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Abstract: For the first time, Fe-doping (0.05, 1.0, and 2.5 wt.% Fe) was performed on a high-surface-
area anatase/brookite TiO2 by adopting a simple template-free sol-gel synthesis followed by calci-
nation at a mild temperature. The powders’ textural and surface properties were characterized by
following a multi-technique approach. XRD analysis showed that the anatase/brookite ratio slightly
varied in the Fe-doped TiO2 (from 76.9/23.1 to 79.3/22.7); Fe doping noticeably affected the cell
volume of the brookite phase, which decreased, likely due to Fe3+ ions occupying interstitial positions,
and retarded the crystallite growth. N2 sorption at −196 ◦C showed the occurrence of samples with
disordered interparticle mesopores, with an increase in the specific surface area from 236 m2 g−1

(undoped TiO2) to 263 m2 g−1 (2.5 wt.% Fe). Diffuse Reflectance UV-Vis spectroscopy showed a
progressive decrease in the bandgap energy from 3.10 eV (undoped TiO2) to 2.85 eV (2.5 wt.% Fe).
XPS analysis showed the presence of some surface Fe species only at 2.5 wt.% Fe, and accordingly, the
ζ-potential measurements showed small changes in the pH at the isoelectric point. The photocatalytic
degradation of simazine (a persistent water contaminant) both under UV and simulated solar light
was performed as a probe reaction. Under UV light, Fe-doping improved simazine degradation in
the sample at 0.05 wt.% Fe, capable of degrading ca. 77% simazine. Interestingly, the undoped TiO2

was also active both under UV and 1 SUN. This is likely due to the occurrence of anatase/brookite
heterojunctions, which help stabilize the photogenerated electrons/holes.

Keywords: TiO2 polymorphs; anatase/brookite heterojunctions; Fe-doped TiO2; simazine degradation;
detoxification

1. Introduction

Along with ZnO, TiO2 is one of the most studied semiconductors, with actual and
potential applications in various fields. These applications include photocatalytic processes,
during which the following events take place upon TiO2 interaction with the light of proper
energy [1,2]:

TiO2 + hν→ e−CB + h+
VB (1)

e−CB + O2 + H+ → HO2• (2)

e−CB + HO2 •+H+ → H2O2 (3)

2e−CB + O2 + 2H+ → H2O2 (4)
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h+
VB + H2O→ HO •+H+ (5)

2HO• → H2O2 (6)

H2O2 + hν→ 2HO• (7)

H2O2 + e−CB + H+ → HO •+H2O (8)

According to Reactions (1)–(8), valence band (VB) electrons are promoted to the
conduction band (CB, e−CB), and simultaneously holes are produced in the VB (h+

VB): the so
photogenerated charge carriers (e−CB and h+

VB) undergo several reactions producing (highly
oxidizing) radical species (e.g., HO•).

From a practical point of view, photocatalytic applications of TiO2 are usually ham-
pered by two major drawbacks: (i) the fast recombination of photogenerated charge car-
riers [3], which decreases the overall yield [4,5] and (ii) the poor absorption of the solar
spectrum, which contains only a minor fraction of UV light (ca. 4%), whereas the three most
common polymorphs of TiO2, namely anatase, brookite, and rutile, have average bandgap
energies (Eg) in the UV range (of ca. 3.2, 3.4 and 3.0 eV, respectively [6,7]). By tailoring
the semiconductor properties, different strategies can be adopted to cope with such issues:
for instance, (i) the production of composites containing heterojunctions between TiO2
and other substances [8,9] or between TiO2 polymorphs [10,11] can improve the lifetime of
photogenerated charge carriers, and (ii) the doping with heteroatoms can red shift the TiO2
absorption edge and improve its absorption of solar light [12,13].

Concerning the presence of inter-polymorph heterojunctions to stabilize the charge
carriers in undoped TiO2, anatase/rutile heterojunctions are generally considered respon-
sible for the superior photocatalytic activity of Degussa P25, the commercial product
used as a benchmark in most studies [14,15]. Currently, there is a growing interest in
anatase/brookite heterojunctions [16–18]. Indeed, we have observed that such heterojunc-
tions can be responsible for the fair photocatalytic activity of an anatase/brookite TiO2
mixed phase towards the degradation of the herbicide N-phenylurea, both under UV and
simulated solar light [11].

Concerning doping with heteroatoms, Fe is an earth-abundant, non-toxic element, and
can be successfully introduced to different types of materials, such as alumino-silicates, due
to the similar charge to radius ratio of Fe3+ and Al3+ [19–21]. Concerning semiconductors,
the effects of Fe doping are exploited, for instance, in ZnO and TiO2. With ZnO, several
effects are observed, such as the formation of Fe2+ species, the segregation of Zn/Fe
mixed spinels, and the occurrence of interesting optical and magnetic properties [22–24].
Concerning the effect of Fe doping in TiO2, which is the subject of this study, it is known to
shift the absorption edge towards the visible range [25–28] by forming new levels within
the TiO2 bandgap (Scheme 1).

In the bulk, the Fe species may also act as traps for the photogenerated e−CB and h+
VB

(Scheme 1), avoiding their recombination and giving rise to the following reactions [29]:

Fe3+ + e−CB → Fe2+ (9)

Fe2+ + Ti4+ → Fe3+ + Ti3+ (10)

Fe3+ + h+
VB → Fe4+ (11)

Fe4+ + OH− → Fe3+ + HO• (12)
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In the presence of TiO2, the photogenerated h+
VB can react with Fe3+ species to pro-

duce (unstable) Fe4+ species, which can provide additional HO• species, according to
Equations (11) and (12).

Moreover, Fe-species on the TiO2 surface in the presence of H2O2 can undergo Fenton-
and Fenton-like processes, well known in the homogeneous phase but possible in the hetero-
geneous phase as well. In such processes, both Fe3+ (Equation (13)) and Fe2+ (Equation (14))
ions may react with H2O2 to form radicals [30,31], which further react with H2O2 according
to the following reactions that can be exploited to degrade, for instance, water pollutants:

Fe3+ + H2O2 → Fe2+ + H+ + HO2• (13)

Fe2+ + H2O2 → Fe3+ + OH− + HO• (14)

HO •+H2O2 → H2O + HO2• (15)

HO2 •+H2O2 → HO •+H2O + O2 (16)

Pollutant + HO• → degradationproducts (17)

Typically, Fe3+ species reacts more slowly (Equation (13)) than Fe2+ species (Equation
(14)) [32], but in the presence of light with λ < 600 nm, the photo-Fenton process takes
place, during which Fe3+ species is reduced to (more active) Fe2+ species, yielding HO•
radicals [20,33]:

Fe(OH)2+ + hν→ Fe2+ + HO• (18)

Fe3+ + H2O + hν→ Fe2+ + HO •+H+ (19)

H2O2 + hν→ 2HO• (20)

Photocatalysis and Fenton-like reactions belong to the class of the so-called Advanced
Oxidations Processes (AOPs), i.e., those methods that, through the production of very
oxidizing species, allow degradation of several organic (and inorganic) substances, yielding
by-products or mineralization [1,2]. By these methods, it would be possible to also treat
persistent pollutants and/or micropollutants (present at very low concentrations), which
can escape traditional water treatment plants [31,34–36], such as simazine (Scheme 2).
Simazine is a herbicide of the triazine family. Although it has been banned since 1991
in Italy and Germany [37] and since 2004 in most of the other European countries [38],
Simazine is still detected in some surface and ground waters, as traditional water treatment
plants are unable to remove it. Recently, along with atrazine, a pesticide of the same family
(Scheme 2), simazine has been banned in Hawaii and other U.S. territories [39], as several
reports pointed out that it is a potential endocrine disruptor, which can lead to reproductive
disorders and be toxic to humans and wildlife [38].
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diamine) and atrazine (IUPAC name: 6-Chloro-N2-ethyl-N4-(propan-2-yl)-1,3,5-triazine-2,4-diamine).

Due to its chemical stability and persistence [40], simazine is the second most detected
herbicide/pesticide in waters of the Western world. Concerning the distribution of the pol-
lutant in Europe, in 2017, the analysis of over 7000 sites including both surface and ground-
water all over Europe showed that simazine was the third among herbicides/pesticides
detected in surface waters and the second among those detected in groundwater [41]. The
persistence of simazine in soils or a natural habit can make it a dangerous pollutant. Indeed,
it is considered a pollutant of environmental concern [42], due to its persistence, stability,
environmental distribution, very high toxicity for aquatic life and suspected carcinogenicity.

Concerning non-reactive methods for simazine removal, adsorption on widely avail-
able, low-cost adsorbents [43,44] suffers from the drawback of their regeneration. Concern-
ing reactive methods, different solutions have been exploited. For instance, Sun et al. [45]
studied the chemical degradation of simazine by diatomite-supported NZVI (Nanoscale
Zero Valent Iron). For the photocatalytic removal of simazine through AOPs, only a few
studies imply the use of visible or solar light and engineered composites of graphene-like
materials [46,47], whereas most studies implying the use of TiO2 are carried out under UV
light [48–50].

In this work, for the first time, we synthesized and characterized samples of Fe-doped
anatase/brookite high-surface-area mesoporous TiO2 through a simple procedure based
on pH control followed by calcination at a mild temperature (namely 200 ◦C); an undoped
anatase/brookite (AB sample) TiO2 was also obtained for comparison by slightly modifying
a literature procedure [51]. On the one side, the adopted synthesis is more sustainable than
other methods, implying the use of organic templates and the need for high calcination
temperature to obtain high-surface-area mesoporous TiO2 [10,52–55]; on the other side, it
allows obtaining an anatase/brookite mixed phase that we already proved active under
both UV and solar illumination [11]. To the best of our knowledge, it is the first time such
a method [11,51] has been applied to obtain Fe-doped TiO2: by adding proper amounts
of FeCl3 × 6H2O, three nominal Fe-contents have been studied, corresponding to 0.05,
1.0, and 2.5 wt.% Fe in the AB_0.05_Fe, AB_1.0_Fe, and AB_2.5_Fe samples, respectively.
After the physico-chemical characterization of their textural and surface properties, the
photocatalytic degradation of simazine under UV and solar light was used as a probe
reaction in different conditions, namely the absence/presence of H2O2 in stoichiometric
amount, as too high H2O2 concentration may lead to adverse effects, by consuming HO•
radicals and producing less reactive HO2• radicals (Equation (15)) [55].

2. Results and Discussion
2.1. Physico-Chemical Characterization

Figure 1a reports the X-ray Diffraction (XRD) patterns of the studied samples, and the
corresponding results of the Quantitative Phase Analysis (QPA) is reported in Table 1. The
undoped AB sample shows the peaks of both anatase (A, main peaks at ca. 25.2 and ca.
48.1 2θ values, ICDD card no. 01-073-1764) and brookite (B, main peaks at ca. 25.2, 25.5
and 30.6 2θ values, COD card No 96-900-4141), with a relative abundance of 77.7 wt.% and
22.3 wt.%, respectively. Doping with Fe does not lead to the appearance of other phases
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besides anatase and brookite nor to a consistent change in their abundance (Table 1), likely
due to the low Fe content [52–55].

Catalysts 2023, 13, x FOR PEER REVIEW 5 of 20 
 

 

under both UV and solar illumination [11]. To the best of our knowledge, it is the first time 

such a method [11,51] has been applied to obtain Fe-doped TiO2: by adding proper 

amounts of FeCl3 × 6H2O, three nominal Fe-contents have been studied, corresponding to 

0.05, 1.0, and 2.5 wt.% Fe in the AB_0.05_Fe, AB_1.0_Fe, and AB_2.5_Fe samples, respec-

tively. After the physico-chemical characterization of their textural and surface properties, 

the photocatalytic degradation of simazine under UV and solar light was used as a probe 

reaction in different conditions, namely the absence/presence of H2O2 in stoichiometric 

amount, as too high H2O2 concentration may lead to adverse effects, by consuming HO ∙ 

radicals and producing less reactive HO2 ∙ radicals (Equation (15)) [55]. 

2. Results and Discussion 

2.1. Physico-Chemical Characterization 

Figure 1a reports the X-ray Diffraction (XRD) patterns of the studied samples, and 

the corresponding results of the Quantitative Phase Analysis (QPA) is reported in Table 1. 

The undoped AB sample shows the peaks of both anatase (A, main peaks at ca. 25.2 and 

ca. 48.1 2θ values, ICDD card no. 01-073-1764) and brookite (B, main peaks at ca. 25.2, 25.5 

and 30.6 2θ values, COD card No 96-900-4141), with a relative abundance of 77.7 wt.% 

and 22.3 wt.%, respectively. Doping with Fe does not lead to the appearance of other 

phases besides anatase and brookite nor to a consistent change in their abundance (Table 

1), likely due to the low Fe content [52–55]. 

 

Figure 1. XRD patterns of the studied powder samples. The main peaks of anatase and brookite are 

labelled as A and B, respectively (a); values of the cell volumes of anatase and brookite versus the 

nominal Fe content (wt.%) (b). 

The broad peaks show that the AB powder has a low crystallinity degree, likely due 

to the low calcination temperature (namely 200 °C), and accordingly, the crystallite sizes 

are small (ca. 5.2 and 7.1 nm for anatase and brookite, respectively). As shown in Table 1, 

the crystallite size of both phases slightly decreases in the Fe-doped samples, in agreement 

with previous work on Fe-doped anatase/brookite TiO2, where the presence of Fe3+ ions 

was found to retard the crystallite growth [56]. 

Figure 1b, instead, shows that the cell volume of brookite decreases with the Fe con-

tent, whereas the anatase cell volume is less affected by doping (Figure 1b) indicating that 

the effects of Fe-doping are more noticeable on the brookite phase. The crystallite size of 

both phases slightly decreases (Table 1), especially at the minimum amount of doping. 

Concerning the type of process when Fe3+ ions are inserted into the TiO2 lattice, in a pre-

vious work on Fe-doped anatase/brookite/rutile TiO2, using a reverse-micelle sol-gel 

method to incorporate Fe in both anatase and brookite [53], an initial expansion of both 

the anatase and brookite cell volumes occurred at 1.0 wt.% Fe, and then the cell volumes 

decreased at a Fe content above 1.0 wt.%. The former phenomenon was ascribed to the 

isomorphic substitution of Ti4+ by Fe3+ ions, while the latter was caused by the occupation 

of interstitial sites by (extra) Fe3+ ions. In this case, the peculiar synthesis procedure seems 

Figure 1. XRD patterns of the studied powder samples. The main peaks of anatase and brookite are
labelled as A and B, respectively (a); values of the cell volumes of anatase and brookite versus the
nominal Fe content (wt.%) (b).

Table 1. Some relevant physico-chemical properties of the studied samples, as obtained using XRD
followed by Rietveld refinement a and Williamson-Hall method, b N2 isotherms at −196 ◦C, c and
DR UV-Vis spectroscopy. d A = anatase; B = brookite.

Sample QPA Results:
(Phase wt.%) a

Crystallite
Size (±nm) b

BET SSA
(m2 g−1) c

Vtot
(cm3 g−1) c

Extrapolated/
Tauc’s Plot

Determined
Eg Values

(eV) d

AB 77.7 A
22.3 B

5.2 (0.2) A
7.1(0.1) B 236 0.293 3.30/

3.10

AB_0.05_Fe 76.9 A
23.1 B

5.0 (0.1) A
5.6 (0.2) B 233 0.286 3.22/

3.07

AB_1.0_Fe 79.3 A
20.7 B

4.7 (0.1) A
6.0 (0.2) B 243 0.253 3.10/

2.92

AB_2.5_Fe 78.4 A
21.6 B

4.4 (0.1) A
5.7 (0.2) B 263 0.245 3.01/

2.85

The broad peaks show that the AB powder has a low crystallinity degree, likely due
to the low calcination temperature (namely 200 ◦C), and accordingly, the crystallite sizes
are small (ca. 5.2 and 7.1 nm for anatase and brookite, respectively). As shown in Table 1,
the crystallite size of both phases slightly decreases in the Fe-doped samples, in agreement
with previous work on Fe-doped anatase/brookite TiO2, where the presence of Fe3+ ions
was found to retard the crystallite growth [56].

Figure 1b, instead, shows that the cell volume of brookite decreases with the Fe content,
whereas the anatase cell volume is less affected by doping (Figure 1b) indicating that the
effects of Fe-doping are more noticeable on the brookite phase. The crystallite size of
both phases slightly decreases (Table 1), especially at the minimum amount of doping.
Concerning the type of process when Fe3+ ions are inserted into the TiO2 lattice, in a
previous work on Fe-doped anatase/brookite/rutile TiO2, using a reverse-micelle sol-gel
method to incorporate Fe in both anatase and brookite [53], an initial expansion of both
the anatase and brookite cell volumes occurred at 1.0 wt.% Fe, and then the cell volumes
decreased at a Fe content above 1.0 wt.%. The former phenomenon was ascribed to the
isomorphic substitution of Ti4+ by Fe3+ ions, while the latter was caused by the occupation
of interstitial sites by (extra) Fe3+ ions. In this case, the peculiar synthesis procedure seems
to help the latter process, which, in turn, mainly affects the brookite phase, characterized
by a more disordered and open structure than anatase [7].
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Figure 2 reports some selected FESEM micrographs of the studied powders: small
nanoparticles are observed with four samples, which are all characterized by a high ag-
gregation/agglomeration degree. The nanoparticles size and shape are mostly unaffected
by the presence of Fe, and their size agrees with a previous microscopic characterization
of an undoped anatase/brookite TiO2, obtained by the same synthesis method of the AB
sample, showing that the nanoparticles size is of the order of the crystallite size [11]. The
corresponding EDX-determined elemental maps are reported in Figure S1 for the Fe-doped
samples, showing a homogeneous distribution of Fe in the synthesized powders.
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Figure 2. Selected FESEM micrographs of the AB (a), AB_0.05_Fe (b), AB_1.0_Fe (c) and AB_2.5_Fe
(d) powder samples, showing nanoparticles with similar size and morphology, as well as a high
degree of agglomeration/aggregation.

Figure 3 reports the N2 adsorption/desorption isotherms measured at −196 ◦C on the
studied samples: all the studied powders showed type IV isotherms with H2 hysteresis
loops, indicating the occurrence of interconnected mesopores of different shapes and sizes.
The adopted synthesis procedure likely leads to disordered inter-particle mesopores, as also
shown by the Pore Size Distribution (PSD) curves reported in the insets. The AB, AB_1.0_Fe,
and AB_2.5_Fe samples have a sharp PSD with a maximum at ca. 4.0 nm, whereas the
AB_0.05_Fe sample has a broader PSD, likely due to some aggregation/agglomeration
phenomena (Figure 2). The PSD curves show that the samples’ pore diameters largely
exceed simazine’s molecular dimensions (ca. 1.1 × 0.75 nm [57]), thus diffusion problems
during the photocatalytic tests should be avoided. Interestingly, the four powders are char-
acterized by high specific surface area (SSA) values (Table 1). Except sample AB_0.05_Fe,
which has an SSA very close to that of the (undoped) AB sample likely due to the low Fe
content, the SSA is seen to increase with Fe doping.
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Figure 3. N2 adsorption/desorption isotherms at − 196 ◦C on the AB (a), AB_0.05_Fe (b), AB_1.0_Fe
(c) and AB_2.5_Fe (d) samples; full and empty symbols refer to adsorption and desorption run,
respectively. Insets: PSD curves, as obtained by applying the BJH method to the isotherm’s
desorption branch.

Figure 4a reports the DR UV-Vis spectra of the studied samples: with the AB sample,
the typical electronic transitions due to the charge transfer (CT) from O2− to Ti4+ in undoped
TiO2 are observed, along with an Urbach tail (inset), which will be discussed later. With the
AB_0.05_Fe sample, a band at ca. 235 nm can be assigned to CT from O2− to Ti4 ions in an
environment perturbed by the presence of Fe3+ ions [58]. Such an effect is not so noticeable
with the other two powders and could be due to a stronger effect of Fe substitution on the
TiO2 matrix at low Fe content. Doping with Fe brings a red shift of the absorption onset,
surely related to bulk Fe doping, in agreement with the reported XRD patterns, which also
brings about a decrease of the energy gap, vide infra. The formation of interband states
due to Fe doping can be appreciated in the UV-Vis spectra of the doped samples (inset to
Figure 4a).

With Fe-doped TiO2 obtained by different (template-assisted) sol-gel techniques, the
formation of surface Fe-oxohydroxo cluster was observed, especially at 2.5 wt.% Fe. Corre-
spondingly, XPS was able to detect the presence of some surface Fe species [53]. With the
present samples, instead, XPS analysis detected the presence of surface Fe species only with
the AB_2.5_Fe sample (Figure S2). As an Fe/Ti atomic ratio equal to 0.071 was measured
by XPS, higher than the nominal value of 0.037, this indicates that at higher Fe content,
some Fe oxyhydroxide species may occur; indeed, a signal was observed at ca. 480 nm
(asterisk, Figure 4a), corresponding to a signal at 2.55 eV in the related Tauc’s plot (asterisk,
Figure 4b). XPS also detected some Cl traces (0.6 at.%; Cl/Fe atomic ratio of 0.46).
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Figure 4. DR UV-Vis spectra of the studied powders (a) and corresponding Tauc’s plot, as obtained
by assuming a behaviour of indirect semiconductors (b). Asterisks at 480 nm (inset to Figure 4a) and
at 2.55 eV (Figure 4b) refer to evidence of the formation of Fe oxyhydroxide species.

Concerning the bandgap energy, since the samples contain not only anatase (an indirect
semiconductor) but also brookite (a direct semiconductor), the bandgap values (Eg) of the
powders have been calculated both by applying the Tauc’s plot method (Figure 4b) for
an indirect semiconductor ((F(R) × hν)1/2 and by extrapolation of the spectra absorption
onset (dashed lines in Figure 4a). The obtained Eg values are reported in Table 1: slightly
smaller values are obtained by Tauc’s plot method, likely due to the indirect semiconductor
assumption, but generally Fe brings about a decrease in the Eg values. Analysis of the
Tauc’s plot curves shows that the AB (undoped) sample is characterized by an Urbach tail,
namely an exponential part in the energy spectrum of the absorption coefficient that may
appear near the optical band edge in amorphous, disordered, and crystalline materials,
including undoped TiO2 mixed phases [59]. Figure S3 reports a comparison of the AB
spectrum with a spectrum of Degussa P25, showing that the former sample extends its
absorption towards longer wavelengths. Such phenomenon allows absorption of a broader
range of light energy; therefore, it is useful in photocatalytic applications, especially under
solar illumination (vide infra).

Figure 5 reports the ζ-potential curves of the studied powders in water: they are posi-
tively and negatively charged, respectively, above and below a pH of ca. 5.00–6.00. Accord-
ing to the literature, the pH at the isoelectric point (pHIEP) of brookite and anatase is around
5.10 and 6.00, respectively [60], and Fe2O3 has pHIEP values in the 5.80–6.20 range [61]. The
pHIEP of the undoped AB sample is very close to that of brookite, and the pHIEP of the
AB_1.0_Fe and AB_2.5_Fe samples is not much affected by Fe-doping, in agreement with
the low Fe content. Concerning the AB_0.05_Fe sample, the slightly higher pHIEP value
may be due to the presence of a higher abundance of exposed anatase nanoparticles, due to
a kind of heterogeneity induced by the agglomeration/aggregation phenomena, already
evidenced by FESEM (Figure 2). Such agglomeration/aggregation phenomena may also
occur in aqueous phase: indeed, according to the literature, stable nanoparticles suspension
are characterized by values of surface charges above +30 mV and below −30 mV (dotted
lines) [62,63], whereas the studied powders have lower (in absolute value) surface charges
in a broad pH range.

The physico-chemical characterization reported so far showed that the adopted syn-
thesis procedure led to the production of mesoporous anatase/brookite TiO2 samples,
occurring as highly agglomerated/aggregated nanoparticles and that the Fe-doping mainly
occurred in the TiO2 bulk, especially at low Fe content, with a more noticeable effect on the
crystallographic parameters of the brookite phase.



Catalysts 2023, 13, 667 9 of 19Catalysts 2023, 13, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 5. ζ-potential curves of the studied powders. The dashed lines at ζ = + 30 mV and −30 mV 

indicate the upper and lower values of surface charge above and below which stable suspensions of 

nanoparticles occur according to the literature [55,56]. 

The physico-chemical characterization reported so far showed that the adopted syn-

thesis procedure led to the production of mesoporous anatase/brookite TiO2 samples, oc-

curring as highly agglomerated/aggregated nanoparticles and that the Fe-doping mainly 

occurred in the TiO2 bulk, especially at low Fe content, with a more noticeable effect on 

the crystallographic parameters of the brookite phase. 

2.2. Simazine Degradation under UV Light 

Figure 6 reports the results of the photocatalytic tests obtained after 3 h illumination 

under UV light. The parent simazine solution (spectra taken at t = 0 min) has two bands 

at 222 and 265 nm, assigned to π → π* and n → π* electronic transitions, respectively [64]; 

under UV illumination, several new bands also form in the presence of the (undoped) AB 

sample, showing that the studied samples are photocatalytically active towards simazine 

degradation. Here, it is considered as a probe reaction, and the mechanisms of simazine 

degradation have already been addressed in the literature and will be used as a reference 

in this paper. 
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nanoparticles occur according to the literature [55,56].

2.2. Simazine Degradation under UV Light

Figure 6 reports the results of the photocatalytic tests obtained after 3 h illumination
under UV light. The parent simazine solution (spectra taken at t = 0 min) has two bands at
222 and 265 nm, assigned to π→ π* and n→ π* electronic transitions, respectively [64];
under UV illumination, several new bands also form in the presence of the (undoped) AB
sample, showing that the studied samples are photocatalytically active towards simazine
degradation. Here, it is considered as a probe reaction, and the mechanisms of simazine
degradation have already been addressed in the literature and will be used as a reference
in this paper.
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Figure 6. UV-Vis spectra of the supernatant solutions obtained after 60, 120 and 180 min under UV
illumination in the presence of 1 g L−1 AB (a), AB_0.05_Fe (b), AB_1.0_Fe (c) and AB_2.5_Fe (d)
photocatalyst (t = 0 min refers to the spectrum of the fresh 1.73 10−5 M simazine solution). Green
asterisks indicate possible bands of cyanuric acid.
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It has to be remarked that simazine is an extremely stable molecule, due to the energy
gap between its frontiers orbitals [65] and, thus, its mineralization:

C7H12ClN5 + 16O2→ 5HNO3 + HCl + 7CO2 + 3H2O (21)

is hardly achieved. Indeed, AOPs mostly lead to the formation of cyanuric acid (Scheme 3),
which is not as toxic as the parent molecule [66] and has a characteristic UV spectrum in
water, with a more intense band at 213 nm and a shoulder at 193 nm [67] (green asterisks
in Figure 6). Typically, before the formation of cyanuric acid, simazine molecules (and
triazines, in general) undergo dealkylation (i.e., loss of the lateral chains) and dechlorination
(i.e., substitution of the Cl atom by an OH group) [50]. In the aqueous phase, dealkylation
brings about a blue shift of the simazine 222 nm band (and the disappearance of the 265 nm
band), whereas dechlorination brings about a red shift of the 222 nm band. The substitution
of Cl, although without leading to mineralization, is considered a strategy of detoxification,
i.e., the production of less toxic products [68,69], which can be a potential solution when
mineralization is hard to achieve.
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In the following discussion, due to the complicated interpretation of UV-Vis spectra
and since we are considering simazine degradation simply as a probe reaction to further
characterize the studied samples, we will consider the intensity of the spectra at 222 nm:
obviously, simazine by-products could absorb in that spectral range and, thus, the overall
percentage of degraded simazine could be underestimated. It has to be remarked that if
the intensity of the (broad) 266 nm band was considered, higher simazine degradation
percentages were calculated, and we will consider an error of ±10% on the percentage of
simazine degradation.

Figure S4a reports the results of the tests of UV photolysis, showing that in the adopted
experimental conditions ca. 41% simazine was degraded, but the bands of cyanuric acid
were not observed. Figure S4b reports the photocatalytic results in the presence of 1 g/L
mesoporous anatase with a SSA of 150 m2 g−1 and a bandgap of 3.20 eV [11,60], which was
taken as a benchmark as our samples had anatase contents in the 77.7–79.3% range (Table 1).
With the mesoporous anatase, dechlorination took place, likely due to the formation of
4,6-diamino-2-hydroxy-1,3,5-triazine (band at 229 nm [70]), which then transforms into
a more hydroxylated product (isosbestic point), but the bands of cyanuric acid are not
clearly distinguishable. With the AB powder (Figure 6a), firstly a red shift of the 222 nm
band is observed, indicating the occurrence of a dechlorination process. Then, the bands
of cyanuric acid (green asterisks) appear after 180 min illumination, indicating that with
the undoped sample, the formation of cyanuric acid is accelerated, as compared to mere
photolysis. With the AB_0.05_Fe sample, cyanuric acid forms. However, after 60 min, it is
further degraded probably by ring opening, indicating not only that Fe-doping accelerates
the conversion to cyanuric acid but also that the AB_0.05_Fe sample can further promote
cyanuric acid degradation. The other two Fe-doped samples did not lead to any significant
improvement in simazine degradation, indicating that a very small amount of Fe can
improve the photocatalytic performance of the studied anatase/brookite TiO2. Such a
result agrees with previous literature studies on Fe-doped TiO2, reporting that when Fe-
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doping mainly occurs in the TiO2 bulk, rather than near the surface, as with our samples, Fe
sites may act as recombination centres, lowering the yield of the photocatalytic process [29].

To test the possible photo–Fenton activity of the samples under UV light, the degrada-
tion of simazine was studied in the presence of a stoichiometric amount of H2O2, i.e., with
a simazine/H2O2 molar ratio of 1/20, according to Equation (22):

C7H12ClN5 + 20 H2O2→ 7CO2 + 26H2O + 5/2N2 +
1
2

Cl2 (22)

The UV-Vis spectra (not reported for the sake of brevity) showed, again, a red shift
of the 222 nm band, i.e., the occurrence of the detoxication process by substitution of Cl.
However, as a whole, the samples did not improve their activity in the UV/H2O2 system,
likely due to the small amount of surface Fe. Figure 7 compares the results as a percentage
of simazine degradation after 180 min in the presence of UV and UV/H2O2, showing that
the most active sample was, again, the AB_0.05_Fe sample.
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Figure 7. The percentage of simazine degradation after 180 min under UV light (purple histograms)
and in the presence of UV and a stoichiometric amount of H2O2 (green histograms), as obtained by
considering the intensity at 222 nm. An error of ±10% on the percentage of simazine degradation has
been considered.

Some recent studies concern the degradation of simazine by Fenton and photo–Fenton
processes in homogeneous phase: interestingly, the kinetic constant of simazine degradation
by a UV/H2O2 system is higher than in the presence of UV/H2O2/Fe, likely due to a
synergic effect of UV and H2O2, allowing a fast production of hydroxyls radicals [71].
Catalkaya et al. studied the degradation of simazine by Fenton reagent and found that
the complete disappearance of simazine was achieved within 6 min reaction, but only
32% of simazine was mineralized after 15 min. This result indicates the formation of
some intermediate products, which were not completely degraded to CO2 and H2O [34],
in agreement with the extreme stability of the molecule. As a whole, our results in the
heterogenous phase are promising, especially as far as the AB and the AB_0.05_Fe samples
are concerned, in that we have observed that dechlorination and cyanuric formation occur,
which can be useful in the perspective of detoxification processes, with the advantages of
the heterogenous phase as compared to the homogeneous one [1,2].

2.3. Simazine Degradation under Simulated Solar Light

Figure S5a reports the UV-Vis spectra of the simazine solution after 5 h under 1 SUN,
showing that the structure of simazine was practically unaffected by solar light and almost
nihil degradation occurred. Figure S5b shows the results obtained with the mesoporous
anatase used as a benchmark, with which ca. 12% simazine degradation was reached.
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Figure 8 reports the spectra obtained after 5 h under 1 SUN in the presence of the
4 studied powders: with the AB sample (Figure 8a), simulated solar light brings about
the decrease in the 222 nm band, from which an overall degradation of ca. 20% simazine
can be reasonably estimated in this case (since no other bands formed). This result in-
dicates that the sample can effectively exploit solar light, likely due to its absorption
spectrum, (Figure 4a). This is in agreement with previous work on the degradation of N-
phenylurea [11], where the occurrence of anatase/brookite heterojunctions was considered
responsible of the fair activity of the anatase/brookite undoped TiO2 under simulated
solar light.
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It should be remarked that other materials, such as composites with relevant elec-
trocatalytic [72] and photocatalytic applications [73,74], also present such property, i.e.,
the capability of accelerating interfacial charge separation, thus enhancing their electro-
or photocatalytic efficiency. In the present work, this is simply obtained by a favourable
alignment of the anatase and the brookite bands, as already shown in the literature with
anatase and rutile polymorphs [12,75].

Unfortunately, doping with Fe does not boost the photocatalytic degradation, in that
doped samples were able to degrade ca. 15–20% simazine (Figure 8b–d). To test a possible
effect of surface Fe-doping in the presence of H2O2, ancillary experiments (not reported
for the sake of brevity) were carried out under simulated solar light in the presence of a
stoichiometric amount of H2O2, but no significant improvement was observed as compared
to the tests in the absence of H2O2. It has to be remarked, however, that due to the high
stability of the simazine molecule, most literature studies deal with its degradation under
UV light in the presence of strong oxidants, such as ozone [66], and only a few papers
deal with its degradation under solar light, thus the obtained results obtained under solar
illumination are promising.

Interestingly, some recent literature studies concern the degradation of atrazine
(a molecule similar to simazine, Scheme 2) by non-metal-doped TiO2. With B-doped
anatase/rutile mixed phases, where anatase/rutile heterojunctions occur [75], the non-
metal helps stabilize the photogenerated charges; with ZnO/N-doped TiO2 composites,
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where heterojunctions can stabilize the photogenerated charges [76], the non-metal helps
extend the semiconductor absorption towards the visible range. On the ground of such re-
cent works, our results are particularly interesting in terms of the detoxification of simazine
by a TiO2 mixed phase with anatase/brookite heterojunctions and a low amount of Fe
doping having a positive effect on simazine degradation. This is especially true considering
the importance of detoxification, i.e., the production of less toxic molecules, in agreement
with the findings in Ref. [77] where a careful toxicity evaluation was also carried out.

3. Materials and Methods
3.1. Materials Synthesis

For the synthesis of both undoped and Fe-doped TiO2, ACS-grade chemicals purchased
by Merck-Sigma-Aldrich, Schnelldorf Distribution, Schnelldorf, Germany) were used.

The undoped anatase/brookite TiO2 mixed phase (sample AB) has been synthesized
according to a template-free sol-gel method under pH control [44]. In a 150 mL beaker,
10.0 mL Ti(OPr)4 (titanium(IV) isopropoxide, 97%) was mixed with 10.0 mL isopropyl
alcohol (≥99.8%): the solution was then stirred for 20 min at 500 rpm, by adding 100
mL bi-distilled water during stirring. The Ti(OPr)4/isopropyl alcohol/water mixture was
poured into a Teflon autoclave, heated inside a stove for 5 h at 80 ◦C, and cooled down to
room temperature. The solution pH was then changed by dropwise adding 1.0 M HNO3
solution until a pH equal to 2.0 was obtained. At variance with Mutuma et al. [51], the
acidic solution was stirred at room temperature for 20 h (instead of 24 h) to obtain a gel,
which was repeatedly washed with bi-distilled water and isopropanol and centrifuged
3 times for 12 min at 12,000 rpm. Then, it was dried at 100 ◦C for 12 h in a stove and calcined
at 200 ◦C for 2 h (temperature ramp = 5 ◦C min−1) before cooling down to r.t. (temperature
ramp = 5 ◦C min−1), obtaining the AB sample. Finally, the powder was washed four times
by using an ethanol/water (1/3) mixture, centrifuged for 10 min at 8000 rpm, and dried for
24 h at 60◦C.

Fe-doping (samples AB_0.05, AB_1.0_Fe, and AB_2.5_Fe)was obtained by direct
synthesis, with modifying the aforementioned procedure by adding proper amounts of
FeCl3 × 6H2O (Iron(III) chloride hexahydrate, 97%) to the bi-distilled water before adding
the solution to the Ti(OPr)4/isopropyl alcohol mixture. The solution underwent the same
thermal treatment as for the undoped sample, and finally, the pH was adjusted with 1.0 M
HNO3 solution, when necessary, depending on the acidity of the solution of FeCl3 × 6H2O
in bi-distilled water.

A 100% anatase mesoporous TiO2, fully characterized in previous works [11,55], was
used as benchmark for the photocatalytic tests.

3.2. Materials Characterization

Powders X-ray diffraction (XRD) patterns were measured on an X’Pert Philips PW3040
diffractometer (Panalytical, Almelo, The Netherlands) employing Cu Kα radiation (2θ
range = 10–100◦; step = 0.026◦ 2θ; time per step = 0.8 s). The obtained XRD patterns were
indexed by referring to the Powder Data File database (PDF 2000, International Centre
of Diffraction Data, Newtown Square, PA, USA). The QPA (Quantitative Phase Analysis)
was obtained according to the full-profile Rietveld method (X’Pert High Score Plus 3.0e
software). The crystallite average size (D) was determined according to the Williamson-Hall
plot (X’Pert High Score Plus 3.0e software).

N2 adsorption/desorption isotherms were measured at −196 ◦C on powders pre-
outgassed at 150 ◦C for 4 h to remove water and other atmospheric contaminants (Mi-
cromeritics ASAP 2020Plus, Micromeritics, Norcross, GA, USA). The Brunauer–Emmett–
Teller (BET) method and the Barrett–Joyner–Halenda (BJH) method were adopted to deter-
mine the samples’ Specific Surface Area (SSA) and Pore Size Distribution (PSD), respectively.

FE-SEM (Field Emission Scanning Electron Microscopy) micrographs were collected
on a Merlin FESEM instrument (Carl-Zeiss AG, Oberkochen, Germany), equipped with an
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EDX (Energy Dispersive X-ray Analysis) probe (Oxford instruments, Abingdon, UK) for
semi-quantitative elemental analysis.

The Diffuse Reflectance (DR) UV-Vis spectra of the powders were collected on a Cary
5000 UV-Vis-NIR spectrophotometer (Varian instruments, Palo Alto, CA, USA), equipped
with a DR sphere.

X-Ray Photoelectron Spectroscopy (XPS) analysis was performed on a PHI 5000 Ver-
saProbe equipment (Physical Electronics, Feldkirchen, Germany) adopting monochromatic
Al Kα radiation (1486.6 eV) as an X-ray source and a pass-energy of 187.75 eV. The spectral
line shift of the C 1 s binding energy (BE) value at 284.8 eV was used to eliminate possible
sample charging effects.

The powders’ electrophoretic mobility was measured as a function of pH by dynamic
light scattering (DLS, a Zetasizer Nano-ZS Malvern Instruments, Worcestershire, UK). In a
typical experiment to determine the ζ-potential, the powders were suspended in ultrapure
water and sonicated for 2 min (10 W/mL, 20 kHz, Sonoplus, Bandelin, Berlin, Germany)
or magnetically stirred for 5 min. The pH was adjusted by adding either 0.1 M NaOH or
0.1 M HCl.

3.3. Simazine Degradation Tests

All the photocatalytic tests were carried out by adding a proper amount of photocata-
lyst (corresponding to 1.0 g L−1 concentration) to 40 mL of 1.73 10−5 M aqueous solution
of simazine (natural pH = 5.5).

For the tests under UV light, a medium-pressure Hg lamp (light intensity of 55 mW·cm−2,
LC3, Hamamatsu Photonic, Hamamatsu, Japan) was used. A second set of experiments
was made by adding a stoichiometric amount of H2O2.

For the photocatalytic tests under 1 SUN, a plasma lamp (LIFI STA-40, LUXIM, Santa
Clara, CA, USA) was used to simulate solar light (AM 1.5 G, 100 mW cm−2) under the
following illumination conditions: 1 SUN, i.e., ~1000 W m−2 in the visible range and
~22 W m−2 in the UV range.

During the tests, the liquid/solid suspension inside the testing tube has been continu-
ously stirred using a magnetic stirrer at ca. 300 rpm, as reported elsewhere [55]. The reaction
mixture was not de-aerated although the reacting tube was sealed, with the consequence
that the atmospheric O2 was always present. At constant time intervals, aliquots of the
suspension were withdrawn and immediately centrifuged twice at 12,000 rpm for 12 min
(Thermo Fisher Scientific SL 16R centrifuge, Thermo Electron LED GmbH, Osterode am
Harz, Germany) to obtain the supernatant solution, which was analysed on a UV-Vis-NIR
spectrophotometer (Cary 5000, Varian Instruments, Mulgrave, Australia).

4. Conclusions

A simple, template-free sol-gel synthesis method based on pH control and mild
calcination temperature was developed to dope an anatase/brookite TiO2 mixed phase
with Fe, an earth-abundant non-toxic metal. The physico-chemical characterization showed
that the adopted synthesis procedure led to the production of high-surface-area mesoporous
TiO2 nanoparticles. Fe doping mostly occurred in the bulk of the TiO2 matrix, in that XRD
showed a noticeable change in the cell volume of the brookite phase, and XPS analysis was
able to detect Fe at the TiO2 surface only with the 2.5 wt.% Fe sample.

The photocatalytic degradation of simazine, a herbicide known for being a persistent
pollutant with suspected toxicity to humans and the environment, has been studied as a
probe reaction. Under UV light, different simazine by-products were observed as compared
to mere photolysis: the best results in terms of simazine removal were obtained with the
sample at 0.05% Fe, in agreement with the literature showing that higher Fe contents in the
bulk of doped TiO2 may lead to undesired recombination phenomena. In the presence of
UV/H2O2, the samples photo–Fenton activity was very limited, likely due to the scarcity
of surface Fe species.
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Very interesting results were observed under simulated solar light, in that 4 samples
were able to provide degradation of 15–20% simazine, after 5 h illumination, whereas
solar light was unable to degrade simazine by mere photolysis. Moreover, the undoped
anatase/brookite phase was the most active one under simulated solar light, likely due to
the presence of an Urbach tail in its UV-Vis spectrum and to the presence of anatase/brookite
heterojunctions, allowing effective exploitation of the photogenerated charge carriers, as
already observed by some of us in previous work on the photocatalytic degradation of
N-phenylurea.

Concerning the material optimization, future work will focus on the study of Fe
contents in the 0.05–1.0 wt.% range, to test the possible effect on the samples’ photocatalytic
properties, as different Fe contents may also lead to noticeable effects on the anatase cell
volume in terms, for instance, of isomorphic versus interstitial substitution. Regarding
simazine degradation, future work will concern the study of the effect of varying pH, as it
could affect the production of hydroxyl radicals and/or the simazine/surface interactions
and include the study of the process in actual water samples, with emphasis on the search
for optimal conditions to achieve detoxification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13040667/s1, Figure S1: Overlapped and single-element
EDX maps of Ti, O and Fe with the following samples: (a) AB_0.05_Fe; (b) AB_1.0_Fe; (c) AB_2.5_Fe.
The maps of C and Cl are not reported, as the elements occurred in traces. Figure S2: XPS survey
spectra of the studied samples, showing that surface Fe species were detected only with the AB_2.5_Fe
sample. Figure S3: DR UV-Vis spectra of the AB powder and of a Degussa P25 commercial powder,
showing that the former has an Urbach tail, absent with the latter. Figure S4: UV-Vis spectra of the
supernatant solutions obtained after 60, 120, and 180 min under UV illumination in the absence of any
photocatalyst (a) and in the presence of 1 g/L mesoporous anatase (b). In both graphs, time = 0 min
refers to the spectrum of the fresh 1.73 × 10−5 M simazine solution. Figure S5: UV-Vis spectra of the
supernatant solutions obtained after 60, 120, 180, 240, and 300 min under 1 SUN in the absence of any
photocatalyst (a) and in the presence of 1 g/L mesoporous anatase (b). In both graphs, time = 0 min
refers to the spectrum of the fresh 1.73 10−5 M simazine solution.
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