
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A novel abstraction for security configuration in virtual networks / Bringhenti, Daniele; Sisto, Riccardo; Valenza, Fulvio. -
In: COMPUTER NETWORKS. - ISSN 1389-1286. - ELETTRONICO. - 228:(2023), pp. 1-13.
[10.1016/j.comnet.2023.109745]

Original

A novel abstraction for security configuration in virtual networks

Publisher:

Published
DOI:10.1016/j.comnet.2023.109745

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978000 since: 2023-04-19T06:32:40Z

Elsevier

A novel abstraction for security con�guration in virtual networks

Daniele Bringhentia,∗, Riccardo Sistoa, Fulvio Valenzaa

aDipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy

Abstract

The incessant growth of network virtualization determined the proliferation of Virtual Network Functions (VNFs),

software programs that can run on general-purpose servers and that can also integrate security controls for protection

from cyber-attacks. However, a high availability of VNFs may be counterproductive for the network administrators who

have to select the most suitable ones to establish the security con�guration of their network. On the one hand, the

vendor-dependent technicalities of each VNF may cloud the security controls it can actually perform. On the other

hand, VNF selection traditionally occurs before the synthesis of the virtual network graph, so it does not employ any

network information and it may outcome unoptimized results. In light of these shortcomings, this paper proposes a novel

security con�guration work�ow, based on new abstractions that we call projections. They represent the security-related

operations that VNFs should perform to enforce a security policy. Thanks to these abstractions, the actual selection

of the VNFs can be postponed to the moment their deployment in the physical network is actually required. In fact,

projections are enough for the synthesis of the virtual security graph. This paper also proposes a two-step algorithm for

computing projection chains as candidate solutions for graph synthesis. The proposed approach has been implemented

as a Java framework and a set of tests have validated its applicability to real-world VNFs, correctness, scalability and

optimization. These tests showed that the new security con�guration work�ow can achieve a signi�cant reduction for the

number of selected VNFs and their deployment cost. Speci�cally, in the analyzed scenario, the improvement percentages

for these two parameters are 79% and 90% with respect to the worst-case strategy, while 68% and 77% with respect to

a traditional more optimized con�guration strategy.

Keywords: virtual computer networks, automatic network security, security function selection

1. Introduction

Virtualization has profoundly changed the traditional

vision of networking. Agility and dynamism have become

decisive factors in enforcing security in modern computer

networks by leveraging ideas deriving from Network Func-

tions Virtualization (NFV) and Software-De�ned Network-

ing (SDN). On the one hand, new security functions can

be easily deployed on the �y to face an attack as soon as

∗Corresponding author
Email addresses: daniele.bringhenti@polito.it

(Daniele Bringhenti), riccardo.sisto@polito.it (Riccardo Sisto),
fulvio.valenza@polito.it (Fulvio Valenza)

it is detected. On the other hand, state-of-the-art orches-

trators can update a function con�guration in real time,

without stopping it and temporarily pausing the protec-

tion it provides. The bene�ts of these innovations have

led to continuous development of virtual functions, which

network administrators have at their disposal for enforcing

the required security.

Network administrators are commonly in charge of en-

forcing Network Security Policies (NSPs) that describe

how the communications should be protected in their net-

works. For example, NSPs describe which tra�c �ows

Preprint submitted to Computer Networks March 28, 2023

must be encrypted, which endpoints can communicate with

each other, or which packets must be logged [1]. For each

NSP, network administrators must select one or more con-

crete virtual function implementations, commonly known

as Virtual Network Functions (VNFs). For example, if

there is the requirement to block some tra�c �ows, they

may decide to use iptables, ip�rewall or an alternative

VNF. However, the higher the freedom of choice is, the

more complex making decisions is. A large number of

VNFs is currently available for each security function type,

as it is easy for each vendor to release their branded ver-

sion as software product. Therefore, multiple ones may be

suitable to enforce the same security property [2].

1.1. Motivation

The just mentioned high availability of VNFs turns out

to be counter-productive in the usual work�ow followed by

administrators to apply security. Such work�ow is com-

posed of three operations [3]: i) selection of a suitable

set of VNFs for enforcing the desired NSPs; ii) synthesis

of the virtual network graph, by deciding where VNF in-

stances should be placed in the logical network, and by

de�ning their con�guration rules; iii) embedding of all the

virtual nodes of the logical network, inclusive of the secu-

rity VNFs, in the physical infrastructure (e.g., a network

composed of general-purpose servers).

In this sequence of operations, the �rst stage, i.e., VNF

selection, lays the foundations to satisfy both security and

network demands when enforcing user-requested policies.

Nevertheless, in the current form, it may satisfy these dif-

ferent requirements only partially, and often in an unsat-

isfactory way. On the one hand, as the VNFs that are

selected are full-�edged software implementations, they

contain many technicalities that often cloud the fact that

they share the same security operations. On the other

hand, as the selection occurs so early in the con�gura-

tion work�ow, it does not consider network information,

such as the topology of the network, or the con�guration

of other network service functions like load balancers, or

the characteristics of the servers composing the physical

infrastructure.

Without that information, a premature selection of the

VNFs, among the several ones that share the same secu-

rity functionalities but with di�erent implementation tech-

nicalities, may produce non optimized results. Two main

sub-optimizations that may derive from early VNF selec-

tion concern deployment cost and energy e�ciency. For

example, if there is the requirement to block two di�erent

types of tra�c (e.g., the web tra�c to some domain and

the mail tra�c to some other domain), an early selection

may end up with choosing a distinct VNF to satisfy each

requirement (e.g., a web application �rewall for the �rst

type and a packet �lter for the second one), without realiz-

ing that a single VNF instance could provide the security

logic to implement both functionalities. Deploying more

VNFs than required entails consuming more resources than

necessary in the servers where the VNFs are deployed, and

more energy for keeping them active. Even though virtual-

ized networks are characterized by high �exibility and op-

erational e�ciency, deployment and energy optimizations

are still open problems [4].

These issues are even more relevant in virtualized net-

works based on Internet-of-Things (IoT). The multitude

and heterogeneity of IoT devices are constantly pushing

the size of modern computer networks, characterized by

more and more interconnections among those devices [5, 6].

This context magni�es the importance of optimization,

whose application has been already discussed in literature

to address problems such as service scheduling [7], task

planning [8] and attack identi�cation [9]. In contrast, the

problem of optimizing the selection of security VNFs and

avoiding redundant decisions in the security con�guration

process has been scarcely investigated at the moment, even

though the problem is as relevant as the ones optimization

has already been applied to.

2

1.2. Contributions of the paper

The paper aims to allow optimum VNF selection by

proposing a novel security con�guration work�ow. The ob-

jective is to split the two purposes of VNF selection occur-

ring in the traditional con�guration work�ow, i.e., enforce-

ment of security requirements and physical resource con-

sumption minimization. To achieve it, the novel work�ow

is based on abstract representations of the NSPs, called

projections. The projection of an NSP against a concrete

function expresses the security-related operation that the

VNF should perform to enforce the NSP, independently

of all the speci�c details of its implementation, such as

how the operation is con�gured in the function and the

resources the function requires for its operation. Projec-

tions are computed before synthesizing the virtual security

graph, and they are used to generate it instead of their con-

crete VNF counterparts. Then, the actual VNF selection

is postponed to be performed jointly with their embed-

ding into the physical infrastructure in a last stage. Thus,

only the VNFs that are strictly required are selected and

deployed, depending on how the virtual service has been

generated to ful�ll the NSP projections.

The idea of this novel security con�guration work�ow,

where the VNF selection is postponed with respect to tra-

ditional approaches, has been presented preliminarily in

[10]. This work improves and completes that preliminary

idea with the following main contributions:

(i) This paper enriches the preliminary description of

the security con�guration work�ow, presented in [10],

by explaining with greater detail how each step works,

and how the di�erent work�ow steps must be linked

to each other so as to provide a full automated se-

curity con�guration to a computer network. This

description is also paired with a clarifying use case,

which guides the readers in understanding the nov-

elty provided by postponing VNF selection to the

end of the work�ow.

(ii) A complete formalization of the projection abstrac-

tion is presented. This formalization captures all the

essential information required for the synthesis of the

virtual security graph in a compact form, and ab-

stracts from vendor-dependent VNF technicalities.

(iii) The two-step algorithm, in charge of computing all

the possible projection chains that should be used

to decide how to enforce a user-speci�ed NSP in the

virtual network, was only brie�y mentioned in [10].

Here, the complete algorithm is formalized. This pa-

per focuses on the initial stage of the proposed work-

�ow, which represents a major novelty in literature.

In fact, for the last two stages, our proposal can be

easily integrated with already existing approaches,

which can be re-used with minor modi�cations.

(iv) Di�erently from the �rst prototype discussed in [10],

which only implemented the �rst stages of the work-

�ow, a new, complete framework has been developed

to demonstrate the feasibility of the proposed ap-

proach. This new framework includes the interac-

tion with other tools that carry out the remaining

operations of the security work�ow (i.e., synthesis of

the virtual security graph, VNF selection and em-

bedding) in a fully automated way.

(v) An extensive validation of this framework has been

carried out on a state-of-the-art computing machine

to assess model generality, correctness, scalability

and optimization. This validation showed that the

choice of postponing VNF selection led to an im-

provement in terms of number of selected VNFs and

their deployment cost. For example, in the analyzed

scenario, the improvement percentages for these two

parameters are 79% and 90% with respect to the

worst-case strategy, while 68% and 77% with respect

to a traditional more optimized con�guration strat-

egy.

3

1.3. Organization

The remainder of this paper is structured as follows.

Section 2 discusses related work. Section 3 illustrates the

novel proposed security con�guration work�ow, it formal-

izes the projection abstraction, and it presents the two-

step algorithm for projection chain computation. Then,

Section 4 describes the PoC implementation of the pro-

posed approach, and it discusses the results of the vali-

dation carried out on it. Finally, Section 5 concludes the

paper and discusses future work.

2. Related Work

This section discusses the state of the art about secu-

rity con�guration (Subsection 2.1) and VNF abstraction

models (Subsection 2.2), underlining their main limita-

tions with respect to our proposal.

2.1. Security con�guration

Security con�guration has been widely researched in

literature, also in relation to the new threats that have

been emerging in virtualized networks. This topic is quite

broad, as security con�guration encompasses multiple op-

erations: VNF selection, synthesis of the virtual security

graph (i.e., deciding where the functions should be allo-

cated in the virtual service) and de�nition of their opera-

tional rules. However, for all these operations, almost all

the studies focused on concrete VNFs as the starting point

for the design of new con�guration approaches.

About the two operations of VNF selection and syn-

thesis of the virtual security graph, which are usually chal-

lenged jointly in literature, relevant studies are [11], [12],

[13], [14] and [15]. Speci�cally, Scheid et al. [11] propose

the k-means clustering algorithm for VNF selection, ac-

cording to which groups of VNFs are created according to

the level of security they can provide. Then, service graphs

are generated by selecting VNFs from those groups (e.g.,

if a high security level is requested in attack detection, an

implementation of IDS will be chosen from the VNF clus-

ter labeled with �high security"). Hao et al. [12] employ a

composition algorithm based on Trie trees for the synthe-

sis of a security service, in a way that can automatically

manage changes of the IP addresses of VNF instances. The

objectives of these studies were then extended by the other

ones, by pairing them with optimization purposes. On the

one hand, Liu et al. [13] employ a greedy iterative algo-

rithm to compose chains of VNFs, with the aim to �nd

a function combination with the highest total through-

put and the minimum consumption of physical resources.

On the other hand, both Liu et al. [14] and Sendi et al.

[15] propose an ILP formulation of the selection problem

and a heuristic, so that users can choose either one de-

pending on whether they prioritize optimization or per-

formance. In particular, the heuristic described by Liu et

al. [14] is a breadth-�rst search algorithm, through which

function chains are composed to minimize CPU, storage,

bandwidth and latency. Instead, the heuristic algorithm

proposed by Sendi et al. [15] partitions the network into

areas, and for each one of them it solves the selection prob-

lem with the aim to provide high scalability. Despite the

relevance of these studies, all of them work on concrete

implementations of VNFs, and they still adhere to the tra-

ditional security con�guration work�ow. Di�erently from

these studies, the projection abstraction proposed in this

paper separates security-related operations from network-

ing parameters and implementation details in the de�ni-

tion of VNF models. As such, the main advantages of the

proposed approach are the bene�ts already discussed in

Section 3.1, i.e., better optimization of VNF selection and

resource consumption.

About the computation of operational rules, almost all

the automatic approaches that have been presented in lit-

erature address the con�guration of a single type of virtual

functions, except the study by Basile et al. [16], which we

will analyze later. Speci�cally, these approaches simply

focus on either packet �ltering �rewalls [17, 18, 19, 20], or

4

channel protection systems such as VPN gateways [21, 22],

or IoT devices [23, 24], or SDN switches [25, 26]. While

each of these techniques focuses on a single function type,

our vision is to provide a global security con�guration,

considering several function types.

Instead, as previously mentioned the approach pro-

posed by Basile et al. [16] can automatically con�gure mul-

tiple function categories (packet �lter, URL �lter, HTTP

�lter, VPN gateway, anti-virus, anti-malware, content �l-

ter, monitoring, anonymity proxy). However, even this

technique is limited with respect to our proposed approach.

On the one hand, this approach can be applied only to

function chains, while our approach can be applied to

graph topologies that are more common in modern net-

works. On the other hand, in that study, VNF selection is

carried out according to the usual work�ow, while our ap-

proach bene�ts from the postponement of VNF selection.

2.2. VNF abstraction models

The �ndings derived from this analysis of the state of

the art about security con�guration are not surprising. Af-

ter all, in literature, concepts similar to the projection

abstraction proposed in our paper have barely been in-

vestigated. The only exception is represented by a se-

ries of IETF RFC drafts, of which [27] is the most recent

one. These RFC drafts propose the Capability Informa-

tion Model (CapIM) as a central component of a more

complete architecture, designed to provide standard in-

terfaces for managing VNFs in an e�cient manner [28].

This model associates each VNF with a set of capabilities,

representing the security controls they can enforce (e.g.,

packet �ltering, detection), in a way that is vendor-neutral

and implementation-independent. Such a representation

avoids referring to a speci�c technology or vendor-dependent

function when de�ning a security service, as for the projec-

tion abstraction. CapIM represents the foundation for a

limited number of studies. Giotis et al. [29] employ the ca-

pability model as a means to abstract VNFs, but it just ap-

plies it to access control and forwarding virtual functions.

Hyun et al. [30] enhance the CapIM-based architecture

to make it compliant with the SDN technology. Zarca et

al. [31] use a tailored version of the model for the dy-

namic management of authentication, authorization, and

accounting.

At the moment, CapIM (alongside with its aforemen-

tioned extensions and customizations) represents the �rst

and last e�ort in the literature to provide a higher abstrac-

tion of security-related operations that can be performed

by VNFs. It also has several limitations. Di�erently from

our proposal, the capabilities that can be associated with

VNFs are �xed and represent all the possible operations

that the VNF might do. Instead, in our vision, a projec-

tion is a �exible representation, because it expresses the

security-related operation that a VNF should perform to

enforce a speci�c NSP. With this de�nition, it gets rid

of redundant descriptions, and it provides high adaptabil-

ity to the user-speci�ed policies. Besides, CapIM is almost

never used to innovate the security con�guration work�ow,

with the exception of the intent-based technique presented

by Basile et al. [16]. However, their approach has limita-

tions that have been already discussed in Subsection 2.1.

In conclusion, the contributions of this paper represent

an important step in improving conventional ways for se-

curity con�guration, opening the path for an additional

level of abstraction that is becoming essential to answer

the high productivity of software development in network

security.

3. The Proposed Approach

This section describes the proposed work�ow for im-

proving security con�guration (Subsection 3.1), which rep-

resents the starting point for designing the projection ab-

straction concept (Subsection 3.2). It also formalizes the

two-step algorithm designed to identify and compute the

projection chains that are required to enforce the user-

speci�ed NSPs (Subsection 3.3 and Subsection 3.4).

5

ACG

Projections
Projection1
Projection2
...
ProjectionN

PID

VNFs
SEM

Physical
Network

Virtual Network Graph

Virtual Security

 Graph

Server1
VNF1 VNF3

Server3
VNF1

Server2VNF2
NSPs

1 2

4
3

5Server2

Figure 1: The proposed work�ow for security con�guration

3.1. The New Work�ow

As reported in [3], where a Security Orchestrator mod-

ule is introduced in the ETSI NFV Reference Architec-

ture, the traditional work�ow for security con�guration is

composed of three sequential stages. First, the most suit-

able VNFs are selected for the enforcement of the NSPs

in the network. For example, in order to block all the

packets having 102.10.3.88 as source IP address and 8080

as destination TCP port, �rewalling VNFs as iptables or

ModSecurity may be selected. This decision is exclusively

dependent on conditions related to security, as it does not

consider other factors as network topology. Second, the al-

location scheme and con�guration for the VNFs in the log-

ical network topology is computed. The logical topology,

also called Virtual Network Graph (VNG), is an abstract

representation of how tra�c �ows cross the network. This

second stage must also compute the con�guration rules

for each VNF positioned in the VNG, so that they ful-

�ll the original NSPs. The result of this operation is a

VNG enriched with security functions and is commonly

known as Virtual Security Graph (VSG). Third, the VNF

embedding on the general-purpose servers composing the

physical network infrastructure is established. This �nal

operation is constrained by physical limitations, such as

the CPU and RAM availability of the servers.

This traditional work�ow can lead to sub-optimizations

related to deployment cost and energy e�ciency, as already

explained in Section 1. Instead, the work�ow that we are

proposing postpones VNF selection to be done jointly with

PEX PCH

vNSFs

NSPs

Non-Enforceability Report

Projection
Chains

PID

Figure 2: Projection IDenti�cation: the two tasks

VNF embedding, with the aim to produce a more opti-

mized result. To achieve this purpose, the work�ow has

been structured with three stages, as shown in Figure 1:

the Projection IDenti�cation (PID) stage, the Allocation

and Con�gurationGeneration (ACG) stage and the Selection

and EMbedding (SEM) stage.

PID � The objective of the PID stage is to identify all

the possible ways a set of NSPs may be enforced by us-

ing the available VNFs. However, the PID stage does not

consist in the common VNF selection. Instead, it employs

abstract representations of the NSPs, called projections.

A projection consists in mapping the elements compos-

ing an NSP (i.e., the actions that must be performed and

under which conditions) onto what a VNF can o�er to en-

force the NSP (i.e., the VNF con�guration settings). In

this mapping operation of an NSP, all the implementation-

dependent technicalities of each VNF against which the

NSP is projected are omitted. For example, let us sup-

pose that an NSP specifying that all the tra�c going from

node with IP address 117.0.3.2 to node with IP address

33.21.1.1 must be blocked is mapped onto iptables. The

result projection would be the following one: �({IPSrc =

117.0.3.2, IPDst = 33.21.1.1}, {deny})� This projection

is expressed with a vendor-independent formulation, as it

does not involve the speci�c commands to set up the actual

iptables con�guration.The formalization of the projection

abstraction will be detailed in Subsection 3.2.

Starting from the VNF manifests and the NSPs, the

projections can be computed with a two-step algorithm,

called Projection IDenti�cation (PID). The two steps are

executed sequentially as also shown in Figure 2. The �rst

6

step directly works on the input NSPs and VNFs to com-

pute the corresponding projections, whereas the second

one combines the projections into chains that can fully en-

force all the NSPs. As shown in Figure 2, if the algorithm

fails, it produces a non-enforceability report with the rea-

son of the failure.

In greater detail, the �rst step of the algorithm is to

compute the corresponding projection for each pair com-

posed of a VNF and an NSP. In doing so, it employs some

optimizations. On the one hand, it may happen that the

projections of the same NSP against di�erent VNFs are

identical. For example, the result of projecting an NSP

against two packet �lter implementations as iptables and

ip�rewall would be the same, as they would share the same

manifest. In that case, a single instance of that projection

is simply used, thus avoiding useless redundancy. On the

other hand, it may occur that a projection cannot be de-

�ned for a pair composed of a VNF and an NSP, e.g., when

a VNF does not have any con�guration �eld correspond-

ing to the ones speci�ed in the conditions of an NSP. The

consequence is that the VNF is excluded for the NSP en-

forcement, and will not be used by the next stages of the

work�ow. This step, called Projection EXtraction (PEX),

will be detailed in Subsection 3.3.

The second step of the algorithm is to combine the com-

puted projections into chains that can fully enforce all the

actions requested by the NSP they derive from. In fact,

mapping an NSP onto the manifest of a VNF may result

into a projection that contains only partial information of

the original NSP. In case no valid chain is identi�ed for

an NSP, the global process immediately halts. An early

non-enforceability report is also produced, notifying the

network administrator why the projection identi�cation

failed. Otherwise, the valid combinations are passed on to

the next stage of the process, for the synthesis of the vir-

tual security graph. In this way, the security con�guration

will be performed in a way that is agnostic to the VNF

implementation. This step, called Projection CHaining

(PCH), will be detailed in Subsection 3.4.

The need of this second step can also be explained

with an example. Let us suppose that a network ad-

ministrator can use two VPN gateway VNFs (Strongswan

and OpenConnect) and a intrusion detection VNF (Suri-

cata) to enforce an NSP requesting that, when a packet

from 127.0.3.4 to 45.66.10.2 crosses the network of the ad-

ministrator, it must be encrypted and a noti�cation must

be produced: �({IPSrc = 127.0.3.4, IPDst = 45.66.10.2},

{encrypt, alert})�. If the NSP is projected against each

of the two VPN gateways, the resulting projection main-

tains only the information of the encryption operation of

the original policy, as the used VNFs cannot work as in-

trusion detection systems: �({IPSrc = 127.0.3.4, IPDst

= 45.66.10.2}, {encrypt})�. Nonetheless, the projection

is the same for both VNFs, as they can o�er the same

security-related operations. Consequently, a single instance

of that projection can be used in the security work�ow,

thus avoiding useless redundancy. Similarly, if the NSP

is projected against the intrusion detection system, the

resulting projection maintains only the information of the

alerting operation: �({IPSrc = 127.0.3.4, IPDst = 45.66.10.2},

{alert})�. In this example, at the end of the identi�cation

of the NSP projections, none of them is a full representa-

tion of the original NSP. Therefore, in this case, the PID

stage must combine them into a projection chain where all

the actions requested by the original NSP are supported.

However, there may be cases where a single projection still

contains all the original information, depending on the fea-

tures of the VNF against which the NSP is projected.

ACG - The objective of the ACG stage is to synthesize

the VSG so that for each NSP a projection combination

that represents it is fully enforced. It works on the logi-

cal level of the virtual network, which provides informa-

tion about the network topology and the con�guration of

the functions composing the service (e.g., NATs, load bal-

ancers). The VNG is internally represented in the ACG

stage as a Virtual Allocation Graph (VAG). A VAG is a

7

𝑓7

𝑒1

𝑒2

𝑓8 𝑓9

𝑒5

𝑒6

𝑒3 𝑒4

(a) Virtual Network Graph

𝑓7

𝑝10

𝑒1

𝑝11

𝑒2

𝑝12

𝑓8

𝑝15

𝑓9

𝑝16

𝑝17

𝑒5

𝑒6

𝑝13 𝑝14

𝑒3 𝑒4

(b) Virtual Allocation Graph

𝑓7

𝑝10

𝑒1

𝑝11

𝑒2

𝑓18

𝑓8

𝑝15

𝑓9

𝑓19

𝑝17

𝑒5

𝑒6

𝑝13 𝑝14

𝑒3 𝑒4

(c) Virtual Security Graph

Figure 3: Function graphs employed in the ACG stage

graph derived from the VNG so that, for each link con-

necting a pair of nodes of the original VNG, a node named

Allocation Place (AP) is included in the corresponding po-

sition of the VAG. An AP is a placeholder position where

the ACG stage may decide to allocate an implementation-

independent representation of the function con�gurations,

called functionality, which may be needed to enforce at

least a projection. For example, the VNG depicted in

Figure 3a is represented as the VAG depicted in Figure

3b. The solution that the ACG stage computes is a VSG,

where some APs are �lled with the computed functionali-

ties. An example of VSG is depicted in Figure 3c, where

𝑓18 and 𝑓19 are functionalities introduced in the VAG.

The creation of the functionalities from a correspond-

ing projection requires a re�nement operation, because

the projections were computed in the PID stage overlook-

ing information related to the VNG. The need of re�ne-

ment is motivated by two reasons. First, not always a

one-to-one relationship exists between input projections

and output functionalities. For example, let us suppose

that a projection requires to block all tra�c �ows coming

from 154.66.0.2 to any IP address: �({IPSrc = 154.66.0.2},

{deny})�. If these tra�c �ows do not have any common

AP in their paths, multiple APs must be used by the ACG

stage. In each one of them, a functionality that is equal to

the projection is allocated. This shows how it is possible

that multiple functionalities, derived from the same pro-

jection, are needed to enforce an NSP. Second, even though

the functionality has an abstract representation that re-

sembles the projection, the content is di�erent because it

must takes into account how tra�c may be altered by the

VNG con�guration. For example, let us suppose that all

the packets going from the source port 88 of 123.4.5.6 to

44.5.6.7 must be logged: �({IPSrc = 123.4.5.6, IPDst =

44.5.6.7, pSrc = 1337}, {log})�. It may happen that the

only APs where this projection may be ful�lled are after

a NAT, with a con�guration which establishes that the

source IP address each packet having 123.4.5.6 as original

value for that �eld must be modi�ed into 44.5.9.2. Con-

sequently, a functionality that is generated and allocated

in that AP would have the following con�guration: �({IP-

Src = 44.5.9.2, IPDst = 44.5.6.7, pSrc = 1337}, {log})�.

Therefore, this example shows that the �elds of a function-

ality may have di�erent values with respect to the ones of

the corresponding projection.

In summary, the main di�erence with respect to the

VSG synthesis of the traditional work�ows is that the VSG

is not composed of VNFs, but of an abstract representation

of their con�guration (i.e., the functionalities derived from

the projections). However, re�nement methods that have

been already proposed in literature for speci�c types of

VNFs may be reused in the ACG stage of this novel work-

�ow with minor adjustments. Studies were proposed in

literature about packet �ltering �rewalls (e.g., [32], [33],

[19], [20]) and VPN gateways (e.g., [34], [21]). Inspired

from them, in [10] we speci�cally proposed to formulate

the functionality allocation and con�guration problem as a

Maximum Satis�ability Modulo Theories problem in order

to achieve both a-priori formal correctness and optimiza-

tion. This problem formulation is speci�cally thought to

work with our proposed PID stages, but the other existing

studies may be extended to be compliant with them.

8

Table 1: VNFs available in the use case

VNF VNF Type Deployment Cost

𝑣1 packet �lter �rewall 3
𝑣2 packet �lter + web-application �rewall 5
𝑣3 packet �lter + web-application �rewall + logger 6
𝑣4 intrusion detection system 5
𝑣5 logger 3
𝑣6 anti-spam �lter 4

SEM - The ACG does not provide a clear indication

on which VNFs must be used for the NSP enforcement or

on which servers they should be deployed. Therefore, the

objective of the �nal stage, the SEM stage, is dual. The

�rst one is to select the best subset of VNFs, among the

available ones, that supports the functionalities allocated

and con�gured in the ACG stage. The second objective is

to compute the deployment scheme of the selected VNFs,

i.e., to decide on which node of the physical network each

VNF should be installed. Traditionally, these two objec-

tives are achieved separately. In literature, some studies

(e.g., [35], [36], [37]) propose smart algorithms for identi-

fying the optimal set of VNFs to enforce security intents,

while other ones (e.g., [38], [39], [40], [41]) exhaustively

researched the problem of virtual network embedding. On

the one hand, methods that have been proposed for di�er-

ent objectives can be paired and sequentially executed. On

the other hand, a single method can be formulated. For

example, in [10] we propose the idea to formulate the selec-

tion and embedding problem as a multi-objective Integer

Linear Programming (ILP) problem. If there are hundreds

of available VNFs that implement the same functionalities,

then a manual decision would have been troublesome and

error-prone to be taken, even overlooking all the other de-

grees of freedom (e.g., number of physical hosts, etc.).

As anticipated before, the stage that will be formal-

ized in the reminder of the paper is the PID stage, as for

that one no existing approaches can be leveraged at the

moment.

Table 2: NSPs de�ned for the use case

NSP NSP Requirement Projection Set

𝑛1 block �youtube.com� from 124.10.0.0/16 (𝑒4) {𝑝1,1, 𝑝2,1, 𝑝3,1}
𝑛2 block tra�c from 124.10.0.2 (in 𝑒4) to 87.4.2.3 (𝑒2) {𝑝1,2, 𝑝2,2, 𝑝3,2}
𝑛3 log tra�c from 87.4.2.3 (𝑒2) {𝑝3,3, 𝑝5,3}
𝑛4 detect tra�c anomalies from 98.8.8.0/24 (𝑒3) {𝑝4,4}
𝑛5 block �linkedin.com� from 42.0.10.4/24 (𝑒5) {𝑝1,5, 𝑝2,5, 𝑝3,5}
𝑛6 block tra�c from 42.0.10.4/24 (𝑒5) to 42.0.10.8/24 (𝑒6) {𝑝1,6, 𝑝2,6, 𝑝3,6}

𝑓7𝑝10

𝑒1

𝑝11

𝑒2

𝑝12

𝑓8

𝑝15

𝑓9 𝑝16

𝑝17

𝑒5

𝑒6

𝑝13

𝑝14

𝑒3

𝑒4

Figure 4: VAG employed in the use case

3.1.1. Clarifying use case

The de�nition of the projection concept for abstracting

the security-related operation that a VNF should perform

to enforce an NSP and the reorganization of the full con�g-

uration work�ow bring manifold advantages. These bene-

�ts are illustrated by means of a clarifying use case, where

the novel proposed approach is applied and compared to

the traditional security con�guration work�ow.

In this example, Table 1 lists the VNFs that are avail-

able to deploy in the physical infrastructure, it brie�y de-

scribes their function type, and it shows their deployment

cost, expressed in numeric format. This cost representa-

tion is a simpli�cation of the real deployment costs, that

are commonly known by the network administrators and

that derive from multiple parameters (characteristics of

the servers, energy e�ciency, etc.). Table 2 presents the

NSPs that must be enforced in the network, providing a

short description of the tra�c that is object of the corre-

sponding policy action. This table also compactly shows

against which VNFs each NSP can be successfully pro-

jected (𝑝𝑖, 𝑗 is the projection of 𝑛𝑖 against the manifest of

𝑣 𝑗). Figure 4 represents the VAG derived from a network

topology that is a simpli�ed version of a real one, i.e., the

network of our University Department.

A �rst advantage of the novel security con�guration

9

work�ow is that it prevents redundant solutions. Thanks

to the projection abstraction, the VNF selection occurs af-

ter knowing which projections of the original policies are

needed to enforce them and how the functionalities associ-

ated with such policies have been allocated in the virtual

graph. With the traditional work�ow, instead, the admin-

istrators are commonly prone to making redundant and

unoptimized decisions. For example, they may select three

VNFs � the packet �lter 𝑣1, the web-application �rewall 𝑣2

and the logger 𝑣5 � to enforce 𝑛1, 𝑛2 and 𝑛3 respectively.

However, in this case, a single VNF is enough, because

the tra�c �ows related to these three NSPs converge to

the same AP of the VAG, i.e., 𝑝12. The novel work�ow

can produce the minimum allocation scheme of function-

alities, so avoiding redundancies, which in this case means

selecting just 𝑣3 instead of the three VNFs 𝑣1, 𝑣2 and 𝑣3.

In terms of deployment cost, this solution costs only 6,

instead of 11.

A second advantage is that this work�ow more easily

leads to the selection of VNFs with a lower cost, when

more than one o�er the functionalities necessary to en-

force the NSPs. For example, the NSPs 𝑛5 and 𝑛6 can

be enforced by both a packet �lter and a web-application

�rewall. Intuitively, the deployment cost of a packet �lter

is less than the one for a web-application �rewall. How-

ever, a packet �lter may be selected only under speci�c

circumstances, e.g., when an AP where the �rewall may

be allocated is only crossed by �ows related to the NSPs

𝑛5 and 𝑛6. These cases are di�culty identi�ed with the

traditional work�ow. There, the administrator usually de-

cides to select the web-application �rewall, as it is function

that works at the highest level of the ISO/OSI stack and

thus guarantees the satisfaction of both the NSPs. In-

stead, if VNF selection occurs after the VSG synthesis,

it is already clear where the functionalities derived from

the projections are allocated and which tra�c �ows they

must block or allow. This allows choosing a packet �lter

whenever it is possible.

Finally, security administrators usually struggle in se-

lecting the most appropriate VNF for the enforcement of

security policies, even among the VNFs that perform sim-

ilar operations. Each VNF is a di�erent implementation,

developed by a di�erent developer team. Therefore, it has

di�erent con�guration languages, networking parameters,

or performance. A VNF that can decide if a packet must

be dropped on the basis of its 5-tuple may require a more

complex technical jargon for writing the �ltering rules, an-

other one may require more CPU and RAM for the set-up

in the physical network, another one may take more time

for being installed and be ready to �lter network packets.

All these networking and performance factors are impor-

tant, but they do not directly in�uence the outcome of

decisions concerning security. If abstract representations

of NSPs and VNF con�gurations (i.e., respectively, the

projection and the functionality) may temporarily discard

that information and allow using it in the next stages of

the orchestration (e.g., during the VNF deployment), se-

curity decisions can be taken more easily, quickly and with

better results.

3.2. The Projection Abstraction

The de�nition of the projection abstraction requires

modeling two basic elements: the VNFs that can be instan-

tiated in the network and the NSPs that must be enforced

by them.

3.2.1. VNF Model

Each VNFmodel is characterized by con�guration �elds

that de�ne the security properties it can enforce (e.g., the

conditions expressing the layer of the ISO/OSI stack where

the VNF can work, the algorithms it can execute, or the

actions it can perform on the tra�c). With the objective

to provide a comprehensive view on all the parameters

characterizing a VNF, they are grouped into a single rep-

resentation, called VNF manifest.

For a VNF 𝑣, the corresponding manifest 𝑀𝑣 is com-

posed of two sets, i.e., 𝑀𝑣 = (𝐹𝑣 , 𝐴𝑣):

10

� 𝐹𝑣 is the set of all the features for which the VNF

can take a decision and/or which can be con�gured

on it. This set includes packet �elds (e.g., source

and destination IP addresses, web-application �elds

as domain or url) and other con�guration elements

that determine the working modes of the VNF (e.g.,

the encryption algorithm and the key length if a VNF

is a VPN gateway);

� 𝐴𝑣 is the set of all the actions that the VNF can

enforce.

In turn, the �eld set 𝐹𝑣 is organized into two subsets,

i.e., 𝐹𝑣 = (𝐹+𝑣 , 𝐹∗𝑣), because it is important to discriminate

the �elds that a VNF can con�gure on itself from those it

can only use to take decisions:

� 𝐹+𝑣 is the set of all the features for which the VNF

can take a decision and which it can con�gure (e.g.,

for a packet �ltering �rewall such as iptables, all the

�elds of the IP 5-tuple belong to this set, because the

con�guration rules are composed of conditions based

on IP addresses, ports and transport-level protocol);

� 𝐹∗𝑣 is the set of all the features for which a VNF can

take a decision, but without con�guring them, i.e.,

by con�guring other �elds which may allow to reach

the same security property (e.g., if a speci�c web do-

main must be blocked, iptables might be used, how-

ever it cannot con�gure a �domain� �eld, but only a

corresponding IP address).

Below, three examples are presented to clarify the con-

cept of VNF manifest. In these manifests, only a subset

of all the �elds that are present in the 𝐹+𝑣 and 𝐹∗𝑣 sets are

reported for the sake of conciseness.

VNF 𝑣1: iptables

𝐹+𝑣1 = {IPSrc, IPDst, pSrc, pDst, tProto}

𝐹 ∗𝑣1 = {domain, url,mailAddress, payload, ...}

𝐴𝑣1 = {allow, deny}

(1)

VNF 𝑣2: Squid

𝐹+𝑣2 = {IPSrc, IPDst, pSrc, pDst, tProto, domain, url, ...}

𝐹 ∗𝑣2 = {mailAddress, payload, ...}

𝐴𝑣2 = {allow, deny, log}

(2)

VNF 𝑣3: MyLogger

𝐹+𝑣3 = {domain, url}

𝐹 ∗𝑣3 = {mailAddress, payload, ...}

𝐴𝑣3 = {allow, log, alert}

(3)

The manifest of a packet �ltering VNF such as iptables,

ip�rewall or equivalent �rewall implementations, which can

only work at layers 3 and 4 of the ISO/OSI stack, is shown

in (1). These VNFs can decide if a received packet should

be allowed to be forwarded to the next hop or denied de-

pending on the values of the IP 5-tuple. However, this

does not mean that a packet �ltering �rewall cannot take

decisions for packets having �elds such as web domain and

url.

Instead, web application �rewalls such as Squid have

a manifest similar to the one presented in (2). With re-

spect to a packet �lter, this type of �rewall can also con-

�gure rules based on web domains, urls, HTTP methods

(e.g., POST, GET), Content-Type, etc. All the other �elds

which were present in 𝐹∗𝑣1 are in 𝐹∗𝑣2 as well, since Squid

is a �rewall as iptables, but it simply works on a di�erent

level. Nonetheless, both of them do not have in their 𝐹∗𝑣1

and in 𝐹∗𝑣2 sets any parameter related to encryption (e.g.,

algorithm, encryption key length).

Finally, the virtual functions that can be used to en-

force some security properties do not have to be well-

known implementations such as iptables or Squid, but they

can be software programs developed by any developer, run-

ning on a Virtual Machine or Docker. As it is possible to

see from (3), the manifest description is �exible enough to

support also this type of functions. In this example, the

VNF that has been developed and is available for the net-

work administrator is named �MyLogger�. It cannot block

11

packets, but it can only log the receiving of speci�c kinds

of tra�c and notifying the network administrator about

that event. Additionally, it has been developed in such a

way that the only �elds which are present in the con�gu-

ration rules are web domain and url. Therefore, the �elds

of the IP 5-tuple itself are absent from the 𝐹+𝑣3 set. They

are not in the 𝐹∗𝑣3 set either, because domain and url are

higher level information.

3.2.2. NSP Model

An NSP 𝑛 is modeled as 𝑛 = (𝐶𝑛, 𝑆𝑛):

� 𝐶𝑛 expresses the conditions that determine the tra�c

on which the policy actions must be applied;

� 𝑆𝑛 expresses the actions that must be applied and the

enforcement modes (e.g., the packet �elds on which

an action must be applied, or the algorithm to be

used).

𝐶𝑛 is an (unordered) set, and it can be represented

as 𝐶𝑛 = {𝑐1, 𝑐2, ..., 𝑐𝑚}. Each 𝑐 ∈ 𝐶𝑛 is de�ned over a

�eld 𝑓 , that can be accessed with the 𝑐. 𝑓 notation. The

condition can specify a single value for the �eld (e.g., IPSrc

= 10.0.0.1), a range of values (e.g., pSrc = [80-100]) or the

special symbol ∗, meaning that each possible value that

can be assigned to that �eld is valid (e.g., domain = ∗).

𝑆𝑛 can be a set (i.e., an unordered collection) {𝑠1, 𝑠2, ..., 𝑠𝑙}

or a list without repetitions (i.e., an ordered collection)

[𝑠1, 𝑠2, ..., 𝑠𝑙]. Each 𝑠 ∈ 𝑆𝑛 is modeled as (𝑎𝑠 , 𝐵𝑠), where:

� 𝑎𝑠 is the action that must be enforced (e.g., block,

encrypt);

� 𝐵𝑠 is a set of bindings ��eld � (optional) value�,

specifying additional information about how the ac-

tion must be enforced (e.g., the binding �IPSrc =

20.1.2.4� might specify how the source IP address

must be changed by a network address translator,

whereas �algorithm = AES-128-CBC� might specify

the encryption algorithm a VPN gateway must use

to provide con�dentiality). If no binding is speci�ed

(e.g., when the action is applied on the whole packet

satisfying the conditions), 𝐵𝑠 = ∅.

The actions in 𝑆𝑛 can be optionally grouped into multi-

ple subsets 𝐾1, 𝐾2, ..., 𝐾𝑟 , ..., 𝐾𝑝, where each subset must

contain at least two actions. If two or more actions be-

long to 𝐾𝑟 , that means they must be enforced by the same

VNF. This formalization is introduced to support the cases

where the actions cannot be managed by di�erent VNFs.

For example, a network administrator may require that

all the packets satisfying certain conditions are logged and

blocked by the same VNF, because they are dangerous and

must be discarded as soon as possible avoiding any further

hop.

An example of NSP 𝑛 is shown in (4). This policy

requires that, for each packet satisfying all the conditions,

�rstly its source and destination IP addresses are logged,

and then the whole packet is blocked so that it cannot

reach the destination.

NSP 𝑛

𝐶𝑛 = {IPSrc = 125.10.2.0/24, IPDst = 20.20.20.1, pSrc = ∗,

pDst = 80, tProto = TCP, domain = dangerousSite.com}

𝑆𝑛 = [(log, {IPSrc, IPDst}) , (deny, ∅)]

(4)

The proposed VNF and NSP models are general enough

to support both real-world concrete implementations of se-

curity functions and the policies that a network adminis-

trator may really request. In fact, their actual generality

has been validated with some tests, which will be presented

in Section 4.

3.2.3. Projection Model

A projection 𝑝 represents the security-related opera-

tion that a VNF 𝑣 should perform to enforce an NSP 𝑛.

A projection 𝑝 consists in mapping the elements compos-

ing an NSP 𝑛 (i.e., the actions that must be performed

and the conditions under which the NSP must be ful�lled)

12

onto what a VNF 𝑣 can o�er to enforce the NSP (i.e., the

VNF con�guration settings). In this mapping operation of

an NSP, all the implementation-dependent technicalities of

each VNF against which the NSP is projected are omit-

ted. Consequently, if the same NSP is projected against

di�erent VNFs that ful�ll the same security objectives, the

resulting projections are presumably the same.

As a projection directly derives from an NSP, it is mod-

eled similarly. Speci�cally, 𝑝 is modeled as 𝑝 = (𝐶𝑝 , 𝑆𝑝)

where:

� 𝐶𝑝 expresses the conditions that determine the traf-

�c on which the corresponding actions must be ap-

plied;

� 𝑆𝑝 expresses the actions that the VNF against which

the NSP is projected can enforce to ful�ll it.

Here we intuitively show how a projection is expressed

with an example. Considering the three VNFs 𝑣1, 𝑣2 and

𝑣3 whose manifests have been presented in (1), (2) and

(3), the projection deriving from mapping the policy 𝑛

presented in (4) onto those manifests are:

Projection 𝑝1, derived by mapping the NSP 𝑛 onto the VNF 𝑣1

𝐶𝑝1 = {IPSrc = 125.10.2.0/24, IPDst = 20.20.20.1, pSrc = ∗,

pDst = 80, tProto = TCP}

𝑆𝑝1 = [(deny, ∅)]

(5)

Projection 𝑝2, derived by mapping the NSP 𝑛 onto the VNF 𝑣2

𝐶𝑝2 = {IPSrc = 125.10.2.0/24, IPDst = 20.20.20.1, pSrc = ∗,

pDst = 80, tProto = TCP, domain = dangerousSite.com}

𝑆𝑝2 = [(log, {IPSrc, IPDst}) , (deny, ∅)]

(6)

Projection 𝑝3, derived by mapping the NSP 𝑛 onto the VNF 𝑣3

𝐶𝑝3 = {domain = dangerousSite.com}

𝑆𝑝3 = [(log, {IPSrc, IPDst})]

(7)

3.3. PEX: Projection EXtraction

The Projection EXtraction (PEX) operation aims to

compute the projection of an NSP against a VNF, if it

exists. Algorithm 1 has been designed for accomplishing

this goal.

First, given a policy 𝑛 and the manifest 𝑚𝑣 of a VNF

𝑣, the condition set 𝐶𝑝 of the corresponding functionality

𝑝𝑣,𝑛 is computed (lines 1-9). For each policy condition

𝑐 ∈ 𝐶𝑛 based on a �eld 𝑓 , the manifest of the VNF should

include that �eld in the 𝐹+
𝑉
set or in the 𝐹∗

𝑉
. In the for-

mer case, the condition 𝑐 simply becomes a condition of

the projection as well (line 5), as the VNF can con�gure

that �eld with speci�c values. In the latter, a new condi-

tion 𝑓 = ∗ is created and included in the condition set of

the projection, because the VNF can only take decisions

regarding that �eld, but it cannot con�gure it (line 7). If

the NSF manifest does not support any condition �eld of

the policy, the resulting condition set of the projection re-

mains empty. The algorithm immediately stops, and an

early non-enforceability report is produced to inform the

user about this event (line 9).

Second, the action set of the projection is computed

(lines 10-25). Di�erently from the condition case, it is not

enough that a policy action 𝑠 ∈ 𝑆𝑛 is included in the action

set 𝐴𝑣 of the VNF manifest (line 12). It is possible that the

action 𝑠 must be enforced on some �elds and parameters

(e.g., the packet source address must be modi�ed). All the

�elds on which the action 𝑠 is applied must belong to the

𝐹+
𝑉
set of the VNF, because the function must be able to

directly operate on those �elds (line 15). If one of them

is not supported, then the action cannot be part of the

output projection.

The creation of the action set requires an additional

check with respect to the condition set. In the policy

speci�cation, the user may have requested that two or

more actions must be necessarily applied by the same func-

tion (e.g., a packet satisfying certain conditions must be

logged and then discarded avoiding any other hop in the

13

Algorithm 1 computation of 𝑝𝑣𝑛

Input: a policy 𝑛, a VNF manifest 𝑚𝑣

Output: 𝑝𝑣,𝑛

1: 𝐶𝑝 ← ∅ ⊲ Creation of the condition set
2: for each 𝑐 ∈ 𝐶𝑛 do
3: if ∃ 𝑓 ∈ 𝐹𝑣 | 𝑓 = 𝑐. 𝑓 then
4: if 𝑓 ∈ 𝐹+𝑣 then
5: 𝐶𝑝 ← 𝐶𝑝 + {𝑐 }
6: else
7: 𝐶𝑝 ← 𝐶𝑝 + { 𝑓 = ∗}
8: if 𝐶𝑝 = ∅ then
9: exit(no �eld is supported)

10: 𝑆𝑝 ← ∅ ⊲ Creation of the action set
11: for each 𝑠 ∈ 𝑆𝑛 do
12: if 𝑠.𝑎𝑠 ∈ 𝐴𝑣 then
13: supported(𝑠.𝑎𝑠) ← true
14: for each 𝑏 ∈ 𝑠.𝐵𝑠 do
15: if 𝑏. 𝑓 ∉ 𝐹+𝑣 then
16: supported(𝑠.𝑎𝑠) ← false

17: if supported(𝑠.𝑎𝑠) = true then
18: 𝑆𝑝 ← 𝑆𝑝 + {𝑠}
19: for each 𝑠 ∈ 𝑆𝑝 do
20: for each 𝑠′ ∈ 𝑆𝑛 do
21: if 𝑠 ≠ 𝑠′ ∧ 𝑠′ ∉ 𝑆𝑝 ∧ (∃𝐾𝑙 |𝑠, 𝑠′ ∈ 𝐾𝑙) then
22: 𝑆𝑝 ← 𝑆𝑝 \ {𝑠}
23: break
24: if 𝑆𝑝 = ∅ then
25: exit(no action is supported)

26: return 𝑝𝑣,𝑛 = (𝐶𝑝 , 𝑆𝑝)

network). Therefore, either all those actions are included

in the action set of the projection, or none of them. Af-

ter generating the 𝐴𝑣 set as previously described, if the

algorithm notices that only a subset of actions that should

be applied by the same function is present in it, they are

removed (lines 19-23). At that point, if the produced ac-

tion set is empty, that would again trigger the generation

of an early non-enforceability report to the user (lines 23-

24). Otherwise, the projection is �nally produced with the

computed condition and action sets (line 26).

The worst-case time complexity of Algorithm 1, used

for the computation of 𝑝𝑣,𝑛 = (𝐶𝑝 , 𝑆𝑝), can be estimated

as the sum of the time complexities of three sequential code

blocks. Lines 1-9 have 𝑂 (|𝐶𝑝 |) complexity, because 𝑂 (1)

operations are performed on each element of 𝐶𝑝. Lines 10-

18 have 𝑂 (|𝑆𝑛 | · max𝑠∈𝑆𝑛 (𝑠.𝐵𝑠)) complexity because that

code block consists of two nested loops. The external one

iterates on each element of 𝑆𝑛, whereas the internal one

requires a number of iterations that in the worst case is

vNSFs PEX

p1 p2 p3 p4 p5

({IPSrc = 10.0.0.0/24,IPDst = 20.20.20.1,
pDst = 110, tProto = TCP}, [(deny, ∅)])

({days = {Saturday, Sunday},
timeInt = 8-14}, [(log, {IPSrc, IPDst})])

({pDst = 110, tProto = TCP},
[(log, {IPSrc, IPDst}]))

({domain = ′youtube′, tProto = TCP},

[(log, {IPSrc, IPDst}), (deny, ∅)])

n = ({IPSrc = 10.0.0.0/24, IPDst = 20.20.20.1, pDst = 110, tProto = TCP, domain =
'youtube.com', days = {Sat, Sun}, timeInt = 8-14}, [(log, {IPSrc, IPDst}), (deny, ∅)])

({IPSrc = 10.0.0.0/24, IPDst = 20.20.20.1, pDst = 110, tProto = TCP, days = {Saturday,
Sunday}, timeInt = 8-14, domain = ′youtube.com′}, [(log, {IPSrc, IPDst}), (deny, ∅)])

Figure 5: Projection EXtraction: a visual example

equal to the cardinality of the largest 𝑠.𝐵𝑠 set, with 𝑠 ∈ 𝑆𝑛.

Lines 19-26 have 𝑂 (|𝑆𝑛 |2) complexity, because also that

code block is made of two nested loops, both iterating

on the 𝑆𝑛 set. Summing up, the overall worst-case time

complexity for the computation of 𝑝𝑣,𝑛 is 𝑂 (|𝐶𝑝 | + |𝑆𝑛 | ·

max𝑠∈𝑆𝑛 (𝑠.𝐵𝑠) + |𝑆𝑛 |2). However, by considering the NSPs

that are commonly de�ned in studies related to security

policy re�nement [1][16], the condition set commonly is

much larger than the action set (e.g., just by imposing

conditions on the IP 5-tuple, �ve conditions are included

in the 𝐶𝑝 set). Therefore, the dominant term among those

appearing in the notation of asymptotic complexity is |𝐶𝑝 |.

A visual example is shown in Figure 5. Each projection

denoted by the 𝑝 symbol derives from mapping policy 𝑛

against a di�erent VNF manifest. For instance, 𝑝1 derives

from a simple packet �lter that cannot manage �elds re-

lated to domain or time interval, 𝑝3 derives from a VNF

that may fully enforce the NSP, and 𝑝4 from a VNF that

can only log the IP 5-tuple of the received tra�c.

Given an NSP, the algorithm is repeated for each VNF

that is available. The resulting projections may not con-

tain all the information of the original NSP, e.g., they may

support a partial set of all the actions requested by the

NSP. Therefore, the PEX task is not su�cient, but a pro-

jection chaining operation is still required.

3.4. PCH: Projection Chaining

The Projection CHaining (PCH) operation aims to com-

pute all the possible chains of the projections output by the

14

Table 3: Symbol table

Symbol Explanation

𝑛 network security policy that must be enforced
𝑆𝑛 action set of 𝑛
𝑠𝑖 i-th action in 𝑆𝑛, with 𝑖 = 1, ..., |𝑆𝑛 |

𝐾𝑙
h-th subset of actions of 𝑆𝑛, including the same function
should be in charge of, with 𝑙 = 1, ..., 𝑚

𝑎𝑠𝑖 operation of i-th action
𝐵𝑠𝑖 enforcement mode set of i-th action
𝑏𝑖ℎ h-th enforcement mode of i-th action, with ℎ = 1, ..., |𝐵𝑠ℎ

|
𝑃𝑣 projection set
𝑝 𝑗 j-th projection of 𝑃𝑣 , with 𝑗 = 1, 2, ..., |𝑃𝑣 |

𝑥𝑖 𝑗

binary variable, whose value is set to 1 by the solver if
the j-th projection is chosen as responsible for the i-th action
of 𝑝, otherwise it is set to 0

𝑦𝑖 𝑗

binary variable, whose value is set to 1 before launching the
solver if the j-th projection supports the i-th action,
otherwise it is set to 0

𝑧𝑖 𝑗ℎ

binary variable, whose value is set to 1 before launching the
solver if the j-th projection supports the i-th
action with h-th enforcement mode of 𝑝, otherwise it is set to 0

PEX operation. As the PID stage is topology-independent

and it works on each policy independently from the other

ones, it cannot decide if a chain is more suitable than the

others.

The problem of �nding the projection chains has been

formulated as an Enumeration Problem (EP) over a set of

Constraint Satisfaction Problem (CSP)-like formulas. A

chain is a solution for the EP if it contains a projection

responsible for each action of the original NSP. Among

all the projections that support a certain NSP action, the

solver chooses a single one as responsible with the aim to

avoid redundancy. Equations (8)-(11) represent the prob-

lem constraints, and Table 3 describes the symbols used

for their formulation. Among them, the output binary

variable appearing in the formulas, 𝑥𝑖 𝑗 , expresses if a cer-

tain projection 𝑝 𝑗 is chosen as responsible for action 𝑠𝑖

(when 𝑥𝑖 𝑗 = 1) or this task is assigned to another projec-

tion (when 𝑥𝑖 𝑗 = 0). If 𝑆𝑛 is a set, the assignment of index 𝑖

to each policy action is random. Instead, if 𝑆𝑛 is a list, the

assignment naturally follows the ordering of the actions in

it, so that index 1 is assigned to the �rst action, and index

|𝑆𝑛 | is assigned to the last one.

|𝑃𝑣 |∑︁
𝑗=1

𝑥𝑖 𝑗 = 1,∀𝑖 = 1, ..., |𝑆𝑛 | (8)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 𝑗 ,∀𝑖 = 1, ..., |𝑆𝑛 |,∀ 𝑗 = 1, ..., |𝑃𝑣 | (9)

|𝐵𝑠𝑖 | · 𝑥𝑖 𝑗 ≤
|𝐵𝑠𝑖
|∑︁

ℎ=1

𝑧𝑖 𝑗ℎ ,∀𝑖 = 1, ..., |𝑆𝑛 |,∀ 𝑗 = 1, ..., |𝑃𝑣 |

(10)

|𝐾𝑙 | · 𝑥𝑖 𝑗 ≥
∑︁

𝑖′ |𝑠𝑖′ 𝑗 ∈𝐾𝑙

𝑥𝑖′ 𝑗 ,∀𝑖 = 1, .., |𝑆𝑛 |,∀ 𝑗 = 1, .., |𝑃𝑣 |

(11)

The four quanti�ed CSP-like formulas can be explained

as follows:

1. According to formula (8), one and only one projec-

tion 𝑝 𝑗 is responsible for action 𝑠𝑖. Even though

multiple projections may ful�ll this task, in each enu-

merated solution only one is chosen.

2. According to formula (9), a projection 𝑝 𝑗 can be

chosen as responsible for action 𝑠𝑖 only if it supports

the operation 𝑎𝑠𝑖 , i.e., if ∃𝑠𝑘 ∈ 𝑆𝑝 such that 𝑎𝑠𝑘 =

𝑎𝑠𝑖 . This constraint is required as the PEX operation

may have extracted projection that only partially

support the actions required by the corresponding

NSP.

3. According to formula (10), a projection 𝑝 𝑗 can be

chosen as responsible for action 𝑠𝑖 only if it supports

all the enforcement modes de�ned in 𝐵𝑠𝑖 . This con-

straint is included in the formulation of the EP prob-

lem only if 𝐵𝑠𝑖 ≠ ∅, otherwise constraint (9) is enough

as condition of choice.

4. According to formula (11), if a projection 𝑝 𝑗 is cho-

sen as responsible for action 𝑠𝑖 and if 𝑠𝑖 belongs to a

set 𝐾𝑙 of actions that must be applied by the same

projection, then 𝑝 𝑗 must be responsible also for all

the other actions in 𝐾𝑙 as well. This constraint is

included in the formulation of the EP problem only

if there is the speci�cation of at least a 𝐾𝑙 set.

Each assignment for the 𝑥𝑖 𝑗 variables represents a possi-

ble projection chain, as 𝑥𝑖 𝑗 = 1 implies that the i-th action

requires an instance of the j-th projection for its enforce-

ment. However, the solution set computed by solving this

15

PCH

p1
p2 p3 p4 p5

p3

p2 p5 p1

p5p2
Chain 3

Chain 1

Chain 2

Figure 6: Projection CHaining: a visual example

EP problem may not be complete, and two post-processing

operations may be required under speci�c circumstances.

First, if 𝑆𝑛 is an (unordered) set, the assignment of

index 𝑖 to each policy action does not follow any strict

ordering guideline. Therefore, only a possible permutation

of the actions out of the |𝑆𝑛 | possible ones is established.

This de�ciency is easily overcome, by computing all the

other permutations.

Second, it may happen that two variables having con-

secutive values for the 𝑖 index have the same 𝑗 index, i.e.,

the actions require the same projections to be enforced.

On the one hand, if the two actions are not part of a 𝐾𝑙

set, then either a single instance or a pair of instances of

the j-th projection may be used to enforce those actions.

Therefore, both solutions must be derived from the single

assignment computed by solving the EP problem. On the

other hand, if the two actions are part of a 𝐾𝑙 set, then the

only possible solution is that one where a single projection

is used.

A visual example of the PCH operation is shown in

Figure 6. The projections that are input to the EP char-

acterizing this operation are the same ones that were pre-

sented in Figure 5. They are combined in three di�erent

chains, which can enforce all the actions of the requested

NSP 𝑛. As it can be seen, Chain 1 is composed of a single

projection, 𝑝3, because it can perform both the requested

operations, i.e., logging the source and destination IP ad-

dresses of the packets identi�ed by the policy conditions,

and then block those packets from reaching their destina-

tion. Instead, the other chains require more projections,

because each one of them is not enough to enforce all the

actions.

After the completion of the post-processing operations,

the computation of the VSG starting from the projection

chains is left to the ACG stage. As explained in Section

3.1, this stage works on information coming from the net-

work, and having complete visibility on all the requested

policies, so it is a complex operation by itself. Nonethe-

less, the way it can take decisions is simpli�ed by the fact

that the possible projection chains have been already com-

puted, and they can be represented as constants in the

de�nition of the problem instead of open variables.

4. Implementation and validation

As this paper focuses on the �rst stage of the proposed

security con�guration work�ow, this section describes how

the models de�ned for the projection abstraction and the

algorithms designed for their computation have been im-

plemented and validated.

4.1. Implementation

The PID stage of the security con�guration work�ow

has been implemented as a Java framework. The code is

publicly available in the GitHub repository at the following

link: https://github.com/netgroup-polito/verefuse.

The input VNF manifests and the NSPs can be speci-

�ed by the user in XML or JSON format. The same format

is used for the representation of the output, i.e., the au-

tomatically computed projection chains. The framework

exposes a set of REST APIs, so that it can interact with

the user or with other applications. As both the PEX and

PCH tasks can work on each NSP independently from the

others, the code of both has been parallelized. The imple-

mentation allows the user to specify the number of threads

which must be used in the execution of the program. If

the user does not specify the thread number, then eight

threads are used by default.

16

Besides, the formulation and resolution of the enumer-

ation problem of the PCH task are internally managed by

employing the mathematical programming solver Gurobi1

(version 8.1.1). This solver can work on di�erent types of

problems, e.g., linear programming, mixed-integer linear

programming, quadratic programming. Gurobi o�ers sim-

ple APIs in multiple high-level programming languages,

including Java, which have been used in the PID's imple-

mentation for the de�nition of the problem constraints and

the resolution.

4.2. Validation

4.2.1. Experimental setup and validation objectives

The experimental setup used for the framework vali-

dation consists in a machine with an Intel i7-6700 CPU

running at 3.40 GHz and 32GB of RAM.

This setup has been used to ful�ll four validation ob-

jectives, whose aims are to check:

� the generality of the models de�ned for the VNF

manifests (section 4.2.2);

� the correctness of the algorithms employed for the

projection extraction and chaining (section 4.2.3);

� the scalability of the PID stage and its superiority

with respect to the state of the art solutions (section

4.2.4);

� the optimization provided by the proposed security

con�guration work�ow (section 4.2.5).

4.2.2. Validation of model generality

We have analyzed 30 VNFs that are currently available

for enforcing security requirements, and we have tried to

model their manifests. Among the considered VNFs, there

are packet �ltering �rewalls (iptables, ip�rewalls, nftables,

PfSense), web-application �rewalls (ModSecurity, IronBee,

1Link: https://www.gurobi.com/. Last accessed: February 20th,
2023.

NAXSI, WebKnight), anti-spam �lters (SpamAssassin, Mail-

Cleaner, Rspamd), VPN gateways (Strongswan, Openswan,

SoftEther, OpenConnect), intrusion detection systems (Suri-

cata, Snort, Zeek). For each VNF, we have identi�ed the

actions that can be performed (i.e., the 𝐴 set) and the

�elds that can be con�gured (i.e., the 𝐹+ set) by carefully

analyzing their con�guration guides and examples. Then,

we have identi�ed the �elds for which the VNFs may take

decision but they cannot be con�gured (i.e., the 𝐹∗ set)

by reasoning about what security properties each VNF can

enforce, also by referring to the classical ISO/OSI protocol

stack. For example, all the �elds related to web applica-

tion (e.g., URL, domain) belong to the 𝐹∗ set for each

analyzed packet �ltering VNF. The analysis of such a high

number of open-source functions shows how our model is

general enough to support their representation as manifest.

Therefore, it is also suitable for similar functions, and it

can be easily extended for future VNFs by introducing new

actions and �elds in the 𝐴, 𝐹+ and 𝐹∗ sets.

4.2.3. Validation of correctness

The correctness of the framework has been validated

by applying it on several use cases. We have written mul-

tiple NSPs, and we have run the framework to create the

projection chains. For each NSP, we have run it multiple

times, changing the VNF manifests that may be used, with

the aim to create particular cases that could test speci�c

characteristics of the algorithms used in the PID stage. For

example, the following scenarios have been considered:

� VNFs with the same manifest are used to enforce an

NSP, to check that the framework creates the same

projection for them and uses it once in creating the

projection chains;

� an inadequate number of VNFs is used to enforce an

NSP, to check that the framework produces a non-

enforceability report stating that a feasible solution

for the security con�guration problem does not exist;

17

� NSPs with unordered actions have been written, to

check that the framework can consider also the more

complex case where all the chains derived from the

solution of the enumeration problem are subject to

a post-processing step to consider all the possible

permutations of the projections;

� NSPs with actions that must be applied on packet

�elds have been written, to check that the framework

uses only the VNF manifests having all those �elds

in the 𝐹+ for creating a projection.

After the computation of the projections, tools for au-

tomatic security con�guration (e.g., [20] for �rewalls, [21]

for VPN gateways) have been fed with the result of the

PID stage. With the aim to verify that the NSPs are cor-

rectly enforced by the con�guration computed by the tools

when using the projections generated by our framework,

we have used the Mininet emulator to instantiate the re-

lated network topologies in a controlled environment. The

tests made on the Mininet emulation con�rmed that all

NSPs are satis�ed, as expected.

Both the VNF manifests and the NSPs used for the

generality and correctness tests are available in the GitHub

repository, so that they can be used to reproduce the tests

and can be extended to consider other scenarios.

4.2.4. Evaluation of scalability

A series of scalability tests have been done on the frame-

work. The two parameters against which scalability has

been evaluated are the numbers of NSPs and of VNFs from

which the projections must be derived. The scenarios em-

ployed for these scalability tests are extended versions of

the problem inputs used for the description of the clari-

fying use case in Section 3.1, i.e., the network topology

shown in Figure 4, the VNF database of Table 1 and the

NSPs of Table 2.

Figure 7 shows the results for the scalability tests re-

lated to the number of NSPs. For these tests, the num-

ber of VNFs is �xed to 100, whereas the number of NSPs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

20

40

60

Number of NSPs

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

3 Threads
5 Threads
8 Threads
10 Threads

(a) Thread number

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

50

100

150

Number of NSPs

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

Ordered Actions
Unordered Actions

(b) Action ordering

Figure 7: Scalability versus number of Network Security Policies

is progressively increased from 1000 to 10000. Each dot-

ted plot in the charts composing Figure 7 represents the

average value computed over 100 repetitions of the test.

Initially, the behavior of the framework has been analyzed

when also varying the number of threads used for the exe-

cution of the internal algorithms, and supposing that the

NSP actions are ordered. The results depicted in Figure 7a

show that, for the machine we have used, the least compu-

tation time is almost always achieved when eight threads

are used. If a higher number of threads is employed, the

performance gets worse, because thread creation overhead

is not adequately compensated by our machine's CPU ca-

pacity of running so many threads simultaneously. Then,

the di�erence in computation time that occurs if the NSPs

do not impose an ordering to the actions has been eval-

uated. It is presented in Figure 7b. As it was expected,

the behavior of the tool gets worse if the actions requested

by each NSP are unordered. In the worst case that has

been analyzed, less than one minute is enough to compute

the solutions when the actions are ordered, whereas almost

three minutes are required for unordered actions. This is

easily explained by the fact that, in the PCH algorithm, all

the possible permutations of the actions must be consid-

ered. Two remarks are worth mentioning, though. First,

the case where all 10000 NSPs require unordered actions

has been arti�cially created to put our system under great

stress. In reality, the NSPs that must be enforced in a

network have a mixed nature, i.e., some require ordered

actions while others do not. Second, the result achieved

for the worst case is signi�cant by itself, if compared with

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

2

4

6

Number of VNFs

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

3 Threads
5 Threads
8 Threads
10 Threads

(a) Thread number

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

5

10

15

Number of VNFs
C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

Ordered Actions
Unordered Actions

(b) Action ordering

Figure 8: Scalability versus number of Virtual Network Functions

what human users may do manually. Manual approaches

would struggle in dealing with such a huge number of NSPs

without the aid of an automated tool, and they would take

a much higher time than only three minutes to identify all

the possible projections.

Similar considerations apply to the tests carried out for

checking the framework scalability for increasing numbers

of VNFs. The results of these tests are depicted in Figure

8. Di�erently from the previous tests, the number of NSPs

is �xed to 100, whereas the number of VNFs is progres-

sively increased from 1000 to 10000. Again, each dotted

plot in the charts composing Figure 8 represents the av-

erage value computed over 100 repetitions of the test. On

the one hand, from the analysis of those results, the cre-

ation of eight threads is con�rmed to be the best choice for

our machine. On the other hand, again the cases where

policy actions are unordered require more time than those

where actions are ordered. An interesting consideration is

that the scalability for increasing number of VNFs is even

better than the one for NSPs. This result can be explained

by the fact that for each NSP the whole PID process must

be executed, whereas each additional VNF simply repre-

sents an additional decision variable, but the number of

times the PID process is executed stays the same.

Two additional scenarios where the framework scala-

bility has been validated are shown in Figure 9. First, we

have tested the implementation by equally increasing the

numbers of VNFs and NSPs, until each of them is 10000.

Even though the computation time is higher than the ones

shown in Figure 7b and Figure 8b, Figure 9a shows that

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104
0

50

100

150

200

250

Number of NSPs and VNFs

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

Ordered Actions
Unordered Actions

(a) Equal increasing number of
NSPs and VNFs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105
0

200

400

600

Number of NSPs

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

500 VNFs

(b) Very high scalability versus
number of NSPs

Figure 9: Validation under two peculiar scenarios

the trend is not exponential, but it follows the same growth

of the previously analyzed scenarios, both for NSPs having

ordered or unordered actions. Second, we have considered

a stressing scenario, where the administrator of a big-sized

network has 500 VNFs available for enforcing a huge num-

ber of NSPs, i.e., from 10000 to 100000 NSPs. Even though

such high numbers may be rare, the fast growth of mod-

ern virtual networks may soon create circumstances where

they are not so uncommon. Anyway the framework is able

to manage this case as well, as shown in Figure 9b. The

time required for computing the projection chains is surely

higher, as for the worst case (i.e., the one characterized by

100000 NSPs and 500 VNFs) more than 10 minutes are

required. But again the trend is not exponential, and the

algorithm surely performs better than what a human user

may achieve.

The results of these tests show that our framework

has better scalability than state-of-the-art tools that are

used for VNF selection. On the one hand, the algorithm

proposed in [12] is able to select the most suitable VNFs

among at most 50 ones in 1.5 s. On the other hand, the ap-

proach pursued in [13] computes the solution to the VNF

selection problem for 1500 NSPs in 20 s. In both cases, our

solution can reach the solution for projection identi�cation

in faster times (e.g., it takes 12 s to solve the problem for

1500 NSPs), but it can manage a much larger set of VNFs

� Figure 8b shows its scalability till 10000 VNFs, Figure

9b shows its scalability till 100000 NSPs. Moreover, the

computation time required by this implementation of the

19

20 40 60 80 100
0

20

40

60

80

100

Number of NSPs

N
u
m
b
er

o
f
se
le
ct
ed

V
N
F
s

Our approach

Strategy (a)

Strategy (b)

(a) Optimization: VNFs

20 40 60 80 100
0

100

200

300

400

Number of NSPs
D
ep
lo
y
m
en
t
co
st

Our approach

Strategy (a)

Strategy (b)

(b) Optimization: deployment cost

Figure 10: Evaluation of optimization

PID stage is much lower than the time required by algo-

rithms that may be employed in the next stages of the se-

curity con�guration work�ow. For example, the heuristic

method employed in [16] to manage the ACG stage for 20

VNFs takes 4 s, the optimization strategy proposed in [20]

requires around 3 minutes to con�gure 100 packet �ltering

�rewalls, and the embedding algorithm illustrated in [40]

takes up to 4 minutes to de�ne the embedding scheme of

30 VNFs in a physical network. With respect to them, our

implementation of the PID stage is in line with the strict

timing requirements of virtual networks, and can manage

scenarios with higher numbers of VNFs and NSPs.

4.2.5. Evaluation of optimization

The optimization that the novel security con�guration

work�ow can achieve in terms of two main metrics (i.e.,

selected VNFs and deployment cost) has been evaluated

varying the size of the con�guration problem. This vali-

dation is based on similar scenarios as those used for the

scalability evaluation. Indeed, also these scenarios are ex-

tended versions of the problem inputs used for the descrip-

tion of the clarifying use case in Section 3.1.

In order to show how our approach behaves with re-

spect to the state of the art, we compare it with two strate-

gies based on the traditional con�guration work�ow. We

consider: (a) the worst-cost strategy that selects a di�er-

ent VNF instance for enforcing each NSP, and that always

chooses VNFs whose manifest includes the NSP condition

�elds of the highest level in the ISO/OSI stack (e.g., to

block packets going to a web server, a web-application

�rewall is always chosen instead of a packet �lter); (b)

a more optimized strategy that performs a pre-analysis of

the NSRs to understand if for some of them a single VNF

can be selected (e.g., when the policy conditions are the

same for two NSPs). For these work�ows, the algorithms

that are used for the con�guration and embedding stages

are those presented respectively in [20, 40].

Figure 10a and Figure 10b show the optimization that

our approach can provide with respect to the two tradi-

tional strategies. Strategy (a) clearly fails in optimizing

both the number of selected VNFs and the deployment

cost, as its only aim is to provide a solution to the con�g-

uration problem without looking for optimization. Strat-

egy (b) improves the result with respect to the worst case,

but it su�ers from the way the traditional work�ow is orga-

nized. In fact, as VNF selection occurs earlier than virtual

network synthesis, strategy (b) cannot know where the se-

curity functionalities must perform their operations in the

network topology. Therefore, it redounds them so as to

consider all the possible ways in which the network may

be synthesized. Instead, our approach achieves a consider-

able gain in both number of selected VNFs and deployment

cost, as it bene�ts from all the advantages illustrated in

Section 3.1. In fact, selecting the VNFs after their func-

tionalites avoids redundant allocation schemes and chooses

VNFs with a lower cost, as the VNF selection stage has

all the required information about how security must be

enforced in the network. The impact of these bene�ts can

by quanti�ed by estimating the improvement percentages

of our approach with respect to the the worst-cost strat-

egy (a) and the more optimez strategy (b), when the three

techniques are applied to the validation scenario where

100 NSPs must be enforced. On the one hand, postpon-

ing VNF selection in this scenario allows the selection of

79% fewer VNFs than thw worst-case strategy (a), and

68% fewer VNFs than strategy (b). On the other hand,

the savings in terms of deployment cost provided by our

novel con�guration work�ow in this scenario is 90% with

20

respect the worst-case strategy (a), and 77% with respect

strategy (b).

5. Conclusions and Future Work

This paper presented the projection abstraction, aim-

ing to abstract the security-related operations that VNFs

can perform to enforce security policies, in a way that is

independent from the speci�c characteristics of their im-

plementations. This abstraction allowed us to reorganize

the traditional con�guration work�ow, in such a way that

projections are used for the synthesis of the virtual security

graph instead of their VNF counterparts, whose selection

is postponed to the moment their deployment is required in

the physical network. A formalization for this abstraction

has been proposed, alongside with an algorithm to com-

pute projection chains as candidate solutions that fully

support the user-speci�ed network security policies.

A Java-based framework has been developed to im-

plement this algorithm, and validation tests have been

carried out on a state-of-the-art computing machine to

assess model generality, correctness, scalability and opti-

mization. These tests showed that the proposed approach

can optimize both VNF selection and embedding thanks to

their di�erent position in the new work�ow. In fact, they

showed that the developed framework can reduce both

the number of selected VNFs and their deployment cost.

For example, in the analyzed scenario, the improvement

percentages for these two parameters are 79% and 90%

with respect to the worst-case strategy, while 68% and

77% with respect to a traditional more optimized con�g-

uration strategy. These bene�ts can be particularly rele-

vant for scenarios such as virtualized IoT networks, where

energy e�ciency and resource consumption are problems

that must comply with the limited resources provided by

constrained devices.

As future work, we are planning to integrate the se-

curity con�guration work�ow based on the projection ab-

straction with reaction and mitigation techniques. The

objective of that work is to create a fully autonomous sys-

tem, where network security is periodically updated in ac-

cordance with policies de�ned by human users, and also

with the identi�cation of on-going cyber attacks.

References

[1] R. Boutaba, I. Aib, Policy-based management: A historical per-

spective, J. Netw. Syst. Manag. 15 (4) (2007) 447�480.

[2] C. Islam, M. A. Babar, S. Nepal, A multi-vocal review of secu-

rity orchestration, ACM Comp. Surv. 52 (2) (2019) 37:1�37:45.

[3] B. Jäger, Security orchestrator: Introducing a security orches-

trator in the context of the ETSI NFV reference architecture,

in: Proc. of the IEEE TrustCom/BigDataSE/ISPA, 2015.

[4] C. Pham, N. H. Tran, S. Ren, W. Saad, C. S. Hong, Tra�c-

aware and energy-e�cient vnf placement for service chaining:

Joint sampling and matching approach, IEEE Trans. Serv.

Comp. 13 (1) (2020).

[5] I. Farris, T. Taleb, Y. Khettab, J. Song, A survey on emerg-

ing SDN and NFV security mechanisms for iot systems, IEEE

Commun. Surv. Tutorials 21 (1) (2019) 812�837.

[6] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas,

B. Nour, Y. Wang, A survey of network virtualization tech-

niques for internet of things using SDN and NFV, ACM Com-

put. Surv. 53 (2) (2021) 35:1�35:40.

[7] S. Javanmardi, M. Shojafar, R. Mohammadi, V. Persico,

A. Pescapè, S-fos: A secure work�ow scheduling approach for

performance optimization in sdn-based iot-fog networks, J. Inf.

Secur. Appl. 72 (2023) 103404.

[8] A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto,

S. Gururajan, APRON: an architecture for adaptive task plan-

ning of internet of things in challenged edge networks, in:

2019 IEEE 8th International Conference on Cloud Networking,

CloudNet 2019, Coimbra, Portugal, November 4-6, 2019, IEEE,

2019, pp. 1�6.

[9] D. Mishra, B. Naik, J. Nayak, A. Souri, P. B. Dash, S. Vimal,

Light gradient boosting machine with optimized hyperparame-

ters for identi�cation of malicious access in iot network, Digital

Communications and Networks (2022).

[10] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, A novel ap-

proach for security function graph con�guration and deploy-

ment, in: Proc. of the IEEE Inter. Conf. on Network Softwariza-

tion, 2021.

[11] E. J. Scheid, C. C. Machado, M. F. Franco, R. L. dos San-

tos, R. J. P�tscher, A. E. S. Filho, L. Z. Granville, Inspire:

Integrated nfv-based intent re�nement environment, in: Proc.

21

of the IFIP/IEEE Symp. on Integrated Network and Service

Management, 2017.

[12] Z. Hao, Z. Lin, R. Li, A SDN/NFV security protection archi-

tecture with a function composition algorithm based on trie, in:

Proc. of the Inter. Conf. on Computer Science and Application

Engineering, 2018.

[13] Y. Liu, H. Zhang, J. Liu, Y. Yang, A new approach for delivering

customized security everywhere: Security service chain, Secur.

Commun. Networks 2017 (2017).

[14] Y. Liu, Y. Lu, W. Qiao, X. Chen, A dynamic composition mech-

anism of security service chaining oriented to sdn/nfv-enabled

networks, IEEE Access 6 (2018).

[15] A. S. Sendi, Y. Jarraya, M. Pourzandi, M. Cheriet, E�cient

provisioning of security service function chaining using network

security defense patterns, IEEE Trans. Serv. Comput. 12 (4)

(2019).

[16] C. Basile, F. Valenza, A. Lioy, D. R. López, A. P. Perales,

Adding support for automatic enforcement of security policies

in NFV networks, IEEE/ACM Trans. Netw. 27 (2) (2019).

[17] A. El-Hassany, P. Tsankov, L. Vanbever, M. T. Vechev, Net-

complete: Practical network-wide con�guration synthesis with

autocompletion, in: S. Banerjee, S. Seshan (Eds.), Proc. of the

USENIX Symp. on Networked Systems Design and Implemen-

tation, 2018.

[18] C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta,

L. Veronese, Language-independent synthesis of �rewall poli-

cies, in: Proc. of the IEEE European Symp. on Security and

Privacy, 2018.

[19] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, J. Yusupov,

Automated optimal �rewall orchestration and con�guration in

virtualized networks, in: Proc. of the IEEE/IFIP Network Op-

erations and Management Symposium, 2020.

[20] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, J. Yusupov,

Automated �rewall con�guration in virtual networks, IEEE

Trans. Dependable Secur. Comput.In press (2023).

[21] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, Short paper:

Automatic con�guration for an optimal channel protection in

virtualized networks, in: Proc. of the Work. on Cyber-Security

Arms Race, 2020.

[22] L. Firdaouss, A. Bahnasse, B. Manal, Y. Ikrame, Automated

VPN con�guration using devops, in: N. Varandas, A. Yasar,

H. Malik, S. Galland (Eds.), The 12th International Conference

on Emerging Ubiquitous Systems and Pervasive Networks (EU-

SPN 2021), Leuven, Belgium, November 1-4, 2021, Vol. 198 of

Procedia Computer Science, Elsevier, 2021, pp. 632�637.

[23] A. M. Zarca, J. B. Bernabé, R. Trapero, D. Rivera, J. Villalo-

bos, A. F. Skarmeta, S. Bianchi, A. Zafeiropoulos, P. Gouvas,

Security management architecture for nfv/sdn-aware iot sys-

tems, IEEE Internet Things J. 6 (5) (2019) 8005�8020.

[24] M. A. Rahman, A. Datta, E. Al-Shaer, Automated con�gura-

tion synthesis for resilient smart metering infrastructure, EAI

Endorsed Trans. Security Safety 8 (28) (2021) e4.

[25] D. Bringhenti, J. Yusupov, A. M. Zarca, F. Valenza, R. Sisto,

J. B. Bernabé, A. F. Skarmeta, Automatic, veri�able and opti-

mized policy-based security enforcement for sdn-aware iot net-

works, Comput. Networks 213 (2022) 109123.

[26] J. Kim, Y. Kim, V. Yegneswaran, P. A. Porras, S. Shin, T. Park,

Extended data plane architecture for in-network security ser-

vices in software-de�ned networks, Comput. Secur. 124 (2023)

102976.

[27] L. Xia, J. Strassner, C. Basile, D. R. Lopez, Information model

of nsfs capabilities, Rfc, RFC Editor (2019).

[28] D. R. López, E. Lopez, L. Dunbar, J. Strassner, R. Kumar,

Framework for interface to network security functions, RFC

8329.

[29] K. Giotis, Y. Kryftis, V. Maglaris, Policy-based orchestration

of NFV services in software-de�ned networks, in: Proceedings

of the 1st IEEE Conference on Network Softwarization, NetSoft

2015, London, United Kingdom, April 13-17, 2015, IEEE, 2015,

pp. 1�5.

[30] S. Hyun, J. Kim, H. Kim, J. Jeong, S. Hares, L. Dunbar, A. Far-

rel, Interface to network security functions for cloud-based se-

curity services, IEEE Commun. Mag. 56 (1) (2018) 171�178.

[31] A. M. Zarca, D. G. Carrillo, J. B. Bernabé, J. O. Murillo,

R. Marín-Pérez, A. F. Skarmeta, Enabling virtual AAA man-

agement in sdn-based iot networks, Sensors 19 (2) (2019) 295.

[32] Y. Bartal, A. Mayer, K. Nissim, A. Wool, Firmato: A novel

�rewall management toolkit, ACM Trans. Comp. Syst. 22 (4)

(2004).

[33] J. García-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Preda,

MIRAGE: A management tool for the analysis and deployment

of network security policies, in: Proc. of the Intern. Work. Data

Privacy Management and Autonomous Spontaneous Security,

2010.

[34] M. Rossberg, G. Schaefer, T. Strufe, Distributed automatic

con�guration of complex ipsec-infrastructures, J. Network Syst.

Manage. 18 (3) (2010).

[35] S. Jiao, X. Zhang, S. Yu, X. Song, Z. Xu, Joint virtual network

function selection and tra�c steering in telecom networks, in:

Proc. of the IEEE Global Communications Conference, 2017.

[36] J. Pei, P. Hong, D. Li, Virtual network function selection and

chaining based on deep learning in SDN and nfv-enabled net-

works, in: Proc. of the IEEE Inter. Conf. on Communications

Workshops, 2018.

[37] J. Pei, P. Hong, K. Xue, D. Li, D. S. L. Wei, F. Wu, Two-

phase virtual network function selection and chaining algorithm

22

based on deep learning in sdn/nfv-enabled networks, IEEE J.

Sel. Areas Commun. 38 (6) (2020).

[38] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. T.

Wilfong, Y. R. Yang, C. Guo, PACE: policy-aware application

cloud embedding, in: Proc. of the IEEE INFOCOM, 2013.

[39] X. Li, C. Qian, An NFV orchestration framework for

interference-free policy enforcement, in: 36th IEEE Interna-

tional Conference on Distributed Computing Systems, ICDCS

2016, Nara, Japan, June 27-30, 2016, IEEE Computer Society,

2016, pp. 649�658.

[40] G. Marchetto, R. Sisto, F. Valenza, J. Yusupov, A. Ksentini,

A formal approach to verify connectivity and optimize VNF

placement in industrial networks, IEEE Trans. Ind. Informatics

17 (2) (2021).

[41] C. Basile, C. Pitscheider, F. Risso, F. Valenza, M. Vallini, To-

wards the dynamic provision of virtualized security services, in:

F. Cleary, M. Felici (Eds.), Cyber Security and Privacy - 4th

Cyber Security and Privacy Innovation Forum, CSP Innovation

Forum 2015, Brussels, Belgium, April 28-29, 2015, Revised Se-

lected Papers, Vol. 530 of Communications in Computer and

Information Science, Springer, 2015, pp. 65�76.

23

