
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Comprehensive Analysis of Transient Errors on Systolic Arrays / Vacca, Eleonora; Azimi, Sarah; Sterpone, Luca. -
ELETTRONICO. - (2023), pp. 175-180. (Intervento presentato al convegno 26th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems tenutosi a Tallinn (Estonia) nel 3-5 May 2023)
[10.1109/DDECS57882.2023.10139763].

Original

A Comprehensive Analysis of Transient Errors on Systolic Arrays

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DDECS57882.2023.10139763

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977969 since: 2023-06-12T09:16:14Z

IEEE

979-8-3503-3277-3/23/$31.00 ©2023 IEEE

A Comprehensive Analysis of Transient Errors on
Systolic Arrays

Eleonora Vacca, Sarah Azimi, Luca Sterpone
Politecnico di Torino, Dipartimento di Automatica e Informatica

Turin, Italy
{eleonora.vacca, sarah.azimi, luca.sterpone}@polito.it

Abstract— In recent years, the growth of interest in adopting
deep neural network techniques across various domains led to
new architectures for supporting the required computational
effort. Tensor Processing Units (TPUs), which are based on a
systolic array matrix multiplication unit (MMU), became widely
popular thanks to their specific structure suitable for Artificial
Intelligence. This work investigates Single Event Transient
(SET) effects on TPU’s MMU. The analysis demonstrates the
impact of SETs on the functionality of MMU when executing
digital image processing filtering. The experimental results
identify the static and dynamic SET sensitivity of TPU and
depict meaningful information on the data dependency of the
filters’ kernel values.

Keywords— AI, Hardware Accelerator, Single Event Transient,
Soft Errors, Tensor Processing Unit.

I. INTRODUCTION

Recently, Deep Learning techniques are expanding in
various application fields such as image classification,
autonomous driving, and medical imaging. They require the
execution of Deep Learning Neural Networks (DNNs) which
elaborate large datasets to improve their autonomous learning
skills and data, through hundreds of computational nodes
organized in layers, processed in parallel to ensure real-time
response capabilities [1].

The real-time execution of DNNs on traditional computing
architectures (e.g., CPUs, GPUs) is limited in terms of
performance and power by the load and store of intermediate
results.

To overcome these limitations, the interest in application-
specific architectures optimized for DNNs execution has risen
[3]. While the training of DNN is mostly dominated by GPUs,
Tensor Processing Units (TPUs) become one of the most
interesting players in the inference hardware platforms. The
TPU architecture is designed to limit memory access while
handling the tremendous amount of multiplication-based
operations that characterize DNN inference [4].

A crucial component of the TPU is the systolic array which
is a grid of processing elements (PEs) able to perform basic
math operations such as addition, element-wise
multiplication, or matrix multiplication. A commercial
example of a TPU architecture adopting a systolic array is the
Google Tensor Core Processing Unit, which is based on a PE
grid of 256 x 256 elements and it can provide a performance
improvement of more than 85 times CPU or GPU
computations [5]. In this paper, we use the systolic array
architecture of the TinyTPU open-source design [6] that
implements the Google Tensor Core architectural baseline.
However, our approach can be applied to any systolic array
for DNN acceleration and can be adapted to the interface
modules of any TPU core.

Since TPUs are manufactured with nanometric CMOS
technology, they are extremely sensitive to radiation-induced
Single Event Transient (SET) [7]. Some research works have
investigated transient faults mainly as bit-flips within the
DNN computational architectural memory resources,

therefore affecting inference weights and data during the AI
task execution [8] while the generation of SET pulse in the
combinational logics, propagating, broadening, or filtering
during the propagation and eventual sampling by the memory
resources is not evaluated yet.
 The main contribution of this paper consists of techniques
for the analysis of plain circuits and non-invasive architectural
mitigation of the SET effects in the matrix multiplication unit
(MMU) of systolic-array-based architecture. The circuit
sensitivity assessment acts in two phases: (i) static
assessment, using an in-house tool, to identify the sensitive
circuit nodes where SET propagation is most pronounced
leading to the higher probability of SET sampling by FFs or
circuit I/O. This evaluation is based on the circuit topology,
type of gates, and routing interconnection, used to build a
netlist timing graph, covering all the possible pulse
propagation cases(ii) dynamic assessment, to evaluate which
of the sensitive nodes detected in the previous step, are
vulnerable points at runtime, i.e. inducing application soft
errors. This is performed by injecting the pulses identified in
the previous step within the Datapath during the execution of
an application. The injected pulse widths are based on the
broadening and filtering effects estimated in the static
assessment.
Experiments were conducted on a post-layout netlist of the
systolic array synthesized with a 45nm high-performance
technology library.

The paper is organized as follows. Section II gives an
overview of the related works within the domain of fault-
tolerance analysis and methods versus transient errors on TPU
architectures. Section III provides the background on TPU
architecture and the SET phenomena. Section IV elaborates
on the methodology to assess the impact of SETs on the TPU
systolic array architecture. Section V is dedicated to the deep
experimental analysis conducted and elaborates on the
achieved results. Conclusions and future works are finally
drawn in Section VI.

II. RELATED WORKS

As the use of DNNs is increasingly extended to safety-
critical domains, many previous studies dealt with the
reliability assessment of neural networks [11][12][13].

On the other hand, the emergence of new systolic-array-
based architectures aimed at accelerating artificial intelligence
(AI) models introduced the need to correlate the faults
affecting the hardware accelerator with the accuracy of the
implemented models [14]. In this branch, most of the previous
research converges on the analysis of permanent faults, mainly
referring to stuck-at induced in the memory elements.

Authors in [15] evaluated the effects of faults occurring in
the DRAM when employed by Google’s TPU as the primary
memory subsystem. The reliability assessment was performed
by inducing errors in the form of bit-flips and evaluating the
accuracy drop of the network while varying the bit position of
the induced fault in the 8-bit weight stored in memory. The
same authors evaluated the impact of stuck-at faults in the

Datapath [16]. As a mitigation solution, they proposed a fault-
aware training methodology where some of the accuracy loss
due to faults in multiply and accumulate (MAC) units can be
recovered by incorporating the fault effects in the
backpropagation-based weight update. Moreover, authors in
[17] proposed a fault-tolerant TPU architecture based on the
prior knowledge of permanent fault location and the static
weight map feature of the systolic-array architecture. They
developed a mechanism that prunes all weights related to
faulty MACs using a bypass path and retraining the network.

 Further evaluation on stuck-at-zero affecting the MMU of
a TPU is proposed in [18] where the authors extended the
concept of [17] studying the impact of row and column faults
on the network and designed a weight pruning method to
bypass the faulty element. In [19], authors propose an API-
based fault simulation to model both permanent and transient
faults in systolic arrays. The method relies on developing a
model of computation (MoC) and propagating the fault
through sequential mathematical operations. A comparison
between the reliability of Xilinx’s DPU and custom systolic
array implemented on SRAM FPGA is presented in [20]
where Single Event Effects (SEE) are induced through device
exposure to neutron beam. The same authors in [21] focus on
the SEE on the matrix multiplication performed on systolic
arrays implemented in SRAM FPGA. Here, transient faults
are emulated through the bit-flip fault model in the device
Configuration RAM.

 The aforementioned approaches have shown a bias
toward permanent faults in the datapath, with SEE receiving
comparatively less attention. Physical fault injection
techniques with particle beams while inducing SEE, lack of
controllability and observability, thereby making the
identification of failure sources challenging. Our method, on
the other hand, identifies the most susceptible points in the
design, reducing the time cost required for further analysis by
enabling targeted testing of the detected sensitive areas.

III. BACKGROUND

A. Tensor Processing Units

DNN inference requires the computation of a huge
amount of multiplications between huge matrices.

Traditionally, DNN tasks were accelerated by GPUs,
since they can provide thousands of ALUs to sustain the
computation effort. However, they are general-purpose co-
processors that must support multiple applications and
software. Therefore, the main limitation due to the
application flexibility of GPUs is the need to access registers
or shared memory to load and store intermediate results of
computations. This translates into high power consumption.

Recently, the limitations of GPU-based DNNs were
overcome through custom hardware architectures, such as
TPUs. TPUs are application-specific computational cores
dedicated to DNN inference with a focus on performance and
power efficiency. A key optimization is the reduction of
memory accesses during the execution of a task, achieved
through the hardwired matrix organization of its PEs. Each
PE is an independent unit equipped with a MAC. The core is
a 2D-array in which PEs belonging to the same column are
connected vertically to each other, as shown in Fig. 1. The
result produced by each MACi,j is directly passed as the
second operand to the adder of MACi+1,j, without passing
through a register file.

Each matrix of weights W defining a layer of the DNN is
deterministically mapped onto the matrix of multipliers.

During the computation, each MACi,j always holds the

same weight wi,j while the input data changes at each clock
cycle spanning all the columns. Hence, the MMU is
characterized by a vertical data stream associated with the
MACs result, flowing row by row, and by a horizontal stream
of input data that is transferred from column to column.

 Since weight matrices of DNN layers are typically huge,
despite the significant number of multipliers available in
TPUs, it is unfeasible to process all the layer weights in
parallel. Therefore, the weight matrix is split into submatrices
of the same size as the MMU, and the layer operations are
computed in multiple iterations. The result of each iteration
is added to the previous one using accumulators placed at the
end of the chains of MACs. Only at the end of the execution
of all the multiplications that compose a layer, the final result
of the accumulators is stored in memory.

IV. SINGLE EVENT TRANSIENT ANALYSIS ON TPU

To perform the transient error sensitivity analysis of the
systolic array of the TPU under study, we implemented the
systolic array circuit with the 45 nm Free PDK ASIC design
library. The information regarding the physical
implementation of the systolic array was used to perform two
steps of sensitivity analysis. First, static sensitivity analysis is
performed by exploiting an in-house Single Event Transient
Analysis (SETA) tool [22] which identified the vulnerable
nodes of the circuit under study. Secondly, the identified
sensitive nodes are used for performing the dynamic
sensitivity evaluation. To evaluate the dynamic sensitivity,
the SET pulses were injected during the simulation of the
post-synthesis netlist. The process reports the sensitive
circuits node as well as the dynamic error rate. The developed
SET analysis workflow is reported in Fig. 2.

A. Static Analysis of Single Event Transient

The SET sensitivity of the target circuit is performed by
an in-house SETA tool elaborating on the Physical Design
Description (PDD) file. This file contains a graph
representation of the circuit, in which the combinational logic
nodes are represented as intermediate nodes connected
through routing segments, while I/O pins and sequential
components are considered terminal nodes. SETA performs
SET analysis by inserting SET pulse in each input and output
of the intermediate nodes, propagating the pulse until it
reaches terminal nodes while considering the propagation-
induced pulse broadening effects. The static analysis is a pre-

Fig. 1. Overview of the TPU internal structure.

INPUT WEIGHT

*

+

INPUT WEIGHT

*

+
MAC1,0

MAC0,0

…

INPUT WEIGHT

*

+
MACn,0

INPUT WEIGHT

*

+

INPUT WEIGHT

*

+
MAC1,1

MAC0,1

…

INPUT WEIGHT

*

+
MACn,1

INPUT WEIGHT

*

+

INPUT WEIGHT

*

+
MAC1,n

MAC0,n

…

INPUT WEIGHT

*

+
MACn,n

…

…

…

+ + +

WEIGHT MEMORY

ACTIVATION UNIT

S

Y

S

T

O

L

I

C

D

A

T

A

U

N

I

F

I

E

D

B

U

F

F

E

R

Fig. 2. The Developed Single Event Transient Analysis Workflow.

test approach, it does not require the actual device to be tested
and it allows the identification of the most sensitive areas of
the device. The reported information is then used to apply
mitigation techniques targeting those sensitive areas.

B. Dynamic Analysis of Single Event Transient

The dynamic analysis is performed by instrumenting a
simulation environment that inserts SET pulses in sensitive
circuit nodes during the execution of the application while
monitoring the output to estimate the dynamic error rate. This
is achieved by stimulating the systolic array through the
execution of computationally demanding tasks, such as 2D
convolution. During task execution, the DUT is subject to
the SET effect through the injection of a voltage glitch, where
the position and characteristics of the pulse, such as
amplitude and duration, are derived from the results of the
static SET analysis. The output of the application is compared
with the one produced by the golden circuit. Using the pulses
and nodes identified by static analysis, not only the logical
behavior is considered, but also the timing of the gates in the
design. The broadening or the filtering of the SET pulse is
mainly related to the logic and physical masking capability of
the circuit.

V. SET STATIC AND DYNAMIC ASSESSMENTS

This section elaborates on the experimental campaigns
conducted on a systolic array in terms of both static and
dynamic analysis considering both the plain circuit and
mitigated circuits, i.e., with filtering techniques applied.
Benchmark applications are image-filtering tasks that use
popular kernels in the field of digital applications and are
particularly exploited in AI for feature extraction.

A. Implementation of Systolic Array

The systolic array taken as a case is based on the open-
source TPU architecture presented in [6]. For the sake of this
paper, we only focus on the multiplier array, similar to related
works, due to the amount of sensitive area of MMU
resources. In compliance with the commercial
implementation, the architecture works with 8-bit integer
input data. On the other hand, the MMU core was sized to
3x3 MAC units. The reduced size aims to comprehensively
investigate the circuit topology and its sensitivity to SET by
covering a variety of case studies.

The 3x3 MMU was synthesized and implemented with a
45nm high-performance FreePDK library. Accordingly, the
graph of the circuit is generated. The graph description of the
circuit, post-layout netlist, and timing information are
provided to the SETA to identify the sensitive circuit nodes.

TABLE I
3X3 MMU POST-LAYOUT CHARACTERISTICS

Circuit Logic
Gate
[#]

Sequential
Gate [#]

Performance
[MHz]

Power
[µW]

Sensitive
FFs
[#]

Original 20,039 2,377 74.54 840 128
300ps 25,248 2,377 68.70 848 119
600ps 27,540 2,377 62.45 865 94

B. Static Analysis of Single Event Transient

SET analysis is used to determine the likelihood of an
SEU occurring in memory elements of the circuit. It is
performed by the SETA tool which simulates the effects of
the impact of high-energy particles on different regions of the
circuit and then computes the probability of an SEU
occurrence.

The analyzer performs SET injections on the post-layout
implementation netlist into each combinational path and
evaluates their propagation considering the electrical
broadening and filtering characteristics up to each terminal
node. Terminal nodes are labeled as sensitive when they are
reached by a SET, injected at any position in the path. Static
evaluation of sensitivity to SETs was performed through two
campaigns. An exhaustive one for a fixed pulse width of
250ps and an investigation with pulse widths varying from
150ps to 450ps on a random subset of paths.

1) Exhaustive SET Evaluation

In the exhaustive SET evaluation of the MMU, a SET
with the amplitude 1V and width 250ps was inserted into each
of the 5,819 combinational logic nodes of the circuit.
According to the analysis, only 128 of the terminal nodes
(FFs) are sensitive, i.e., the pulse propagated up to their input.
In such nodes, the broadening effect due to gate-to-gate
propagation increased the pulse widths from 250ps up to
367ps on average.

Based on this information, the design was selectively
mitigated by inserting a delay-based filtering circuit at the
input of the concerned sensitive nodes [22].

The impact on the number of sensitive nodes and the
broadening effect was evaluated with delay factors of the
SET filtering circuit of 300ps and 600ps.
As it is possible to notice, the 300ps and 600ps filtering
factors reduce the number of sensitive FFs with respect to the
plain design, by 7% and 26% respectively. However, the
300ps also induces a worsening in the pulse broadening
effect, as shown in Fig. 3, thus increasing the probability of
SET sampling. On the other hand, the 600ps solution
improves also this aspect, achieving a reduction of 25% in the
average propagated pulse width. Full details including power,
performance, and area of the three implemented designs are
shown in Table I. To characterize the architecture more
comprehensively and avoid the correlation to the particular
pulse width the behavior and the sensitivity to SETs, a second

Fig 3. SET broadening effect on the Plain Circuit and the

mitigated designs.

static analysis campaign was performed in which different
pulse widths were tested.

2) Exploration with variable SET pulse width

The experiment conducted considered pulses of width
150ps, 250ps, 350ps, and 451ps. For each pulse width, 1000
SETs were injected into random combinational nodes of the
plain circuit and propagated to the terminal nodes.

The experimental results show two noteworthy aspects.
From the propagated pulse width distribution presented in
Fig. 4.a, it appears that the circuit is more susceptible to 250ps
and 450ps SET and that the circuit topology is prone to
broadening these pulses.

 SETA reports the overall circuit sensitivity to SET
effects expressed as the vulnerability factor. The
vulnerability factor is computed as the total number of circuit
paths that undergo transient pulse propagation over the total
number of injected transient pulses. The circuit vulnerability,
plotted in Fig. 4.b. tends to be stable around an average value
of 3.8%. Thus, neither a larger pulse width nor a larger
broadening effect implies an increase in the number of
sensitive nodes. To confirm this saturated trend of such an
architecture, an additional campaign was run with a pulse
width of 1000ps. The results show that with a pulse width 7
times the smallest pulse width tested of 150ps, there is only a
2% increase in sensitive FFs.

A final key aspect of static campaigns is the location of
sensitive FFs. A cross-analysis of the various experimental
results obtained showed that the most sensitive nodes are
those predominantly associated with critical FFs within
individual MAC units that receive the value of weight or
input data to be processed. Thus, potentially compromising
the functionality during task execution.

C. Dynamic Analysis of Single Event Transient

Since the memory elements related to weights storage
were found to be among the most sensitive within the
architecture and because weights' values and their
organization in the systolic array define the type of task to be
implemented, the impact of SETs on the systolic architecture
during the execution of computation has been evaluated
dynamically. As a case study, it was decided to analyze the
architecture SET sensitivity when performing popular digital
image processing filtering operations. A secondary goal of
dynamic analysis is also to assess the influence of the data
patterns on susceptibility to SETs, with the idea that certain
patterns can be more robust than others. To fulfill this dual
purpose, four different kernels were chosen to investigate
whether weights’ values have a SET mitigation impact. The
used kernels and the effects on an image are presented in Fig.
5. The dynamic SET injection was performed by

instrumenting a commercial HDL simulation environment. In
particular, the SET was implemented by forcing a signal to
logic state 1 for a time interval corresponding to the pulse
width.

The injection time of the SET is random but reproducible
since it is established before the start of the simulation. The
signal forcing is superimposed on the normal signal behavior
but with higher priority. Therefore, the signal restores its
current correct logic state when the injection duration (i.e.,
pulse width) expires. The detected sensitive nodes coming
from the static approach described in Section V-B have been
meticulously investigated by performing different dynamic
injection campaigns.

1) SET injection experiment on the unmitigated design

The dynamic injection considers SETs having fixed pulse
width as the estimated broadening effect reported by the SET
analyzer. However, in avoidance of losing the stochasticity
typical of SETs, the choice of the target injection instant is
kept random. It follows that even if the SET is sampled, it may
be the case that the current computation step is not using, or
will not be used in the next clock cycles, the data stored in the
affected memory element. Thus, even if the SET turns into an
SEU, this does not strictly imply a soft error in the running
task. For each sensitive FF detected during the exhaustive
static analysis presented in Section V-B.1, 100 SETs have
been injected, each evaluated for different values of the image
filter. Table II shows the results of the experiment as a
percentage of soft errors detected during the task execution. A
soft error is identified when there is a computational mismatch
concerning the application’s golden result. Due to
propagation, a single SET may induce more than one
computational discrepancy in the same run. However, the
corruption event is considered a single soft error regardless of
the number of different values. Therefore, the percentage of
soft error reported in Table II indicates how many of the total
injected SETs (related to different nodes) resulted in at least
one computational mismatch compared to the golden output.
The severity of the errors concerns the number of corrupted
output pixels, which depends on the SEU location.
Specifically, bit position and meaning of the data stored (i.e.,
input, weights, partial result, etc..) lead to different soft errors.
Specifically, transients captured by FFs used to store a weight
value inside a MAC unit are more likely to affect all the
computations, since we adopted a Weight Stationary (WS)
data mapping policy. As an example, we propose the effect of
transient pulse captured by weight register bit 2 of MAC4,0 in
Fig. 6. The percentage of sensitive nodes is calculated starting
from the total number of nodes tested. A node is targeted

Fig. 5. Image filters used during the SET dynamic evaluation.

Fig. 4. SET sensitivity analysis on the Plain Circuit for
variable pulse width (a) broadening effect (b) vulnerability

factor.

TABLE II
SOFT-ERROR RATE FOR SET INJECTIONS AT EACH SENSITIVE NODE

IDENTIFIED DURING THE STATIC EXHAUSTIVE CAMPAIGN.

 Edge
Detection

Sharpen Emboss Bottom
Sobel

Soft Errors [%] 44.89 25.28 44.53 44.28

Dyn.Sens.Nodes[%] 48.43 30.34 48.43 48.43

dynamically sensitive when at least one of 100 injected SETs
causes a soft error.

The preliminary conclusions that can be drawn from these
experimental results are that (i) not all FFs found to be
sensitive during static analysis are also sensitive during the
actual execution of an application (ii) as the 2D convolution
kernel value changes, the behavior of SETs and their effect
remains almost stable except for the Sharpen filter.

We also performed a dynamic evaluation considering the
case of variable pulse width, using the timing information and
sensitive nodes identified during the static analysis. We did
not experience any relevant aspect confirming that there is no
particular dependence on the SET pulse width even in soft
error induction. It is worth noting that the experimental results
of Table II show a one-to-one correspondence between soft
error and sensitive nodes. The percentages of the two metrics
only differ slightly. This aspect is translated in the fact that a
SET injected in those sensitive FFs, at any instant during task
execution, generates a soft error 90% of the time.

2) SET injection experiment on the mitigated design
Section V-B discussed the implementation of a mitigated

version of the circuit, based on a method of filtering transients
by delaying the input data to the FFs. The experimental
results of the static analysis on the mitigated designs were
further investigated using the dynamic approach.

The results illustrated in Fig. 7 are consistent with those
obtained statically since the filtering approach, by reducing
the number of sensitive nodes, also results in a reduction of
application soft errors.

D. Remarks on the Experimental Results

Our analysis of the systolic array has revealed that the
design is relatively resistant to SETs, thanks to its highly
pipelined architecture. However, we have identified the
weight and input data register FFs as the most vulnerable
nodes in the system, as they play a crucial role in determining
the functionality of the executed application. Therefore,
although the number of sensitive nodes is rather low, the
criticality and impact on the software application must be
considered. A canonical approach such as the hardware
filtering methodology proposed during static analysis returns
a significant improvement. On the other hand, results from the
dynamic analysis suggest that better filtering action can be
achieved by choosing weight data patterns strategically, e.g.,
the sharpen filter. Interestingly, we observed a significant
reduction in the impact of SETs, up to 50%, in this particular
filter even though the SETs used were identical to those used
in the other filters.

Considering the TPU instruction set architecture, the 2D
convolution used to perform the image filtering task has been
implemented by arranging the input data and kernels as shown
in Fig. 8, where it is possible to depict the filter weight values
for the edge detection (a), sharpen (b), emboss (c) and bottom

Sobel (d). Furthermore, it is possible to observe how the
weights (f) are used in the unrolled version of the 2D
convolution concerning the kernel (e) sliding windows.

Each flattened-column type kernel is mapped to a single
MAC column, which, as shown in Fig. 8.f, are concatenated.
It is possible that the alternating zero-weight disposition in the
sharpen filter and the flattened-column configuration, Fig.
8.b , may embody a blocking nature in the transmission of
SET-induced errors associated with the input tensor.

In proof of that, a cross-checking between the list of
detected sensitive nodes for each kernel filter, reveals that
edge detection, bottom Sobel, and emboss filters share the
same sensitive FFs, while for the sharpen case, missing nodes
are associated exclusively with the input tensor FFs.
 Considering the data streams inside the MMU, as defined
in Section III, adopting the WS policy implies that each wij
element of the flatten-column kernel is loaded into its
respective MACij before the image windows start flowing into
the array. Hence, they do not change during the computation.
while the input data is changing at each clock cycle.Therefore,
having a pattern of alternating zero weights in the kernel
creates multiple SET-blocking points dislocated in time, since
if input data are affected by SET, their contribution is nullified
by the data application itself, hence preventing error
propagation.

On the other hand, a different assignment between weights
matrix-MACs matrix shows even different dynamic behavior.

The same filters arranged as a 2D array as originally, show
an increase of soft errors up to 70%, and the sensitive nodes,
even in the sharpen case, increase up to 83%. Again, the
difference in behavior, given the same data, is to be found in
the systolic array structure itself and in the way the processing
elements are connected, sharing inputs and transferring partial
sums. Therefore, not only does the susceptibility to SETs
depend on data patterns, but also on the type of algorithm that
is implemented in the architecture, given the same sensitive
nodes, resources, and numerical values.

These aspects need to be studied in depth but they certainly
pave the way toward new non-invasive mitigation techniques.
In modern NN frameworks it is possible to define custom
functions to initialize weights and to use the weight freezing
technique [26] to prevent them from being learned during the
training phase. Thi feature can be exploited to assign strategic
data patterns. Hence, improving application reliability via pre-
training weight initialization, not requiring additional
hardware resources or architectural modification.

1) Improving Application Reliability through Weights
Initialization in Fixed Pattern

To evaluate the effectiveness of the proposed
methodology, a modified edge filter test case, incorporating

Fig. 8. The Filters column representation and TPU computational

structure concerning the kernel sliding window.

*

(a) (b) (c) (d)

…

flattened_window 0

flattened_window 1

….

flattened_window n

k

e

r

n

e

l

pixel
i
= flattened_window_i * kernel

(e) (f)

unfolded input matrix

w0

w1

w2

w8

w0 -1 0 -2 -1

w1 -1 -1 -1 -2

w2 -1 0 0 -1

w3 -1 -1 -1 0

w4 8 5 1 0

w5 -1 -1 1 0

w6 -1 0 0 1

w7 -1 -1 1 2

w8 -1 0 2 1

Fig. 6. Effects
of a sampled

SET.

Fig. 7. Result of the dynamic SET injection performed

on the mitigated version of the systolic array.

0,00%

15,00%

30,00%

45,00%

Soft Error Dynamic Sensitive FFs

Plain Circuit Filtering @600ps

the sharpen filter structure, has been realized. The filter and
its results on images are shown in Fig. 9 compared with the
original and the sharpen. Before conducting further SET
evaluations on the sensitivity of the proposed filter, its
validity was tested within a more complex application.

Typically edge detection filters are used in autonomous
driving applications for lane detection. Therefore, two
different lane detection applications were implemented, one
using the canonical edge kernel and the other using the
modified one. The comparable effect of the two filters is
shown in Fig. 10. The modified edge produces a less
pronounced detection that results in minimal deviation in the
final processing result (green lane). This confident result
prompted the evaluation of the effects of SETs on the new
filter when used under the same computation conditions
(values, resource organization) as the original edge case.

Experiments were conducted by injecting the same SETs
used for the original edge filter campaign presented in Section
V-C. The results confirm a reduction of SET-induced soft
error by 50% as well as a reduction in sensitive nodes, which
are reported in Fig. 11.

Fig. 9. The SET-optimized edge detection filter and its effect
compared with the original and the sharpen one.

Fig. 10. Lane detection output in case of original edge filter (red
lane) and the proposed modified version (green line).

Fig.11. Dynamic SET injections comparative results obtained for the
edge filter and its modified version.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents an in-depth analysis of SET effects on
systolic array architecture embedded in TPU cores. The
analysis conducted at the post-implementation netlist level
revealed a slight criticality of these architectures concerning
SETs. It was found that the most sensitive nodes are internal
to the individual processing elements of the grid, which are
used for the storage of network weights and inputs to be
processed. Therefore, the adoption of a mitigation technique
based on the addition of glitch-filtering circuitry at the input
of the sensitive nodes was evaluated. The experimental
results obtained on the mitigated design indicate that
hardening of the structure can be achieved without
performance loss. TPU sensitivity was additionally assessed
during the execution of computational tasks, which revealed
a dependence on both the values of the data involved and the
algorithm employed. The latter aspects pave the way for
future work where these discoveries are intended to be further
explored and exploited to achieve non-intrusive mitigation
techniques that do not involve hardware modifications.

REFERENCES
[1] Y.-H. Chen, et al., "Eyeriss v2: A Flexible Accelerator for Emerging

Deep Neural Networks on Mobile Devices," in IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2,
pp. 292-308, June 2019.

[2] N. P. Jouppi et al., "In-data center performance analysis of a tensor
processing unit," ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2017, pp. 1-12

[3] Z. Wu, et al., "Comprehensive Survey on Graph Neural Networks," in
IEEE Transactions on Neural Networks and Learning Systems, 2021.

[4] D. Shin, et al., "DNPU: An Energy-Efficient Deep-Learning Processor
with Heterogeneous Multi-Core Architecture," in IEEE Micro, 2018.

[5] N. P. Jouppi et al., "Ten Lessons From Three Generations Shaped
Google’s TPUv4i: Industrial Product,"ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2021.

[6] J. Fuhrmann, " Implementierung einer Tensor Processing Unit mit dem
Fokus auf Embedded Systems und das Internet of Things", 2018.

[7] R. L. Rech et al., "Reliability of Google's Tensor Processing Units for
Embedded Applications," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2022, pp. 376-381.

[8] G. Yuan et al., "Improving DNN Fault Tolerance using Weight Pruning
and Differential Crossbar Mapping for ReRAM-based Edge AI,"
International Symposium on Quality Electronic Design (ISQED),
2021.

[9] M. Hasan et al.,"Tolerance of Deep Neural Network Against the Bit
Error Rate of NAND Flash Memory," IEEE International Reliability
Physics Symposium (IRPS), 2019, pp. 1-4.

[10] K. T. Chitty-Venkata et al., "Impact of Structural Faults on Neural
Network Performance," IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
2019, pp. 35-35.

[11] C. De Sio, et al, "An Emulation Platform for Evaluating the Reliability
of Deep Neural Networks," IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2020, pp. 1-4.

[12] N. I. Deligiannis, et al., "Improving the Fault Resilience of Neural
Network Applications Through Security Mechanisms," IEEE/IFIP
International Conference on Dependable Systems and Networks -
Supplemental Volume (DSN-S), 2022, pp. 23-24.

[13] S. Azimi, B. Du, L. Sterpone "Evaluation of transient errors in
GPGPUs for safety critical applications: An effective simulation-based
fault injection environment”, in Journal of Systems Architecture, 2017.

[14] A. Chaudhuri, et al.,"Special Session: Fault Criticality Assessment in
AI Accelerators," IEEE 40th VLSI Test Symposium (VTS), 2022.

[15] S. Kundu et al., "Special Session: Reliability Analysis for AI/ML
Hardware," 2021 IEEE 39th VLSI Test Symposium (VTS), 202.

[16] S. Kundu, et al., "Toward Functional Safety of Systolic Array-Based
Deep Learning Hardware Accelerators," in IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 485-498.

[17] J. J. Zhang et al.,"Fault-Tolerant Systolic Array Based Accelerators for
Deep Neural Network Execution," in IEEE Design & Test, vol. 36, no.
5, pp. 44-53, Oct. 2019.

[18] K. T. Chitty-Venkata et al. "Model Compression on Faulty Array-based
Neural Network Accelerator," IEEE 25th Pacific Rim International
Symposium on Dependable Computing (PRDC), 2020, pp. 90-99.

[19] P. Omland et al., "API-Based Hardware Fault Simulation for DNN
Accelerators," in IEEE Design & Test, vol. 40, no. 2, pp. 75-81, April
2023.

[20] F. Libano et al.,"On the Reliability of Xilinx's Deep Processing Unit
and Systolic Arrays for Matrix Multiplication," 2020 20th European
Conference on Radiation and Its Effects on Components and Systems
(RADECS), Toulouse, France, 2020, pp. 1-5.

[21] F. Libano et al., "Efficient Error Detection for Matrix Multiplication
with Systolic Arrays on FPGAs," in IEEE Transactions on Computers.

[22] S. Azimi, et al., "A new CAD tool for Single Event Transient Analysis
and mitigation on Flash-based FPGAs," Integration, the VLSI Journal,
2019.

[23] Kumar Chellapilla, et al.,“High-Performance Convolutional Neural
Networks for Document Processing”. International Workshop on
Frontiers in Handwriting Recognition, 2006.

[24] S. Azimi, et al., “On the Prediction of Radiation-induced SETs in
Flash-based FPGAs”, in Elsevier Microelectronics Journal, 2016.

[25] C. De Sio, S. Azimi, A. Portaluri, L. Sterpone,“ SEU Evaluation of
Hardened-by-Replication Software in RISC-V Soft Processor”, in EEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2021.

[26] Y. Han et al., "Improved convolutional neural network algorithm based
on weight freezing method," 2018 24th Asia-Pacific Conference on
Communications (APCC), Ningbo, China, 2018, pp. 341-346,

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

Soft Error [%] Dynamic Sensitive Nodes [%]

Original Edge Modified Edge

