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Abstract 

Railway overhead contact lines are very low-damped structures with a high modal 

density in the low-frequency region. This has a significant impact on the interaction 

with the pantograph, especially in the high-speed case and in multiple pantographs 

operations. This paper studies the optimal spatial damping distribution in overhead 

contact lines obtained by introducing localised damping connections, resulting in 

a non-proportional damping distribution. To this end, the simulation software 

Cateway is presented and adopted in conjunction with evolutionary multi-objective 

optimisers to seek for the most efficient spatial damping distribution. The study is 

conducted on a high-speed reference model considering two different train speeds. 

The final goal of this optimisation is to obtain useful hints about the most and least 

sensitive regions to damping modifications. A dedicated study on the locus of the 

poles of the system is also proposed to corroborate the findings of the analysis. 

Results show that significant improvements on the current collection quality can 

be achieved by carefully designing the spatial damping distribution, especially for 

the rear (trailing) pantograph. On the other hand, wrong design choices can lead to 

a degradation of the contact forces. 

 

Keywords: pantograph-catenary; overhead contact line; non-proportional 

damping; contact force; 
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1. Introduction 

The interaction between pantographs and the overhead contact line (OCL) is an important 

topic in railway transportation system that has been widely studied in the last decades, 

especially since the development of high-speed lines. The force exchanged between the 

pantographs and the OCL is called contact force and its statistical parameters are 

generally adopted as indicators of the current collection quality. National and 

interoperability regulations set rigid thresholds to the statistical values of the contact force 

to assure a smooth contact and to avoid undesired effects, such as electric arcs or losses 

of contact.  

Given the difficulty of performing field measurements, several simulation 

software programs have been developed by the research community to study the 

dynamics of the pantograph-catenary interaction. This task is particularly challenging for 

multiple reasons: the complex geometrical arrangements of railway catenary systems, the 

computational cost and issues of simulating lines extending for kilometres, the rich 

dynamics of OCL structures and the intricate wave propagation phenomena they bring, 

the nonlinearities arising from contact and slackening phenomena.  Bruni et al. proposed 

a benchmark study [1] comparing several methods for simulating the pantograph-

catenary interaction, followed by a subsequent paper with new achievements [2]. More 

recently, Zhang et al. proposed a review of the pantograph-catenary interaction [3]. The 

usual way of modelling the overhead contact line is through finite element (FE) models 

[1,4–6], although methods based on Galerkin or modal superposition approaches have 

been developed as well [7–9]. As for the pantograph, the simplest model consists of a 

lumped-mass system having generally 3 degrees-of-freedom, but more refined multi-

body models are adopted as well [2,10]. Several factors must be carefully analysed when 

performing such simulations, especially in the case of high-speed trains: problem 

initialisation (i.e. boundary conditions and static shape-finding) [11], model discretisation 

and numerical integration issues [7,12,13], the presence of nonlinear phenomena (mainly 

dropper slackening and loss of contact) [12]. Recent studies also analysed the influence 

of defects along the catenary [14], geometric irregularities [15,16], overlap sections 

[17,18], pantographs interval [19,20] and wind deflection [21].  

Among all properties that influence the pantograph-catenary interaction, one 

crucial topic is related to damping. OCLs are known to be very low-damped structures 

with a high modal density in the low-frequency region [22–24]. This has a significant 
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impact on the interaction with the pantograph, as well as on the fatigue stress that is 

exerted on the OCL [7,13,25]. Therefore, being able to optimize the damping distribution 

of such structures might be an efficient way of improving the current collection quality 

of existing lines. This theoretically means gaining a smoother contact between the OCL 

and the pantograph(s), as well as the possibility to increase the train speed above the 

present limits, still in compliance with the current operational rules (for instance the TSI 

in Europe [26]). This is a particular issue in the case of two running pantographs, where 

the rear one (trailing) usually behave worse than the front one (leading). Several papers 

suggested that acting on the damping can be beneficial in terms of current collection 

quality [22,27–29], but a comprehensive study on the effects of a change in the damping 

distribution in the pantograph-catenary system has not been performed yet. 

The present study aims to fill this gap by presenting a methodology to search for 

optimal damping in overhead contact lines. The idea is to intervene on the catenary by 

adding damping elements so as to alter its spatial damping distribution, and to seek for 

the effects of these changes in the current collection quality. To this end, the high-speed 

reference catenary of the standard EN50318 [30] is considered in this work. First, the 

simulation software called Cateway is presented [28] and its compliance with respect to 

the reference model of EN50318 is verified. This gives a valid reference for a 

standardised case, that can be used as a comparative measure when altering the damping 

distribution. The optimal damping distribution is then searched for by setting up an 

optimisation problem that aims to minimise the standard deviations of the leading and 

trailing contact forces. This process is performed using genetic algorithms [31] 

considering two different train speeds. A prior inspection is performed with a dedicated 

study on the locus of the poles of the system induced by the non-proportional spatial 

damping distribution [22].  

The findings of this paper can give valid hints about the choice of installing 

damping elements in overhead contact lines and on their best position along the catenary 

length. Furthermore, the methodology here presented is very general and can be applied 

to overhead lines of potentially any railway infrastructure, giving a valid tool to exploit 

the potentialities of adding damping on existing or newly designed catenaries.  

The paper is organised as follows: Section 2 introduces the simulation software 

and its compliance against the current standard. Section 3 introduces the optimisation 

problem and defines the variables to be optimised. Section 4 is devoted to preliminary 
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studies to set the limits of the optimisation, including the analysis on the locus of the 

system poles. Section 5 analyses and discusses the relevant findings of the optimisation. 

Eventually, conclusions are drawn in section 6. 

2. Pantograph-catenary simulation software 

Cateway is the pantograph-catenary dynamic software developed by the Dynamics and 

Identification Research Group of Politecnico di Torino. The software is based on Matlab 

programming language and it can be used to: 

• simulate the pantograph-catenary interaction of AC and DC lines with multiple 

pantographs; 

• simulate concentrated load tests, such impulse responses; 

• perform the modal analysis of the OCL and the pantograph; 

• evaluate the effects of variations in the simulation parameters, such as the tension 

of the wires; 

• evaluate the effects of external disturbances or degradations of the contact wire; 

• design new improvements for existing OCLs. 

The main characteristics of the software are listed in the following paragraphs and its 

graphical interface can be seen in Figure 1. 

 

Figure 1: Graphical interface. 

Catenary finite element model 

The finite element model used for the catenary consists of 2D or 3D elements assembled 

according to the prescribed geometry. The software can handle several configurations, 

including multiple contact and messenger wires. Considering the simple case of Figure 2 

for simplicity, the following elements are included in the model: 
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• Messenger and contact wires modelled as pre-tensioned Euler-Bernoulli beams 

with a user-selected spatial discretisation. The displacement of the first and last 

nodes of the considered catenary section is fixed in all the directions, so as to have 

a pinned boundary condition.  

• Droppers modelled as bar elements with zero-stiffness in compression to account 

for the slackening phenomenon. The clamps are added as lumped masses to the 

corresponding nodes of the OCL. 

• Steady-arms modelled as bar elements or as lumped elements with equivalent 

mass, axial stiffness and bending stiffness. In the first case, the bar element is 

linked to the contact wire on one end, and it has a hinge on the other end. The 

stagger is included in the 3D case. 

• Brackets modelled as lumped stiffness and damping elements. 

 

Figure 2: Simple railway catenary system. 

The system matrices are assembled following the indications in [12]. After assembling 

the matrices, the equation of motion of the overhead contact line reads: 

𝐌𝝂̈ + 𝐂𝝂̇ + 𝐊𝛎 = 𝐟OCL, (1) 

where 𝐌, 𝐂 and 𝐊 are the mass, damping and stiffness matrices of the overhead contact 

line, 𝐟OCL is the forcing vector and 𝝂 = [𝛎MW
T   𝛎CW

T ]
T
 is the vector of nodal deflections. 

This contains the nodal displacements on the three directions and the corresponding 

rotations. The subscripts ⋅MW and ⋅CW stand for “messenger wire” and “contact wire”. 

 tead  arm

 rac et

 essenger wire

 ontact wire

 ro  er
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Pantograph and contact models 

The software can handle multiple pantographs operations with a user-selected distance. 

Each pantograph is modelled as a 3 degrees-of-freedom system with equivalent lumped 

parameters, as in [30]. An uplift force 𝑓𝑢𝑝 is applied to the lowest DOF of the pantograph, 

while the contact force is computed with respect to the upper DOF, which slides along 

the contact wire with a constant speed 𝑣 (Figure 3). 

 

Figure 3: Pantograph and contact models. 

The contact model is based on the penalty method, so that a contact stiffness 𝑘𝑐 

is defined. The contact force 𝑓𝑐(𝑡) is equal to 

𝑓𝑐(𝑡) = {
𝑘𝑐 (𝑧𝑝3(𝑡) − 𝑧𝐶𝑊 (𝑥𝑝(𝑡)))  if 𝑧𝑝3(𝑡) > 𝑧𝐶𝑊 (𝑥𝑝(𝑡))

0                                                           elsewhere
 (2) 

where 𝑧𝑝3(𝑡) is the displacement of the upper DOF of the pantograph model at time 𝑡 and 

𝑧𝐶𝑊 (𝑥𝑝(𝑡)) is the displacement of the contact wire corresponding to the position 𝑥𝑝 of 

the pantograph at time 𝑡, computed using classical Hermite shape functions of beam 

elements. The contact stiffness 𝑘𝑐 is a crucial parameter in the penalty method, which 

derives from the Hertz theory of contact. In [32] it is reported that values of 𝑘𝑐 between 

1 MN/m and 4 MN/m are good and in the realistic range of Hertz theory for high-speed 

applications. Lower values act as a low-pass filter on the contact force, while higher 

values might lead to numerical issues. A value of 𝑘𝑐 = 2 MN/m is used in all the 

simulations presented in this paper. Note that the admissible values of 𝑘𝑐 can be lowered 

if a contact damping parameter is added, as suggested in [33]. 
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Problem initialisation and static shape-finding 

Given the complex geometrical arrangements of the catenary, an iterative procedure is 

needed to obtain its static configuration. A static shape-finding problem must be set where 

the static equilibrium equations must be solved according to a target requirement set by 

the user. The software allows two paths: (i) the droppers lengths are set as a target; (ii) 

the contact wire pre-sag is set as a target. In the first case, the iteration is conducted by 

minimising the residual between the computed droppers lengths and the desired ones. 

Note that the length of the droppers is inversely proportional to their axial stiffness (in 

tension). The profile of the contact wire is therefore obtained a posteriori in this case. 

Conversely, in the second case the user defines the desired pre-sag of the contact wire, 

and the droppers lengths (and therefore stiffnesses) are obtained a posteriori. In both 

cases, the internal static forces acting on the droppers are obtained as an output. The 

calculation is iterative because of the relation between geometry and the exact tension in 

each wire [4,11]. The stiffness matrix is therefore updated at each iteration. As an 

example, two static configurations are depicted in Figure 4, obtained considering two 

catenaries from the reference model of EN50318 (AC-Simple and DC). The latter has 

two contact wires, depicted with two different colours. 

 

Figure 4: Static configurations of the overhead contact lines in EN50318. a) AC-Simple catenary; 

b) DC catenary. 
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Numerical integration 

A dedicated study related to numerical issues arising from the travelling contact force at 

high-speed has been proposed in [7]. The choices of the numerical integrator and of the 

time and spatial discretisation steps are of critical importance when simulating the 

pantograph-catenary interaction. Generally speaking, a refined spatial mesh, a low time 

step and a robust implicit integration algorithm are key points to obtain a reliable 

simulation. Numerical damping can also be used to avoid spurious computational 

contributions, such as with the Generalized-α method [34]. The well-known Newmark 

method [35] is adopted in the following simulations of this work, with a time step of 0.5 

ms and considering a spatial mesh of maximum 0.5 m. These values have been selected 

after a convergency analysis on the selected pantograph-catenary couple. The integration 

method has been modified to account for the loss of contact and droppers slackening 

nonlinearities, with iterations performed at each time step. The flowchart of the 

computational process is depicted in Figure 5. 

 

Figure 5: Flowchart of the computational process. 
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Compliance with the reference model AC-simple of EN50318 

The standard EN50318 [30] defines some reference models to validate pantograph-

catenary simulation tools. The AC-Simple model is used in this paper, corresponding to 

the high-speed catenary of  Figure 4a with two pantographs and two velocities: 275 km/h 

and 320 km/h. The geometry consists of 25 equal spans of 55 m length. Damping is 

accounted for using a proportional damping model with given coefficients 𝛼 and 𝛽 for 

mass and stiffness matrices proportionality. The two pantographs are modelled as 3 

degrees-of-freedom systems with the equivalent lumped parameters reported in the AC-

Simple reference model of [30]. The 10 central spans in the range [385 – 935] m are used 

to compute the statistical values of the contact forces. The results are listed in Table 1 and 

confirm the compliance of the proposed software with respect to all the parameters of 

interest. The first row of each parameter corresponds to the leading (front) pantograph, 

while the second row is for the trailing (rear) pantograph.  

Table 1: Comparison with the AC-Simple reference model of EN50318.  

Parameter 
AC-Simple, 320 km/h AC-Simple, 275 km/h 

Reference range Result Reference range Result 

Mean value (N) 
[166.5-171.5] 

[166.5-171.5]   

[170.1]  

[169.1] 

[141.5-146.5] 

[141.5-146.5] 

[142.5] 

[142.1] 

Standard deviation 0-20 Hz (N) 
[49.5-62.9] 

[30.2-43.8] 

[50.6]  

[37.6] 

[31.9-34.8]  

[50.0-54.5] 

[33.5]  

[54.2] 

Standard deviation 0-5 Hz (N) 
[38.7-44.4] 

[14.3-23.3] 

[40.2]  

[14.6] 

[26.4-28.9]  

[41.2-45.4] 

[26.7]  

[45.3] 

Standard deviation 5-20 Hz (N) 
[29.0-46.2] 

[26.7-38.2] 

[30.7]  

[34.6] 

[16.2-22.4]  

[25.2-34.7] 

[20.2]  

[29.7] 

Maximum value (N) 
[295-343]  

[252-317] 

[297]  

[282] 

[219-244]  

[241-290] 

[239]  

[289] 

Minimum value (N) 
[55-82] 

[21-86] 

[67]  

[66] 

[71-86] 

[14-50] 

[78]  

[32] 

Range of displacement (mm) 
[39-51] 

[18-35] 

[50] 

[26] 

[38-49]  

[53-70] 

[43]  

[58] 

Maximum uplift (mm) 
[57-64] 

[50-61] 

[63] 

[57] 

[39-48] 

[45-54] 

[42]  

[45] 

Loss of contact (%) 
[0]  

[0] 

[0]  

[0] 

[0]  

[0] 

[0]  

[0] 

3. Optimal spatial damping distribution 

The spatial distribution of damping in the overhead line is altered in this study to seek for 

the best distribution in terms of current collection quality. The final goal of this 

optimisation is to obtain useful hints about the most and least sensitive regions to damping 
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modifications. The study is conducted on the AC-Simple OCL described in Section 2 in 

order to have a valid reference for the standard case. 

The cost function to be minimised is the standard deviation 𝜎 of the contact force 

in the frequency range 0-20 Hz. Since the reference model consists of two running 

pantographs, two standard deviations should be considered in the analysis. The subscripts  

⋅𝑙 and ⋅𝑡 will refer to leading and trailing pantographs in the following and the standard 

deviations to be minimised are therefore called 𝜎𝑙 and 𝜎𝑡. Calling 𝜎𝑙,𝑟𝑒𝑓 and 𝜎𝑡,𝑟𝑒𝑓 the 

reference values in the range 0-20 Hz, the percentage difference Δ𝜎∗ can be defined as: 

Δ𝜎∗ = 100
𝜎∗ − 𝜎∗,𝑟𝑒𝑓

𝜎∗,𝑟𝑒𝑓
, ∗= 𝑙, 𝑡. 

(3) 

In order to keep the optimisation problem as general as possible, the two standard 

deviations are kept as two independent cost functions, so that the following multi-

objective optimisation problem can be stated 

𝜽̅ = argmin
𝜽∈𝚯  

(𝜎𝑙(𝜽), 𝜎𝑡(𝜽)), (4) 

where 𝜽 is the vector of parameters to be optimised and 𝚯 is the feasible set of solution 

vectors. 

A multi-objective genetic algorithm is adopted in this work to find the best set of 

parameters 𝜽̅. Genetic algorithms [31] belong to the class of evolutionary global 

optimisers, and they are commonly used to generate high-quality solutions to 

optimisation problems using biologically inspired mechanisms, such as reproduction, 

mutation and selection. Candidate solutions act like individuals in a population, which 

evolves through successive generations. A portion of the existing population is selected 

at each generation to breed a new offspring, and the selection is made upon the 

corresponding values of the cost function. Modifications can be introduced to better 

explore the range of possible solutions and avoid local minima. For instance, a mutation 

rate can be defined to introduce random changes to the existing solutions.  

General settings and hypotheses  

The damping distribution to be optimised is denoted as a function 𝛾(𝑥) of the position 𝑥 

in the following. Since the analysed catenary is made of equal spans having the same 

length L, a periodicity constraint is added to reduce the size of the optimisation problem. 

This constraint imposes that the damping distribution function 𝛾(𝑥) repeats itself equally 

on each span.  
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The easiest way to alter the damping distribution of the catenary is to add purely 

viscous damping connections between the contact wire and the messenger wire. 

Considering a single damping connection for each span, the function 𝛾(𝑥) can be written 

as:  

𝛾(𝑥) = {
𝑐𝑙   if 𝑥 = 𝑥𝑙     
0    elsewhere

, (5) 

where 0 ≤ 𝑥𝑙 ≤ L is the position of the lumped damping element and 𝑐𝑙 is its value 

expressed in Ns/m.  

4. Preliminary studies 

The preliminary studies reported in this section aim to find the locations where an increase 

of the damping is most effective. To this end, two approaches are followed: first, the poles 

of the system are analysed when moving a single damping element along the span; 

second, the dynamic phenomena are considered by inspecting a full simulation with two 

running pantographs.  

Study of the poles of the system with Ritz-Galerkin approach 

The effect of a single damping connection to the poles of the system is inspected in this 

section. The evolution of the poles of the system if tracked by adding a single damping 

connection per span with 𝑐𝑙 = 50 Ns/m and shifting its position along the span length.  

The Ritz-Galerkin approach proposed in [7] is adopted to obtain the system 

matrices. These are then recast into a state-space formulation to perform the eigenvalue 

problem considering the non-proportional damping distribution. The Ritz-Galerkin 

method is adopted by considering only the vertical motion of the overhead contact line 

and by using a set of 𝑁 comparison functions. These are given by the first 𝑁 eigefunctions 

of a pinned-pinned Euler-Bernoulli beam of length Lt = L ⋅ 𝑛span, with 𝑛span equal to the 

total number of spans of the considered geometry:  

𝚽 = {ϕ𝑛(𝑥)}𝑁×1, ϕ𝑛 = sin (
𝑛𝜋𝑥

Lt
) ,  𝑛 = 1, … , 𝑁. (6) 

The mass and stiffness matrices 𝐌, 𝐊 are assembled as in [7] by summing the 

distributed and localised contributions and have dimensions 2𝑁 × 2𝑁. The damping 

matrix 𝐂 is instead written as the sum of the proportional damping part 𝐂p plus the non-
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proportional one 𝐂np. The latter is obtained by evaluating the lumped connections 𝑐𝑙 at 

the positions 𝑥𝑙,𝑑 of each span: 

𝐂 = 𝐂p + 𝐂np = 𝛼𝐌 + 𝛽𝐊 + 𝑐𝑙 [
   𝚺𝐷 −𝚺𝐷

−𝚺𝐷    𝚺𝐷
],  

𝚺𝐷 = ∑{ϕ𝑛(𝑥𝑙,𝑑)}{ϕ𝑛(𝑥𝑙,𝑑)}
T

𝐷

𝑑=1

, 

(7) 

where 𝐷 = 𝑛span is the total number of damping elements (one for each span), 𝛼 and 𝛽 

are the proportional damping coefficients.  

Introducing the state-space vector 𝛏 = [𝐳̇T  𝐳T]T, the eigenvalue problem reads 

(𝑠𝐀 + 𝐁)𝛏 = 𝟎, 

𝐀 = [
𝐂 𝐌
𝐌 𝓞

] , 𝐁 = [
𝐊    𝓞
𝓞 −𝐌

], 

(8) 

with 𝓞 matrix of zeros of size 2𝑁 × 2𝑁. The solution to Eq. (8) gives 2𝑁 pairs of 

complex-conjugate eigenvalues 𝑠𝑛 with 𝑛 = 1, 2, … , 2𝑁. Given the non-proportional 

nature of the resulting damping distribution, it is possible to define Ω𝑛 = |ℑ[𝑠𝑛]| as the 

modal frequency of the damped free vibration, and Γ𝑛 = −ℜ[𝑠𝑛] as the modal damping 

factor (see [36]). 

It is known that the catenary modes come into groups, as a consequence of the 

low vertical stiffness of the steady-arms, and each group comprises a number of modes 

equal to the number of spans [7,13]. The geometry analysed in this paper consists of 

𝑛span = 25 equal spans, therefore each group of modes contains 25 modes. The real and 

imaginary parts of the first 8 groups of poles are depicted in Figure 6 when shifting the 

position of the lumped damping connection. The number of comparison functions 𝑁 is 

set to 𝑁 = 500 in this analysis. It is observed how the imaginary parts ℑ[𝑠𝑛] (associated 

with the modal damped frequencies Ω𝑛) remain almost constant, while the real parts 

ℜ[𝑠𝑛] (associated with the modal damping factors Γ𝑛) show greater changes. For each 

span, the highest (negative) real parts are observed when 𝑥𝑙 is lower than d1 and higher 

than d9, with a negative peak in correspondence of the support (L). Little changes are 

observed instead for all the other positions. This result suggests that the most effective 

region to add damping is around the support. For a better understanding of this behaviour, 

Figure 7 tracks the evolution of the first 8 groups of poles in the Argand-Gauss plane 

when increasing 𝑐𝑙 from 0 to 100 Ns/m and fixing 𝑥𝑙 = L. It can be noted how the real 

parts of the poles increase up to 15 times with respect to the proportional damping 



Postprint version 

14 

 

baseline. Interestingly, some of the poles start to come back towards lower real parts (see 

the magnified plot of Figure 7), similarly to what has been found in [22].  

 

 

Figure 6: Real and imaginary parts of the poles of the system when shifting the damping 

connection. The value of cl is 50 Ns/m. Odd groups of modes are depicted in dark grey and even 

groups in light grey. 

 

Figure 7: Locus of the poles of the system when increasing cl from 0 to 100 Ns/m with xl=L. Odd 

groups of modes are depicted in dark grey and even groups in light grey.  
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Dynamic simulation 

The study of the system poles gives useful information, but does not consider dynamic 

effects such as vibrations induced by wave propagation phenomena and the interaction 

between multiple moving loads (pantographs). To account for these effects, a second 

analysis is carried out by inspecting the difference Δ𝑧̇ = 𝑧̇𝐶𝑊 − 𝑧̇𝑀𝑊 between the vertical 

nodal velocities of the contact wire 𝑧̇𝐶𝑊 and the messenger wire 𝑧̇𝑀𝑊 in the full dynamic 

simulation with two running pantographs. The analysis is performed considering the 

reference case (without additional damping elements) with velocity ν=320  m/h. The 

statistical parameters of the contact forces are therefore the ones listed in Table 1. A 

contour plot related to the quantity Δ𝑧̇ s obtained in Figure 8 as the two pantographs pass 

by and the depicted span is the 10th, as illustrated in the y-axis.  

 

Figure 8: Contour plot of the velocity difference between contact and messenger wire for ν=320 

km/h. The dashed-dotted red line refers to the time history depicted in the red subplot.  

Considering the magnitude of the velocity difference |Δ𝑧̇|, its highest values are 

observed in the regions around the supports, i.e. between the last dropper of the previous 

span and the first dropper of the subsequent span, confirming the previous findings. A 
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detailed plot of the time history of Δ𝑧̇ for the point 𝑥 = 495 m (corresponding to a 

support) is also depicted. Furthermore, the relative velocities are almost zero in 

correspondence of the droppers, suggesting that adding damping to the existing droppers 

would not be an effective approach. 

5. Optimisation results and discussion 

In light of the outcomes of the previous section, the optimisation is carried out by adding 

a single lumped damper per span at a position 𝑥𝑙 by inspecting the region around the 

supports. In particular, the range is limited to the 10 meters before and after. The values 

of 𝑐𝑙 are analysed in the range 40-300 Ns/m with a discretisation of 20 Ns/m. The same 

catenary model of the previous sections (AC-Simple) is adopted and Cateway is used to 

produce all the results.  

The values of the standard deviations of leading and trailing contact forces across 

the simulations are depicted in Figure 9 (a) and ( ) for ν=275  m/h and ν=320  m/h  

respectively. The solutions are plot together with the Pareto front [31], that represents the 

subset of most-efficient solutions. The reference values of Table 1 are indicated as 

dashed-dotted lines. Clearly, cases exist where a significant reduction in the standard 

deviations of the contact forces is possible. However, there are also combination of 

parameters resulting in a degradation of the standard deviations with respect to the 

reference case.  

 

Figure 9: Optimisation results. Leading and trailing standard deviations across the simulations of 

the optimiser. The Pareto front is depicted with squares. Reference values (no added damping) 

are depicted with dashed-dotted lines. ν=275  m/h in (a) and ν=320  m/h in ( ). 



Postprint version 

17 

 

To better understand these results, Figure 10 shows the values of Δ𝜎𝑙 and Δ𝜎𝑡 in 

the form of contour plots with the x-axis representing the location 𝑥𝑙 of the damping 

element and the y-axis representing the value 𝑐𝑙. The best combinations correspond to the 

areas tending towards a blue tint (Δ𝜎∗ < 0) , while the worst cases tend to a yellow tint 

(Δ𝜎∗ > 0). The highest reductions in the standard deviations of the contact forces are 

generally observed for the trailing pantograph and correspond to Δ𝜎𝑡 = −16% for ν=275 

km/h and Δ𝜎𝑡 = −28% for ν=320  m/h. This result is not surprising, since the trailing 

pantograph generally resents of the oscillations induced by the passage of the leading 

pantograph. The addition of damping can attenuate this phenomenon, thus resulting in a 

smoother trailing contact force. Interestingly, the regions where Δ𝜎𝑡 is minimum are 

different for the two velocities: the area of interest is centred around L for ν=275  m/h  

while it is located between L and d1 for ν=320  m/h. In both cases the best-performing 

values of 𝑐𝑙 are between 100 Ns/m and 180 Ns/m.  

 

Figure 10: Optimisation results, contour plots of the variations of the standard deviations. Δσl 

(leading) in (a),(b); Δσt (trailing) in (b),(c). ν=275  m/h in (a) (c) and ν=320  m/h in ( ) (d). 
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The parameters corresponding to the Pareto fronts are listed in Table 2 for the two 

velocities.   

Table 2: Best parameters for the two velocities according to the Pareto front. 

 𝑥𝑙  (m) 𝑐𝑙 (Ns/m) Δ𝜎𝑙  (%) Δ𝜎𝑡 (%) 
ν=

2
7
5
  
m
/h

 55 100 -7.5 -15.1 

55 120 -7.2 -15.9 

55 140 -6.3 -16.2 

55 160 -5.4 -16.4 

ν=
3
2
0
  
m
/h

 56 100 -10.3 -15.9 

56 120 -9.9 -16.5 

57 140 -7.1 -27.7 

57 160 -6.9 -27.9 

57 180 -6.7 -28.2 

 

It is worth noting that Figure 10 shows also the areas where the inclusion of a 

damping connection degrades the contact forces. These areas are different for the two 

velocities and for leading and trailing contact forces, thus a generalisation is not possible. 

Optimisations like the one proposed in this paper must therefore be carried out for each 

overhead line geometry and for each working speed of interest, and considerations must 

be done on a case-by-case basis.  

Taking the best and the worst solutions, the filtered contact forces in the range 0-

20 Hz are depicted in Figure 11 for leading (a),(b) and trailing (c),(d) pantographs and for 

the two velocities as a function of the distance 𝑣𝑡 travelled by the pantograph. The 

reference solutions corresponding to the standardised case are also depicted as dashed 

black lines. As previously discussed, the benefits of the inclusion of damping elements 

are higher for the trailing pantograph, which generally shows lower maxima and higher 

minima with respect to the reference scenario.  
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Figure 11: Optimisation results, filtered contact forces. Green lines: best solutions; dotted red 

lines: worst solutions; dashed black lines: reference solutions. Leading contact forces in (a), (b); 

trai ing contact forces in (c) (d). ν=275  m/h in (a) (c) and ν=320  m/h in ( ) (d). 

The moving standard deviations of the contact forces are depicted in Figure 12 for 

the leading and the trailing pantographs as a function of the travelled distance 𝑣𝑡. The 

window that is adopted is a sliding window with length equal to 55 m (one span). It can 

be seen how the best solutions (continue green lines) regularise the moving standard 

deviations towards lower values, especially when compared with the reference behaviour 

(dashed black lines). 
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Figure 12: Optimisation results, standard deviations of the contact forces. Green lines: best 

solutions; dotted red lines: worst solutions; dashed black lines: reference solutions. Leading 

contact forces in (a)  ( ); trai ing contact forces in (c) (d). ν=275  m/h in (a) (c) and ν=320  m/h 

in (b),(d). 

Considerations about pantographs distance and speed 

The optimisation presented in the previous section has been conducted considering the 

reference model (AC-Simple) with standardised parameters. In particular, the train speed 

𝑣 and the distance between the two pantographs 𝑑𝑝 are the ones reported in the reference 

[30]. These parameters are known to be quite important in the current collection quality. 

The effect of adding damping elements is therefore investigated in this section 

considering two distance values 𝑑𝑝 = 100 m and 𝑑𝑝 = 200 m and 9 train speeds 𝑣 in the 

range [250 330] km/h. Simulations are first conducted without any damping element, 

and then repeated considering viscous damping connections with 𝑥𝑙 = 57 m and 𝑐𝑙 =

160 Ns/m. These values are selected by combining the results of the previous 

optimisations for 275 km/h and 320 km/h and taking the overall best parameters. For each 

velocity, the desired mean contact force value 𝑓𝑚 is computed according to the 

prescription of the norm EN50367 [37] as 𝑓𝑚 = 0.00097𝑣2 + 70 N, with 𝑣 expressed in 

km/h.  
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The percentage differences Δ𝜎𝑙 and Δ𝜎𝑡 of Eq. (3) are considered again, taking as 

references the standard deviations without damping connections. Results are displayed in 

Figure 13a for 𝑑𝑝 = 100 m and in Figure 13b for 𝑑𝑝 = 200 m. The values of Δ𝜎𝑙 and 

Δ𝜎𝑡 are very different for the two pantographs distances, confirming the importance of 

this parameter in the contact force evaluation [19]. The added damping connection 

generally results in a reduction in the leading and trailing standard deviations inside the 

selected velocity range. It must be highlighted though that results are sensitive to the 

speed value, thus the extrapolation outside the analysed velocity range is not advisable 

without detailed analyses.  

 

Figure 13: Variations of the standard deviations of leading (dots) and trailing (squares) contact 

forces for different train speeds and with xl=57 m and cl=160 Ns/m. a) Distance between the two 

pantographs equal to 100 m; b) Distance between the two pantographs equal to 200 m.  

6. Conclusions 

This paper presented a methodology to study the optimal spatial damping distribution in 

overhead contact lines obtained by introducing localised damping connections. The final 

goal of this optimisation was to obtain useful hints about the most and least sensitive 

regions to damping modifications with respect to the contact force exchanged between 

the contact wire and the pantograph. The simulation software Cateway has been presented 

and its main characteristics discussed. A reference model has been considered, consisting 

of a high-speed catenary with two running pantographs and two train speeds. The 

compliance of the software with respect to the reference case has been verified first 
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(standard EN50318, AC-Simple model). Cateway has then been used in conjunction with 

evolutionary multi-objective optimisers to seek for the most efficient spatial damping 

distribution. The results show that the spatial regions where damping connections are 

most effective are around the supports, and significant improvements in the current 

collection quality can be achieved especially for the rear (trailing) pantograph. However, 

combinations of parameters that lead to a degradation of the contact forces are possible 

as well. The influence of the pantographs distance and speed has been also discussed 

considering two distance values and nine train speed values. The results confirm that the 

quality of the current collection is quite sensitive to these parameters even in the case of 

added damping connections. A generalisation of the specific findings of this study is 

therefore not prudent, but the methodology here proposed can be extended to any 

pantograph-catenary couple to seek for the best spatial damping distribution on a case-

by-case basis. Future work may include practical implementations and designs for the 

damping elements and the evaluation of their effects on overlap sections. 
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