analysis in 
the literature and indicating valuable indications to process and 
components designers to assess the product quality.

Fig. 3  Visual inspection of top surface topography at different scales. Top row: images by an optical camera at low magnification, central and 
bottom row, pseudo colour height maps measured by the CSI. Height scales are different to appreciate details of topographical features

Table 4  Results of the stepwise GLM modelling of the dependence 
of waviness areal field parameters and the complete SL-Surface fea-
ture parameters. Results related to Vg and A%g are not shown as R2

adj
 is 

smaller than 0.65, indicating a lack of representativeness and correla-
tion of the models

Parameter R2

adj
Stepwise GLM model S∙ = h∙(x)  

SRC 0.77 SRC = 7118 ∙ LO + 246.6 ∙ I + 0.355 ∙ FO ∙ SF − 1496 ∙ LE3

Sa 0.87 Sa = 113.3 ∙ t ∙ I − 7.94 ∙ FO ∙ LO − 0.2174 ∙ SF ∙ AE

Sq 0.87 Sq = 137.3 ∙ t ∙ I − 9.62 ∙ FO ∙ LO − 0.2683 ∙ SF ∙ AE

Sdq 0.91 Sdq = −4.4 × 10
−5 ∙ FO ∙ SF + 7.33 × 10

−3 ∙ SF ∙ LO − 1.69 × 10
−4 ∙ SF ∙ I

Vp 0.72 Vp = −1.05 × 10
−4 ∙ SF2 − 5.42 × 10

−3 ∙ SF ∙ I − 0.473 ∙ LE ∙ AE

A%p 0.92 A%p = 301 ∙ t − 1.73 × 10
−2 ∙ SF ∙ FO + 2 × 10

−6 ∙ SF3
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3.2  Internal porosity analysis

The quantification of the porosity is performed through the 
image analysis method on 20 random images per specimen. The 
overall porosity is calculated and reported as an average value for 
each sample. From the OM cross-section of the samples, which 
are shown in Fig. 4, it is possible to distinguish different groups 
of samples: (i) large and vertical lack of fusion (Fig. 4 sample 
05), (ii) random and horizontal lack of fusion (Fig. 4 sample 03), 
and (iii) no internal porosity or only meagre amounts of spheri-
cal pores (Fig. 4 samples 12 and 13 respectively). Furthermore, 
depending on the combination of the process parameters, it is 
possible to observe all the intermediate classes.

Analyzing the normal probability plot of the investi-
gated specimens and performing the Anderson–Darling 
test, almost all samples do not follow a normal distribu-
tion at a 95% confidence level. The analyzed data are per-
centages, which are positively bounded and, in the case at 

hand, should feature a mode in the neighbourhood of zero. 
Accordingly, a possible better distribution fit is the lognor-
mal distribution. Therefore, the Box-Cox transformation 
with λ parameter equal to 0, i.e., a natural logarithm, was 
applied to the measured values, and the transformed data 
were tested for normality. Only 4 cases of systematic devia-
tion from normality were observed in the transformed data. 
In particular, the NPPs from the specimens whose poros-
ity shows a systematic deviation from lognormality suggest 
a possible bimodal distribution. The analysis at the OM, 
see Fig. 5, corroborates this hypothesis, showing that these 
specimens present two well-defined and separated regions: 
areas with high porosity content and areas with shallow con-
tent of defects. Conversely, the specimen characterized by a 
lognormal porosity distribution presented, at OM analysis, 
homogeneously distributed defects or a complete absence of 
significant defects, as shown in Fig. 5 (samples 5 and 12).

Accordingly, to comply with GLM hypotheses, these 
specimens characterized by a bimodal porosity distribution 
were excluded from the following computation. However, 
the high number of remaining conditions (48) against the 
excluded ones (4) ensures a representative model’s defi-
nition. The model relating internal porosity and process 
parameters was obtained via GLM, provided the application 
of the Box-Cox with λ = 0 transformation, and resulted in:

(4)
ln(p) =0.972 ∙ FO − 0.000132 ∙ SF2 + 0.002650 ⋅ FO ⋅ SF

− 1.38 ⋅ FO ∙ LE + +2.007 ⋅ LO ⋅ I + 0.00431 ⋅ I ⋅ SF

+ 10.28 ⋅ LE3 + 0.0333 ⋅ AE3

Table 5  Results of the stepwise GLM modelling of the dependence 
of the actual SL-Surface, i.e., after removing features and area field 
parameters. Results related to Ssk are not shown as R2

adj
 is smaller than 

0.65, indicating a lack of representativeness of the model and correla-
tion

Parameter R2

adj
Stepwise GLM model S∙ = h∙(x)  

Sa 0.77 Sa = 10669 ∙ t − 1.613 ∙ FO − 59.1 ∙ I  
Sq 0.77 Sq = 12812 ∙ t − 1.923 ∙ FO − 71 ∙ I

Sdq 0.85 Sdq = 155.5 ∙ t − 0.02257 ∙ FO − 0.856 ∙ I

Sku 0.96 Sku = 0.0929 ∙ FO + 8.05 ∙ LO − 0.1899 ∙ I

Fig. 4  Top row: qualitative inspection of top surface topography image by an optical camera at low magnification and bottom row: internal 
porosity obtained by OM DMI Leica. Numbers indicate the specimen codes

1166 The International Journal of Advanced Manufacturing Technology (2023) 126:1159–1173



1 3

which has an R2

adj
 of 0.91, whose residual normality could 

not be rejected with a risk of error of 5% by the Anderson 
Darling test, and the included terms parameters are 
significant with a confidence level of 95%. Equation (4) 
model is adequately robust and describes the influence of 
the melting process parameters on the internal porosity. 
The process-related internal defects are generated by 
insufficient energy input of the electron beam [68]. 
Therefore, the subsequent layer or adjacent line scans are 
not welded together; the defects generated by this 
phenomenon are the so-called lack of fusion. Indeed, the 
FO and the I (consequently LE) influence the electron 
beam diameter [69, 70], resulting in different energy input 
onto the powder bed. This influence cannot be thoroughly 
captured solely by LE, even though it can yield an 
appropriate first approximation of the electron beam 
irradiation, as in Zafar et al. [76], where the parameters 
considered are the beam voltage V and the beam current I. 
Conversely, a more complex combination of several 
parameters and the combination of the material physical 
properties defines the final geometry and dimension of the 
melt pool. The final density results from the overlap 
between subsequent line scan in the XY plane and the melt 
of different layers XZ-plane. Therefore, the width of the 
melt pool has to be greater than the LO, and the melt pool 
depth has to be much greater than the layer thickness.

3.3  Internal porosity and surface topography 
correlation

Once established and quantified, the dependence of quality 
variables and process parameters for the material-process 
pair must address the correlation between internal defectivity 
and surface quality.

Correlation analysis according to Sect. 2.5 is performed. 
According to the results obtained in Sects. 3.1 and 3.2, only SRC, 
field parameters of the waviness surfaces (Sa, Sq, and Sdq), and 
feature parameters of the SL-Surface ( Vg , Vp , A%g and A%p ) are 
addressed, and specimens characterized by a bimodal porosity 
distribution are excluded from the analysis. The first choice ena-
bles the applicability of the forthcoming model and results in non-
optimal process conditions, and the second is constrained by the 
statistical hypothesis supporting GLM. It is worth remarking that 
considering the discussion provided in Sect. 2.2 and the experi-
mental methodology described in Sect. 2.1, non-optimal process 
parameters might hinder the evaluation of actual SL-Surface. 
Therefore, related areal field parameters are not considered.

Figure 6 shows the scatter plot of the natural logarithm of the 
porosity as a function of the considered topographical parameters. 
The logarithmic transformation is shown to ease the suggestion 
of the relationship to be modelled via regression. Robust 
regression exploiting the LAR method was performed to relieve 
the effect of high data dispersion [71]. Although a qualitative 
trend might be seen for some parameters, only the models 

Fig. 5  Stitched images of the cross-section of the specimens: 05—high porosity level and significant vertical lack of fusion, 03—medium poros-
ity level and horizontal lack of fusion, and 12—low porosity level
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between porosity and A%p and Sdq (in Eq. 5 and 6) were statisti-
cally significant with an R2

adj
 of 0.95 and 0.91, respectively.

According to ANOVA, significant model parameters showed 
a p-value smaller than 5%. Residuals presented a hyper-normal 
distribution, suggesting a possible overfit due to the robust 
algorithm. Other surface topography parameters resulted in R2

adj
 

smaller than 60% (for example 30% in the case of Sa and Sq, 60% 
in the case of Vp). The result suggests that porosity, which has 
to be traced back to process parameters that influence a broad 
set of surface topography parameters, mainly affects the areal 
extension of surface pores and the spatial variability of the sur-
face heights. This is due to the layer-wise nature of the process. 
Porosity in inner layers induces depression that propagates into 
waviness that could degenerate into topographical pores at the top 
surface. Indeed, large and vertical internal lack of fusions are more 
reasonably expected to generate an orange peel surface, while 
random and horizontal lack of fusion produces wavy surfaces, 
with the possible presence of features. Finally, no internal porosity 
or very low porosity populated by only spherical pores are 
observed in the specimen with a clean surface.

3.4  Information‑rich prediction model

Results are shown in Sect. 3 allowed demonstrating a cor-
relation between (i) internal porosity and process param-
eters, (ii) surface topography and process parameters, and 

(5)��(p) = −4.637 + 0.1619 ∙ A%p − 8.9 × 10
−4 ∙ A%p

2

(6)��(p) = −6.998 + 63.11 ∙ Sdq − 98.26 ∙ Sdq
2

(iii) internal porosity and surface topography, as detailed 
in Fig. 7.

This information can now be merged within an informa-
tion-rich prediction model of the porosity. The model relies 
upon redundancies created by the surface topography quality 
inspection and characterization to improve the robustness and 
informativeness of the porosity modelling.

The methodology presented in Sect. 2.5 is applied, and it 
results in the following model:

The model estimated parameters are statistically significant with 
a risk of error of 5% and yield residuals whose normality cannot 
be disproved at a confidence level of 95% by the Anderson–Darling 
test (Fig. 8(a) shows the NPP of the residuals). The model is 
associated with an R2

adj
 of 0.95 and presents an RMSE of 0.7206, 

i.e. of 2% on the porosity. These results show the effectiveness in 
increasing the representativeness of the model when additional 
information from ND in situ quality controls are available. The R2

adj
 

comparison with the model only including the process parameters 
as predictors (see Sect.  3.2) shows 4% and 56% relative 
improvement to the maximum possible achievable. Model 
validation shows (Appendix) satisfactory results, as it can be 
appreciated in Fig. 8(b), where only one experimental point is 
systematically different from the prediction. This is compliant with 
risk of error of I and II type inherent in quality inspection 
procedures [72, 73]. Specifically, in the case at hand, a dense 
component is predicted, when in reality is porous, identifying a 
type II error.

(7)
ln(p) = −65.97 + 0.26 ∙ FO + 127.81 ∙ LO + 0.92 ∙ I + 0.51 ∙ SF + 22.90 ∙ AE+

+37.02 ∙ Sdq − 0.02 ∙ A%p + 2.33 ∙ LO ∙ SF − 0.16 ∙ FO ∙ AE − 0.20 ∙ I ∙ AE+

−4.72 − 94.94 ∙ AE2 − 94.94 ∙ Sdq
2 − 2.51 × 10

−4 ∙ A%p
2 + 0.43 ∙ AE3

Fig. 6  Natural logarithm of the porosity as a function of field parameters of waviness surface and feature parameters of SL-Surface. Notice the 
qualitative trend correlating with Sdq, A%p, and Vp. Regression analysis is only evidence of correlation with the first two parameters
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4  Conclusions

In this work, a new model is developed to estimate the 
porosity content of the parts starting from the topological 
investigation of the as-built samples. In fact, in this research, 
52 specimens of AISI H13 tool steel samples were produced 
by the EB-PBF process, following an unbalanced DoE. As 
a result, an information-rich prediction model of the inter-
nal porosity based on the input process parameters (I, SF, 
t, LO, AE, and LE) and surface topographical parameters 
(Sdq and A%p) is presented. The results showed a robust 
correlation between the surface topography features and 
the input process parameters. Furthermore, the robust cor-
relation of internal defectivity meant as porosity and the 
input process parameters were shown and related to sur-
face topography. The correlation between internal porosity 
and surface parameters was only qualitatively supposed in 
previous literature. This work first substantiates the correla-
tion with statistical analysis. In particular, internal poros-
ity propagates to affect outermost surface of the material 
in terms of the areal extension of surface pores (A%p) and 

variability of the topography height gradient (Sdq). This 
model’s development is helpful for the initial optimiza-
tion of process parameters while assessing the feasibility 
of new materials or during quality control of the produced 
components. The correlation analyses established a robust 
information-rich prediction model of the internal porosity 
based on in situ surface topography characterization, and 
process parameters have been established. The presented 
methodology can help speed up the characterization step 
and the process optimization.

Moreover, it can aid the manufacturing process design and 
quality control to optimize the usage of resources towards zero-
defect manufacturing by reducing scraps, and waste originating 
from destructive quality controls and reworks. Future develop-
ment of this work will include deploying and testing the devel-
oped information-rich prediction model in relevant production 
environments. Potential spin off of the methodology developed 
is its application to real-time control of the process. Future work 
will also focus on the probability of defects generation basing 
on the proposed information-rich prediction model.

Fig. 7  Information-rich prediction model of internal porosity exploiting topographical characterization as redundancies

Fig. 8  Prediction training and validation results. a NPP of the residu-
als of the Information-rich prediction model (blue) and of the valida-
tion residuals (red). No systematic deviation from normal distribution 

can be seen with a risk of error of 5%. b Validation results: notice 
how the experimental data (red) fall inside predicted values predic-
tion interval (evaluated at 95% confidence interval)
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Appendix

Tables 6 and 7

Table 6  List of combination 
of process parameters, the 
condition with * indicate 
the presence of one or more 
repetition

Condition I/mA v/mm/s F.O./mA L.O./mm t/mm

1 8 1333 15 0.20 0.05
2 8 533 25 0.20 0.05
3* 8 800 25 0.20 0.05
4 8 1200 25 0.20 0.05
5* 8 1600 25 0.20 0.05
6 8 2000 25 0.20 0.05
7* 8 2400 25 0.20 0.05
8 8 3200 25 0.20 0.05
9 8 800 30 0.20 0.05
10 8 1200 30 0.20 0.05
11 8 1600 30 0.20 0.05
12 8 400 35 0.20 0.05
13* 8 533 35 0.20 0.05
14 8 600 35 0.20 0.05
15* 8 800 35 0.20 0.05
16 8 1000 35 0.20 0.05
17 8 1067 35 0.20 0.05
18* 8 1200 35 0.20 0.05
19* 8 1600 35 0.20 0.05
20 8 560 35 0.20 0.05
21 8 400 35 0.25 0.05
22 8 467 35 0.25 0.05
23 8 533 35 0.25 0.05
24* 8 373 35 0.30 0.05
25 8 400 35 0.30 0.05
26 8 520 35 0.30 0.05
27* 15 1000 35 0.20 0.09
28 15 700 35 0.25 0.09
29 15 750 35 0.25 0.09
30** 15 875 35 0.25 0.09
31** 15 1000 35 0.25 0.09
32 15 700 35 0.30 0.09
33* 15 875 35 0.30 0.09
34 15 1000 35 0.30 0.09
35 15 900 35 0.25 0.09
36 15 1050 35 0.25 0.09
37 15 1100 35 0.25 0.09
38 15 900 35 0.30 0.09
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