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Abstract: In this work, 3D-structured clay filters were prepared and coated with iron-doped tita-
nium dioxide (Fe-TiO2) using 3D printing and sol–gel soaking and calcination techniques. Three-
dimensional printing was employed to mold and shape the clay filters before annealing. The
coated and uncoated filters were characterized for different properties, i.e., morphology, optical
properties, and crystalline structure, using field emission scanning electron microscopy (FESEM),
energy-dispersive X-ray spectroscopy (EDS), UV/Vis diffused reflectance spectroscopy (DRS), and
X-ray diffraction (XRD). The FESEM images show uniform coatings of round-shaped Fe-TiO2 on
the tiny pore of the clay filter. The optical energy band gap of the obtained coating was around
2.8 eV, estimated by Tauc’s plot, compared with 3.2 eV of pristine anatase TiO2. The XRD spectra data
processed through XRD software revealed the coatings of TiO2 on the filter surface with the obtained
phase of anatase. The photocatalytic performance of bare and coated filters was initially tested for
the degradation of indigo carmine (IC) dye and the obtained results suggested the photocatalytic
degradation of IC dye by the Fe-TiO2 clay filter compared with the bare filter. Afterward, the deni-
trification of nitrate NO3 at various concentrations was performed using Fe-TiO2-coated clay filters
and analyzing the total nitrogen (TN) analysis and reduction of NO3 to nitrite (NO2

−), nitrogen
monoxide (NO), and nitrogen gas (N2). The TN analysis revealed up to 81% denitrification efficiency
of the 30 ppm NO3 solution with the photocatalytic response of the Fe-TiO2-coated filter. The results
revealed that the Fe-TiO2-coated clay filter has a high potential for denitrification applications under
natural sunlight.

Keywords: photocatalysis; denitrification; iron; TiO2; wastewater; 3D printing

1. Introduction

The growing population demands industrial and agricultural growth for their survival,
but such development has placed the environment under serious threat [1]. The release of
untreated wastewater, including agricultural runoff (containing synthetic fertilizers and
pesticides), industrial effluents (containing different chemicals), and sewage sludge, has
led to the growth of many nutrient-rich micropollutants and pathogens in ground and
surface water tables [2,3]. However, the quality of these resources is threatened by various
anthropogenic activities that are harmful to the overall ecosystem.

Water pollution is a global ecological problem [4]. It adversely impacts daily human
life and the natural ecosystem [5]. Excessive concentration of pollutants begets multiple
diseases thanks to their toxicity and harmful nature [6]. Many studies have identified
numerous nutrient-rich organic and inorganic pollutants, including nitrate, and found their
excessive presence in different water resources, rapidly depleting their quality.

Catalysts 2023, 13, 729. https://doi.org/10.3390/catal13040729 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13040729
https://doi.org/10.3390/catal13040729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-5152-665X
https://orcid.org/0000-0001-9595-0989
https://orcid.org/0000-0002-1492-5990
https://orcid.org/0000-0002-4716-864X
https://doi.org/10.3390/catal13040729
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13040729?type=check_update&version=1


Catalysts 2023, 13, 729 2 of 12

Nitrogen-containing compounds are considered one of the main hazardous pollutants,
creating a tough emerging threat to the natural environment [7]. Nitrate (NO3) is the stable,
oxidized, and soluble form of nitrogen [4]. Various sources contribute to nitrate pollution,
such as sewage, agricultural runoff, food processing and manufacturing, and livestock
waste [8,9]. The removal of nitrate is of special interest because nitrogen is mainly behind
the eutrophication and algal blooming of receiving water. It has harmful impacts on aquatic
species and causes waterborne diseases that harm human health [10].

The unprecedented increases in the human population and industry growth have
increased the demand for high-quality water resources [11]. Water scholars have come up
with advanced ideas to find feasible alternatives for dealing with nitrate. Several efforts
have been made to optimize the reduction and removal of nitrate.

Conventional techniques of nitrate removal, i.e., biological denitrification, ion ex-
change, and reverse osmosis, have been observed as energy-intensive techniques and could
lead to secondary pollutants and more intense forms of nitrogen [12]. The main concern
is reducing nitrate into less harmful compounds in wastewater or its ionic separation
from the treating water. Many challenges in conventional treatment processes were en-
countered, such as the low-temperature effect; sensitivity to dissolved oxygen effect; high
concentration build, helping in the separated stream; accumulation of nitrite ions; and so
on.

In recent years, the applications of photocatalytic approaches have led to the de-
velopment of the oxidative degradation procedure [13] thanks to the unique features of
photocatalysis, prepared by a semiconductor photocatalyst i.e., TiO2. Photocatalysis can
be used as an alternative for treating organically contaminated water. It employs very
low-energy UV-A light, where catalysts can be reused, and additional oxidants are unnec-
essary [10–14]. TiO2 has been considered the more stable photocatalyst thanks to its unique
features, such as being cost-effective and harmless [15].

The TiO2 and various doped TiO2 materials have been extensively studied for potential
applications in the production of hydrogen, cleansing, the synthesis of organics, and
disinfection processes [12]. However, the large band gap (3.2 eV) is the main disadvantage
of TiO2, meaning that activation can only occur upon irradiations with photons of light
in the UV domain. This limits practical efficiency in solar applications [16,17]. Therefore,
the efficiency of solar for TiO2 under solar irradiations can be achieved through TiO2
modification to facilitate visible light absorption [17]. Some methods are being developed
for TiO2 as a visible-light-active photocatalyst. Doping of Fe is a good tool for improving
the photocatalytic properties of TiO2 to be active under sunlight [18,19].

Using powder-form photocatalysts is efficient, but their recovery and reuse are chal-
lenging [20]. Various materials are being used as photocatalyst supporting media, of which
clay is widely used thanks to its high porosity, surface area, and easier availability. Nat-
urally occurring clay has low to median anion absorption capacity, facilitating physical
and chemical modification to improve its surface properties [21]. Thanks to their low cost,
high sorption properties, and potential for ion exchange, clay materials are considered
robust adsorbents. Clay filters have good strength and permeability, are chemically inert,
and resist high temperatures. Clay has potential applications in water and wastewater
treatment [22,23].

Recently, 3D printing technology has attracted researchers’ attention to synthesize 3D
structured and porous filters as supporting media for the photocatalyst’s various water
treatment applications [24,25]. The coatings of nanoparticles on a 3D clay filter make the
photocatalyst strong and interactive and support ion exchange reactions [26,27]. Some
preparation methods for coating TiO2 on supported 3D clay filters have been reported by
various studies [28]. Sol–gel is one of the most versatile methods for synthesizing modified
titanium dioxide particles such as Fe-TiO2 [29]. It permits fine control of the material’s
nanostructure, morphology, and porosity and requires relatively simple equipment [30].

In this study, our previously reported innovative method of preparing standard 3D
structured clay filters was employed as a photocatalyst supporting media [22]. Fe-TiO2
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particles were coated on the surface of a 3D-structured clay filter using the sol–gel soaking
method. The selection of Fe-TiO2 for coating on 3D-structured clay filters was based on our
previous work, where Fe doping enhanced the photocatalytic properties under visible light.
The photocatalytic activity of the bare and Fe-TiO2 deposited clay filters was confirmed
initially for the degradation of the indigo carmine (IC) dye under natural sunlight [31].
After validating the photocatalytic performance of Fe-TiO2 against the removal of IC, the
denitrification of NO3 was experimented with to explore its photocatalytic reduction and
mineralization into nitrogen gas. The obtained results showed promising denitrification
potential of NO3 by employing the Fe-TiO2-deposited clay filters.

2. Results and Discussion
2.1. Characterization of the Clay Filters

Bare and Fe-TiO2-coated clay filters were characterized for UV/Vis spectroscopy,
XRD, EDS, and FESEM to evaluate their optical properties, phase and crystalline structure,
elemental analysis, and morphology, respectively.

2.1.1. XRD

The X’PERT High Score software was used to analyze the XRD peaks of bare and
Fe-TiO2 clay filters, and the obtained XRD patterns are shown in Figure 1A. A broad
peak in the 18–24◦ region is ascribed to clay. Meanwhile, in the case of the coated filter,
the obtained major XRD peaks at 2θ, 25.281, 34.14, 37.934, 48.374, 53.888, and 55.296◦,
are ascribed to anatase TiO2 (reference PDF card: 00-001-0562) [19]. The analyzed XRD
patterns of the coated filter confirmed the integration of Fe-TiO2 particles on the surface
of the clay filter. The presence of any peak associated with Fe or its metalloid was not
observed in the coated filter XRD spectra; probably being low in concentration, its peaks
were suppressed/distorted by the background signals of the clay.
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and anatase TiO2 (without Fe) with an estimated energy band gap.

2.1.2. UV/Vis Spectroscopy

The UV/Vis DRS spectra of the bare and Fe-TiO2-coated filters and anatase TiO2
(without Fe addition) are shown in Figure 1B. The bare filter has absorbance below the
300 nm region, while the coated filter shows typical TiO2 optical absorption spectra in the
region between 300 and 350 nm and further stretching from 350 to 450 nm i.e., owing to
2.5% Fe addition [19]. The addition of Fe revealed the photo-absorption and solar activation
potential of TiO2 compared with the anatase TiO2 (without Fe). The UV/Vis spectra of the
annealed Fe-TiO2 clay filter were also compared to spectra for TiO2 reported in [29], and
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the comparison results confirmed that doping of Fe has extended the absorbance of TiO2,
which could facilitate the transition of visible light electrons from the valence band (VB) to
the conduction band (CB) [19,29]. The estimated band gap of Fe-TiO2 is around 2.8 eV, i.e.,
using the Tauc’s plot (inset Figure 1B), lesser than that of TiO2 without Fe addition, i.e., 3.2
eV.

2.1.3. FESEM Morphology

Figure 2A,B show the bare filter’s FESEM images and Figure 2C–F show FESEM
images of the Fe-TiO2-coated clay filter at different magnifications. The FESEM images
of the bare filter show the rough and irregular clay particles with tiny pores, i.e., enabled
after high-temperature annealing. Meanwhile, Figure 2C–F shows that the round-shaped
Fe-TiO2 particles are uniformly coated and filled on the rough and pore channels of the clay
filter. The estimated average size of the round-shaped Fe-TiO2 particles was in the range of
110 nm–280 nm. The EDS elemental analysis of the spotted tiny pores of the Fe-TiO2-coated
filter is shown in Figure 2G, which confirmed the presence of Ti and Fe along with other
elements, i.e., Si, O, and C.
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2.2. Photocatalytic Evaluation of IC Dye

The results of IC dye degradation were analyzed through spectrophotometer UV/Vis
absorbance spectra for control (only sunlight), bare, and Fe-TiO2 filters. The obtained
kinetic results in Figure 3B revealed the photocatalytic decomposition of IC dye compared
with bare and control test results by achieving the relative concentration (C/Co) decrease to
almost 0.1 after 180 min of treatment. The UV–Vis absorbance spectra of the IC dye versus
irradiation at a different time and with an Fe-TiO2-coated filter (Figure 3A) showed the
decreased trend of the main absorbance peak at 610 nm, and the spectral changes in the UV
region confirmed the degradation and formation of secondary intermediate compounds,
i.e., Isatin sulfonic acid and 2-amine-5-sulfo-benzoic acid [32,33]. The TOC analysis of the
IC dye solution i.e., before and after the photocatalytic test with the coated filter, showed
a decrease of 42% of organic carbon and mineralization of the IC dye. This was probably
achieved by the radical species originating from the Fe-TiO2-coated particles on the clay
surface [22,34]. The acquired photocatalytic results confirmed the photocatalytic response
of coated clay filters and the further advantage of doping Fe with TiO2 for improved
performance under solar light.
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2.3. Photocatalytic Denitrification Evaluation

The photocatalytic denitrification for NO3 was tested with and without bare and
coated filters for only a 30 ppm concentration of NO3 under natural sunlight irradiation.
The TN value was analyzed to evaluate the photocatalytic reduction of NO3 and its trans-
formation into N2 for all experimental conditions. Further, the same test was conducted for
50 ppm and 100 ppm NO3 using only the coated filter. Figure 4A shows the varying TN rel-
ative concentrations of the Fe-TiO2 clay filter compared with the control solution and bare
clay filter under sunlight irradiation. The results of the bare clay filter and control sample
(Figure 4A) showed a slight decrease in the relative concentration of TN, then the concen-
trations remained unchanged, while the NO3 concentrations underwent a photocatalytic
reduction owing to the photocatalytic effect of Fe-TiO2.
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The photocatalytic selectivity towards nitrogen was calculated based on varying
concentrations of TN of the treated solution [12,35]. The denitrification efficiency of the
Fe-TiO2 clay filter with varying NO3 concentrations, the results of which are shown in
Figure 4A, revealed 81% efficiency of 30 ppm, while the increasing load of nitrate nitro-
gen reduced denitrification, as 39% and 28% denitrification efficiencies were observed at
50 ppm and 100 ppm of TN, respectively.

The analyzed reduction of relative concentrations (C/Co) using a Fe-TiO2 clay filter
revealed the effective reduction of 30 ppm compared with that of 50 ppm and 100 ppm.
Figure 4B shows the TN kinetic curves with estimated kinetic apparent constant (Kapp)
values at 30, 50, and 100 ppm concentrations using the Fe-TiO2 clay filter. The estimated
Kapp values were as follows: 9.87 × 10−3, 6.44 × 10−3, and 2.14 × 10−3 min−1 for 30, 50,
and 100 ppm NO3 concentrations, respectively. The decrease in kinetic removal of TN at a
high loading of NO3 could be related to the limited availability of radical species for the
targeted reduction of NO3.

The denitrification path was verified by measuring NO3 reduction and NO2
− (nitrite)

formation in the treated solutions. Figure 4C shows the reduction of NO3 concentrations
and transformation into nitrite ions before eventually mineralizing into N2. The NO2
formation was observed during the reduction of 30 ppm of NO3 concentration (Figure 4C),
as the initial sample indicated zero NO2, but, after 30 min irradiation exposure with the
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presence of the Fe-TiO2 clay filter, 3 ppm of NO2 was observed. Similarly, a maximum NO2
concentration of around 6 ppm was observed at 240 min, with subsequent reduction of
NO3. This path indicated the reduction of NO3 by radical species of Fe-TiO2, transforming
first in NO2, later probably in NO, and finally in N2, i.e., by comparing the TN reduction
in Figure 4A and NO2 formation in Figure 4C. The cyclic stability of the Fe-TiO2 clay
filters was tested for three repeated cycles of photocatalytic tests of the same filters for the
denitrification of 30 ppm NO3 solution. The obtained results are shown in Figure 4D, which
revealed a slight decrease in the photocatalytic performance of Fe-TiO2 clay filters from
81% to 72% in the third cycle and suggested the consideration of further improvements to
be made in Fe-TiO2 coating methods and mode of applications.

2.4. Photocatalytic Mechanism

The results suggested the improved efficiency of the Fe-TiO2 clay filter in reducing
the TN concentration under natural sunlight. Based on the photocatalytic properties of
Fe-TiO2 and the supporting information from the available literature studies [10,14,16],
the possible mechanism of photocatalytic NO3 reduction is shown in Figure 5. From the
photocatalytic results obtained with the degradation of IC and nitrate reduction, it could
be summarized that Fe-TiO2 coated on a clay filter was photo-excited under exposure to
sunlight and released hydroxyl (OH.) and superoxide (O.) radicals across the clay filter.
Moreover, these radicals could have attacked NO3 for its photocatalytic reduction into
NO2 and NO, and finally into N2 gas, as reported [36,37]. The nitrate in soluble form
could be denitrified by microbial denitrification. However, this study and other supported
studies revealed that photocatalytic denitrification could be achieved using the reduction
potential of photocatalysts [36,37]. The strong interaction between Fe-TiO2 and rough and
porous clay improved kinetics and supported the interface to adsorb NO3 for its targeted
reduction. The previous work of photocatalytic denitrification reported that the formation
of intermediate counter products of nitrous oxide (N2O), ammonia (NH3), and ammonium
(NH4

+) could occur owing to redox reactions that need to be analyzed to avoid the path of
the photocatalytic denitrification in the formation of toxic compounds or gases.
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3. Materials and Methods
3.1. Materials and Chemicals

For the 3D printing mold, the 1.75 mm diameter polylactic acid (PLA) filament was
bought from FLASHFORDGE 3D company, Los Angeles, CA, USA. Earthenware clay was
acquired from the local pottery shop in Hyderabad, Pakistan. Titanium precursor salt
titanium tetraisopropoxide (TTIP, Ti{OCH(CH3)2}4, 97% purity), iron nitrate nonahydrate
(Fe(NO3)3/9 H2O, 99.9% purity), 70% concentrated nitric acid (HNO3), polyethylene glycol
(PEG), and Triton-X were purchased from Sigma-Aldrich, Milan, Italy. The nitrate (NO3)
and nitrite (NO2

−) titration pillows were purchased from a certified HACH supplier in
Karachi, Pakistan. The indigo carmine (IC) dye (100% purity) was purchased from Acros
Organics, Fisher Scientific, Waltham, MA, USA. All chemicals were used without further
purification.

3.2. Synthesis of 3D Clay Filters

A 3D filter mold was designed and printed using Autodesk Fusion 360 software
version 2.0.11186 and printed on a Flash Forge FDM 3D printer, Zhejiang, China using the
previously reported method [22]. A mold with dimensions of 35 mm in diameter and 8 mm
in thickness was used to give the clay filters a standard shape. The uniform and wetted
dough of the collected earthenware clay was filled in the mold, allowed to dry, and later
smoothly withdrawn and sun-dried in the 3D-structured filter shape. The dried filters were
annealed in a muffle furnace, Carbolite Gero Company, Germany at 600 ◦C. Annealing
improved the physical properties of clay filters, no powdery appearance was observed on
its surfaces, and rough and porous 3D-structured clay filters were obtained [22].

3.3. Coatings of Fe-TiO2

The 0.25 M TTIP was dissolved in 0.5 M solution of HNO3, and Fe(NO3)3:9H2O was
added at a nominal stoichiometric weight to obtain 2.5% of Fe in the resultant mixture.
Afterward, a uniform sol–gel was prepared with non-ionic surfactant Triton X-100, adding
0.1 mL/10 mL for uniform dispersion, while 0.5 mL PEG per 1 mL/10 mL of the solution
was added for improved polymerization of the resultant photocatalyst particles on the
clay surface. For coatings, the annealed clay filters were impregnated and soaked in the
produced sol–gel solution at the 15 mL/filter quantity for 1 h at room temperature. The
completely soaked clay filters were treated in the muffle furnace at 150, 300, and 450 ◦C for
60, 45, and 90 min, respectively. A uniform thin layer of Fe-TiO2 particles was achieved
on the surface of the clay filter. The scheme of preparation of the sol–gel solution of Fe-
TiO2 particles and their coating on the synthesized 3D clay filter is shown in Figure 6.
This method is repeated to produce and coat around 20 clay filters for the photocatalytic
evaluation experiments.

3.4. Characterization Methods

The coated and uncoated filters and pristine anatase TiO2 were characterized and
analyzed at the DISAT laboratories, Politecnico di Torino, Italy. The FESEM images were
acquired using the ZEISS MERLIN 4248 FESEM instrument (ZEISS MERLIN, Forchten-
berg, Germany) i.e., to analyze the morphology of the bare and coated clay filters. Ener-
gy-dispersive X-ray spectroscopy (EDS, ZEISS MERLIN, Forchtenberg, Germany) was
performed for the elemental analysis of the coated clay filter. Both filters’ phase and crys-
talline structure were investigated using X-ray diffraction (XRD) using a Phillips X-ray
dif-fractometer, Netherland (Phillips, Amsterdam, The Netherlands). The optical properties
of the bare clay filter, coated clay filters, and pristine anatase TiO2 (with Fe addition) were
analyzed using a Varian Cary 500 spectrophotometer (Agilent, Santa Clara, CA, USA).
The Tauc plot was adopted to determine the bare and coated clay filters’ optical energy
bandgap (Eg).
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3.5. Photocatalytic Activity of Fe-TiO2 Clay Filters

Initially, the photocatalytic activity of coated clay filters was investigated for IC dye
degradation under natural sunlight irradiation. For comparison, the bare clay filter was
tested in the same sequence for any adsorption-based removal of IC dye (because clay
has no reported photocatalytic properties). The photocatalytic test of pristine TiO2 was
not added to the experiment design because all of the experiments were planned under
natural sunlight, and the reported performance of TiO2 under natural or artificial sunlight
is poor. A stock solution of 5 ppm IC dye concentration was produced. A small steel mesh
assembly was fabricated to hold and diagonally lay down the clay filters in the beaker,
i.e., exposed to sunlight under stirring at 300 rpm. The ratio of 1 mm/1 mL (filter diame-
ter/dye solution volume) was adjusted. Three experiments were performed in different
beakers i.e., a control (without any filter, only irradiation), dye solution and bare clay filters,
and dye solution with Fe-TiO2 clay filters, under natural sunlight irradiation during the
daytime (11:00 a.m. to 3:00 p.m.). These experiments were performed outside the labora-
tory in Jamshoro city, Pakistan. The recorded ambient temperatures were in the range of
37 ◦C to 42 ◦C and the irradiation flux was in the range of 630–885 watts/m2. During the
experiment, the solution in beakers was stirred at a constant rpm, each containing 100 mL
IC solution. The adsorption–desorption equilibrium was obtained by stirring solutions for
60 min in the dark, then sunlight irradiation was allowed and dye removal and degradation
were observed at every 60 min interval until 180 min. A 2.5 mL aliquot was collected at
each irradiation time interval, and a UV/Vis spectrophotometer was used to analyze the
absorbance spectra of dye degradation [22]. The reduction of the main absorbance peak at
610 nm confirmed the photocatalytic degradation of IC dye using coated filters. The total
organic carbon (TOC) analysis of the IC solution before and after photocatalytic tests was
performed on the Shimadzu TOC analyzer (Shimadzu, Tokyo, Japan).

3.6. Nitrate Reduction Analysis

The results obtained from IC dye degradation revealed the efficient potential of Fe-
TiO2 clay filters, and then it was decided to analyze the photocatalytic reduction of NO3
using bare clay filters and Fe-TiO2 clay filters. A transparent glass batch-scale reactor with
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a 3 L capacity was designed and configured for photocatalytic testing. The reactor scheme
is displayed in Figure 5. The required filters were attached to the steel mesh assembly and
diagonally positioned inside the reactor for maximum irradiation passage from the natural
solar light.

Photocatalytic reduction of NO3 was tested for a 2 L solution of 30, 50, and 100 ppm of
NO3 concentrations. Initially, the adsorption–desorption equilibrium was attained in dark
conditions, and later, the reactor was exposed to natural sunlight irradiation. For solution
agitation and maximum contact with the clay filters, a mini water circulating pump was
connected to the inlet and outlet of the photocatalytic reactor and operated at a speed of
100 mL/min. The 2.5 mL aliquots were withdrawn from the reactor after 60, 120, 180, and
240 min intervals to analyze the NO3 and NO2

− concentrations using NO3 and NO2
−

HACH buffer pillows and a DR900 spectrophotometer, HACH, Loveland, CO, USA [38].
The removal of NO3 from the solution, i.e., before, during, and after the photocatalytic test,
was analyzed using the Shimadzu total nitrogen (TN) analyzer.

4. Conclusions

The 3D-structured rough and porous clay filter was prepared using 3D printing and
annealing techniques, in which the 3D-printed molds were designed and printed for
molding and shaping the clay filters, i.e., before their annealing. The clay filters were
successfully coated with Fe-TiO2 round-shaped particles, i.e., following the soaking in
sol–gel and calcination in the furnace at around 450 ◦C. Different analyses, such as XRD,
UV/Vis DRS, and FESEM, confirmed the coatings of Fe-TiO2 films on the tiny pores and
channels of the 3D-structured clay filters and changes in the properties of pristine TiO2,
i.e., due to the addition of nominal 2.5% Fe. The results obtained from the photocatalytic
degradation of IC dye confirmed the photocatalytic performance and improved kinetics of
the Fe-TiO2 clay filter under natural sunlight. Afterward, the photocatalytic reduction of
30, 50, and 100 ppm NO3 concentrations was validated using the Fe-TiO2-coated clay filter.
The TN analysis and reduction of NO3 to NO2

− revealed the reduction of NO3 owing to
the induced photocatalytic response of the Fe-TiO2-coated clay filter with 81% removal
of 30 ppm solution after 240 min of treatment. The NO3 reduction path was studied by
analyzing the transformation of NO3 into NO2, NO, and N2. Overall, the presented results
showed the potential of the 3D printing and Fe-TiO2 clay filter to treat NO3 and other
related wastewater contaminants for large-scale applications.
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