POLITECNICO DI TORINO Repository ISTITUZIONALE

Analysis and Characterization of an Unclassified RFI Affecting Ionospheric Amplitude Scintillation Index over the Mediterranean Area

Original

Analysis and Characterization of an Unclassified RFI Affecting Ionospheric Amplitude Scintillation Index over the Mediterranean Area / Pica, Emanuele; Minetto, Alex; Cesaroni, Claudio; Dovis, Fabio. - In: IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. - ISSN 1939-1404. - ELETTRONICO. - 16:(2023), pp. 8230-8248. [10.1109/JSTARS.2023.3267003]

Availability:

This version is available at: 11583/2978034 since: 2023-09-18T06:06:34Z

Publisher:

IEEE

Published

DOI:10.1109/JSTARS.2023.3267003

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

Analysis and Characterization of an Unclassified RFI Affecting Ionospheric Amplitude Scintillation Index over the Mediterranean Area

Emanuele Pica, Alex Minetto, Member, IEEE, Claudio Cesaroni, Fabio Dovis, Member, IEEE,

Abstract—Radio Frequency (RF) signals transmitted by Global Navigation Satellite Systems (GNSS) are exploited as signals of opportunity in many scientific activities, ranging from sensing waterways and humidity of the terrain to the monitoring of the ionosphere. The latter can be pursued by processing the GNSS signals through dedicated ground-based monitoring equipment, such as the GNSS Ionospheric Scintillation and Total Electron Content Monitoring (GISTM) receivers. Nonetheless, GNSS signals are susceptible to intentional or unintentional RF interferences (RFIs), which may alter the calculation of the scintillation indices, thus compromising the quality of the scientific data and the reliability of the derived space weather monitoring products. Upon the observation of anomalous scintillation indices computed by a GISTM receiver in the Mediterranean area, the study presents the results of the analysis and characterization of a deliberate, unclassified interferer acting on the L1/E1 GNSS signal bands, observed and captured through an experimental, software defined radio setup. The paper also highlights the adverse impacts of the interferer on the amplitude scintillation indices employed in scientific investigations, and presents a methodology to discriminate among regular and corrupted scintillation data. To support further investigations, a dataset of baseband signals samples affected by the RFI is available at **IEEE DataPort.**

Index Terms—Radio Frequency Interferences, Ionospheric Scintillations, Remote Sensing, Ionospheric Monitoring, Global Navigation Satellite Systems (GNSS).

25

27

28

29

31

33

I. INTRODUCTION

GNSS signals crossing small scale electron density irregularities in the ionosphere may be subject to rapid fluctuations of their amplitude and phase known as ionospheric scintillations. This is due to the diffractive effects induced on the signals by ionospheric irregularities smaller than the Frasnel scale (few hundred meters for the L-band) [1]–[5]. Ionospheric scintillations may cause cycle slips and loss of lock of the Global Navigation Satellite System (GNSS) signals, thus hindering the accuracy and integrity of precise positioning applications [6]–[8]. Ionospheric irregularities inducing scintillations on L-band signals are due to different causes depending on the latitude. In particular, at high latitude, scintillations are mainly caused by the solar wind-magnetosphere-ionosphere coupling (see e.g. [9]), while at low latitude (where they are more likely to occur) are mainly due to the formation of small

E. Pica and C. Cesaroni are with the Environment Department of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome (Italy)

A. Minetto and F. Dovis are with the Department of Electronics and Telecommunications (DET), Politecnico di Torino, Turin (Italy), e-mail: name.surname@polito.it.

Manuscript received MONTH XX, XXXX; revised MONTH XX, XXXX.

scale irregularities embedded in the Equatorial Plasma Bubbles (EPB) (see e.g. [10]-[14]). At mid latitude, ionospheric scintillations can be due to poleward expansion of the crests of the Equatorial Ionization Anomaly (EIA) [15] or equatorward expansion of the auroral oval during geomagnetic storms [16]. Very few cases of mid latitude GNSS scintillations during quiet times are reported in the literature [17]. By exploiting the GNSS signals transmitted by Medium-Earth Orbit (MEO) and Geostationary-Earth Orbit (GEO) satellites as signalsof-opportunity, it is possible to investigate the ionospheric irregularities for scientific purposes, as well as to monitor ionospheric scintillations in the framework of operational space weather services [18]. This is achieved by means of groundbased passive instruments, such as the GNSS Ionospheric Scintillation and TEC Monitor (GISTM) receivers [19] which provide the estimation of the so-called amplitude and phase scintillation indices (S_4 and σ_{ϕ} respectively), allowing to quantify ionospheric scintillations [20]. Besides ionospheric irregularities, however, a numbers of different phenomena related to both space weather events (e.g. Solar Radio Burst [21], [22]) and environmental conditions, may impair the GNSS signals and the detection of ionospheric scintillations. A well-recognized source of error in the computation of the scintillation indices is the reception of GNSS signals from multiple paths due to the reflections caused by obstacles in the proximity of the receiving antenna, known as multipath [23]. To compensate for such phenomena, GISTM receiver antennas are typically deployed in multipath-free conditions, i.e., isolated areas with limited natural or anthropogenic obstacles, and elevation masks can be configured to neglect mulipathsusceptible signals received from low-elevation satellites [24].

45

47

51

52

53

54

55

60

62

67

69

70

71

73

75

77

81

84

85

88

Similarly to the multipath, misleading effects on navigation signals and the derived scintillation indices can also be observed due to intentional or unintentional in-band Radio Frequency Interference (RFI)s, captured by instruments' receiving antennas [23], [25]–[27]. These interferences are typically attributed to malicious actions aiming at disrupting GNSS receivers' operational activities by forcing misleading Position, Velocity, Timing (PVT) estimation, degrading their estimation accuracy up to cause a denial of their Positioning, Navigation and Timing (PNT) capabilities (a.k.a. Denial-of-Service (DoS) attack) [28]. These attacks are classified as spoofing, meaconing, and jamming, with the first aiming at fooling receivers' operations by transmitting plausible yet fake GNSS signals, and the latter aiming at transmitting structured or unstructured Radio Frequency (RF) signals to

132

133

135

137

138

139

140

141

142

143

144

145

146

147

149

151

153

154

155

156

157

158

159

160

162

163

164

165

166

167

168

91

93

95

97

99

100

101

102

103

104

105

106

107

108

110

112

113

115

117

119

121

122

123

124

125

126

127

128

129

Fig. 1: INGV ionospheric scintillation monitoring network in the European area (Fig. 1a) and detail of Lampedusa island (Italy) showing the position of the ENEA observatory and other areas of interest (Fig. 1b).

disturb or blind the receiver's RF chain. Despite a lack of literature, alternative yet unauthorized misuse of the GNSS bands may be also referred to as RF steganography [29], [30], aiming at hiding data transmission in unsuspected portions of the RF spectrum. Such undocumented actions may turn into GNSS jamming when the received RFI power is at least comparable to the received power of legitimate GNSS signals. Despite the effects of RFIs on the PNT performance of GNSS receivers can be quantified through systematic analysis [31], the impact of RFIs on the computation of the scintillation indices have been only demonstrated through a controlled simulation environment in few pioneering studies [25], [26]. In order to detect RFIs in real scenarios, Intermediate Frequency (IF) or baseband samples of GNSS signals can be recorded and analyzed by emulating the processing chain of a conventional GNSS receiver through highly-flexible Software Defined Radio (SDR) framework [32], [33]. To this aim, the use of SDR equipment has been demonstrated as a powerful tool to support the analysis of GNSS signals recorded at remote locations [34], [35]. Further examples of RFI detection strategies are extensively documented in satellite-based remote sensing applications that leverage similar approaches [36]-[39].

In this article we present the investigation carried out by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Department of Electronics and Telecommunications (DET) of Politecnico di Torino to assess the nature of several anomalies observed in the S_4 index computed by a GISTM receiver operating in Lampedusa island (35°31'06" N; 12°37'48" E), Italy. The observatory is part of the INGV ionospheric monitoring network [40] shown in Fig. 1a and is hosted at the Climate Observation Station of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), visible in Fig. 1b. At the mid-latitudes monitored by the receiver, the aforementioned anomalies were observed for the first time during summer 2020, but similar seasonal repetition and daily patterns appears again during 2021. Unlike low-latitudes, ionospheric scintillations in the Mediterranean sector do not show any seasonal or daily regular patterns and are due, as already pointed-out, to disturbed geomagnetic conditions. Moreover, the political and environmental situation of Lampedusa may favor deliberate RF transmissions against navigation and communication systems: the island hosts military settlements and NATO radar equipment, a civilian and military airport, and is a hotspot of irregular migratory flows from the coast of North Africa [41], [42]. Furthermore, possible RFIs in the area were detected in the second semester of 2020 by Airbus aircrafts [43] and a recent paper has highlighted intense RFIs in the Mediterranean region by analyzing the data of the GNSS receivers carried by GRACE Follow-On (GRACE-FO) Low Earth Orbit (LEO) satellites [44].

Moving from the know-how gathered during previous, joint test campaigns and activities [34], [45], [46], a renewed, SDR-based hardware and software architecture was designed and implemented to perform long-term grabbing of GNSS RF signal samples in the attempt to identify and characterize the source of the disturbances.

The main contributions of the article are the following:

- we prove the presence of an interferer affecting the GNSS signal in the Lampedusa area and present a characterization of the RFI through the analysis of the IF samples acquired by the dedicated SDR architecture. We discuss the impact of such interference on the estimation of the amplitude scintillation index and propose an analytic model of the interferer, which may allow for further theoretical analyses and the development of mitigation techniques.
- we assess the adverse impact of the RFIs on the scintillation data computed through the GISTM receiver, which may impair both near real-time monitoring applications as well as scientific investigations of ionospheric scintillation. At the time of writing, on-field proofs of such a vulnerability are still undocumented in the literature. We also propose a preliminary methodology to automatically detect and filter the interfered observation from the collected data.

The article is organized as follows: Section II provides background information about the computation of scintillation indices through GNSS signals in GISTM receivers. Section III presents a preliminary analysis of the anomalies detected in the

Fig. 2: Block diagram of a conventional, single-channel tracking loop architecture for GNSS receivers. I_p and Q_p outputs from the prompt correlator (P) are employed in the estimation of amplitude scintillation indices, i.e. S_4 , while σ_{ϕ} is estimated through the output of the loop filter in charge of tracking the IF or the residual carrier frequency.

scintillation data generated by the GISTM receiver, with the aim to eventually exclude real scintillation phenomena induced by the ionosphere as the cause of the observed anomalies. Section IV describes the experimental SDR setup deployed at the monitoring station and presents the analysis tools exploited for the investigation and characterization of the interferer as well as for the detection and filtering of the anomalies from the scintillation data. Section V reports the results of the aforementioned analysis, while a discussion about the results and hypothesis about the nature of the disturbances are reported in Section VI. Conclusions and further works are eventually drawn in Section VII.

II. BACKGROUND

A. GNSS signal and receiver models

To provide ionospheric scintillation indices, a GNSS receiver must receive GNSS signals from Line-of-Sight (LOS) satellites and track their numerical counterparts. Signals from multiple satellites are managed in a multi-channel architecture, and the associated indices are independently provided for each channel. According to the scheme of Fig. 2, the received signal at the input of the receiver's front-end is modelled as

$$y_{f_c}(t) = x_{\text{GNSS}, f_c}(t) + x_{\text{RFI}}(t) + w_{\text{RX}}(t)$$
 (1)

where $x_{\rm GNSS}, f_c$ is the sum of the received GNSS signals from the visible satellites at the receiver location for a given bandwidth and center frequency f_c [47], and $x_{\rm RFI}$ identifies any possible incoherent, in-band RFI [28]. Both useful and interfering signal components in (1) account for non-idealities due to the respective RF propagation channels. Eventually, $w_{\rm RX}$ models the additive thermal noise introduced by the receiving chain and the quantization noise injected by the Analog-to-Digital Conversion (ADC) operated at the RF front-end. Within this study, GNSS signals are considered continuously available at the receiver while RFI terms may occasionally occur. The RF front-end downconverts the input signal to a pre-defined IF prior to its sampling and quantization

at the ADC. As shown in Fig. 2 the baseband numerical samples from In-Phase (I) and Quadrature (Q) branches are correlated with early (E), prompt (L) and late (L) replicas of the locally-generated spreading code. Eventually, the Integrate & Dump block provides prompt In-Phase (I_p) and Quadrature (Q_p) samples which are used to estimate the S_4 index, while the σ_ϕ index is derived through the output of the loop filter in charge of tracking the IF carrier, as depicted by the bottom branch of the diagram in Fig. 2.

B. Amplitude and phase scintillation indices

The S_4 and σ_{ϕ} are the statistical indices typically adopted to quantify ionospheric scintillations based upon received GNSS signals features. S_4 measures the variability of the signal intensity (SI), that is estimated as

$$SI = WBP - NBP \tag{2}$$

where Wide-Band Power (WBP) and Narrow-Band Power (NBP) are respectively defined as

$$WBP = \sum_{i=0}^{M} \left(I_i^2 + Q_i^2 \right)$$
 (3)

and

$$NBP = \left(\sum_{i=0}^{M} I_i\right)^2 + \left(\sum_{i=0}^{M} Q_i\right)^2 \tag{4}$$

and the I and Q terms in (3) and (4) are the I_p and Q_p components of the received signal after the integrate and dump operation performed by the receiver tracking stage and M is the total number of accumulated periods. The S_4 index is defined as the normalized standard deviation of the detrended $50\,\mathrm{Hz}$ raw signal intensity over a given interval of time, typically $60\,\mathrm{s}$

$$S_4' = \sqrt{\frac{\langle SI^2 \rangle - \langle SI \rangle^2}{\langle SI \rangle^2}} \tag{5}$$

264

265

266

267

268

269

271

273

275

276

277

279

281

282

283

285

287

288

289

291

292

293

294

295

296

297

298

300

302

304

306

308

310

311

312

313

314

315

TABLE I: Conventional thresholds for the classification of ionospheric scintillation events based upon amplitude and phase indices [49].

Index	Event Intensity	Threshold
S_4	Quiet Weak Moderate Severe	$S_4 \le 0.1 \\ 0.1 < S_4 \le 0.25 \\ 0.25 < S_4 \le 0.7 \\ S_4 > 0.7$
σ_{ϕ} (rad)	Quiet Weak Moderate Severe	$\sigma_{\phi} \le 0.1$ $0.1 < \sigma_{\phi} \le 0.25$ $0.25 < \sigma_{\phi} \le 0.7$ $\sigma_{\phi} > 0.7$

where $\langle \cdot \rangle$ is the time average operator over the observation window. The contribution of the noise to the overall value of S_4 can be estimated as

$$S_{4,n} = \sqrt{\frac{\alpha}{\langle C/N_0 \rangle} \left(1 + \frac{\beta}{\gamma \langle C/N_0 \rangle} \right)} \tag{6}$$

where C/N_0 is the estimated carrier-to-noise ratio [48], and $\alpha=100$, $\beta=500$, $\gamma=19$, as proposed in [20]. Equation (6) provides an estimate of the noise standard deviation over the target timespan (i.e., $60\,\mathrm{s}$) and is typically obtained through the signal component, I or Q, carrying a nearly-orthogonal spreading code which does not correlate with the code of interest, thus returning a noise-like behavior. Eventually, a refined estimate of S_4 can be computed by removing the noise contribution, as

231

232

233

235

237

239

241

243

246

250

252

254

255

257

259

$$S_4 = \sqrt{(S_4')^2 - S_{4,n}^2} \tag{7}$$

The estimation of S_4 through (7) may be affected by unexpected variation of the C/N_0 unrelated to ionospheric irregularities, such as in presence of RFIs producing misleading values of the index thus triggering false evaluation of amplitude ionospheric scintillation.

The σ_{ϕ} index is defined as the standard deviation of the 50 Hz detrended carrier phase over a given interval of time, typically 60 s and is given in radians, as

$$\sigma_{\phi} = \sqrt{\langle \Phi^2 \rangle - \langle \Phi \rangle^2} \tag{8}$$

The σ_ϕ seems not affected by the events investigated in this study but it will be recalled for the sake of completeness in Section III for an exhaustive analysis of the anomalous scintillation events. The scintillation indices are calculated along the line-of-sight (slant S_4 and σ_ϕ) of the GNSS signals transmitted by those satellites in the receiver's Field of View (FoV) and filters with a fixed cutoff frequency of 0.1 Hz are usually adopted for data detrending. The detection of ionospheric scintillations can be performed by comparing the aforementioned indices against predefined thresholds, allowing a preliminary classification of the severity of the events; typical thresholds and associated events intensity are reported in Table I.

III. PRELIMINARY ANALYSIS

A. Lampedusa GISTM station

The ionospheric observatory of Lampedusa hosts, since 2018, a Septentrio PolaRx5S GISTM receiver. The PolaRx5S is a multi-frequency, multi-constellation GNSS receiver equipped with a low-noise Oven Controlled Crystal (Xtal) Oscillator (OCXO). It acquires, for every satellite in view and for every available frequency, the raw phase (in cycles) and post-correlation I_p and Q_p samples with a sampling rate of 50 Hz, as per the generalized architecture presented in Section II-A. It is able to provide, with a 1-minute resolution, the S_4 and σ_{ϕ} indices together with the Total Electron Content (TEC) and its Rate of Change (ROT). The data acquired by the station are transmitted in near-real time to the INGV-SWIT (Space Weather Information Technology) system and collected into a database publicly accessible to the scientific community through the eSWua (electronic Space Weather upper atmosphere: eswua.ingv.it) website [50]. These data are also provided to the PECASUS consortium (www.pecasus.eu) for the provision of Space Weather services to the International Civil Aviation Organization (ICAO) [18].

B. Investigation about the S_4 anomalies

The following analysis focuses on the scintillation indices recorded by the GISTM receiver during August 2021 wherein several anomalies were observed in the collected data. In order to avoid misleading contributions possibly caused by multipath-effects, only satellites with elevation above 30° are considered; indeed, the Lampedusa observatory is located nearby a lighthouse, whose building was proven as a nonnegligible source of multipath for those signals acquired at lower elevations, as it will be shown in the results of Section V-C. The area observed by the receiver, considering this elevation mask, cover the mid-latitudes between 30°N and 40°N and a longitudinal sector between 7°E and 19°E. The signals taken into consideration are the one belonging to the Global Positioning System (GPS), Galileo, BeiDou Navigation Satellite System (BDS) and GLONASS constellations. The reported S_4 and σ_{ϕ} indices are the slant values calculated at 1-minute resolution from the L1/E1 frequency band for each satellites in view in the considered timespan.

Fig. 3a and Fig. 3b reports the maximum hourly values of the S_4 and σ_{ϕ} respectively, recorded during August 2021. As it is possible to see from Fig. 3a, several occurrences of the S_4 above the threshold of moderate scintillation (lower dotted red line in Fig. 3a and Fig. 3b) recurred during the month; the same behavior was not registered for the σ_{ϕ} (Fig. 3b).

The observed values of the S_4 are definitely unexpected considering i) the latitudes covered by this analysis and ii) the overall space weather conditions registered during the month of August 2021. Indeed, as mentioned in Section I, ionospheric scintillation at the Mediterranean latitudes are not common and are generally caused by disturbed space weather conditions [15], [16], [51], [52] originating the so-called super fountain effect [53]. However, as Fig. 3c shows, no relevant geomagnetic storms capable to induce a poleward expansion of the crests of the EIA were detected during August

318

319

320

321

322

324

326

327

328

330

331

332

333

334

335

337

338

339

341

343

345

347

349

350

351

352

353

354

356

357

358

360

361

362

364

365

366

367

368

369

371

372

373

374

376

378

379

380

381

382

383

385

2021 according to the local K-index recorded at the INGV Geomagnetic Observatory of Lampedusa [54], [55]. It is worth recalling that the K-index quantifies the disturbances in the horizontal component of the magnetic field with respect to the quite conditions and can be employed as an indicator of the intensity of geomagnetic storms measured at a given geomagnetic observatory [56]. Usually, K-index values below 4 are representative of quiet/low-disturbed conditions, while values from 5 to 9 indicate minor to extreme storm conditions, respectively. Moreover, the diffractive effects induced by ionospheric irregularities on the GNSS signals passing through them will produce fluctuations of both the phase and amplitude of the signals, thus increasing the value of both the S_4 and σ_{ϕ} indices [5], [57], contrary to what shown by Fig. 3a and Fig. 3b.

Further considerations on the observed temporal and spatial distribution of the scintillation indices, when compared to the case of a real ionospheric scintillation event, allow to eventually exclude ionospheric phenomena as the source of the observed anomalies. The following analysis focuses on the data of the 7th August 2021, when several anomalies were recorded, compared to the data of the 10th March 2022, when a real ionospheric scintillation event was detected over the area under investigation. With regards to the data of the 7th of August 2021, Fig. 4a reports a daily view of the time profiles of the S_4 index, where different colors are attributed to the different satellites in view (Space Vehicle ID are reported in the legend). As Fig. 4a shows, the occurrences above the threshold of moderate scintillation seems to affect the signals from the majority of the satellites in view during the day; on the contrary, the time profile of the σ_{ϕ} does not exhibit similar patterns, as shown by Fig. 4b. Fig. 4c reports a daily view of the maximum (blue line) and mean (green line) values of the S_4 index calculated on all the signals in view. As Fig. 4c suggests, most of the satellites in the FoV exhibit similar patterns; as a consequence, the S_4 mean and maximum values appears to be very close each other. Fig. 4d shows a daily view of the time profiles of the maximum S_4 values calculated among all the signals pertaining the same satellites constellation. From Fig. 4d, it is possible to spot similar patterns among the GPS (blue line), Galileo (red line) and BDS (yellow line) satellites, while GLONASS satellites (purple line) seems to be not affected by scintillations most of the time. Finally, Fig. 6a reports on a geographic map the S_4 occurrences above the threshold of moderate scintillation $(S_4 > 0.25)$ during the same day (7th August). The points on the map represent the Ionospheric Pierce Points (IPP)s at 350 km for all the satellites in view and their color represents the values of the S_4 . As Fig. 6a shows, moderate to severe scintillations are visible across the entire FoV of the receiver, while ionospheric scintillations in quiet geomagnetic conditions are more likely to occur in the proximity of the EIA crests, respectively at ca. $\pm 20^{\circ}$ from the magnetic equator. Similar features of the spatial and temporal distributions of the scintillation indices reported for the 7th of August were eventually observed in each day of August 2021 affected by

When comparing the previous temporal and spatial distri-

Fig. 3: Maximum hourly values of the S_4 (Fig. 3a) and σ_{ϕ} (Fig. 3b) indices during August 2021 (satellites elevation above 30°) and local K-index (Fig. 3c) recorded during the same period. Thresholds (dashed horizontal lines) of Fig. 3a and 3b are defined according to Table I.

butions of the indices with those recorded during the event of the 10th of March 2022, it is possible to observe the expected behavior in the case of a real ionospheric scintillation event (images of Fig. 5 and Fig. 6b) and eventually conclude that the anomalies were not induced by natural ionospheric phenomena. Indeed, given the small scale (a few hundreds of meters) of the irregularities leading to L-band scintillations, and considering the latitudes under investigation, not all the satellites in the FoV of the receiver are expected to be affected by scintillations; as a consequence, the mean and maximum values of the S_4 will exhibit different patterns, as shown by Fig. 5c (contrary to Fig. 4c, when the RFI was present), and

(a) Time profile of the S_4 . Different colors are attributed to the different satellites in view (Space Vehicle ID in the legend).

(b) Time profile of the σ_{ϕ} . Different colors are attributed to the different satellites in view (Space Vehicle ID in the legend).

(c) Time profile of the S_4 by considering maximum and mean values among all the available satellites.

(d) Time profile of the S_4 by considering the maximum values among all the satellites pertaining the same GNSS constellation.

Fig. 4: (7th of August 2021) Scintillation indices affected by RFI. Thresholds (dashed horizontal lines) are defined according to Table I.

(a) Time profile of the S_4 . Different colors are attributed to the different satellites in view (Space Vehicle ID in the legend).

(b) Time profile of the σ_{ϕ} . Different colors are attributed to the different satellites in view (Space Vehicle ID in the legend).

(c) Time profile of the S_4 by considering maximum and mean values among all the available satellites.

(d) Time profile of the S_4 by considering the maximum values among all the satellites pertaining the same GNSS constellation.

Fig. 5: (10th of March 2022) Scintillation indices in case of real ionospheric scintillation event. Thresholds (dashed horizontal lines) are defined according to Table I

Fig. 6: Map of the S_4 occurrences above the threshold of moderate scintillation ($S_4 > 0.25$) for the 7th of August 2021 (Fig. 6a) and for the 10th of March 2022 (Fig. 6b) and for satellites elevation above 30°. Geographic coordinates are labeled at the border of the maps and represented by the dotted lines inside the map; geomagnetic latitudes are labeled inside the maps and represented with the continuous lines.

Fig. 7: Operational GISTM/SDR architecture for the grabbing of GNSS IF signal samples (Fig. 7a), and actual deployment of the GISTM/SDR set-up along with complementary equipment at the ENEA Station for Climate Observations in Lampedusa (Fig. 7b).

only localized area will result affected by scintillation, as shown by Fig. 6b (contrary to what is shown by Fig. 6a). Moreover, ionospheric irregularities will impact the signals of any GNSS Constellation passing through them, as shown by Fig. 5d (in comparison to Fig. 4d), and will induce scintillation on both amplitude and phase of the signals, as shown by Fig. 5a and Fig. 5b (in comparison to Fig. 4a and Fig. 4b, respectively).

IV. METHODOLOGY

A. Experimental Setup and data collection

In September 2021, new investigations were carried-out to assess the nature of the anomalies presented in Section III.

In order to acquire possibly-interfered GNSS signals, a dedicated experimental setup was deployed alongside the GISTM receiver, based on a SDR architecture. A high-level block scheme of the setup is provided in Fig. 7a while a picture of the operational hardware deployment is shown in Fig. 7b. General-purpose SDR front-ends are typically employed for research and development activities in radio-communication systems as they facilitate the acquisition of RF signals through configurable and flexible hardware and software architectures. By exploiting such flexibility, the setup aims at collecting IF signals samples of the received GNSS L1-band (center frequency 1575.42 MHz) to perform investigations on possible intentional or unintentional interferences affecting the GNSS signals (and the derived scientific data) recorded on the island.

460

462

464

466

468

469

470

471

472

473

474

475

477

479

481

483

484

485

487

489

490

491

492

493

495

496

498

499

500

501

502

503

TABLE II: Configuration parameters of the front-end and the acquisition software.

Symbol	Definition	Value
$\overline{f_0}$	Center frequency	1575.42 MHz (L1)
$f_{ m IF}$	Intermediate frequency	0.00 MHz (baseband)
f_s	Sampling frequency	5 Msps
b_d	Bit depth	16 bit (8I+8Q)
ΔT	acquisition interval	600 s (10 minutes)
T_{S_4}	S_4 Threshold	0.3

At the time of writing, the experimental setup consists of an Ettus ResearchTM Universal Software Radio Peripheral (USRP) N210 front-end performing the ADC conversion of the input signal, and the grabbing of IF signal samples; an Apple MacMini PC, i.e., the host PC, that runs the signal acquisition routine; a Stanford Research Systems (SRS) Rubidium (Rb) Atomic Clock (AC) FS725 to provide stable and reliable 10 MHz reference signal to the ER USRP, and a Network-Attached Storage (NAS) for the storage of large data volume. A 2-way splitter is exploited to feed both the GISTM receiver and the front-end with the RF signals received at the GNSS PolaNt Choke Ring B3/E6 antenna. The acquisition routine, continuously executed on the host PC, is being part of a proprietary GNSS fully-software receiver designed to emulate the processing chain of commercial receivers in a more flexible and controllable environment. The configuration parameters of the front-end and of the aforementioned acquisition routine are reported in Table II. To partially overcome the well-known issue of storing TBs of binary files produced by such systems, the Lampedusa setup took advantage of a NAS unit which directly stores the IF signal samples during the acquisition. Moreover, a fully-automated procedure continuously acquires 24/7 the IF samples and daily freed the space on the NAS from the non-useful datasets.

417

420

421

422

423

424

425

426

428

430

432

435

436

438

440

442

445

447

451

The first collection campaign provides 171 datasets of 10 minutes each (28.5 hours), affected by the RFI with different intensity and time behavior. The collected datasets is included in an open data collection, i.e., Lampedusa Scintillation Monitoring Interfered Data (LAMP_SMID_2109)¹, and an overview of their time distribution over the test campaign is shown in Table III.

B. Post-processing Signal Analysis (SDR data)

The binary files recorded at the station during the acquisition campaign were analyzed in post-processing via a dedicated MATLAB framework. The proposed analysis was pursued to investigate the nature of the interferer and provide a preliminary characterization of the signal, as well as a quantification of its effect on the estimation of the S_4 .

1) Spectral analysis through Power Spectral Density (PSD) estimation: the analysis was performed through a PSD estimator, i.e., Welch spectrogram [58], [59], on signal snapshots

with a duration of 1 s, and on the full capture of 10 minutes, according to

$$P_y(f) = \frac{1}{M} |\text{FFT}[y[n]]|^2 \triangleq \frac{1}{M} \left| \sum_{n=0}^{N-1} y[n] e^{\frac{j2\pi nk}{N}} \right|$$
 (9)

where M is the amount of signal samples and N is the amount of evaluation point of the Fast Fourier Transform (FFT). The Welch PSD is hence given by averaging the periodogram as

$$S_y^W(f) \triangleq \frac{1}{K} \sum_{m=0}^{K-1} P_y(f)$$
 (10)

where K is the amount of frames over which the power spectrum is averaged and W identifies the Welch formulation [58]. The analysis provided a preliminary feedback on possible spectral anomalies with respect to GNSS signals observed in nominal conditions.

- 2) Persistence Spectrum: was adopted to investigate the RFI spectral signature and the stability of an intelligible PSD over short time periods [60]. This analysis is based on the accumulation of Welch spectrograms (9) on a grided PSD plot. The longer a particular PSD envelope persists in a signal as the signal evolves, the higher its time percentage and thus the brighter is the heatmap in the plot. The tool is also helpful to identify hidden coherent signals in noisy patterns as well as sporadic or fast pulsed signals with unknown duty cycles.
- 3) Time-Decimated Time-Frequency Analysis (TD-TFA): was performed through the estimation of partially-overlapping Short Time Fourier Transform (STFT). A signal chunk composed by N samples is filtered through a shaped window of length K, and a Discrete Fourier Transform (DFT) is computed over N_{DFT} points. The window slides over the next N samples with an overlap of the previous L samples, and a DFT is performed for each window. By sliding the window along the samples vector, a Time-Frequency Analysis (TFA) provides a time-frequency view showing the evolution of the frequency content of a signal along the time [61]. The technique was exploited to describe the evolution of the signal by measuring its PSD profile over the whole acquisition time-span. To reduce the size of the output data, a time decimation (TD) was performed by skipping a predefined timespan in between subsequent signal chunks, with an acceptable reduction of the time resolution. Shorter signal time spans are preferable in terms of time consumption since they allow faster STFT computation, by dealing with smaller amounts of samples. In terms of readability of the TD-TFA output figures, the following options provided similar results

A. $t_i = 20 \,\mathrm{ms}$ and $t_s = 100 \,\mathrm{ms} \to 285 \,\mathrm{MB}$

B. $t_i = 1 \text{ s}$ and $t_s = 1 \text{ s} \rightarrow 28.5 \text{ MB}$

where t_i is the integration interval and corresponds to the overall duration of the signal samples processed through STFT, and t_s is the skip interval included between two subsequent integration intervals. While the first corresponds to the actual amount of input data, the latter indicates the duration of unprocessed signal chunks, thus representing the decimation factor of the proposed TD-TFA. TFA analysis contains more information in configuration A, however, this appeared not relevant as it does not significantly impact the visual detection

¹http://ieee-dataport.org/10996

TABLE III: Amount of datasets collected during the September test campaign in Lampedusa, and available in the LAMP_SMID_2109 open data collection.

Date	Hour of the day (UTC)																							
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	15	17	18	19	20	21	22	23
16-Sep-2021																				6				
17-Sep-2021	1^a			6	6										6	6	6	6	6			5	6	5
18-Sep-2021	6	6		6	6	6	6													6	6	6	6	6
19-Sep-2021	6	6	5	6		5																		
27-Sep-2021																				6			6	

^aReference dataset not automatically retrieved by the system but still affected by low-intensity RFI.

of the interference signature in both time and frequency domains. Therefore, a suitable trade-off between frequency, time resolutions and storage occupancy of of the TD-TFA output results was provided through the configuration B.

4) GNSS signal tracking: it was performed on the acquired datasets to quantify the impact of the RFI on GNSS receivers tracking stage, thus assessing the induced jamming effect on navigation signals in terms of C/N_0 . The signal tracking leverages the cross-correlation of Direct-Sequence Spread Spectrum (DSSS) Code Division Multiple Access (CDMA) signals transmitted by GPS and Galileo satellites. The software receiver architecture imitates the conventional channel tracking already described in Fig. 2. For the scope of these analysis, the tracking was performed on the acquired GNSS signals with a coherent integration time $T_c = 0.020 \,\mathrm{s}$. A key metric for the conditioning of S_4 is the C/N_0 measured at each channel. According to the analysis presented in Section III, common effects are expected to be concurrently observed on different satellites signals. Therefore, we propose an aggregate estimation of the variation of C/No, namely $\delta C/No$, with respect to the mean value used in (7). Formally, an estimate of the C/No is given by

$$C/N_0 = 10 \log_{10} (SNRB_{eq})$$
 (11)

where $B_{eq}=1/Tc$ with T_c stands for the coherent integration time, and

$$SNR = \frac{1}{2M} \sum_{i=0}^{M} \frac{(|I_i| - |Q_i|)^2}{I_i^2 + Q_i^2}.$$
 (12)

The C/N_0 is hence computed over a window of length M that is typically set to $1/T_c$. To be consistent with the definition of the indices provided in Section II-B, its aggregated variation for all the tracked signals has to be measured by averaging the 60 s de-trended series of the respective C/N_0 (11), as

$$\delta C/N_0 = \frac{1}{S} \sum_{j=0}^{S} \left((C/N_0)_W^{(j)} - \langle (C/N_0)^{(j)} \rangle_W \right)$$
 (13)

where j refers to the j-th GNSS signal, $W=60\,\mathrm{s}$ indicates the observation window, and S refers to the overall number of available signals.

5) RFI signal emulation and model: provided the features observed through the above-mentioned analysis tools and the recent literature on GNSS interferences and threats, a signal with similar features was numerically simulated and reproduced by means of a MATLAB routine.

C. Analysis of the GISTM scintillation data

1) Ground Based Scintillation Climatology (GBSC): It consists in building maps of the percentage occurrences of the scintillation indices above a predefined threshold and evaluated over a certain time period [2]. The climatological maps report the percentage occurrences on a bi-dimensional time-grid having the hour of the day in the horizontal axis and the day of the year in the vertical one or as geographic maps, showing the percentage occurrences evaluated over geographic cells with a given spatial resolution. The technique is used to perform climatological analysis of scintillation events, but it can also be adopted to highlight the spatial and temporal features of scintillations over shorter time-periods (e.g. few months). With regards to the S_4 index, the S_4 percentage occurrences in a given time-interval (S_{4POt}) is evaluated as:

$$S_{4POt} = \frac{S_{4thr}(\Delta t)}{S_{4tot}(\Delta t)} \tag{14}$$

where $S_{4thr}(\Delta t)$ is the total number of the S_4 occurrences above the chosen threshold in the given time-interval Δt and $S_{4tot}(\Delta t)$ is the overall number of S_4 measurements available in the same time-interval. The S_4 percentage occurrences over a specific geographic cell (S_{4POs}) is evaluated as:

$$S_{4POs} = \frac{S_{4thr}(\Delta t, \Delta lat, \Delta lon)}{S_{4tot}(\Delta t, \Delta lat, \Delta lon)}$$
(15)

where $S_{4thr}(\Delta t, \Delta lat, \Delta lon)$ is the total number of the S_4 occurrences above the chosen threshold in the given time-interval Δt and limited to the specific geographic cell (range of latitudes Δlat and longitudes Δlon), while $S_{4tot}(\Delta t, \Delta lat, \Delta lon)$ is the overall number of S_4 measurements available in the same time-interval and pertaining the same geographic cell.

2) RFI filtering: In order to remove the RFI-induced anomalies from the S_4 data, all the epochs in which the mean values of the S_4 (calculated on all the available signals at that epoch) are above a certain threshold have to be filtered out from the dataset; indeed, as follows from the considerations reported in Section III-B, the RFI has the effect of increasing the S_4 values of the majority of the satellites in view at the same epoch, differently from actual ionospheric scintillation events. In the case of Lampedusa, given that the average number of satellites simultaneously in the FoV above 10° of elevation is 30, and assuming that 20 percent of the signals could be at most simultaneously affected by actual ionospheric scintillations at these latitudes, a threshold of 0.15 for the mean values of the S_4 has been chosen as a good

607

608

609

611

612

613

615

617

619

621

622

623

624

626

628

630

632

633

634

635

636

637

- (a) Single dataset: signal characterization in nominal conditions
- (b) Multiple datasets comparison in nominal and interfered conditions

Fig. 8: Single and multiple datasets data probing performed on 1s signal chunks by means of a GNSS signal analysis tool embedded in the GNSS software receiver.

TABLE IV: Datasets selected as representative samples of the observed anomalous GNSS signals for the presentation of the analysis results in Section V-A.

ID	Date	Start time (UTC)	End time (UTC)	$\max(S_4)$
(a)	16-Sep-2021	19:22:24	19:33:00	0.63
(b)	17-Sep-2021 ^b	00:15:40	02:26:00	0.17
(c)	18-Sep-2021	01:02:41	02:13:00	0.43
(d)	19-Sep-2021 ^b	02:20:07	02:31:00	0.18
(e)	19-Sep-2021	05:12:02	05:22:00	0.38
(f)	19-Sep-2021	05:42:22	05:52:00	0.32

^b Datasets not kept by the automated grabbing system.

compromise to detect most of the RFI-induced anomalies, avoiding at the same time to filtering-out possible actual ionospheric scintillation events. It has to be noted, however, that the proposed filtering technique potentially removes from the dataset the actual ionospheric scintillation events occurring contemporary the interferences.

V. RESULTS

A. Characterization of the RFI

584

586

588

590

591

593

595

596

597

598

599

600

601

602

This section provides a first characterization about the RFI through the analysis tools presented in Section IV-B. For the sake of conciseness, the datasets listed in Table IV have been considered as representative samples of the RFI behaviour in different conditions.

1) Spectral analysis through Power Spectral Density (PSD) estimation: Fig. 8a and Fig. 8b compare time series (top-left), samples histograms (top-right) and PSD (bottom) of 1 s signal snapshots belonging to three different datasets. In Fig. 8a, a dataset observed in 2021-09-17 with nominal PSD (when no interference was detected) is reported and compared in Fig. 8b with two interfered power spectra acquired during 2021-09-16 and 2021-09-18. From the time series and the

samples histogram of Fig. 8b we observe that additional power provided by the RFI in 2021-09-16 was not significantly higher than in nominal conditions (around 3 dB); a more powerful RFI event is provided by the RFI in 2021-09-18 that visibly affect time series and histograms, and shows a more evident power density distortion in the observed bandwidth. The plot assesses the presence of a non-negligible interference lobe with a peak of about 10 dB of additional power density in the PSD (with respect to the nominal level observed in 2021-09-17). In regular conditions or under natural phenomena like ionospheric scintillations, GNSS signals are typically not affected by similar, significant variations in the observed PSD. A strong continuous wave peak appeared at the center frequency 1575.42 MHz (GNSS L1/E1 Bandwidth) and can be occasionally visible in the figures; this tone is due to a spectral leakage of the Local Oscillator (LO) operating at frequency f_c in the ER USRP N210 front-end and it does not affect nor invalidate the analysis. It has been verified that the leakage is not a component of the RFI.

2) Spectral persistency and RFI spectral signature: The set of plots in Fig. 9 shows examples of persistent spectrum analysis performed on 1 ms signal chunks every 10 s for an overall observation time of 60 s. As we can observe through the subplots, the spectral signature of the interferer considerably changes along the time. A nearly-symmetrical spectral signature is visible in Fig. 9d that may suggest a 2-Frequency Shift Keying (FSK) modulation. However such a signature slightly recurs only in Fig. 9b with a lower intensity, thus weakening the hypothesis. Similar asymmetrical signatures can be observed in Fig. 9a and 9e. A flattened spectral shape is instead visible in Fig. 9c and 9f where RFI intensity dramatically drops. Such a time varying behaviour makes the signal particularly difficult to be automatically identified, or tracked. Additionally, autocorrelation of time series along the observed datasets did not show any relevant similarity of the

684

686

688

690

691

692

693

695

697

698

699

700

701

702

703

704

707

708

709

711

712

713

715

717

719

720

721

Fig. 9: Examples of persistence spectra computed on 1 ms signal chunks every 10 s to observe spectral signature stability over time. Sample dataset captured on 21-09-18 01:02:41 AM. Frequency resolution: $97.7517 \,\text{kHz}$, time resolution: $781.28 \,\mu\text{s}$.

signal with itself, nor evident cyclic or recurrent components such as spreading codes or synchronization preambles. These features turn into strengths for malicious signals to not be tracked or automatically detected. In light of this, the RFI assumes the characterization of an unstructured interference.

640

642

645

646

647

648

649

650

651

653

655

657

658

659

660

661

662

664

665

666

668

670

672

674

676

677

678

3) Time-frequency analysis: TD-TFA applied on the datasets of Table IV is shown in Fig. 10². In line with the parameters described in Section IV-B3, we set the window length $K = 1 \,\mathrm{s} \cdot 10^6 \,\mathrm{Msps}$, a number of DFT points $N_{DFT} = 2^{1}0$, a rectangular window of length $K = N_{DFT}$, and an overlap $L=2^6$. As a term of comparison, the figures show in the top panels of each plot the cubic interpolation of both maximum and mean S_4 values computed by the GISTM receiver, and aligned according to the UTC time of the records. The colorscale of the PSDs is referred to the maximum observed S_4 intensity within the overall data collection (i.e., 0 dB-Hz). Frequency axis in the plots, i.e., y-axis, is centered at the target frequency, i.e. 1575.42 MHz, referred to as 0 Hz, and time scale is reported in 24-hours format. Irregular PSD behaviour is observed in time for all the collected datasets, RFI's intensity shows a remarkable variability during the observation timespans. Furthermore, in all the datasets, the RFI is visibly limited in the bandwidth of $\pm 0.5 \,\mathrm{MHz}$. In case of low-power interference shown in Fig. 10d, the RFI is visible but its effect is not reflected on the scintillation index (S_4 index below the defined threshold). The dataset was kept and analyzed before being automatically discarded by the system in order to provide a term of comparison for more intense RFI phenomena. It is worth observing that the effects on S_4 , induced by RFI's PSD variations, are delayed of 60 s due to the accumulation of I_p and Q_p samples over 60 s observation timespans. In Fig. 10a we observe intense power density fluctuations with an intensity peak ($-5 \, dB$ -Hz) at about 19:27:00. Two spectral lobes are visible in the first half of such a high-intensity interval. Fig. 10b shows a minimal intensity interferer where the aforementioned, peculiar spectral features are visible mostly between 00:18:00 and 00:20:00 and after 00:22:00. Recorded power spectral density reached a peak of $-15 \,\mathrm{dB}$ Fig. 10c shows the most intense RFI action, where the received power reached a maximum in between -5 and 0 dB - Hz in the interval between 01:08:00 and 01:10:00. Peak intensity caused spurious interference out of assumed RFI bandwidth, being possibly detrimental for Galileo E1 signals. Fig. 10d shows a fragmentation of the RFI power spectral density with an unusual behaviour and mid to low intensity sporadic peaks were observed in the second half of the dataset. Fig. 10e shows an increasing RFI intensity with time that reaches its maximum (-5 to 0 dB-Hz) by the end of the dataset. The dataset presents a unique example of regular intensity growth. Fig. 10f shows a sharp drop in the received RFI power density at about 05:45:30. The phenomenon suggests a sudden interruption of the RFI transmission. In the first quarter of the plot the PSD shows moderate to strong intensity in the range -10 to -5 dB-Hz. Additional Continuous wave (CW) interferences were sporadically observed, such as in Figs. 10d, 10e, and 10f with a non-negligible intensity at $\pm 0.5\,\mathrm{MHz}$ and $\pm 1.5\,\mathrm{MHz}$. However, their presence cannot be directly related to the RFI target in this study. It is worth remarking that power variations highlighted by TFA appear slower than the changes observed in the spectral signature, thus we cannot assume they are related.

4) C/N_0 estimation in GNSS receiver open-loop tracking stage: According to the theoretical definitions of corrected amplitude ionospheric indices provided in Section II-B, the impact of rapid C/N_0 fluctuations induced by the RFI may cause misleading output values at GISTM. The following results show a more accurate match among such abrupt variations of the estimated C/N_0 and the anomalous increments of the corresponding amplitude scintillation index S_4 computed by the GISTM receiver. Noisy data series are obtained through (13) and they are plotted along with their 95% confidence interval (shaded grey areas). The plots presented in Fig. 11, show the variation of the C/N_0 , namely $\delta C/N_0$, with respect to to its mean estimated over non-overlapping windows of 60 s for the selected datasets. By comparing the results with the TFA analysis of Fig. 10, it can be seen that in correspondence of intense RFI occurrences, rapid fluctuations of the C/No are present, thus they have not been properly compensated in the computation of $S_{4,n}$ through (7). Despite this effect is more evident for GPS L1/CA records, intense RFI occurrences also lead to remarkable fluctuations in Galileo E1c data³. More in detail: Fig. 11a shows the strongest fluctuations both in GPS and Galileo E1c signals. Peaks overcome a range of $\pm 5\,\mathrm{dB}$ up to severe drops of $-8\,\mathrm{dB}$ for GPS L1/CA and confidence interval appears larger in correspondence of the

²Date and time are detailed in the subcaptions and data are limited to 9 minutes as 30 s are respectively discarded at the beginning and at the end of the data collection to avoid undesired transients.

 $^{^{3}\}delta C/No$ and S_{4} data series are obtained from independent devices

Fig. 10: TD-TFA of the datasets in Table III showing different RFI behaviours in terms of PSD time evolution, compared to maximum and mean S_4 time series (top panels). Filled and blank markers indicate mean and maximum S_4 values, respectively (top panels). Spectrograms and S_4 data series are obtained from independent devices.

Fig. 11: Mean variation of the estimated C/N_0 (13) for GPS L1/CA, Galileo E1b and E1c during the observation timespans of the selected datasets (limited to 9 minutes). Filled and blank markers indicate mean and maximum S_4 values, respectively (magnitude on the right y-axis). Background, grey-shaded areas show the 95% confidence interval (left y-axis).

main peak. Fig. 11b shows few fluctuations on GPS L1/CA C/No estimates in the range of $\pm 3\,\mathrm{dB}$. No relevant effects are observed on Galileo signals. The example confirms that low-intensity RFI may not severely impact S_4 estimation but they still induce perturbation in the estimated C/N_0 and may impact the performance of GNSS receivers. Fig. 11c shows intense fluctuations of Galileo E1c C/N_0 estimates in the range of $\pm 4\,\mathrm{dB}$ with remarkable C/N_0 drops reaching approximately $-5\,\mathrm{dB}$ between 01:07:00 and 01:09:00 UTC. GPS L1/CA C/No estimates appear slightly affected in this case

but it shows a larger confidence interval in correspondence to the peak RFI intensity of Fig. 10c. This highlights a higher variability of the RFI effect on the different GNSS signals. Fig. 11d is a further example of poorly invasive RFI with constrained fluctuations in the range $\pm 3\,\mathrm{dB}$. After 02:26:00 UTC we observe a moderate increment of S_4 being reasonably attributed to the fluctuations in GPS L1/CA and Galileo E1c C/N_0 estimates. Fig. 11e shows increasing fluctuations of the $\delta C/N_o$ in both GPS L1/CA and Galileo E1c estimates. The strongest impact is visible for GPS L1/CA with values over-

799

800

802

804

806

807

809

811

813

814

815

816

817

818

coming the range of $\pm 5\,\mathrm{dB}$ as well as remarkable enlargement of the confidence interval since about 05:16:00 UTC. Fig. 11f shows a sudden drop in the RFI intensity at about 05:46:00 UTC. Such a peculiar behaviour was already shown in 10f, and it further clarify the direct effect of the RFI on the C/N_0 estimation. S_4 reacts immediately to the quick fluctuations while assumes near-zero values by the end of the phenomenon. Until about 05:46:00 UTC both GPS L1/CA and Galileo E1c signals show severe fluctuations in the range of approximately $\pm 4\,\mathrm{dB}$. The estimated average C/N_0 in GPS L1/CA also shows a larger confidence interval in correspondence of local maxima and minima.

B. RFI Numerical Emulation

745

746

747

749

750

751

753

754

755

757

758

759

761 762

763

764

765

766

767

768

770

771

772

774

776

778

780

782

784

786

787

788

789

790

791

792

793

794

795

Relying on the TD-TFA it can be inferred that no patterns can be recognized both in the temporal evolution of the signal and in its spectral content. Furthermore, RFI received power shows slow variations and a generous intensity range. TD-TFA was fundamental to observe that the RFIs occurrences may show a sharp starting and ending time that can be easily attributed to artificial, deliberate transmissions. Relying on these observations, the most relevant information that justify the modeling we propose hereafter comes from the persistence spectral analysis and from background literature on communication systems and GNSS threats and mitigation. A basic model for a Multiple FSK (MFSK)/Frequency-Hopped (FH) signal was implemented to be compared with the identified RFI and foster the design of new countermeasures to mitigate its action. Despite of being a conventional modulation scheme for communication channels, MFSK has been employed in radar applications for its capacity of measuring and resolving targets in range and Doppler frequency simultaneously and unambiguously even in multitarget situations [62]. A MATLAB script was exploited to numerically evaluate the expression

$$x_{\text{RFI}}[n] \triangleq x_{\text{RFI}}(nT_s) = A \sum_{m=1}^{W} e^{j2\pi f_m(nT_s)nT_s}$$
 (16)

where $f_m(nT_s)$ is a function that randomizes the generation of a set of m sub-tones included in a predefined frequency range, T_s is the sampling interval, A is the signal amplitude, and n is the discrete time index. The randomization of the sub-tones may reflect a set of random symbols carrying the data of an actual data transmission. The plot in Fig. 12 shows an example of a numerically-generated MFSK/FH jamming signal over a null-to-null bandwidth of about 1 MHz, by randomly switching among 10 sub-tones equally spaced in the range $\pm 0.5\,\mathrm{MHz}$ with an overall duration of 10 ms. Simulation settings are summarized in Table V for repeatability. It can be noticed that spectral estimation over longer observation time, e.g. 10 ms, highlights the active sub-tones while shorter timespans prevent a detailed characterization of the spectral signature. By inducing a periodical change of the selected sub-tones, the signal would behave similarly to a randomized variant of a FH tick jammer described in [63], with a simpler spectral signature of the tones. The randomization of the tones allows to reduce autocorrelation and signal ergodicity. Discontinuities are hence introduced in the instantaneous frequency of the

Fig. 12: PSDs of a simulated MFSK transmission observed over different snapshots duration and acting as an FH jamming interference. The spectral signature shows remarkable similarities with respect to the RFI's counterpart in Fig. 8 and Fig. 9. Lower noise floor is considered with respect to the collected data.

TABLE V: Simulation parameters for the emulation of a MFSK/FH jamming signal.

Symbol	Definition	Value
f_0	Center frequency	1575.42 MHz (L1)
f_s	Sampling frequency	5 Msps
T_x	Signal duration	10^{-3} s (10 ms)
M	Subcarriers	10
W	Random generation trials	3
R_f	Subcarriers range	$\pm0.5\mathrm{MHz}$

jamming signals. Such discontinuities reduce the effectiveness of adaptive mitigation techniques based on adaptive filtering (e.g., adaptive notch filters), which may be unable to track the jamming signal. The designed MFSK signal shows frequent and remarkable changes in its spectral signature as shown in Fig. 13, where the numerical RFI shows a similar behaviour to the one observed in persistence spectra analysis of Fig. 9, in Section V.

C. Impact of the RFI on scintillation data and filtering algorithm

1) Effects of the RFI on Low-latitudes ionospheric scintillations investigation: As mentioned in Section I and III, mid-latitudes scintillation may occur as a consequence of disturbed space weather conditions; on the contrary, low-latitude scintillations are also possible during quiet time, especially for the geomagnetic latitudes close to the northern and southern EIA crests, due to the formation of small scale irregularities embedded in the EPBs. Considering the position of the Lampedusa observatory, an investigation addressed to the observation of low-latitude scintillations would require to also include the signals coming from low-elevation satellites with respect to the receiver FoV; this will introduce additional outliers in the data due to the effects of the multipath, as

863

864

865

866

867

868

869

870

871

872

873

875

877

879

880

881

882

883

885

887

889

891

893

894

895

896

897

898

899

900

Fig. 13: Example of the evolution of the signal PSD of the emulated RFI. Different frequency resolutions are achieved by spectral estimation performed on different durations of the signal chunk under analysis, i.e., 10 ms (light-grey lines) and $10 \mu \text{s}$ (black lines).

mentioned in Section III. In the analysis that follows, an elevation mask of 10° and an azimuthal mask between 90° and 270° was applied to the signals in view, thus focusing on the middle and low-latitudes between 24.6° N and 36° N and on a longitudinal sector between 1° W and 26° E. The investigated time period goes from the 1th of July 2021 to the 31th October 2021, thus including the period of the equinox, when EPBs are more likely to occur. The considered signals are the one belonging to the GPS, Galileo, BDS and GLONASS constellations. The reported S_4 are the slant values calculated from the L1/E1 frequency band for each satellites in view at 1-minute resolution.

820

821

822

823

824

825

826

827

829

831

833

834

835

836

837

838

839

840

842

844

846

848

850

851

852

853

854

855

857

858

859

According to the methodology described in Section IV-C1, the image of Fig. 14a shows the percentage occurrences of the S_4 index (S_{4POt}) above the threshold of moderate scintillation $(S_4 > 0.25)$ on a bidimensional time-grid reporting the hour of the day in the horizontal axis and the day of the year in the vertical one. Each IPPs' epoch is converted in local time and the S_{4POt} are calculated according to (14) over the whole FoV under investigation and for time-intervals of 4 minutes. In Fig. 14a the white line represents the solar terminator at 350 km (F-layer of the ionosphere), which may helps to identify post-sunset scintillation due to EPBs. As it is possible to see from Fig. 14a, two pronounced features are visible: the first one is due to the effect of the multipath, recognizable by the oblique stripes in the background due to the joint effect of the satellites' ground track, the fixed position of the reflecting obstacles and the time-difference between the solar and sidereal day. The second one consists in the brighter horizontal stripes, due to the effect of the RFI on the signals collected by the receiving antenna. Indeed, since the RFI affects the S_4 index of most of the satellites in view simultaneously (as shown in Section III), the anomalous occurrences can be recognized by looking at the highest values of the S_{4POt} in Fig. 14a, which suggest the presence of the interferer also in the data collected during the month of July and September (besides August, investigated in the preliminary analysis of Section III). Fig. 14b reports on a geographic map the percentage occurrences of the S_4 (S_{4POs}) calculated according to (15) over the whole timeperiod under investigation and for geographic cells of 1° x 1° spatial-resolution. The image of Fig. 14b shows that the entire FoV under investigation appears to have been subject to scintillations during the investigated time period; this is also a consequence of the RFI, which affect most of the signal in the FoV (see Section III). Instead, the stronger S_{4POs} values of Fig. 14b are mostly due to the multipath, which affect the signals coming from the low-elevation satellites.

Being not possible to exclude the low-elevation satellites (due to the necessity of observing low-latitudes), a possible way to remove the outliers produced by the multipath is by increasing the threshold of the S_4 occurrences above the level of severe scintillation ($S_4 > 0.7$); this operation has also the beneficial effect of removing the less intense S_4 anomalies caused by the RFI, but will prevent the capability to detect possible real ionospheric scintillations events of moderate intensity. The result of this operation is shown in the images of Fig. 15: the background feature due to the multipath visible in Fig. 14a are removed (see Fig. 15a) and the overall spatial and temporal extent of the anomalies induced by the RFI is minimized as expected (see Fig. 15a and Fig. 15b in comparison to Fig. 14a and Fig. 14b).

2) RFI filtering and detection of ionospheric scintillation events: The S_4 percentage occurrences reported in Fig. 15 are due to both RFI-affected observations and possibly actual ionospheric scintillation events. To finally detect and remove the remaining S_4 anomalies due to the severe effect induced by the RFI, it is possible to reprocess the original data according to the methodology reported in Section IV-C2. The result of this filtering operation is shown by the images of Fig. 16. By detecting and removing the occurrences attriubuted to the RFI, the timeline of the S_{4POt} reported in Fig. 16a allows to detect, without ambiguities, severe scintillation events (highlighted by the white dotted box) occurred in the post-sunset hours during the period of the autumn equinox 2021. Similarly, the map of Fig. 16b reports the S_{4POs} , showing the actual geographic area affected by scintillations (highlighted by the white dotted box) which cover the lowest latitudes in the FoV. The scintillation events highlighted in Fig. 16 reflect the typical features of ionospheric scintillations induced on GNSS signals by small scale irregularities embedded in EPBs reaching the north crest of the EIA. Even though an accurate

919

921

922

923

925

927

928

929

930

931

932

933

934

Fig. 14: S_{4POt} (Fig. 14a) and S_{4POs} (Fig. 14b) above the threshold of moderate scintillation ($S_4>0.25$) between July and October 2021. The white lines of Fig. 14a represents the solar terminator at 350 km. In Fig. 14b geographic coordinates are labeled at the border of the maps and represented by the dotted lines inside the map; geomagnetic latitudes are labeled inside the maps and represented with the continuous lines.

Fig. 15: S_{4POt} (Fig. 15a) and S_{4POs} (Fig. 15b) above the threshold of severe scintillation ($S_4 > 0.7$) between July and October 2021. The white lines of Fig. 15a represents the solar terminator at 350 km. In Fig. 15b geographic coordinates are labeled at the border of the maps and represented by the dotted lines inside the map; geomagnetic latitudes are labeled inside the maps and represented with the continuous lines.

VI. DISCUSSION

characterization of these phenomena falls outside the scope of this paper, the reported analysis allows to emphasizes how unrecognized RFIs would have triggered false scintillation alarms on several occasions (see Fig. 15a compared to Fig. 16a) and above incorrect locations (see Fig. 15b compared to 16b); this poses a threat for the reliability of real-time ionospheric scintillations monitoring application as well as for the integrity of scientific investigation addressed to ionospheric scintillation climatology. To conclude, the performances of the proposed filter are also highlighted in Fig. 17, which shows the result of the RFI-filtering operation before the mitigation of the multipath (data of Fig. 14), thus also including the anomalies causing moderate effect on ionospheric scintillation $(S_4 > 0.25)$. The comparison between Fig. 17 and Fig. 14a highlights the capability of the procedures to effectively detect and remove the anomalies due to the interferer.

903

905

907

908

909

910

911

912

913

914

915

916

917

No natural events or human, licit or illicit activities being known to the authors seem related to the anomalous occurrences and the features of the disturbance. Additionally, no other instruments were expected operating in GNSS L1-band at the ENEA station or can interfere by emitting spurious harmonics in such a frequency range. The RFI may be generated in the proximity of the GISTM station (jamming or selfjamming) through a fixed or moving transmitter but the slow, yet remarkable power variations may indicate variable distance or heading of the transmitting antenna. This feature may be attributed to a moving transmitter carried on board of a plane, ground vehicle, or ship (mobile transmitter with fixed/moving antenna). Independently on the dynamics of the emitter, the RFI transmitting antenna may change its orientation along the time (e.g., fixed emitter with a spinning antenna as per radar applications). However, nor the regularity of the power fluctuation nor evident duty cycles in the received power

938

939

941

943

945

947

949

951

953

954

955

956

957

958

960

962

964

966

968

969

970

971

972

973

974

975

977

979

980

981

983

985

987

988

989

990

991

992

Fig. 16: S_{4POt} (Fig. 16a) and S_{4POs} (Fig. 16b) above the threshold of severe scintillation ($S_4 > 0.7$) between July and October 2021 after applying the filter for the RFI removal. The white lines of Fig. 16a represents the solar terminator at 350 km. In Fig. 16b geographic coordinates are labeled at the border of the maps and represented by the dotted lines inside the map; geomagnetic latitudes are labeled inside the maps and represented with the continuous lines. The white dotted boxes highlights ionospheric scintillation events due to EPBs.

Fig. 17: S_{4POt} after applying the filter for RFI removal on the data of Fig. 14a.

suggest the possibility of a regularly spinning antenna. In light of this, the hypothesis of a moving emitter appears more reasonable. We cannot exclude the presence of jamming activities in the area of interest, as well as the possibility of experimental tests for MFSK radar systems or undocumented applications such as steganography in GNSS band for stealth data transmission. In fact, the characterization of the RFI detected in Lampedusa reflects the features of a deliberate MFSK transmission that may occasionally turn into a jamming interference on the L1/E1 frequency band in case of intense received signals. It mainly affects and severely degrades GPS L1/CA and Galileo E1c signals, but it seems poorly effective as a jammer against Galileo E1b, GLONASS and Beidou signals; in light of this, the gathered clues suggests the observed RFI may constitute a rough attempt of RF steganography covered by GNSS signals or a modern FH jammer. As a general remark, similar transmissions over GNSS L1/E1 center frequency are generally forbidden. However, while the United States (U.S.) prohibits unauthorized transmission on the GNSS frequency bands by federal laws [64], European regulations are more fragmented and may differ among member and nonmember states. Specifically, the Italian legislation, with articles 340, 617, and 617 bis of the Penal Code, punishes the use and installation of jamming devices. In Italy, the deliberate use of interferers is allowed only to law enforcement and military forces, but the limitations at the continental border between Europe and Africa, such as in the area of Lampedusa, may not be exhaustively disciplined by regulations. Nonetheless, their occurrences are growing worldwide and at the European borders they might be due to the intensification of war actions and the presence of military enforcement. Therefore, an increasing attention is nowadays placed on their effects on several civil GNSS-related activities, such as flight operations, maritime navigation, critical infrastructures. A remarkable effort is indeed being placed towards RFI monitoring and localization by means of LEO satellites [44], [65]. From a terrestrial perspective, the deployment of multiple synchronous stations would allow as well for TDOA/FDOA-based interfer localization [66]–[68]. At the time of writing, RFI localization falls outside the scope of this article. Despite the interferer detected in Lampedusa is, at the moment, of unknown origin, its appearances during summer periods and the geopolitical conditions of the area make it possibly related to the migratory flows phenomena involving the surrounding seas, from the African coast to the east Mediterranean.

With regards to the scientific activities, recent discussions in the ionospheric community have raised the attention about the possible disruptive effects of RFIs on the data collected for scientific investigations of the ionosphere as well as for space weather monitoring applications. This paper provided an onfield proof of such vulnerabilities, showing the adverse impact of RFIs for both near-real time GNSS scintillation events detection as well as in case of climatological investigations of ionospheric scintillations. In the case of Lampedusa, the intensity and repetition over time of the S_4 anomalies allowed to promptly acknowledge the presence of a possible source of interference; however, similar but less impacting RFIs may not be easily recognizable and yet affecting the quality of the

996

997

999

1001

1003

1004

1005

1007

1008

1009

1010

1011

1012

1013

1014

1016

1019

1020

1021

1022

1023

1024

1025

1026

1028

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1045

1046

1047

1052

1053

1054

1056

1057

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1084

1085

1086

1087

1088

1089

1090

1091

1093

1095

1096

1097

1098

1100

1101

1102

1103

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

collected data. At the same time, deploying capturing systems to detect and characterize RFIs, like the one presented in this study, is not a sustainable solution for both economical and technical aspects. At the time of writing, no real-time mitigation techniques for such elaborate interferers are known to the authors, and only a-posteriori processing may allow to detect interfered observations and provide quality metrics for the collected data. In this regard, this work proposed a preliminary post-processing methodology to detect and remove the RFI-induced anomalies from the scintillation data acquired by the GISTM receiver. The filter is not based on the specific characteristics of the RFI under investigation and, in principle, it can be also effective for different types of RFIs acting within the GNSS bandwidths; however, it has the bottleneck of being based on a threshold which is defined through a-priori assumptions and which is location-dependent. The design of more robust post-processing algorithms falls outside the scope of this paper and deserve dedicated investigations.

Summarizing, the lack of an accurate RFI model constitutes the main concern for a systematic analysis of its impact on the scintillation index. Besides, it is worth pointing out that a methodology to evaluate the RFI impact on the scintillation index is also lacking in the literature, and it deserves dedicated investigations in future works.

VII. CONCLUSIONS

This paper presented an investigation of a real scenario where an unclassified RFI affecting the GNSS signals jeopardize scientific activities like those carried-out by the INGV in the Mediterranean area of Lampedusa. It was shown that the computation of the ionospheric scintillation indices through modern commercial GISTM receivers may be misleading in those circumstances, thus triggering false ionospheric scintillation events and compromising the reliability of real-time monitoring applications as well as the quality of the data collected for scientific investigations. The analysis presented on the recorded GNSS signals specifically demonstrated that altered scintillation indices may be due to the non-stationarity of the estimated C/N_0 caused by the observed RFI. Further on-site campaigns are expected in the future by refining the experimental setup with a complete decoupling of the GISTM/SDR acquisition chain (e.g., antenna) and by implementing a multi-frequency acquisition unit (including L2/L5 GNSS bands). Moreover, by deploying multiple synchronous stations would allow to implement Time Difference of Arrival (TDOA)/Frequency Difference of Arrival (FDOA) interferer localization [66].

ACKNOWLEDGEMENTS

This investigation has been possible thanks to the National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA). In particular, we thank Alcide Giorgio di Sarra (scientific director of the activities at the ENEA Climate Observation Station) and Damiano Sferlazzo for providing us with the technical and logistical support during the measurements campaign and for the fruitful discussions. We acknowledge funding from the INGV research

project "Pianeta Dinamico, Theme 8 - ATTEMPT" (C.U.P. D53J19000170001) founded by the Italian Ministry of University and Research ("Fund aimed at relaunching the investments of central administrations of the state and the development of the country", act 145/2018). A. Minetto acknowledges funding from the research contract no. 32-G-13427-5 DM 1062/2021 funded within the Programma Operativo Nazionale (PON) Ricerca ed Innovazione of the Italian Ministry of University and Research (MUR).

REFERENCES

- [1] P. Kintner, B. Ledvina, and E. De Paula, "GPS and ionospheric scintillations," *Space weather*, vol. 5, no. 9, 2007.
- [2] L. Spogli, L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino, and A. Dodson, "Climatology of GPS ionospheric scintillations over high and mid-latitude European regions," *Annales Geophysicae*, vol. 27, no. 9, p. 3429–3437, Sep 2009. [Online]. Available: http://dx.doi.org/10.5194/angeo-27-3429-2009
- [3] R. S. Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, "Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability," *Radio Science*, vol. 38, no. 1, p. 1–23, Jan 2003. [Online]. Available: http://dx.doi.org/10.1029/2000RS002604
- [4] N. Balan, L. Liu, and H. Le, "A brief review of equatorial ionization anomaly and ionospheric irregularities," *Earth and Planetary Physics*, vol. 2, no. 4, p. 1–19, 2018. [Online]. Available: http://dx.doi.org/10.26464/epp2018025
- [5] H. Ghobadi, L. Spogli, L. Alfonsi, C. Cesaroni, A. Cicone, N. Linty, V. Romano, and M. Cafaro, "Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique," GPS Solutions, vol. 24, no. 3, Jun 2020. [Online]. Available: http://dx.doi.org/10.1007/s10291-020-01001-1
- [6] E. D. Kaplan and C. Hegarty, *Understanding GPS/GNSS: principles and applications*. Artech house, 2017.
- [7] L. Alfonsi, P. Cilliers, V. Romano, I. Hunstad, E. Correia, N. Linty, F. Dovis, O. Terzo, P. Ruiu, J. Ward et al., "First observations of GNSS ionospheric scintillations from DemoGRAPE project," Space Weather, vol. 14, no. 10, pp. 704–709, 2016.
- [8] J. Park, S. V. Veettil, M. Aquino, L. Yang, and C. Cesaroni, "Mitigation of ionospheric effects on GNSS positioning at low latitudes," *NAVIGA-TION, Journal of the Institute of Navigation*, vol. 64, no. 1, pp. 67–74, 2017.
- [9] G. De Franceschi, L. Spogli, L. Alfonsi, V. Romano, C. Cesaroni, and I. Hunstad, "The ionospheric irregularities climatology over Svalbard from solar cycle 23," *Scientific Reports*, vol. 9, no. 1, Jun 2019. [Online]. Available: http://dx.doi.org/10.1038/s41598-019-44829-5
- [10] C. Cesaroni, L. Spogli, L. Alfonsi, G. De Franceschi, L. Ciraolo, J. F. Galera Monico, C. Scotto, V. Romano, M. Aquino, and B. Bougard, "L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum," *Journal of Space Weather and Space Climate*, vol. 5, p. 11, 2015. [Online]. Available: http://dx.doi.org/10.1051/swsc/2015038
- [11] L. Spogli, C. Cesaroni, D. Di Mauro, M. Pezzopane, L. Alfonsi, E. Musicò, G. Povero, M. Pini, F. Dovis, R. Romero, N. Linty, P. Abadi, F. Nuraeni, A. Husin, M. Le Huy, T. T. Lan, T. V. La, V. G. Pillat, and N. Floury, "Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick's Day storm," *Journal of Geophysical Research: Space Physics*, vol. 121, no. 12, pp. 12,211–12,233, Dec 2016. [Online]. Available: http://dx.doi.org/10.1002/2016JA023222
- [12] O. Olwendo, C. Cesaroni, Y. Yamazaki, and P. Cilliers, "Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick's Day storm," Advances in Space Research, vol. 60, no. 8, p. 1817–1826, Oct 2017. [Online]. Available: http://dx.doi.org/10.1016/j.asr.2017.06.037
- [13] L. Spogli, D. Sabbagh, M. Regi, C. Cesaroni, L. Perrone, L. Alfonsi, D. Di Mauro, S. Lepidi, S. A. Campuzano, D. Marchetti, A. Santis, A. Malagnini, C. Scotto, G. Cianchini, X. H. Shen, A. Piscini, and A. Ippolito, "Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and swarm satellites and by local ground-based observations," *Journal of Geophysical Research: Space Physics*, vol. 126, no. 2, Feb 2021. [Online]. Available: http://dx.doi.org/10.1029/2020JA028368

1196

1198

1199

1200

1201

1203

1204

1205

1206

1208

1209

1211

1213

1214

1216

1217

1218

1219

1221

1222

1223

1224

1225

1226

1228

1229

1230

1231

1232

1233

1234

1236

1237

1238

1239

1241

1242

1243

1244

1246

1247

1248

1249

1251

1252

1253

1254

1255

1256

1257

1259

1261

1262

1263

1264

1266

1267

1268

1269

[14] L. Alfonsi, C. Cesaroni, L. Spogli, M. Regi, A. Paul, S. Ray,
 S. Lepidi, D. Di Mauro, H. Haralambous, C. Oikonomou, P. R.
 Shreedevi, and A. K. Sinha, "Ionospheric disturbances over the
 Indian sector during 8 september 2017 geomagnetic storm: Plasma
 structuring and propagation," Mar 2021. [Online]. Available: http:
 //dx.doi.org/10.1029/2020SW002607

1125

1126

1127

1128

1129

1130

1131

1132

1133

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1156

1157

1158

1159

1160

1166

1167

1168

1169

- [15] C. Cesaroni, L. Alfonsi, M. Pezzopane, C. Martinis, J. Baumgardner, J. Wroten, M. Mendillo, E. Musicò, M. Lazzarin, and G. Umbriaco, "The first use of coordinated ionospheric radio and optical observations over Italy: Convergence of high-and low-latitude storm-induced effects," *Journal of Geophysical Research: Space Physics*, vol. 122, no. 11, Nov 2017. [Online]. Available: http://dx.doi.org/10.1002/2017JA024325
- [16] E. Afraimovich, E. Astafyeva, V. Demyanov, and I. Gamayunov, "Midlatitude amplitude scintillation of GPS signals and GPS performance slips," Advances in Space Research, vol. 43, no. 6, pp. 964–972, 2009.
- 1134 [17] S. Vadakke Veettil, H. Haralambous, and M. Aquino, "Observations of quiet-time moderate midlatitude L-band scintillation in association with plasma bubbles," *GPS Solutions*, vol. 21, no. 3, p. 1113–1124, Jan 2017. [Online]. Available: http://dx.doi.org/10.1007/s10291-016-0598-x
- [18] K. Kauristie, J. Andries, P. Beck, J. Berdermann, D. Berghmans, C. Cesaroni, E. De Donder, J. de Patoul, M. Dierckxsens, E. Doornbos *et al.*,
 "Space weather services for civil aviation—challenges and solutions," *Remote Sensing*, vol. 13, no. 18, p. 3685, 2021.
- 1142 [19] G. De Franceschi, L. Alfonsi, and V. Romano, "ISACCO: an Italian 1143 project to monitor the high latitudes ionosphere by means of GPS 1144 receivers," *GPS Solutions*, vol. 10, no. 4, pp. 263–267, 2006.
 - [20] A. Van Dierendonck, J. Klobuchar, and Q. Hua, "Ionospheric scintillation monitoring using commercial single frequency C/A code receivers," in *proceedings of ION GPS*, vol. 93, 1993, pp. 1333–1342.
 - [21] A. P. Cerruti, P. M. Kintner, D. E. Gary, L. J. Lanzerotti, E. R. de Paula, and H. B. Vo, "Observed solar radio burst effects on GPS/Wide Area Augmentation System carrier-to-noise ratio," Space Weather, vol. 4, no. 10, 2006. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006SW000254
 - [22] H. Sato, N. Jakowski, J. Berdermann, K. Jiricka, A. Heßelbarth, D. Banyś, and V. Wilken, "Solar radio burst events on 6 September 2017 and its impact on GNSS signal frequencies," *Space Weather*, vol. 17, no. 6, pp. 816–826, 2019. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019SW002198
 - [23] G. de Oliveira Nascimento Brassarote, E. M. de Souza, and J. F. G. Monico, "S4 index: does it only measure ionospheric scintillation?" GPS Solutions, vol. 22, no. 1, pp. 1–12, 2018.
- 1161 [24] G. D'Angelo, L. Spogli, C. Cesaroni, V. Sgrigna, L. Alfonsi, and M. Aquino, "GNSS data filtering optimization for ionospheric observation," *Advances in Space Research*, vol. 56, no. 11, p. 2552–2562, Dec 2015. [Online]. Available: http://dx.doi.org/10.1016/j. asr.2015.10.002
 - [25] R. Romero and F. Dovis, "Towards analyzing the effect of interference monitoring in GNSS scintillation," in *Mitigation of Ionospheric Threats to GNSS*, R. Notarpietro, F. Dovis, G. D. Franceschi, and M. Aquino, Eds. Rijeka: IntechOpen, 2014, ch. 4. [Online]. Available: https://doi.org/10.5772/58768
- 1171 [26] —, "Effect of interference in the calculation of the amplitude scintil-1172 lation index S4," in 2013 International Conference on Localization and 1173 GNSS (ICL-GNSS), 2013, pp. 1–6.
- 1174 [27] Y. Liao and Y. Zou, "Impact of radio frequency interference on GNSS ionospheric scintillation data analysis," in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), vol. Volume1, 2021, pp. 1–3.
- 1178 [28] F. Dovis, GNSS interference threats and countermeasures. Artech 1179 House, 2015.
- [29] Z. Zhang, Y. Qu, Z. Wu, M. J. Nowak, J. Ellinger, and M. C. Wicks,
 "RF steganography via LFM chirp radar signals," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 54, no. 3, pp. 1221–1236, 2017.
- [30] Z. Zhang, M. J. Nowak, M. Wicks, and Z. Wu, "Bio-inspired RF steganography via linear chirp radar signals," *IEEE Communications Magazine*, vol. 54, no. 6, pp. 82–86, 2016.
- [31] B. Motella, S. Savasta, D. Margaria, and F. Dovis, "Method for assessing the interference impact on GNSS receivers," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 47, no. 2, pp. 1416–1432, 2011.
- [32] S. Peng and Y. Morton, "A USRP2-based reconfigurable multi constellation multi-frequency GNSS software receiver front end," *GPS Solutions*, vol. 17, no. 1, pp. 89–102, 2013.
- [33] G. Lachapelle and A. Broumandan, "Benefits of GNSS IF data recording," in 2016 European Navigation Conference (ENC), 2016, pp. 1–6.

- [34] N. Linty, F. Dovis, and L. Alfonsi, "Software-defined radio technology for GNSS scintillation analysis: bring Antarctica to the lab," GPS Solutions, vol. 22, no. 4, pp. 1–12, 2018.
- [35] N. Linty, F. Dovis, R. Romero, C. Cristodaro, L. Alfonsi, and E. Correia, "Monitoring ionosphere over Antarctica by means of a GNSS signal acquisition system and a software radio receiver," in *Proceedings of the* 2016 International Technical Meeting of The Institute of Navigation, 2016, pp. 549–555.
- [36] C. Ruf, S. Gross, and S. Misra, "RFI detection and mitigation for microwave radiometry with an agile digital detector," *IEEE Transactions* on Geoscience and Remote Sensing, vol. 44, no. 3, pp. 694–706, 2006.
- [37] J. R. Piepmeier, J. T. Johnson, P. N. Mohammed, D. Bradley, C. Ruf, M. Aksoy, R. Garcia, D. Hudson, L. Miles, and M. Wong, "Radio-frequency interference mitigation for the soil moisture active passive microwave radiometer," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 52, no. 1, pp. 761–775, 2014.
- [38] P. N. Mohammed, M. Aksoy, J. R. Piepmeier, J. T. Johnson, and A. Bringer, "SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations," *IEEE Trans*actions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 6035– 6047, 2016.
- [39] F. Ticconi, C. Anderson, J. Figa-Saldaña, J. J. W. Wilson, and H. Bauch, "Analysis of radio frequency interference in metop ASCAT backscatter measurements," *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 10, no. 5, pp. 2360–2371, 2017.
- [40] E. Pica, C. Marcocci, C. Cesaroni, E. Zuccheretti, M. Pezzopane, S. Vecchi, V. Romano, and L. Spogli, "The SWIT-eSWua system: managing, preservation and sharing of the historical and near real-time ionospheric data at the INGV," in *American Geophysical Union* (AGU) 2020 Fall Meeting, Mar 2021. [Online]. Available: http://dx.doi.org/10.1002/essoar.10506618.1
- [41] G. Garelli and M. Tazzioli, "The EU hotspot approach at Lampedusa," Open Democracy, vol. 26, 2016.
- [42] E. Pulitano, *Island(s): Lampedusa as a "Hotspot" of EU Border Policies*. Cham: Springer International Publishing, 2022, pp. 43–73. [Online]. Available: https://doi.org/10.1007/978-3-031-05992-6_3
- [43] A. I. U. Eurocontrol, "Does radio frequency interference to satellite navigation pose an increasing threat to network efficiency, cost-effectiveness and ultimately safety?" Tech. Rep., Tech. Rep., 2021.
- [44] T. M. Roberts, T. K. Meehan, J. Y. Tien, and L. E. Young, "Detection and localization of terrestrial L-band RFI with GNSS receivers," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 60, pp. 1–11, 2022
- [45] N. Linty, A. Minetto, F. Dovis, and L. Spogli, "Effects of phase scintillation on the GNSS positioning error during the september 2017 storm at Svalbard," *Space Weather*, vol. 16, no. 9, pp. 1317–1329, 2018.
- [46] C. Cristodaro, F. Dovis, N. Linty, and R. Romero, "Design of a configurable monitoring station for scintillations by means of a GNSS software radio receiver," *IEEE Geoscience and Remote Sensing Letters*, vol. 15, no. 3, pp. 325–329, 2018.
- [47] P. Misra and P. Enge, "Global positioning system: Signals," Measurements and Performance,, pp. 381–384, 2006.
- [48] M. Pini, E. Falletti, and M. Fantino, "Performance evaluation of C/N0 estimators using a real time GNSS software receiver," in 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, 2008, pp. 32–36.
- [49] L. Alfonsi, L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson, and C. N. Mitchell, "Bipolar climatology of GPS ionospheric scintillation at solar minimum," *Radio Science*, vol. 46, no. 03, pp. 1–21, 2011
- [50] U. atmosphere physics radiopropagation Working Group, C. Cesaroni, G. De Franceschi, C. Marcocci, E. Pica, V. Romano, and L. Spogli, "Electronic space weather upper atmosphere database (eSWua) - GNSS scintillation data, version 1.0," 2020.
- [51] F. S. Rodrigues, J. G. Socola, A. O. Moraes, C. Martinis, and D. A. Hickey, "On the properties of and ionospheric conditions associated with a mid-latitude scintillation event observed over southern united states," Jun 2021. [Online]. Available: http://dx.doi.org/10.1029/2021SW002744
- [52] B. M. Ledvina, J. J. Makela, and P. M. Kintner, "First observations of intense GPS L1 amplitude scintillations at midlatitude," pp. 4–1–4–4, Jul 2002. [Online]. Available: http://dx.doi.org/10.1029/2002GL014770
- [53] N. Balan, K. Shiokawa, Y. Otsuka, S. Watanabe, and G. J. Bailey, "Super plasma fountain and equatorial ionization anomaly during penetration electric field," pp. n/a–n/a, Mar 2009. [Online]. Available: http://dx.doi.org/10.1029/2008JA013768
- [54] D. Di Mauro, M. Regi, S. Lepidi, A. Del Corpo, G. Dominici, P. Bagiacchi, G. Benedetti, and L. Cafarella, "Geomagnetic activity

- at Lampedusa island: Characterization and comparison with the other Italian observatories, also in response to space weather events," *Remote Sensing*, vol. 13, no. 16, p. 3111, Aug 2021. [Online]. Available: http://dx.doi.org/10.3390/rs13163111
- [55] P. Bagiacchi, G. Benedetti, L. Cafarella, D. Di Mauro, and A. E. Zirizzotti, "The new system for data acquisition and visualisation of the magnetic field of the Earth," *Rapporti Tecnici INGV*, vol. 428, Feb 2021. [Online]. Available: http://editoria.rm.ingv.it/rapporti/2021/rapporto428/
- [56] J. Uwamahoro and J. Habarulema, "Empirical modeling of the storm time geomagnetic indices: a comparison between the local K and global Kp indices," *Earth, Planets and Space*, vol. 66, no. 1, p. 95, 2014. [Online]. Available: http://dx.doi.org/10.1186/1880-5981-66-95
- [57] L. Spogli, H. Ghobadi, A. Cicone, L. Alfonsi, C. Cesaroni, N. Linty, V. Romano, and M. Cafaro, "Adaptive phase detrending for gnss scintillation detection: A case study over antarctica," p. 1–5, 2022. [Online]. Available: http://dx.doi.org/10.1109/LGRS.2021.3067727
- [58] P. Welch, "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms," *IEEE Transactions on Audio and Electroacoustics*, vol. 15, no. 2, pp. 70–73, 1967.
- 1291 [59] M. H. Hayes, Statistical digital signal processing and modeling. John Wiley & Sons, 2009.
 - [60] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," *Proceedings of the IEEE*, vol. 66, no. 1, pp. 51–83, 1978.
 - [61] L. Cohen, *Time-frequency analysis*. Prentice hall New Jersey, 1995, vol. 778.
 - [62] M. Kronauge and H. Rohling, "New chirp sequence radar waveform," IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 2870–2877, 2014.
 - [63] D. Borio and C. Gioia, "Mitigation of frequency-hopped tick jamming signals," in 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2020, pp. 624–630.
 - [64] F. C. Commission, "Enforcement advisory: Warning: Jammer use is prohibited; prohibition applies to use by the public and state and local government agencies," 2014.
 - [65] M. J. Murrian, L. Narula, P. A. Iannucci, S. Budzien, B. W. O'Hanlon, M. L. Psiaki, and T. E. Humphreys, "First results from three years of GNSS interference monitoring from low earth orbit," *Navigation*, vol. 68, no. 4, pp. 673–685, 2021.
- [66] N. O'Donoughue, Emitter Detection and Geolocation for Electronic
 Warfare. Artech House, 2019.
 - [67] K. Becker, "An efficient method of passive emitter location," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 28, no. 4, pp. 1091–1104, 1992.
- 1316 [68] A. G. Dempster and E. Cetin, "Interference localization for satellite navigation systems," *Proceedings of the IEEE*, vol. 104, no. 6, pp. 1318–1326, 2016.

Alex Minetto (GS'17-M'20) was born in Pinerolo, Italy, in 1990. He received the B.Sc. and M.sc. degrees in Telecommunications Engineering from Politecnico di Torino, Turin, Italy and his Ph.D. degree in Electrical, Electronics and Communications Engineering, in 2020. He joined the Department of Electronics and Telecommunications of Politecnico di Torino in 2022 as researcher and assistant professor. His current research interests cover navigation signal design and processing, advanced Bayesian estimation applied to Positioning and Navigation

Technologies (PNT) and applied Global Navigation Satellite System (GNSS) to space weather and space PNT.

Claudio Cesaroni is Researcher at INGV and Responsible of the Upper Atmosphere Physics and Radiopropagation Unit. He is expert in ionospheric physics, in data analysis and treatment techniques focused on TEC calibration technique and effects of spatial and temporal gradients on GNSS signals. He developed algorithms for the analysis of TEC gradients and scintillations data at low latitudes and for the analysis of the dynamics of the ionospheric irregularities. He was also involved in the IPS project and in the PECASUS consortium for the develop-

ment of models and tools to nowcast and forecasting TEC gradients effects on GNSS signals. He took part to several Antarctic and Arctic scientific expeditions. He is author of an international patent: Grzesiak M, Cesaroni, C., Spogli, L., De Franceschi, G. "Method for forecasting ionosphere total electron content and/or scintillation parameters", International Publication Number WO 2016/185500 A1.

Fabio Dovis (GS'98-M'01) was born in Bruino, Italy,in 1970. He received his M.Sc. degree in 1996 and his Ph.D. degree in 2000, both from Politecnico di Torino, Turin, Italy. He joined the Department of Electronics and Telecommunications of Politecnico di Torino as an assistant professor in 2004 and as associate professor in 2014. Since 2021 he is a full professor in the same department where he coordinates the Navigation Signal Analysis and Simulation (NavSAS) research group. He has a relevant experience in European projects in satellite

navigation as well as cooperation with industries and research institutions. He serves as a member of the IEEE Aerospace and Electronics Systems Society Navigation Systems Panel. His research interests cover the design of GPS and Galileo receivers and advanced signal processing for interference and multipath detection and mitigation, as well as ionospheric monitoring.

Emanuele Pica is a technologist at Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy. He received a B.Sc degree in Electronic Engineering from University of Salerno, Salerno, Italy and a M.sc. degree in Space and Astronautical Engineering from Sapienza University, Rome, Italy. His research activities cover the fields of research data management, research infrastructures and ionospheric monitoring. He is currently responsible for the INGV ionospheric scintillations network.