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Dynamic Service Provisioning in the Edge-cloud
Continuum with Provable Guarantees

Itamar Cohen, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE, Paolo Giaccone, Senior Member, IEEE,
Gabriel Scalosub, Member, IEEE

Abstract—We consider a hierarchical edge-cloud architecture
in which services are provided to mobile users as chains of virtual
network functions. Each service has specific computation require-
ments and target delay performance, which require placing the
corresponding chain properly and allocating a suitable amount
of computing resources. Furthermore, chain migration may be
necessary to meet the services’ target delay, or convenient to
keep the service provisioning cost low. We tackle such issues by
formalizing the problem of optimal chain placement and resource
allocation in the edge-cloud continuum, taking into account
migration, bandwidth, and computation costs. Specifically, we
first envision an algorithm that, leveraging resource augmen-
tation, addresses the above problem and provides an upper
bound to the amount of resources required to find a feasible
solution. We use this algorithm as a building block to devise an
efficient approach targeting the minimum-cost solution, while
minimizing the required resource augmentation. Our results,
obtained through trace-driven, large-scale simulations, show that
our solution can provide a feasible solution by using half the
amount of resources required by state-of-the-art alternatives.

Index Terms—Edge computing, edge-cloud continuum, service
placement, programmable networks

I. INTRODUCTION

Today’s networks offer an unprecedented level of resource
virtualization, available as a continuum from the edge to the
cloud [1]–[7]. These virtual resources are embodied as a col-
lection of datacenters that host service function chains. These
service chains provide a plethora of applications, including
infotainment [2], road safety [3] and virtual network func-
tions [5], [8]–[10]. These applications have versatile service
requirements; for instance, a road safety application requires
low latency, which may dictate processing it in an edge data-
center, close to the user. On the other hand, infotainment tasks
are more computation-intensive but less latency-sensitive, and
therefore may be offloaded to the cloud, where computation
resources are abundant and cheap [?], [4].

Deploying service function chains is even more challenging
when dynamic traffic conditions exist and/or some of the users
are mobile. In such cases, service chains may need to be
migrated in order to follow the mobile user and, thus, reduce
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latency [1], [2], [11]. However, when the system is highly-
loaded, there may not be enough available resources in the
migration’s destination. Hence, providing reliable service may
compel using some over-provisioning, or resource augmenta-
tion – at the cost of increasing the system’s capital expenses.
Existing schemes [2], [4], [8], [9], [11]–[15] perform well
when the system load is not too high, but fail to provide a
feasible solution under a high load of service requests. To the
best of our knowledge, no previous work provides guarantees
of finding a feasible solution for the problem whenever such
a solution exists.

In this work, we study the combined service Deployment
and Migration Problem (DMP) in a multi-tier network, where
the service orchestrator [6] has to decide: (i) where to deploy
a service chain across the cloud-edge continuum, (ii) which
resources to allocate for each part of every service chain,
and (iii) which chains to migrate, and to which datacenter, to
fulfill the service requirements while minimizing the overall
deployment and migration costs. Our main contributions are
as follows:

• We first formalize the DMP, and show that even finding
a feasible solution to the problem – regardless of its cost
– is NP-hard.

• We take latency as the main Key Performance Indicator
(KPI) [16], as specified by the Service Level Agreement
(SLA), and show how to calculate the minimal amount of
CPU resources required for placing every service chain on
any datacenter, while satisfying the latency requirements.

• We develop a placement algorithm that, leveraging some
bounded amount of resource augmentation, is guaranteed
to provide a feasible solution whenever such a solution
exists for the case with no resource augmentation.

• We present an algorithm that, given a feasible solution,
greedily decreases its cost, while keeping the required
resource augmentation minimal.

• We compare the performance of our proposed solution
to those of existing alternatives using two large-scale
vehicular scenarios and real-world antenna locations. Our
results show that our algorithm can provide a feasible
solution using half the computing resources required by
existing alternatives. Our evaluation further highlights
several system trade-offs, such as the preferred decision
period between subsequent runs of the algorithm.

The rest of the paper is organized as follows. After intro-
ducing the system model in Sec. II, we formalize the optimal
deployment and migration problem in Sec. III, and overview
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our solution concept in Sec. IV. The problem is decomposed
into a computational resource allocation problem, studied and
solved in Sec. V, and a placement problem, characterized and
solved in Sec. VI. Our overall algorithmic solution is described
in Sec. VII and its performance is assessed in Sec. VIII.
Finally, Sec. IX discusses related work, and Sec. X draws
some conclusions.

II. MODELING THE EDGE-CLOUD ARCHITECTURE

This section introduces the model for the network infras-
tructure and the services offered to mobile users and describes
how we compute the service delay.

A. Network model

We consider a fat-tree edge-cloud hierarchical network ar-
chitecture. As described in [?], the network comprises: (i) dat-
acenters (denoting generic computing resources), (ii) switches
(generic switching nodes, as routers, switches, multiple
switches associated with Multi-Chassis Link-Aggregation
(MCLA) [17]), and (iii) radio Points of Access (PoA). Dat-
acenters are connected through switches, and PoAs may have
a co-located datacenter [18]. Each user is connected to the
network through a PoA, which may vary as the user moves.
An example of such a system is depicted in Fig. 1.

We denote by S the set of datacenters, and model the
logical multi-tier network as a directed graph G = (S,L)
where the vertices are the datacenters, while the edges are
the directed virtual links connecting them, i.e., (i, j) ∈ L with
i, j ∈ S. Let D(G) denote the diameter of G, and r the root
of the fat tree topology. For any two datacenters i, j, P(i, j)
denotes the directed path from i to j, with P(i, j) referring
to a sequence of physical links, or vertices, depending on the
context. We consider that such a path is loop-free and uniquely
predetermined between any two vertices.

B. Services and chain deployment

Consider a generic user generating a service request u,
originating at the PoA pu to which the user is currently con-
nected. Each service request is addressed through an instance
of VNF chains, where each VNF is deployed on a dedicated
virtual machine (VM) or container in a datacenter. For the
convenience of presentation, hereinafter we refer to VMs only.
We refer to the instance of the chain for service request u as
hu = (vu1 , . . . , v

u
hu

), where hu indicates the number of VMs
in hu. Let U denote the set of service requests, and H the set
of corresponding chains that are currently deployed, or need
to be deployed, in the network. Furthermore, for every subset
of requests U ′ ⊆ U , we let H′ ⊆ H denote the subset of
chains corresponding to U ′. For simplicity of notation, while
referring to VMs and datacenters hosting them, we will drop
superscripts and subscripts whenever clear from the context.

To successfully serve chain hu, the chain should be fully
deployed on one of the datacenters on the path from its PoA
pu to root r [3], [5], [19]. We denote that path by P(pu, r).
Distinct deployment decisions incur distinct costs that we
detail in Sec. III.
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Fig. 1: Example of network scenario for mobile service
provisioning.

Each service is associated with an SLA, which specifies
the requirements in terms of KPIs [16], and with a maximum
amount of resources, e.g., for which the user is willing to pay
the network provider. We consider latency as the most relevant
KPI, although our model could be extended to others, like
throughput and energy consumption. We thus associate with
each chain hu a target delay ∆(hu).

C. Service delay

The service delay comprises the computational and the
network delays, as detailed below.

Computational delay. Given chain hu, each VM vuk ∈ hu

has some input traffic load, λuk , expressed in bit/s, which is
known a-priori [4], [11]. In particular, λu1 denotes the input
traffic to the chain at the PoA associated with the request. We
let θuk represent the processing capacity required to handle a
single unit of traffic corresponding to vuk , expressed in CPU
cycles/bit. Thus, λukθ

u
k represents the CPU cycles/s required

to process the incoming traffic. The computation is defined
in terms of single data units to be processed. Let γuk be the
number of bits per data unit, then γuk θ

u
k is the number of CPU

cycles required to process each data unit1.
Let chain hu be placed on datacenter s. For each VM vuk ∈

hu, µu,sk denotes the processing capacity allocated to such VM
on s, expressed in number of CPU cycles/s. As often done in
the literature [16], [20]–[22], CPU processing at the VM is
modeled through an M/M/1 queue. The average computational
delay at VM vuk to process one data unit is given by

Du
k (µu,sk ) = γuk θ

u
k/(µ

u,s
k − θ

u
kλ

u
k), (1)

where we must have µu,sk > θukλ
u
k . The overall computational

delay of chain hu is thus given by:

dc(hu,µu,s) =

hu∑
k=1

Du
k (µu,sk ). (2)

To reflect real-world conditions, when allocating virtual cores
to VMs, we consider that µu,sk is an integer multiple of a basic
CPU speed, and, thus, µu,sk is discrete and will be expressed
in CPU units in the following; θuk is coherently expressed in
a fractional value of CPU units.

1As an example, a single data unit could be a video frame to process in
an object-recognition VNF. Different image resolutions will result in different
values of γuk and θuk . In a DPI application, a single data unit would be instead
a single data packet.
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We denote by Ĉu the maximum amount of computing
resources that may be allocated to chain hu as per the SLA.
Each datacenter s ∈ S has a total processing capacity Cs,
expressed in number of CPU cycles/s. It is fair to assume
that Ĉu does not exceed the processing capacity of any single
datacenter in the system, i.e., ∀s ∈ S, u ∈ U , Ĉu ≤ Cs.

Network delay. The intra-datacenter communication delay
is typically negligible [23] compared to the delays in the
network connecting the datacenters. Thus, we will consider
here just the delays in the inter-datacenter communications.

We consider a deterministic system with token bucket
controlled traffic (as for TSPEC in IntServ) and rate-latency, as
in [24]. We consider the delay accrued along the path traversed
by chain hu’s traffic in the most general case, where such a
path includes both uplink and downlink traffic transfers. To
seamlessly model the downlink traffic, we denote by λuhu+1

the traffic from the last VM in the chain back to the PoA of
the request.

Each link (i, j) is associated with propagation delay Tp(i, j)
and bandwidth capacity C(i, j). We assume that on each
link the bandwidth is partitioned between all the traversing
flows, and a link scheduler provides a rate guarantee for each
chain hu equal to λu1 for uplinks, and λuhu+1 for downlinks.
We assume that the bandwidth on each link is sufficiently
provisioned, thus C(i, j) is large enough to accommodate
all the traffic flows between i and j, thus avoiding blocking
events.

We assume that ingress and egress chain traffic is leaky-
bucket regulated, with maximum burstiness σu. The link (i, j)
scheduler is a rate-latency server (e.g., a PGPS scheduler [24])
with the appropriate rate λu as specified above and latency
Lmax/C(i, j), where Lmax is a constant depending upon the
adopted scheduler (e.g., equal to the maximum packet size for
PGPS). Using network calculus [24] and defining τ(i, j) =
Lmax/C(i, j) + Tp(i, j), the delay experienced on link (i, j)
can be upper-bounded by:

σu
λu

+ τ(i, j) . (3)

Then, recalling the “pay bursts only once” result [24], the
network delay associated with chain hu is:

dn(hu, s) =
σu
λu1

+
σu

λuhu+1

+
∑

(i,j)∈P(pu,s)∪P(s,pu)

τ(i, j) (4)

where s is the datacenter on which chain hu is deployed.
Total service delay. The total delay of chain hu is then

given by the sum of its computational and network delay, i.e.,
d(hu,µu,s, s) = dc(hu,µu,s) + dn(hu, s). (5)

III. THE DEPLOYMENT AND MIGRATION PROBLEM

The delay experienced by a chain may vary over time
because (i) the PoA of the request, hence the network delay,
has changed, or, (ii) there is a traffic surge/reduction, and the
processing time of the chain VMs changes [25]. We assume
that a monitoring system predicts the performance of the
deployed services every T time units (hereinafter also referred
to as the decision period), and it identifies the set of critical
chains, whose experienced latency is expected to violate the
delay constraints due to changes in the requests’ attributes

(e.g., PoA, or values of λuk). The delay constraint of a critical
chain may dictate migrating that chain to reduce its delay.
Every decision period, the service orchestrator decides on the
destination datacenter and on the resources to allocate for
the new chains and for the critical chains that need to be
migrated. Notably, according to our definition, H comprises
the new chains, the critical chains, and the remaining currently
deployed non-critical chains.

In what follows, we formulate an optimization problem
defining the framework in which such decisions are made
with the aim of minimizing the migration and the system
operational cost. We first introduce the problem decision
variables, constraints, system costs, and, then, our objective
function. Finally, we discuss the problem complexity.

Decision variables. Let y denote the Boolean placement
decision variables. Namely, y(u, s) = 1 iff chain hu is
scheduled to run on datacenter s in the following decision
period. The allocation decision variables, µ, determine, for
every VM vuk of chain hu, the amount of computing capacity
µu,sk to be allocated for this VM on datacenter s hosting the
chain. Any choice for the values of the y- and µ-variables
comprises a solution to our problem, specifying (i) where new
chains are deployed and what computing resources each of
their VMs gets, and (ii) which existing chains are migrated,
where they are migrated to, and what computing resources
each of their VMs use.

Constraints. The following constraints hold:∑
s∈S y(u, s) = 1 ∀hu ∈ H (6)

y(u, s) · d(hu,µu,s, s) ≤ ∆(hu) ∀hu ∈ H,∀s ∈ S (7)
y(u, s) · θuk · λuk ≤ µ

u,s
k ∀hu ∈ H,∀s ∈ S (8)∑hu

k=1 µ
u,s
k ≤ Ĉu ∀hu ∈ H (9)∑

hu∈H
∑hu

k=1 µ
u,s
k ≤ Cs ∀s ∈ S . (10)

Indeed, (6) ensures that each chain is associated with a single
scheduled placement. (7) guarantees that the target maximum
delay of each chain is satisfied. (8) ensures a finite delay
for each VM. (9) verifies the bound of computing resources
allocated for each chain. Finally, (10) makes sure that the
capacity of each datacenter is not exceeded.

Costs. The system costs are due to migration, as well as
computation and bandwidth usage, as detailed below.

Migrating chain hu from datacenter s to datacenter s′

incurs a computational migration cost χm(u, s, s′). Let x(u, s)
denote the current placement indicator parameters, i.e.,
x(u, s) = 1 iff chain hu is currently placed on datacenter s.2

The migration cost incurred by a critical chain hu is then:∑
s 6=s′∈S

x(u, s) · y(u, s′) · χm(u, s, s′).

Each unit of computation allocated on datacenter s incurs
a computation cost χc(s). Finally, each unit of traffic being
routed across link (i, j) incurs a bandwidth cost χb(i, j).

2Note that x(u, s) are not decision variables to be determined, but rather
represent the current state of the deployment.
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Objective. Our objective is to minimize the cost function

φ(y,µ) =
∑

hu∈H

∑
s6=s′∈S

x(u, s) · y(u, s′) · χm(u, s, s′)

+
∑

hu∈H

∑
s∈S

y(u, s)

hu∑
k=1

µu,sk ·χ
c(s)+

∑
(i,j)∈L

b(i, j,y)·χb(i, j)

(11)
where b(i, j,y) denotes the overall amount of traffic (in bit/s)
that traverses link (i, j) when using placement y. Namely,
considering the traffic towards the datacenters and back:

b(i, j,y) =



∑
hu∈H

∑
s∈S

(i,j)∈P(pu,s)

y(u, s) · λu1 uplink

∑
hu∈H

∑
s∈S

(i,j)∈P(s,pu)

y(u, s) · λuhu+1 downlink.

(12)
Our problem, hereinafter referred to as the Deployment and

Migration Problem (DMP), is therefore given by:
min
y,µ

φ(y,µ) subject to (6)− (10). (13)

We can prove the following result on the DMP complexity.

Theorem 1. The DMP is NP-hard.

Proof: Consider the NP-hard partition problem [26],
where we are given a sequence of integers n1, . . . , nk, and
we seek a set N ⊆ {1, . . . , k} such that

∑
i∈N ni =(∑k

i=1 ni

)
/2. Without loss of generality, assume that ni ≥ 2

for all i (otherwise, we may simply consider the integers
n̂i = 2 · ni for all i as our input).

We now present a polynomial reduction from the partition
problem to the DMP. Consider a network with two datacenters,
s and r, where r is the root, and s is co-located with the
PoA of all requests. The processing capacity in both the root
and the PoA is Cs = Cr =

(∑k
i=1 ni

)
/2. Define requests

u = 1, . . . , n where chain hu has delay constraint ∆(hu) =
1

nu−1 . Each requested chain has a single VM, with rate λu1 =
λu2 = 1, and requires a processing capacity θu1 = θu2 = 1. The
network delay is zero. Observe that the delay constraint (7) of
chain i is satisfied only if it is allocated at least ni CPU units.
Furthermore, since Cs+Cr =

∑k
i=1 ni, a feasible solution for

DMP may allocate for chain i at most ni CPU units. It follows
that any feasible solution allocates exactly ni CPU units for
chain i. Hence, there exists a feasible solution for DMP for
this input iff there exists a solution to the partition problem.
The result follows.

IV. SOLUTION OVERVIEW AND MAIN RESULTS

The DMP’s objective (11) combines the placement decision
variables, y, and the allocation decision variables, µ. A closer
look shows that the chain placement and CPU allocation
problems are entangled, since each placement decision impacts
the CPU allocation required to satisfy the target delay of
the service. Our solution concept is based on decoupling the
chain placement and CPU allocation problems, which allows
applying a combinatorial approach to solving the DMP, and
studying the trade-offs inherent to our solutions. In more

TABLE I: Main notations

Symbol Description

Parameters: network (Sec. II-A)
G Network graph

D(G) The diameter of network graph G
S Set of datacenters
L Set of links

(i, j) Directed link connecting datacenters i and j
P(s, s′) Path connecting datacenter s to datacenter s′

Parameters: services, delays and capacities (Secs. II-B–II-C)
U Set of service requests
H Set of chains corresponding to U
hu Service chain (ordered list of VMs) serving u
hu Number of VMs in hu

pu PoA where request for hu is generated
∆(hu) Target delay [s] of chain hu

Ĉu
Maximum CPU units that may be allocated to chain hu based
on the SLA

Cs Overall processing capacity of datacenter s [cycles/s]
λu
k Input traffic load of VM vuk [bits/sec]

θuk
Required processing capacity for VM vuk ’s incoming traffic
[cycles / bit]

γu
k Bits per data units [bit]

Du
k (µu,s

k ) Computational delay [s] exhibited by VM vuk (1)
dc(hu,µu,s) Computational delay [s] of chain hu (2)

τ(i, j) Network delay experienced on link (i, j)
dn(hu, s) Network delay [s] of chain hu when located on server s (4)

Parameters: costs (Sec. III)
χm(u, s, s′) Cost of migrating chain hu from datacenter s to datacenter s′

x(u, s)
Placement indicator: true iff chain hu is currently hosted on
datacenter s

χc(s) Cost of allocating one CPU unit on datacenter s
χb(i, j) Cost of having one unit of bandwidth traverse link (i, j)

φ Objective function (11)
b(i, j,y) Amount of traffic traversing link (i, j) [bits/s] (12)

Decision variables (Sec. III)

y(u, s)
Placement indicator: true iff chain hu is scheduled to run on
datacenter s

µu,s
k

Integer allocation: expressing the number of CPU units allo-
cated for VM vuk on datacenter s

Sec. V
Su Set of delay-feasible datacenters of chain hu

µu,s
k CPU allocation for the k-th VM of chain hu on datacenter s
δuk Delay reduction function (14)

Sec. VI
T (s) The sub-tree rooted by datacenter s
s(u) Top datacenter in Su
H(s) The set of chains whose PoAs are in T (s)
µ̃(u) The minimum required CPU to serve request u as in (28)
TH′ Potential placement tree of H′
R Multiplicative resource augmentation factor
as Available processing capacity of datacenter s

detail, our solution comprises three steps: (i) solving the CPU
allocation problem (Sec. V), (ii) finding a feasible solution for
the chain placement problem (Sec. VI), and (iii) reducing cost
(Sec. VII). We now overview these steps.

A. Solving the CPU allocation problem

In Sec. V, we define a polynomial-time algorithm, called
GetFeasibleAllocations (GFA), that identifies for each chain
hu its set of delay-feasible datacenters, namely, the datacenters
on which it is possible to place hu, while meeting its target
delay. For each chain hu and delay-feasible datacenter s, GFA
finds an allocation µu,s that is provably minimal in terms of
the overall number of required CPU units.

B. Solving the chain placement problem

First, we note that given any allocation µu,s for all chains
hu and datacenters s, the DMP (13) becomes an integer linear
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Fig. 2: Example of the resource allocation dynamics and their
effect on delay and feasibility. The input chain details are given
at the top; the datacenter topology is given in the middle,
with all link delays and datacenter capacities set to 1 and
6 (resp.). The table at the bottom indicates: (i) the minimal
allocation µsi on datacenter si, (ii) the induced computational
delay dc(h,µsi), (iii) the network delay incurred for reaching
datacenter si, and (iv) the total delay d(h,µsi , si). As can
be seen, while datacenters s0, s1, s2 are feasible (each with its
CPU allocation), datacenter s3 is infeasible.

program (ILP). We note that the optimal solution for the linear
relaxation serves a lower bound for the DMP, and also serves
as a witness of feasibility.

The proof of Theorem 1 implies that even when the solution
for the CPU allocation problem is known (e.g., allocating ni
CPU units to VM i in the proof of Theorem 1), the DMP is
NP-hard. Hence, the following proposition holds.

Proposition 2. Finding a feasible solution to the chain place-
ment problem is NP-hard.

In Sec. VI, we address the hardness of the chain place-
ment problem using resource augmentation, i.e., assuming
that each datacenter has an augmented processing capacity.
We develop a polynomial-time algorithm, dubbed Bottom-Up
(BU). Further, we show an upper bound on the amount of
processing capacity augmentation required for BU to find a
feasible solution whenever one exists for the non-augmented
case.

C. Reducing cost

In Sec. VII we present the Push-Up (PU) algorithm, which
aims at reducing the cost of any given feasible DMP solution.
Then, we use BU and PU as building blocks of our inte-
grated algorithm Bottom-Up-and-Push-Up (BUPU) for finding
a minimal-cost solution to DMP while minimizing the amount
of resource augmentation.

V. ALLOCATING COMPUTATIONAL RESOURCES

In this section, we address the CPU allocation problem.
In particular, for each chain hu, we identify its set of delay-
feasible datacenters, denoted by Su. Then, for every chain hu

and datacenter s ∈ Su, we calculate the minimal number of
CPU units that one must assign to each VM in hu running
on s, in order to satisfy the target delay. Fig. 2 provides some
intuition on the allocation problem.

Algorithm 1 GFA(G, H̃)

1: for hu ∈ H̃ do . for each chain
2: Su = P(pu, r) . ordered list of datacenters from PoA to the root
3: for each s ∈ Su do . for each datacenter in Su, from PoA to the root
4: for k = 1, . . . , hu do . for each chain in the VM
5: µu,s

k = bθukλ
u
kc+ 1 . ensure finite computation delay

6: while dc(hu,µu,s) > ∆(hu)− dn(hu, s)and
∑hu

k=1 µ
u,s
k ≤ Ĉu do

. delay constraint is still unsatisfied and CPU is available
7: k∗ = arg max1≤k≤hu

{
δuk (µu,s

k )
}
. find VM with max del. reduction

8: µu,s
k∗ = µu,s

k∗ + 1 . increase CPU to reduce delays

9: if
∑hu

k=1 µ
u,s
k > Ĉu then . if not enough CPU capacity, s is infeasible

10: Su = Su \ P(s, r) . remove all the datacenters from s to the root
11: break . it is not worth anymore to go further towards the root
12: return Su, ∀hu ∈ H̃ and µu,s, ∀hu ∈ H̃, s ∈ S

A. The CPU allocation algorithm

Our polynomial-time CPU allocation algorithm, named
GetFeasibleAllocations (or GFA, for short), takes as input
the network graph G and a given set of chains H̃. GFA
computes the set of delay-feasible datacenters Su for each
chain hu ∈ H̃, and, for each such datacenter s, calculates
a CPU allocation vector µu,s satisfying the delay constraint
and minimizing the CPU allocated to hu on s. Formally,
µu,s ∈ arg minµ{‖µ‖1 | d(hu,µ) ≤ ∆s(h

u)}, where ‖·‖1 is
the `1 norm; such a CPU allocation is referred to as minimal
allocation.

GFA is detailed in Alg. 1. For each chain hu ∈ H̃, initially
all datacenters in P(pu, s) are assumed to be feasible (ln. 2).
For each feasible datacenter, going from the PoA towards the
root of the network, GFA initializes the CPU allocation for
each VM in hu to the minimal necessary to ensure a finite
computational delay (ln. 4–5). The algorithm then computes
(ln. 6-8) the minimum amount of CPU required to meet
the delay constraint, while not violating the bound (9) on
the computing resources allocated to the chain. This is done
using the method described below. Finally, once the current
datacenter s is delay infeasible, which by our model also
implies that all its ancestors are deemed infeasible, s and all
its ancestors are removed from the set of feasible datacenters
(ln. 9-11), and GFA returns the set of feasible datacenters, and
the corresponding minimal allocations (ln. 12).

Computing the minimal allocation. If the current alloca-
tion µ leads to a delay constraint violation, GFA increases
the total number of CPU units it uses by one using a gradient
method: it increments the number of CPU units allocated to the
VM that, owing to this change, maximizes the delay reduction
(ln. 7–8). To this end, we define the delay reduction function,
which captures the residual reduction in the computational
delay corresponding to increasing the CPU allocation of vuj
by one. Formally, for VM vuk and CPU allocation µ, we have:

δuk (µ) = Du
k (µ)−Du

k (µ+ 1) . (14)
As can be verified by algebraic manipulation, δuk (µ) is mono-
tonically decreasing for every µ > bθukλukc. Next, we prove
that our approach indeed finds a minimal CPU allocation.

B. Performance analysis

We begin by defining the B-minimal CPU allocation for a
given chain and CPU budget.
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Definition 3. A CPU allocation for chain hu on datacenter s
is B-minimal for a given CPU budget B, if it minimizes the
computational delay of hu on s while using B CPU units,
i.e.,

µ̃u,s(hu, B) = arg min
µ
{dc(hu,µu,s)| ‖µu,s‖1 = B}. (15)

To prove that GFA finds a minimal CPU allocation, we will
use the following lemma on B-minimal CPU allocations.

Lemma 4. Let µ∗ be a B-minimal allocation for chain hu

on datacenter s. Then, for any 1 ≤ i, j ≤ hu: δuj (µ∗j − 1) ≥
δui (µ∗i ).

Proof. Assume by contradiction that

δuj (µ∗j − 1) = Du
j (µ∗j − 1)−Du

j (µ∗j )

< Du
i (µ∗i )−Du

j (µ∗i + 1) = δui (µ∗i ). (16)
This implies that Du

j (µ∗j − 1) + Du
j (µ∗i + 1) < Du

j (µ∗j ) +
Du
i (µ∗i ). Consider the allocation µ′, defined as: µ′j = µ∗j − 1,

µ′i = µ∗i +1, and for any k 6= i, j: µ′k = µ∗k. Thus, dc(hu,µ′)−
dc(hu,µ∗) < 0, which contradicts the B-minimality of µ∗.

The following lemma shows that GFA never increases the
CPU allocation to a VM above some level, before it exploits
any chance to gain more delay reduction by increasing the
CPU allocated to any other VM in that chain.

Lemma 5. If δuj (a) > δui (b), GFA does not assign more than
b CPU units to vui before assigning at least a+ 1 units to vuj .

Proof. If a ≤ bθukλukc, GFA initializes µu,sj to at least a + 1
units (ln. 5), and the claim holds true in the first iteration of
the while loop. For any subsequent iteration, the above lemma
holds by construction (ln. 7–8) since GFA will not assign k∗ =
i (since it picks the VM that maximizes the improvement)
before vuj is assigned at least a+ 1 CPU units. Note that the
inequality δuj (a) > δui (b) is independent of any change made
to the allocation of CPU units to any VM distinct from both
i and j.

The following lemma bounds the `∞ distance between the
allocations that GFA considers, and any minimal allocation
using an identical budget.

Lemma 6. Let µ be the allocation for chain hu on dat-
acenter s in some iteration of GFA’s while loop, and let
B =

∑hu

k=1 µ
u,s
k . Let µ∗ denote a B-minimal allocation for

hu on datacenter s. Then, ‖µ− µ∗‖∞ ≤ 1.

Proof. Assume by contradiction that the ‖µ − µ∗‖∞ > 1.
Then, there exists an index i for which either (1) µi−1 > µ∗i ,
or (2) µ∗i − 1 > µi. We have now two cases.

Case 1: µi−1 > µ∗i . As B =
∑hu

k=1 µk =
∑hu

k=1 µ
∗
k, there

exists another index j 6= i s.t. µ∗j − 1 ≥ µj . Namely,
µi − 1 > µ∗i , µ∗j − 1 ≥ µj . (17)

By Lemma 4,
δuj (µ∗j − 1) ≥ δui (µ∗i ). (18)

Combining (17) and the fact that δu(·) is monotone de-
creasing, we have that δui (µ∗i ) > δui (µi − 1), δuj (µj) ≥

δuj (µ∗j − 1). Combining these inequalities with (18), we have
δuj (µj) > δui (µi − 1). However, applying Lemma 5 on this
latter inequality implies that GFA does not assign µi CPU
units for vui before assigning at least µj + 1 CPU units to vuj .
Hence, this case is impossible.

Case 2: µ∗i − 1 > µi. As B =
∑hu

k=1 µk =
∑hu

k=1 µ
∗
k, there

exists an index j 6= i s.t. µj − 1 ≥ µ∗j . Namely,
µ∗i − 1 > µi , µj − 1 ≥ µ∗j . (19)

Applying Lemma 4, while exchanging the roles of i and j, we
have δui (µ∗i − 1) ≥ δuj (µ∗j ). Combining (19) and the fact that
δu(·) is monotone decreasing, we obtain δui (µi) > δui (µ∗i −1).
Combining the latter two inequalities, we have

δui (µi) > δuj (µ∗j ). (20)
By setting a = µi and b = µ∗j in Lemma 5, we know that GFA
does not assign vuj more than µ∗j units before assigning to vui
at least µi+1 units. However, this contradicts our assumption
that vector µ assigns only µi CPU units to vui , while vuj is
already allocated some µj > µ∗j units. Therefore, also case 2
is impossible, and the thesis follows.

The following lemma shows that GFA considers only B-
minimal allocations.

Lemma 7. Let µ be the allocation in some iteration of GFA’s
while loop for chain hu on datacenter s, and let B = ‖µ‖1.
Then, µ is B-minimal.

Proof. Let µ∗ denote a B-minimal allocation for chain hu on
datacenter s, and assume by contradiction that µ is not B-
minimal. By Lemma 6, for any 1 ≤ i ≤ hu : |µi − µ∗i | ≤ 1.
Then we can partition the non-equal indices in µ and µ∗ into
K pairs, where pair k consists of two indices 1 ≤ ik, jk ≤ hu
s.t.

µ∗ik = µik − 1, µ∗jk = µjk + 1. (21)

Applying Lemma 4 with i = ik and j = jk, we have δujk(µ∗jk−
1) ≥ δuik(µ∗ik). Combining this with (21), we have
δujk(µjk) = δujk(µ∗jk − 1) ≥ δuik(µ∗ik) = δuik(µik − 1). (22)
Eq. (22) implies that either there exists k s.t. δujk(µjk) >

δuik(µik−1), or for all k, it holds that δujk(µjk) = δuik(µik−1).
In the former case, by assigning a = µjk and b = µik − 1 in
Lemma 5, we know that GFA will not assign µik CPU units
to vui before assigning at least µjk +1 CPU units to vuj . Since
the current allocation is µi units to vui , and µj units to vuj , a
contradiction arises. Thus, we have that for all k,

δujk(µjk) = δuik(µik − 1). (23)
We now show that if (23) holds, then the total delay

obtained by µ equals that obtained by µ∗, thus contradicting
the assumption that µ is not minimal.

By the definition of δ(·) in (14), we get
δuik(µik−1) = Du

ik
(µik−1)−Du

ik
(µik) = Du

ik
(µ∗ik)−Du

ik
(µik),

(24)
where the latter equation is by (21). Similarly, we have
δujk(µjk) = Du

jk
(µjk)−Du

jk
(µjk +1) = Du

jk
(µjk)−Du

jk
(µ∗jk),

(25)
Combining (23), (24) and (25), we obtain:
Du
ik

(µik)−Du
ik

(µ∗ik) +Du
jk

(µjk)−Du
jk

(µ∗jk) = 0. (26)
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By definition of K, the difference in computational delay due
to µ and µ∗ is

dc(hu,µ)− dc(hu,µ∗) =

hu∑
i=1

[
Du
i (µi)−Du

i (µ∗i )
]

=

K∑
k=1

[
Du
ik

(µik)−Du
ik

(µ∗ik) +Du
jk

(µjk)−Du
jk

(µ∗jk)
]

= 0.

(27)
By (27), the delay due to µ is the same as that due to µ∗,

thus contradicting our assumption on µ not being B-minimal.

By Lemma 7, the following corollary holds.

Corollary 8. For every chain hu and datacenter s, if there ex-
ists a feasible allocation for hu on s, then the allocation µu,s

given by GFA satisfies µu,s ∈ arg minµ{‖µ‖1 | dc(hu,µ) ≤
∆s(h

u)}, i.e., it minimizes the number of allocated CPU units
over all feasible allocations for hu on s.

Proof. As GFA increments the total used CPU budget by one
at each iteration (ln. 8), we know that the budget that GFA used
in the previous iteration, if exists, was B−1. By Lemma 7, no
other allocation obtains lower delay for chain hu with budget
B−1. Hence, no allocation satisfies the target delay constraint
using budget B − 1.

Run-time analysis: The time complexity of allocating
CPU to hu on s is Õ(Ĉu+hu). For each of the H chains, GFA
considers at most D(G) possible servers. Thus, the overall time
complexity of running GFA is Õ(|H| ·D(G) ·maxhu∈H(Ĉu+
hu)).

VI. FEASIBLE SOLUTION TO THE PLACEMENT PROBLEM

In light of the complexity of the placement problem (see
Proposition 2), we now introduce the BU algorithm, which
finds a feasible solution to chain placement with some resource
augmentation. In particular, after introducing some preliminar-
ies, we prove that, using some bounded resource augmentation,
BU always finds a feasible solution if such a solution exists
in the non-augmented case.

A. Preliminaries

Let µ̃ be a lower bound on the number of CPU units required
to successfully serve any chain instance. By Corollary 8, µ̃ can
be computed using the allocations µ found by GFA:

µ̃ = min
s∈S,u∈U

‖µu,s‖1 . (28)

Let T (s) denote the sub-tree rooted at datacenter s. Further,
denote by H(s) the set of chains whose PoAs are in T (s).
Denote by s(u) the top datacenter in Su (i.e., the farthest
datacenter from PoA pu that is delay-feasible for hu). Given
a set of chains H′ ⊆ H, we define the potential placement
tree of H′ as

TH′ =
⋃

hu∈H′
Su. (29)

An illustration clarifying the above notation is provided in
Fig. 3.

Figures/Toy example.pdf

Fig. 3: Example of placement tree. The PoA for requests u1,
u2, and u3 is s5, while that for requests u4, u5, and u6 is s3.
For each request, the top datacenter of the relevant chain is
denoted by s(u). The potential placement trees of {u1, u2, u3}
and of {u4, , u5, u6} are highlighted in yellow and blue (resp.),
while their union (T (s0)) is that of {u1, u2, u3, u4, u5, u6}.

B. Motivation for a Bottom-Up approach

When one looks at the problem of minimizing the placement
cost, it may seem prudent to try and place chains as high as
possible. Indeed, processing costs are lower the farther the
datacenter is from the chain’s PoA. For instance, running a
VM in a datacenter residing in the cloud is much cheaper than
running it at a MEC datacenter attached to the PoA, where
capacity is scarce and expensive. Such an approach can be
combined with a “back-pressure” mechanism, which tries to
push previously placed chains lower in the hierarchy, whenever
a request cannot be placed at its highest delay-feasible data-
center. However, when targeting a feasible placement, such a
mechanism might end up performing an exhaustive search.

To see this, consider a scenario where a chain hu, orig-
inating at PoA pu, cannot be accommodated in any of the
datacenters along the sequence Su, due to previously placed
chains. In such a case, there might be a unique sequence of
chains hu0 , . . . ,hut and a sequence of datacenters s0, . . . st+1,
such that (i) s0 ∈ Su, (ii) hui is currently placed in si, for
i = 1, . . . , t, and (iii) re-placing hui in si+1 for i = 1, . . . , t,
and placing hu in s0 is feasible (given the placement of all
other chains already handled). Since there is no clear criteria
for identifying such a sequence of chains and datacenters, sim-
ply testing all back-pressure adjustments may be prohibitively
costly. Since such a sequence may be unique (i.e., no other
sequence can meet the above requirements), performing such
an exhaustive search might be necessary to find a feasible
solution.

The above scenario serves as a motivation for our Bottom-
Up (BU) algorithm described in the sequel, which, by design,
avoids such predicaments altogether. We stress that the BU
algorithm is meant to find a feasible solution efficiently. Once
such a solution is found, we enhance it by pushing-up chains
to decrease the total cost, as detailed in Sec. VII.
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Algorithm 2 BU (G, H̃, {µu,s}u∈U,s∈S , {Su}u∈U ,a)

1: a← a after releasing resources of chains in H̃ . Release resources
2: y ≡ 0 . Init placement
3: for each datacenter s in DFS order do
4: for hu ∈ H̃ ∩ H(s) in non-decreasing order of |Su \ T (s)| do
5: if as ≥ ‖µu,s‖1 then . Check if enough residual capacity
6: y(u, s) = 1 . Deploy the chain
7: as = as − ‖µu,s‖1 . Update the residual capacity
8: else if s(u) = s then . Check if the top datacenter has been reached
9: return y ≡ 0, a ≡ 0 . Infeasible

10: return y, a

C. The BU algorithm

The BU algorithm tries to place every chain as low (namely,
closest to the corresponding PoA) as possible, and climbs
higher only when there is insufficient processing capacity in
any of the lower levels datacenters. While this approach may
seem a poor choice in terms of cost, it is effective in ensuring
a feasible placement. Intuitively, if the BU algorithm fails to
place some chain, then there exists a sub-tree that is over-
loaded with service requests, so that other algorithms are also
unlikely to find a feasible solution. Our algorithm will be using
an augmented processing capacity, namely, BU may allocate
on datacenter s up to R · Cs CPU units, where R ≥ 1 is the
multiplicative resource augmentation factor. We denote by as
the currently available (i.e., residual) processing capacity in
datacenter s during the execution of BU.

BU is detailed in Alg. 2. It gets as input the network graph
G; a set H̃ of chains to be placed or migrated; the CPU
allocation and the set of delay-feasible datacenters of each
chain; and the currently available processing capacity a. Given
the above inputs, BU computes placement y and the new
residual available processing capacity a. BU first releases the
resources of all the chains, that will potentially be re-placed
(ln. 1). Then, BU scans the datacenters in a Depth First Search
(DFS) order, and for each datacenter s in this scan, it tries to
deploy yet unplaced chains on s, while satisfying the (residual)
capacity constraint on s (ln. 5). The yet unplaced chains are
scanned in such a way that chains hu for which there are fewer
remaining placement options are considered first. The number
of remaining placement options is the number of datacenters
that are delay-feasible for hu but found above s, namely
|Su \ T (s)|. In case a chain cannot be placed on any of its
feasible datacenters, BU returns an empty placement, which
serves as a signal that the problem is infeasible (as proved in
the sequel).

D. Ensuring feasibility

We now upper-bound the amount of processing capacity
resource augmentation, henceforth R, that guarantees that BU
finds a feasible solution, if such a solution exists in the case
with no resource augmentation. Intuitively, our proof shows
that if BU fails, then there exists a sub-tree TH′ that is over-
loaded by some set of chains H′ that must be placed on TH′ .
Further, we show that in such a case any algorithm that does
not use augmented processing capacities will fail as well.

We begin by characterizing the case where BU may fail to
place a chain on some datacenter s.

Definition 9. A datacenter s is almost-full if as <
maxu∈U Ĉu, and a set of datacenters S ′ is almost-full if every
s ∈ S ′ is almost-full.

The notion of an almost-full datacenter helps to upper-
bound the amount of resource augmentation used by BU.
Further, our evaluation study in Sec. VIII shows that the
amount of resource augmentation used by BU is significantly
lower than our worst-case guarantees. The following lemma
provides a lower bound on the number of chains that BU places
on a datacenter before it becomes almost-full.

Lemma 10. If s is almost-full, then BU has placed on s at
least bR · Cs/maxu∈U Ĉuc chains.

Proof. The augmented processing capacity on datacenter s is
R ·Cs. Now BU allocates at most maxu∈U Ĉu CPU units per
chain. The result follows.

In the sequel we assume that R · Cs/maxu∈U Ĉu is an
integer. The following claim follows from the fact that BU
attempts to deploy any unplaced chain hu as close as possible
to pu.

Lemma 11. If BU tries to place chain hu on datacenter s,
then all the datacenters in Su below s are almost-full.

The following lemma follows directly from the order in
which unplaced chains are considered at any datacenter.

Lemma 12. Consider two chains, hu, hu
′
, unplaced when

considering datacenter s ∈ Su ∩ Su′ . Assume that (i) BU
places hu

′
on s before it tries to place hu on s, and (ii) Su is

almost-full after BU terminates. Then Su′ is also almost-full
after BU terminates.

Proof. Let s′ be a datacenter in Su′ . We will show that s′ is
almost-full. Consider three cases, corresponding to s′ being a
descendent of s, an ancestor of s, or equals to s.

Case 1: s′ is a descendent of s. By condition (i), s places
hu
′
. Hence, by Lemma 11, all the datacenters in Su′ below s

are almost-full. It follows that s′ is almost-full.
Case 2: s′ is an ancestor of s. By condition (i) and the order

in which BU considers the chains (ln. 4 in Alg. 2), we know
that |Su′ \ T (s)| ≤ |Su \ T (s)|. In addition, s ∈ Su ∩ Su′ .
Combining the reasoning above, every ancestor of s belonging
to Su′ belongs also to Su. In particular, s′ is an ancestor of s
belonging to Su′ , and therefore s′ ∈ Su. As Su is almost-full,
s′ is almost-full.

Case 3: s′ = s. As it is given that s ∈ Su and Su is almost-
full, s′ is almost-full.

The following lemma shows that if BU fails, then there
exists a set of chains requiring a total amount of CPU resources
that is higher than the overall (augmented) processing capacity
of the relevant datacenters.

Lemma 13. If BU fails to place a chain, then there exists a
set of chains H′ s.t.

|H′| > R

maxu∈U Ĉu

∑
s∈TH′

Cs . (30)
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Algorithm 3 Constructing H′ satisfying (30)
1: hũ = chain that BU failed to place, unmarked
2: H′ =

{
hũ
}

3: for each unmarked chain hu ∈ H′ do
4: mark hu

5: for each un-visited datacenter s from s(u) to pu do
6: mark s as visited
7: for each unmarked chain hu′ placed on s do

. w.l.o.g., in reverse order of placement by BU
8: add hu′ to H′, unmarked

Proof. Let hũ be the chain that BU fails to place. Our
construction of H′ is detailed in Alg. 3, which works as
follows. First, it initializes H′ to

{
hũ
}

; then, it repeatedly
visits all the datacenters that are delay-feasible for chains that
already belong to H′, and adds to H′ all the chains placed
on those datacenters. The algorithm finishes once there are no
further datacenters to visit and no further chains to add, and
returns H′.

We first provide some intuition for Alg. 3, and for the va-
lidity of the claim. Consider Fig. 3, and assume for simplicity
that the network delay is zero, R = 1, and maxhu∈H Ĉu =
maxs∈S Cs = 1. Hence, once BU places a single chain on a
datacenter, the datacenter becomes (almost) full.

Fig. 3 depicts a scenario where BU fails to place chain hu6 .
Hence, algorithm 3 assigns ũ = u6 (ln. 1), and H′ = {hu6}
(ln. 2). Next (ln. 3), the algorithm visits every datacenter on
the path from s(u6) = s0 to pu6

= s3. Namely, the algorithm
visits s0, s1 and s3, and consequently adds to H′ all the chains
placed on these datacenters (ln. 7-8). At this stage, we have
H′ = {hu6 ,hu3 ,hu5 ,hu4}.

Next, the algorithm visits the datacenters belonging to Su3

that were not visited yet, namely, s2 and s5. Consequently,
the algorithm adds hu2 and hu1 , that are placed on these
datacenters, to H′.

At this stage, after marking each unmarked chain in H′,
there are no more un-visited datacenters. The algorithm then
halts with H′ = {hu1 ,hu2 ,hu3 ,hu4 ,hu5 ,hu6}. By the defi-
nition of the potential placement tree (29), TH′ consists of all
the datacenters that are delay-feasible for chains belonging
to H′, namely, TH′ = {s0, s1, s2, s3, s5}. Recall that we
assume that R = 1 and maxu∈U Ĉu = Cs = 1. Hence,
|H′| = 6 > 5 = R

maxu∈U Ĉu

∑
s∈TH′

Cs, and the claim holds
true.

We now turn to prove the claim. We first show that TH′
is almost-full. We use induction over the chains added to H′
(ln. 8 in Alg. 3). For the base, we have H′ =

{
hũ
}

. As BU
fails to place ũ, we know that TH′ = T{hũ} = {Sũ} is almost-
full.

For the induction step, consider a chain hu
′

that is added
to H′ while considering datacenter s (ln. 8 in Alg. 3). Let hu

denote the concrete chain considered in ln. 3 of the algorithm
at that iteration. Alg. 3 visits datacenters in a top-down order
(that is, advancing towards the leaves), while BU visits data-
centers in DFS-order, i.e., in bottom-up order (that is, from the
leaves towards the root). Furthermore, Alg. 3 handles chains
in reverse order of placement by BU. It therefore follows
that both hu and hu

′
were unplaced when BU considered

datacenter s, and s ∈ Su ∩ Su′ . Hence, BU placed hu
′

on s

before it tried to place hu. By the induction hypothesis, Su
is almost-full. Hence, by Lemma 12, Su′ is also almost-full.
Hence, after hu

′
is added to H′, TH′ is still almost-full. We

therefore proved by induction that when Alg. 3 halts, TH′ is
almost-full.

As TH′ is almost-full, every datacenter s ∈ TH′ is
almost-full. Hence, by Lemma 10, BU placed at least

R·Cs

maxu∈U Ĉu
chains on each such datacenter s. Hence, the

overall number of chains that BU placed on TH′ is at least
R

maxu∈U Ĉu

∑
s∈TH′

Cs. By the construction of H′, every chain
that BU placed on TH′ belongs to H′. Hence, H′ contains all
the R

maxu∈U Ĉu

∑
s∈TH′

Cs chains that BU placed on TH′ . In
addition, H′ includes hũ, and the result follows.

After having characterized the scenarios where BU fails, the
following lemma shows a sufficient condition for the problem
being infeasible without resource augmentation (recalling the
definition of µ̃ in Eq. (28)).

Lemma 14. If there exists a set of chains H′ s.t. |H′| · µ̃ >∑
s∈TH′

Cs, then the problem is infeasible without resource
augmentation.

Proof. Any feasible solution must allocate for each chain hu ∈
H′ at least µ̃ CPU units on some datacenter(s) in TH′ . The
result follows.

The theorem below, which is our main result in this section,
now follows from combining Lemma 13 and Lemma 14.

Theorem 15. Assume BU uses in each datacenter a multi-
plicative resource augmentation of processing capacity

R =
maxu∈U Ĉu

µ̃
. (31)

Then, BU finds a feasible solution whenever such a solution
exists in a system without resource augmentation.

Proof. Assume that BU fails. Assigning the value of R (31)
in Lemma 13, there exists a set of chains H′ s.t.

|H′| > 1

µ̃

∑
s∈TH′

Cs.

Applying Lemma 14, the result follows.

VII. ALGORITHMIC SOLUTION TO THE DMP

In this section, we use the algorithms for the CPU allocation
problem (Sec. V) and for the placement problem (Sec. VI)
as building blocks for solving the DMP. We first present an
algorithm that takes as input a feasible solution for DMP,
and greedily reduces its cost (Sec. VII-A). Later, we present
our algorithmic solution for DMP, BUPU, which targets a
minimal cost solution, using the minimum amount of resource
augmentation (Sec. VII-B).

A. Reducing costs

We first note that the placement costs and latency constraints
are separable between different chains. That is, for any two
chains hu, hu

′
, if hu is placed on datacenter s using CPU

allocation µu,s, the cost of the placement and CPU allocation
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Algorithm 4 PU(G, H̃, {µu,s}u,s {Su}u, feasible y,a)

1: while True do
2: for hu ∈ H̃ in non-decreasing order of y(u, s) · µu,s do
3: push hu as high as possible in the tree as long as this decreases hu’s cost,

and update y, a accordingly
4: if did not succeed to push up any chain then
5: break
6: return y, a

Algorithm 5 BUPU (G,H, H̃,a)

1: {µu,s}hu∈H̃,s∈S , {Su}hu∈H̃ = GFA(G, H̃)
2: y, a = BU (G, H̃, {µu,s}hu∈H̃,s∈S , {Su}hu∈H̃ , a)
3: if y 6≡ 0 then . found a feasible solution
4: y, a = PU(G, H̃, {µu,s}hu∈H̃,s∈S , {Su}hu∈H̃ ,y, a)
5: else
6: y, a = feasible solution with minimal resource augmentation . binary search

using BU(G,H, {µu,s}u∈U,s∈S , {Su}u∈U , a)
7: y, a = PU(G,H, {µu,s}u∈U,s∈S , {Su}u∈U ,y, a)

of hu, and the latency inflicted on hu, are independent of the
placement and CPU allocation of hu

′
.

Based on this observation, we devise our algorithm, PushUp
(or PU for short), for reducing the cost of a given feasible
solution. PU, formally described in Alg. 4, scans the pro-
vided feasible solution, and greedily tries to improve it by
pushing each chain as high up as possible in the network
topology (while reducing the cost). PU considers chains in
non-increasing order of the CPU units allocated to them, thus
prioritizing chains that potentially offer the largest gain from
being pushed-up.

Intuitively, this “push-up” operation serves two goals: (i) de-
creasing the total cost and, (ii) decreasing the total number
of migrations, as a datacenter located higher in the tree can
serve users located in a larger physical area. Importantly, PU
always outputs a feasible solution. Hence, one may run PU
as a heuristic to improve a feasible solution found by any
algorithm solving the placement problem.

Run-time analysis: PU moves a chain to another datacen-
ter only if this reduces the cost. Hence, once it moves chain hu

from a datacenter, it never moves it back (due to separability).
Thus, the number of iterations of the while loop is at most∣∣∣H̃∣∣∣×height(G). As each iteration requires O(

∣∣∣H̃∣∣∣D(G)) steps,

the time complexity of PU is O(
∣∣∣H̃∣∣∣2D(G)2).

B. The BUPU algorithm

Theorem 15 provides an upper bound on the amount of
resource augmentation that BU requires to find a feasible
solution for the placement problem. However, the amount of
resource augmentation needed in practice might be signifi-
cantly lower than that provided by the theorem. Our algorithm
for solving the DMP, Bottom-Up Push-Up (BUPU), aims
at finding a feasible, minimal-cost solution while using a
minimal amount of resource augmentation. The algorithm is
summarized in Fig. 4, and formally defined in Alg. 5.

The algorithm gets as input the structure of the network
G, and the set of chains H. These inputs are used by all
the modules of the algorithm (in Fig. 4 we omit the arrows
connecting G and H to each module to improve clarity). In

addition, BUPU gets the set of critical and newly arriving
chains H∗ ⊆ H, and the currently available resources a.

BUPU first runs GFA to obtain for every critical or newly
arriving chain hu its list of delay-feasible datacenters Su,
and the minimal CPU allocation required for placing hu

on each server belonging to Su (ln. 1). Recall that this
minimal CPU allocation is denoted µu,s. Next, BUPU runs
BU to see if a feasible solution exists given the current
resource augmentation (ln.2). If so, then PU is applied on
the set of critical and newly arriving chains to reduce the
cost (ln. 4). However, if BU does not find a feasible solution
when considering (re)placing only critical and newly arriving
chains, the algorithm turns to solve the placement problem
for all chains in the system, to ensure feasibility. In this case,
BUPU might end up “reshuffling” the placement of many of
the chains. To adjust the amount of resource augmentation,
BUPU performs a binary search for the minimal amount
of resource augmentation required for obtaining a feasible
solution (ln. 6). Given a feasible solution that minimizes the
amount of resource augmentation, BUPU runs PU on all the
chains, to reduce the solution cost (ln. 7).

Intuitively, using more resource augmentation allows locat-
ing more chains in the cloud, thus reducing both the compu-
tation costs, and the need for future migrations. Hence, there
exists a tradeoff between the amount of resource augmentation,
and the solution cost. We study this tradeoff in Sec. VIII-C.

VIII. NUMERICAL EVALUATION

In this section, we evaluate BUPU against existing alter-
natives and highlight some trade-offs, thus providing insights
that go beyond our analytical results.

A. Simulation settings

We now describe the settings of our baseline scenario, and
later vary some of them to study their impact on performance.

Service area. We consider two real-world scenarios, captur-
ing mobility patterns with different characteristics. We focus
on the centers of the cities of Luxembourg and Principality of
Monaco, using mobility traces [27], [28] and real-world an-
tenna locations, publicly available in [29]. For each simulated
area, we consider the antennas of the cellular telecom provider
having the largest number of antennas in the simulated area.
The settings of the service areas are detailed in Table II, which
details also some traffic parameters, which we shortly explain.
For both traces we consider the rush hour period between 7:30
am and 8:30 am.

Network and datacenters. Our simulated networks are
illustrated in Fig. 5, where each PoA is co-located with a
leaf datacenter. At each decision period, each service chain is
associated with the nearest PoA datacenter. Figures 5a and 5d
depict a Voronoi diagram of the simulated areas. The network
topology connecting the datacenters is a 6-height tree, struc-
tured as follows. Denote a topology level by ` ∈ {0, 1, . . . , 5},
with ` = 0 corresponding to the leaf datacenters (co-located
with the PoAs), and ` = 5 corresponding to the root datacenter.

We build levels 5, 4, 3, 2, 1 in Luxembourg’s network by
recursively partitioning the simulated area into 1, 4, 16, 64, 256
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Fig. 4: Structure of the BUPU algorithmic solution.

TABLE II: Simulated scenarios

simulated telecom antennas #distinct avg. traffic avg. density linear density speed
area (km2) provider (#PoAs) vehicles (#vehicles/s) (#requests/km2) (#vehicles/km) (km/h)

Luxemburg 6.8× 5.7 Luxembourg Post 1524 25,497 2191 56 2.48 15.4
Monaco 3.1× 1 Monaco Telecom 231 13,788 7121 2297 32.7 9.0

rectangles, respectively. Namely, each datacenter at level ` ∈
{5, 4, 3, 2} has 4 children, each of them responsible for 1/4
of its area. The children of each datacenter at level ` = 1 are
the PoAs (antennas and datacenters), of the telecom provider
Luxemburg Post, located in its rectangle. Finally, if no PoAs
exist in a certain rectangle, the respective datacenters are
pruned from the tree. Figures 5b and 5c detail the four top
levels in Luxembourg’s network.

Monaco’s network is built in a similar fashion to that of
Luxembourg. However, as Monaco’s center makes a long,
narrow rectangle (3.1 km× 1 km), at the top-level (level 5), we
partition the simulated area into three horizontal almost-square
rectangles. We build levels 3, 2, 1 by recursively partitioning
these squares into quadrants, so that levels 4, 3, 2, 1 comprise
3, 12, 48, and 192 datacenters, respectively. Finally, the leaf
datacenters are the 231 antennas (and co-located datacenters)
of Monaco Telecom. Figures 5e and 5f detail the three highest
levels in Monaco’s network. Note the pruned datacenters in
Fig. 5f, corresponding to areas where no PoAs exist (e.g.,
areas in the sea).

The datacenter processing capacity depends upon the level
` and is set to ` ·Ccpu, for a given Ccpu, to reflect the increase
of datacenter capacities when moving from the edge to the
cloud. The total link delay τ(i, j) is set to 2 ms for every
link (i, j), resulting in a maximum round trip network delay
of 20 ms from the PoA (level 0) to the root (level 5). Given
the minimal allocations obtained by GFA, we use the ILP
relaxation of the problem, as discussed in Sec. IV-B. Using
this ILP, through binary search, one can find the minimal Ccpu
for which there exists a feasible solution for the relaxation.
This capacity is denoted by Ĉcpu, and serves as the baseline
value of the CPU available at every server, where we consider
resource augmentation with respect to this value. We note that
Ĉcpu serves as a lower bound on the required capacity for such
capacity allocation settings.

Traffic and mobility. To characterize the traffic in the
simulated scenarios, we consider the linear vehicle density,
defined as the average number of cars per km of lane3. Fig. 6
depicts the linear vehicle density within the “coverage area” of
each datacenter at levels 1, 2, 3, 4. Note the significantly higher
values in Monaco’s scenario, capturing the heavier traffic in
this network.

3A lane is a uni-directional path on the road; a single road may contain
one or more lanes in each direction.

Fig. 7 captures the average number of cars that have moved
to another rectangle (or left the simulated area) during the
sampling period. This can be seen as the offered migration
rate, since a car changing cell may dictate migrating the
corresponding service chain. The higher traffic density in
Monaco is translated to lower mobility.

Consider again Table II. The table presents the average
number of active vehicles, and the average demand density,
defined as the number of service requests (vehicles) per square
kilometer. Observe that Monaco’s higher linear vehicle density
results in a significantly lower average speed (9.0 km/h in
Monaco vs. 15.4 km/h in Luxembourg).

Services and service chains. We consider two types of
time-critical automotive safety services, one requiring a max-
imum delay of 10 ms (e.g., collision avoidance [30]) and the
other a maximum delay of 100 ms (e.g., see-through [31]). For
simplicity of description, we hereinafter refer to the services
with the tighter delay constraints of 10 ms as RT (real-time)
services, and we refer to the corresponding chains as RT
chains. As reported in [30], a service chain consists of 3 VMs.
Also, for each chain hu, θu1λ

u
1 = θu3λ

u
3 = 200 MHz, and

θu2λ
u
2 = 1 GHz, so as to reflect a chain with a front-end and

back-end VM with low computation load and a central VM
with high computation load. For simplicity, we assume γuk θ

u
k

to be a constant. Upon entering the considered geographical
area, each vehicle requests one of the two services at random,
with some probability, to be defined later.

Cost parameters. We choose the cost values so that all the
three components of our objective function in (11) – namely,
computation cost, bandwidth cost, and migration cost – are
no more than an order of magnitude apart, and none of them
becomes negligible. The cost of 100 MHz of CPU at level `
is χc = 25−` cost units, to reflect the decrease in computation
costs when moving from the edge to the cloud [?], [4]. The
bandwidth cost is χb = 3 cost units, while the migration cost
is χm = 600 cost units.

Note that by this choice of parameters, we have the compu-
tation cost of a chain greater than 14 ·25−` (due to our choice
of θ · λ above), which ranges between 14 and 448, depending
on the level. Furthermore, the bidirectional bandwidth cost of
a chain placed on level ` is 3 · 2 · `, which is between 0 and
30, depending on the level.

Benchmark algorithms. We set the default decision period
to T = 1 s, and assume that there exists a mobility prediction
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(a) Luxembourg’s cell coverage

Figures/Lux/Lux_sim_area_w_grid_cropped.pdf

(b) Luxembourg’s datacen-
ters coverage area

Figures/Lux/Lux_tree_cropped.pdf

(c) Luxembourg’s datacenters network

(d) Monaco’s cell coverage

Figures/Monaco/Monaco_sim_area_w_grid_cropped.pdf

(e) Monaco’s datacenters coverage area

Figures/Monaco/Monaco_tree_cropped.pdf

(f) Monaco’s datacenters network

Fig. 5: The service network in Luxembourg (top) and Monaco (bottom). Figures 5a and 5d present Voronoi diagrams of the
PoAs, corresponding to the leaves (level 0). Figures 5b and 5e illustrate the iterative partition of the area into rectangles. The
rectangles highlighted in yellow, pink, blue, and green, correspond to levels 5 (root), 4, 3, and 2, respectively, in the network,
as depicted in Figures 5c and 5f. Some of the leaves in Monaco’s datacenters network are pruned from the tree, as no PoAs
exist in the respective rectangles.
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Fig. 7: Average number of vehicles leaving a rectangle every
second during the 7:30-8:30 am interval in Luxembourg (top)
and Monaco (bottom).

scheme that associates each vehicle with the closest PoA in the
next decision period. Based on this prediction, we run GFA

to get the CPU allocation µ for each chain, as detailed in
Sec. V. This allows us to fix the CPU allocations and compare
our approach to existing solutions for the placement prob-
lem. Notably, if running placement without GFA, alternative
deployment solutions (not dealing with CPU allocation and
unaware of all the constraints in the DMP) will get infeasible
solutions most of the time. For our comparison, we consider
the following benchmarks:

Lower-bound (LBound): Given the allocation, we use the
ILP discussed in Sec. IV-B and solve the linear relaxation
of this problem. This provides a lower bound on the cost of
any feasible solution for the placement problem. In contrast to
our algorithm BUPU, the fractional solution may place parts
of the same chain (or even “fractions of VMs”) on distinct
datacenters. Furthermore, the LP formulation considers at each
iteration all the chains in the system (not only the critical
or newly arriving chains), thus significantly increasing the
possible solution space. Hence, LBound provides a lower
bound on the minimal cost for the placement problem.

First-fit (F-Fit): This scheme places each chain on the first
delay-feasible datacenter with sufficient available capacity on
the path from the root to the chain request’s PoA.

CPVNF [8]: This algorithm orders the critical and newly-
arriving chains in a non-increasing order of the CPU capacity
they require, if placed on an edge datacenter. It then places
each such chain on the feasible available datacenter incurring
the lowest cost according to (11). This benchmark is an
adaptation to our problem of the CPVNF algorithm [8], which
was used as a benchmark also in [32].

Feasibility. Our BUPU algorithm, as well as F-Fit and
CPVNF, first considers only critical and newly arriving chains;
if merely (re)placing these chains does not yield a feasible
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solution, the algorithm considers placing from scratch all
the chains in the system. Thus, referring to the framework
presented in Fig. 4, the benchmark algorithms (F-Fit and
CPVNF) are used instead of BU and PU. Note that our
comparison methodology over-estimates the performance of
our benchmark algorithms, as we give them the same (optimal)
solution for the CPU allocation problem (found by GFA) “for
free”.

Simulation methodology. The performance of LBound is
deterministic. However, the performance of F-Fit, CPVNF and
BUPU depends upon the arbitrary order of handling requests to
which the algorithm in question gives the same priority. Hence,
in each experiment we run each of these three algorithms 20
times, considering a random order of handling the requests.

The simulator has been developed in Python and it is fully
available on [33].

B. Resources required for finding a feasible solution

As the first step, we study the resource augmentation
required by each algorithm to find a feasible solution. We
focus on ten minutes of the trace, referring to a busy morn-
ing rush hour (08:20-08:30), with 6,859 and 9,351 distinct
vehicles passing in the simulated area in Luxembourg and
Monaco, respectively. We vary the ratio of RT chains, i.e.,
corresponding to requests with a maximum delay of 10 ms.
For each setting, we use binary search to find the minimum
amount of resources (captured by the minimum CPU at the
leaf datacenters) required by the considered algorithm to find
a feasible solution for every 1-second slot along the 10-minute
trace.

Fig. 8 shows the results of this experiment. The amount
of processing capacity required by BUPU is extremely close
to the lower bound (LBound) in the Luxembourg scenario
(Fig. 8a), and perfectly matches it in the Monaco one (Fig. 8b).
In contrast, the processing capacity required by CPVNF and
F-Fit for finding a feasible solution is much higher: in Luxem-
bourg’s scenario, CPVNF and F-Fit typically need a processing
capacity that is 50%-100% higher than the capacity required
by BUPU.

As expected, the amount of resources required for obtaining
a feasible solution consistently increases for a larger fraction
of RT chains. This happens because tighter timing constraints
may require allocating more CPU resources for each chain,
to decrease the computational delay. Further, RT service
requirements also dictate placing the chain close to the edge
datacenter, thus reducing the use of processing capacities at
higher-level datacenters. However, in the Luxembourg sce-
nario, the processing capacity required by BUPU with 100%
of RT chains is still lower than that required by CPVNF
and F-Fit when no RT chain is present. Finally, comparing
the Luxembourg and Monaco scenarios, we note that the
higher car density in Monaco, and the smaller number of leaf-
datacenters in that scenario (only 231 in Monaco, compared
to 1,524 in Luxembourg), dictate using higher computation
capacity in the leaf datacenters for finding a feasible solution.

TABLE III: Normalized cost of chain deployment and migra-
tion vs. resource augmentation. The costs are normalized with
respect to the cost obtained by the lower bound (LBound). An
infinite cost indicates that the algorithm cannot find a feasible
solution

Luxembourg

Ccpu/Ĉcpu
Normalized Cost

BUPU F-Fit CPVNF
1.00 ∞ ∞ ∞
1.06 1.76 ∞ ∞
1.50 1.91 ∞ ∞
2.00 1.17 ∞ ∞
2.35 1.06 1.06 ∞
2.40 1.06 1.06 1.06
2.50 1.05 1.05 1.05

Monaco

Ccpu/Ĉcpu
Normalized Cost

BUPU F-Fit CPVNF
1.000 ∞ ∞ ∞
1.002 1.36 ∞ ∞
1.50 1.08 ∞ ∞
1.58 1.09 1.10 1.10
2.00 1.05 1.05 1.05
2.50 1.01 1.01 1.01

TABLE IV: Normalized migration cost vs. resource augmen-
tation

Ccpu/Ĉcpu

1.10 1.50 2.00
Luxembourg 639,609 556,739 84,138

Monaco 194,236 12,032 8,702

C. Cost comparison

We now consider 30% of RT chains and compare the costs
obtained by different algorithms. Similarly to Sec. VIII-B, here
we also focus on ten minutes of the trace, referring to a busy
morning rush hour (08:20-08:30).

Tab. III shows the average cost per second for each
algorithm when varying the resource augmentation factor,
Ccpu/Ĉcpu. To make a meaningful comparison, the costs are
normalized with respect to the cost obtained by LBound for
the same amount of resources. The table shows the normalized
costs when the resource augmentation factor varies between
1 and 2.5. In addition, for each scenario and algorithm, the
table presents the minimal amount of resource augmentation
for which the considered algorithm finds a feasible solution
with a confidence level of at least 99%. When no feasible
solution is found, the corresponding cost is infinite.

Interestingly, for a wide range of resource augmentation,
only BUPU finds a feasible solution. When the resource
augmentation is very small (e.g., only 100.2% of the resources
required by LBound for finding a feasible solution in the
Monaco scenario), the cost of BUPU’s solution is significantly
higher than that of LBound. However, when increasing the
amount of resources, the gap between BUPU and LBound
reduces very substantially. As for F-Fit and CPVNF they need
a significant resource augmentation for finding a feasible solu-
tion, e.g., 2.4 times the processing capacity used by LBound
in the Luxembourg scenario. Finally, for a high amount of
resource augmentation (i.e., when resources are abundant), all
strategies provide a solution of comparable cost.

Tab. IV, instead, captures the impact of the resource aug-
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Figures/Lux/RT_prob_sim_Lux.post.antloc_256cells.poa2cell_Lux_0820_0830_1secs_post.poa.res.pdf
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Fig. 8: Minimum required processing capacity for finding a
feasible solution when varying the ratio of RT service requests.

mentation on the migration cost experienced by BUPU: the
larger the resource augmentation, the lower the migration cost
is. Indeed, a tight resource budget forces BUPU to migrate
many, even non-critical, chains to find a feasible solution.
On the other hand, high resource augmentation allows BUPU
to find a feasible solution while placing more chains at a
higher network level, thus reducing the current overall cost
and mitigating the need for future migrations when the users
move.

D. Decision period

Next, we focus on the impact of decision period T on the
migration cost and on the SLA violation. To this end, we
consider the 07:30-08:30 trace, and vary T . The amount of
CPU is set to 110% the minimal capacity that BUPU needs for
finding a feasible solution when T = 1. This choice enforces
tight capacity constraints, while being sufficient for allowing
BUPU to find a feasible solution, even when varying decision
period T .

Fig. 9a depicts the cost of migrating critical and non-critical
chains, as T varies. The overall migration cost is governed by
non-compulsory migrations (namely, migrations of non-critical
chains) that the algorithm occasionally performs, as it cannot
find a feasible solution otherwise. In such a case the algorithm
is forced to “reshuffle” the placement of possibly many chains,
incurring a high overall migration cost (well beyond that
imposed by critical chains alone). Clearly, increasing T leads
to a lower cost of such non-compulsory migrations, as a
smaller T implies reducing the number of times the algorithm
runs during the 1-hour trace, and in particular it reduces
the number of such potential “reshuffles”. The migration of
critical chains, instead, may be considered compulsory, and is
determined mainly by the user mobility, and not by decision
period T . Correspondingly, in the Monaco scenario, the cost
of migrating critical chains hardly changes when varying T . In
the Luxembourg scenario, however, the cost of critical chains
migration slightly decreases when increasing T .

To better understand this phenomenon, consider Fig. 9b,
showing the cost of migrating critical and non-critical chains,
but now normalized per decision (i.e., per single run of
BUPU). We consider that every second, some number X of
chains become critical. One can consider a pessimistic esti-
mator, such that when using a decision period of T seconds,
the number of chains that become critical during the decision
period is X · T . In the Monaco scenario, the per-decision
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(a) Cost of migrating critical and non-critical chains during the
1-hour trace in Luxembourg (left) and in Monaco (right).
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(b) The per-decision cost of migrating critical and non-critical
chains in Luxembourg (left) and Monaco (right). The black line
depicts our pessimistic estimator.

Fig. 9: Impact of T on migration cost.

migration cost is indeed very close to our pessimistic estimator.
This phenomenon can be attributed to the low mobility of
vehicles in this trace, captured by the low average speed
(recall Tab. II). However, when vehicles move faster, as in the
Luxembourg scenario, a sufficiently large T may translate to a
single migration (per vehicle, per decision period), as opposed
to several migrations of that vehicle when using a decision
period of one second. This translates to a lower migration cost,
compared to our pessimistic estimator. However, this comes
at the cost of SLA violation.

To study such violations incurred by increasing the decision
period T , we considered the average violation time of critical
chains. As expected, with a decision period T an average
SLA violation lasting roughly T/2 will be experienced. This
is consistent with a model where each critical chain starts
experiencing an SLA violation at a random time instant, uni-
formly distributed in (0, T ]. We verified this behaviour in our
evaluation for both the Monaco and Luxembourg scenarios.

Finally, we note that at each run, there is some probability
that BUPU also migrates non-critical chains for finding a
feasible solution, and this probability need not depend upon T .
This indeed follows by considering the light-blue zone which
is an almost constant additive increase of the migration cost,
on top of that related to critical chains.

IX. RELATED WORK

Service migration has been extensively investigated in re-
cent years. The works [34], [35] address a dynamic VNF
placement, where chains are migrated to serve mobile users.
These studies disregard the computational delay, focusing on
network delay solely. [34] designs efficient algorithms with
strong performance guarantees – e.g., O(1) approximation
ratio for the network cost, (i.e., the average user-datacenter
distance), while using an O(1) resource augmentation on the
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datacenter’s capacities. However, [34] interprets the network
delay as a part of the objective function, and not as a con-
straint. Furthermore, [34] assumes that all current and future
users’ locations are known in advance.

More realistic assumptions on the knowledge of users’
locations are made in [1], [36], where the migration problem
is modeled as a Markov decision process. Nonetheless, such
an analysis relies on some assumptions about users’ mobility
(e.g., a stationary system with known, or predictable, transition
probabilities), which do not conform with realistic scenarios.

Highly heterogeneous and unpredictable user mobility is
considered in [2], [8], [11], [12], which envision algorithms
that consider various optimization criteria. CPVNF [8] is a
greedy approach that we use as a benchmark and discuss in
Sec. VIII-A. [2] decreases the migration overhead by cluster-
ing users, thus shrinking the amount of data migrated between
datacenters. However, the model used in [2] assumes that
the migration destination always has enough resources, and
ignores computational delay. This model may conform with
cloud computing where computational resources are abundant,
and the primary source of delay is network delay, but not
with edge computing, where the scarcity of resources and the
tight delay constraint dictate considering the computational
delay. [11] considers multiple optimization criteria, i.e., the
amount of resources consumed by migration, migration time,
and service downtime. However, the model used in [11] allows
declining a migration request, or handling a request while
breaking its target delay. In contrast, we address the problem
of handling all the migration requests, while satisfying target
delay constraints. In a fog computing scenario, [12] selects for
each migration request a destination, based on the topological
distance from the user, the availability of resources in the
destination, and the data protection level in the destination.
However, [12] focuses on a selfish optimization of the migra-
tion destination for a single user, while we target finding a
feasible global solution, while minimizing the overall system
cost.

Other works formulate the migration problem as an ILP [4],
[13], MILP [9], or Mixed-Integer Quadratic Program [15], but
none of them guarantees to find a feasible solution (possibly
using more resources). In particular, these solutions usually
handle requests in parallel (the ILP/MIQP solvers), or in an
arbitrary order, e.g., based on the request time [11]. As a result,
requests with relaxed delay constraints may be deployed on a
scarce resource, possibly making the resource unavailable for
tighter-delay applications, that cannot be deployed elsewhere.
Our solution, on the contrary, orders requests based on their
delay constraints, before handling them.

Some studies address predicting future users’ mobility and
traffic fluctuation [37]–[39]. However, these works differ from
ours by both the objective function, and the tools used.
The works in [40], [41] decrease the migration overhead
(migration time, service downtime, and quantity of resources
consumed by migration) by optimally deciding which data to
migrate and in what order and pace. [42] considers multiple
simultaneous migration requests, and focuses on scheduling
the migrations and determining the bandwidth allocated to
each migration process to minimize the total migration time

and the service level objective violation. [13] uses the optimal
stopping theory to optimize the length of the decision period
between subsequent runs of the migration algorithm.

Some of the optimizations mentioned above are orthogonal
to our work, and hence could be incorporated into our solution
to boost performance. Finally, implementation issues and
performance overhead of VM live migration are discussed
in [43].

X. CONCLUSIONS

We tackled mobile service provisioning in the edge-cloud
continuum, envisioning algorithmic solutions with provable
guarantees in terms of solution feasibility and resource usage.
Besides addressing service chain deployment and resource
allocation, our solution fulfills the service delay requirements
and tackles service migration by deciding which chains should
be migrated and, if migrating, towards which datacenter. Our
numerical results, derived in large-scale, vehicular scenarios,
highlight interesting trade-offs and show that our approach
may provide a feasible solution by using half the quantity of
computing resources required by state-of-the-art alternatives.
We also show the robustness of the proposed approach, when
varying the considered scenarios and the decision period of
the algorithm.
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