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Abstract— In recent years, the growth of interest in adopting 
deep neural network techniques across various domains led to 
new architectures for supporting the required computational 
effort. Tensor Processing Units (TPUs), which are based on a 
systolic array matrix multiplication unit (MMU), became widely 
popular thanks to their specific structure suitable for Artificial 
Intelligence. This work investigates Single Event Transient 
(SET) effects on TPU’s MMU. The analysis demonstrates the 
impact of SETs on the functionality of MMU when executing 
digital image processing filtering. The experimental results 
identify the static and dynamic SET sensitivity of TPU and 
depict meaningful information on the data dependency of the 
filters’ kernel values.  

 
Keywords— AI, Hardware Accelerator, Single Event Transient, 
Soft Errors, Tensor Processing Unit. 

I. INTRODUCTION 

Recently, Deep Learning techniques are expanding in 
various application fields such as image classification, 
autonomous driving, and medical imaging. They require the 
execution of Deep Learning Neural Networks (DNNs) which 
elaborate large datasets to improve their autonomous learning 
skills and data, through hundreds of computational nodes 
organized in layers, processed in parallel to ensure real-time 
response capabilities [1].  

The real-time execution of DNNs on traditional computing 
architectures (e.g., CPUs, GPUs) is limited in terms of 
performance and power by the load and store of intermediate 
results. 

To overcome these limitations, the interest in application-
specific architectures optimized for DNNs execution has risen 
[3]. While the training of DNN is mostly dominated by GPUs, 
Tensor Processing Units (TPUs) become one of the most 
interesting players in the inference hardware platforms. The 
TPU architecture is designed to limit memory access while 
handling the tremendous amount of multiplication-based 
operations that characterize DNN inference [4].  

A crucial component of the TPU is the systolic array which 
is a grid of processing elements (PEs) able to perform basic 
math operations such as addition, element-wise 
multiplication, or matrix multiplication. A commercial 
example of a TPU architecture adopting a systolic array is the 
Google Tensor Core Processing Unit, which is based on a PE 
grid of 256 x 256 elements and it can provide a performance 
improvement of more than 85 times CPU or GPU 
computations [5]. In this paper, we use the systolic array 
architecture of the TinyTPU open-source design [6] that 
implements the Google Tensor Core architectural baseline. 
However, our approach can be applied to any systolic array 
for DNN acceleration and can be adapted to the interface 
modules of any TPU core.  

Since TPUs are manufactured with nanometric CMOS 
technology, they are extremely sensitive to radiation-induced 
Single Event Transient (SET) [7]. Some research works have 
investigated transient faults mainly as bit-flips within the 
DNN computational architectural memory resources, 

therefore affecting inference weights and data during the AI 
task execution [8] while the generation of SET pulse in the 
combinational logics, propagating, broadening, or filtering 
during the propagation and eventual sampling by the memory 
resources is not evaluated yet. 
 The main contribution of this paper consists of techniques 
for the analysis of plain circuits and non-invasive architectural 
mitigation of the SET effects in the matrix multiplication unit 
(MMU) of systolic-array-based architecture. The circuit 
sensitivity assessment acts in two phases: (i) static 
assessment, using an in-house tool, to identify the sensitive 
circuit nodes where SET propagation is most pronounced 
leading to the higher probability of SET sampling by FFs or 
circuit I/O. This evaluation is based on the circuit topology, 
type of gates, and routing interconnection, used to build a 
netlist timing graph, covering all the possible pulse 
propagation cases(ii) dynamic assessment, to evaluate which 
of the sensitive nodes detected in the previous step, are 
vulnerable points at runtime, i.e. inducing application soft 
errors. This is performed by injecting the pulses identified in 
the previous step within the Datapath during the execution of 
an application. The injected pulse widths are based on the 
broadening and filtering effects estimated in the static 
assessment.  
Experiments were conducted on a post-layout netlist of the 
systolic array synthesized with a 45nm high-performance 
technology library. 

The paper is organized as follows. Section II gives an 
overview of the related works within the domain of fault-
tolerance analysis and methods versus transient errors on TPU 
architectures. Section III provides the background on TPU 
architecture and the SET phenomena. Section IV elaborates 
on the methodology to assess the impact of SETs on the TPU 
systolic array architecture. Section V is dedicated to the deep 
experimental analysis conducted and elaborates on the 
achieved results. Conclusions and future works are finally 
drawn in Section VI.  

II. RELATED WORKS 

As the use of DNNs is increasingly extended to safety-
critical domains, many previous studies dealt with the 
reliability assessment of neural networks [11][12][13]. 

On the other hand, the emergence of new systolic-array-
based architectures aimed at accelerating artificial intelligence 
(AI) models introduced the need to correlate the faults 
affecting the hardware accelerator with the accuracy of the 
implemented models [14]. In this branch, most of the previous 
research converges on the analysis of permanent faults, mainly 
referring to stuck-at induced in the memory elements. 

Authors in [15] evaluated the effects of faults occurring in 
the DRAM when employed by Google’s TPU as the primary 
memory subsystem. The reliability assessment was performed 
by inducing errors in the form of bit-flips and evaluating the 
accuracy drop of the network while varying the bit position of 
the induced fault in the 8-bit weight stored in memory. The 
same authors evaluated the impact of stuck-at faults in the 



Datapath [16]. As a mitigation solution, they proposed a fault-
aware training methodology where some of the accuracy loss 
due to faults in multiply and accumulate (MAC) units can be 
recovered by incorporating the fault effects in the 
backpropagation-based weight update. Moreover, authors in 
[17] proposed a fault-tolerant TPU architecture based on the 
prior knowledge of permanent fault location and the static 
weight map feature of the systolic-array architecture.  They 
developed a mechanism that prunes all weights related to 
faulty MACs using a bypass path and retraining the network. 

 Further evaluation on stuck-at-zero affecting the MMU of 
a TPU is proposed in [18] where the authors extended the 
concept of [17] studying the impact of row and column faults 
on the network and designed a weight pruning method to 
bypass the faulty element. In [19], authors propose an API-
based fault simulation to model both permanent and transient 
faults in systolic arrays. The method relies on developing a 
model of computation (MoC) and propagating the fault 
through sequential mathematical operations. A comparison 
between the reliability of Xilinx’s DPU and custom systolic 
array implemented on SRAM FPGA is presented in [20] 
where Single Event Effects (SEE) are induced through device 
exposure to neutron beam. The same authors in [21] focus on 
the SEE on the matrix multiplication performed on systolic 
arrays implemented in SRAM FPGA. Here, transient faults 
are emulated through the bit-flip fault model in the device 
Configuration RAM. 

  The aforementioned approaches have shown a bias 
toward permanent faults in the datapath, with SEE receiving 
comparatively less attention. Physical fault injection 
techniques with particle beams while inducing SEE, lack of 
controllability and observability, thereby making the 
identification of failure sources challenging. Our method, on 
the other hand, identifies the most susceptible points in the 
design, reducing the time cost required for further analysis by 
enabling targeted testing of the detected sensitive areas. 

III. BACKGROUND 

A. Tensor Processing Units 

DNN inference requires the computation of a huge 
amount of multiplications between huge matrices.  

Traditionally, DNN tasks were accelerated by GPUs, 
since they can provide thousands of ALUs to sustain the 
computation effort. However, they are general-purpose co-
processors that must support multiple applications and 
software. Therefore, the main limitation due to the 
application flexibility of GPUs is the need to access registers 
or shared memory to load and store intermediate results of 
computations. This translates into high power consumption. 

Recently, the limitations of GPU-based DNNs were 
overcome through custom hardware architectures, such as 
TPUs. TPUs are application-specific computational cores 
dedicated to DNN inference with a focus on performance and 
power efficiency. A key optimization is the reduction of 
memory accesses during the execution of a task, achieved 
through the hardwired matrix organization of its PEs.  Each 
PE is an independent unit equipped with a MAC. The core is 
a 2D-array in which PEs belonging to the same column are 
connected vertically to each other, as shown in Fig. 1. The 
result produced by each MACi,j is directly passed as the 
second operand to the adder of MACi+1,j, without passing 
through a register file.  

Each matrix of weights W defining a layer of the DNN is 
deterministically mapped onto the matrix of multipliers. 

 

  
During the computation, each MACi,j always holds the 

same weight wi,j while the input data changes at each clock 
cycle spanning all the columns. Hence, the MMU is 
characterized by a vertical data stream associated with the 
MACs result, flowing row by row, and by a horizontal stream 
of input data that is transferred from column to column. 

 Since weight matrices of DNN layers are typically huge, 
despite the significant number of multipliers available in 
TPUs, it is unfeasible to process all the layer weights in 
parallel. Therefore, the weight matrix is split into submatrices 
of the same size as the MMU, and the layer operations are 
computed in multiple iterations. The result of each iteration 
is added to the previous one using accumulators placed at the 
end of the chains of MACs. Only at the end of the execution 
of all the multiplications that compose a layer, the final result 
of the accumulators is stored in memory.  

IV. SINGLE EVENT TRANSIENT ANALYSIS ON TPU 

To perform the transient error sensitivity analysis of the 
systolic array of the TPU under study, we implemented the 
systolic array circuit with the 45 nm Free PDK ASIC design 
library. The information regarding the physical 
implementation of the systolic array was used to perform two 
steps of sensitivity analysis. First, static sensitivity analysis is 
performed by exploiting an in-house Single Event Transient 
Analysis (SETA) tool [22] which identified the vulnerable 
nodes of the circuit under study. Secondly, the identified 
sensitive nodes are used for performing the dynamic 
sensitivity evaluation. To evaluate the dynamic sensitivity, 
the SET pulses were injected during the simulation of the 
post-synthesis netlist. The process reports the sensitive 
circuits node as well as the dynamic error rate. The developed 
SET analysis workflow is reported in Fig. 2. 

A. Static Analysis of Single Event Transient  

The SET sensitivity of the target circuit is performed by 
an in-house SETA tool elaborating on the Physical Design 
Description (PDD) file. This file contains a graph 
representation of the circuit, in which the combinational logic 
nodes are represented as intermediate nodes connected 
through routing segments, while I/O pins and sequential 
components are considered terminal nodes. SETA performs 
SET analysis by inserting SET pulse in each input and output 
of the intermediate nodes, propagating the pulse until it 
reaches terminal nodes while considering the propagation-
induced pulse broadening effects. The static analysis is a pre- 

    
Fig. 1. Overview of the TPU internal structure. 
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Fig. 2. The Developed Single Event Transient Analysis Workflow. 

test approach, it does not require the actual device to be tested 
and it allows the identification of the most sensitive areas of  
the device. The reported information is then used to apply 
mitigation techniques targeting those sensitive areas. 

B. Dynamic Analysis of Single Event Transient  

The dynamic analysis is performed by instrumenting a 
simulation environment that inserts SET pulses in sensitive 
circuit nodes during the execution of the application while 
monitoring the output to estimate the dynamic error rate. This 
is achieved by stimulating the systolic array through the 
execution of computationally demanding tasks, such as 2D 
convolution.  During task execution, the DUT is subject to 
the SET effect through the injection of a voltage glitch, where 
the position and characteristics of the pulse, such as 
amplitude and duration, are derived from the results of the 
static SET analysis. The output of the application is compared 
with the one produced by the golden circuit. Using the pulses 
and nodes identified by static analysis, not only the logical 
behavior is considered, but also the timing of the gates in the 
design. The broadening or the filtering of the SET pulse is 
mainly related to the logic and physical masking capability of 
the circuit. 

V. SET STATIC AND DYNAMIC ASSESSMENTS 

This section elaborates on the experimental campaigns 
conducted on a systolic array in terms of both static and 
dynamic analysis considering both the plain circuit and 
mitigated circuits, i.e., with filtering techniques applied. 
Benchmark applications are image-filtering tasks that use 
popular kernels in the field of digital applications and are 
particularly exploited in AI for feature extraction. 

A. Implementation of Systolic Array 

The systolic array taken as a case is based on the open-
source TPU architecture presented in [6]. For the sake of this 
paper, we only focus on the multiplier array, similar to related 
works, due to the amount of sensitive area of MMU 
resources. In compliance with the commercial 
implementation, the architecture works with 8-bit integer 
input data. On the other hand, the MMU core was sized to 
3x3 MAC units.  The reduced size aims to comprehensively 
investigate the circuit topology and its sensitivity to SET by 
covering a variety of case studies.  

The 3x3 MMU was synthesized and implemented with a 
45nm high-performance FreePDK library. Accordingly, the 
graph of the circuit is generated. The graph description of the 
circuit, post-layout netlist, and timing information are 
provided to the SETA to identify the sensitive circuit nodes. 

 
 
 

TABLE I 
3X3 MMU  POST-LAYOUT CHARACTERISTICS 

Circuit Logic 
Gate 
[#] 

Sequential 
Gate [#] 

Performance 
[MHz] 

Power 
[µW] 

Sensitive 
FFs 
[#] 

Original 20,039 2,377 74.54 840 128 
300ps 25,248 2,377 68.70 848 119 
600ps 27,540 2,377 62.45 865 94 

B. Static Analysis of Single Event Transient  

SET analysis is used to determine the likelihood of an 
SEU occurring in memory elements of the circuit. It is 
performed by the SETA tool which simulates the effects of 
the impact of high-energy particles on different regions of the 
circuit and then computes the probability of an SEU 
occurrence. 

The analyzer performs SET injections on the post-layout 
implementation netlist into each combinational path and 
evaluates their propagation considering the electrical 
broadening and filtering characteristics up to each terminal 
node. Terminal nodes are labeled as sensitive when they are 
reached by a SET, injected at any position in the path. Static 
evaluation of sensitivity to SETs was performed through two 
campaigns. An exhaustive one for a fixed pulse width of 
250ps and an investigation with pulse widths varying from 
150ps to 450ps on a random subset of paths. 

1) Exhaustive SET Evaluation 

In the exhaustive SET evaluation of the MMU, a SET 
with the amplitude 1V and width 250ps was inserted into each 
of the 5,819 combinational logic nodes of the circuit. 
According to the analysis, only 128 of the terminal nodes 
(FFs) are sensitive, i.e., the pulse propagated up to their input. 
In such nodes, the broadening effect due to gate-to-gate 
propagation increased the pulse widths from 250ps up to 
367ps on average. 

Based on this information, the design was selectively 
mitigated by inserting a delay-based filtering circuit at the 
input of the concerned sensitive nodes [22]. 

The impact on the number of sensitive nodes and the 
broadening effect was evaluated with delay factors of the 
SET filtering circuit of 300ps and 600ps.  
As it is possible to notice, the 300ps and 600ps filtering 
factors reduce the number of sensitive FFs with respect to the 
plain design, by 7% and 26% respectively. However, the 
300ps also induces a worsening in the pulse broadening 
effect, as shown in Fig. 3, thus increasing the probability of 
SET sampling. On the other hand, the 600ps solution 
improves also this aspect, achieving a reduction of 25% in the 
average propagated pulse width. Full details including power, 
performance, and area of the three implemented designs are 
shown in Table I. To characterize the architecture more 
comprehensively and avoid the correlation to the particular 
pulse width the behavior and the sensitivity to SETs, a second 

 
Fig 3. SET broadening effect on the Plain Circuit and the 

mitigated designs. 

 



static analysis campaign was performed in which different 
pulse widths were tested.  

2) Exploration with variable SET  pulse width 

The experiment conducted considered pulses of width 
150ps, 250ps, 350ps, and 451ps. For each pulse width, 1000 
SETs were injected into random combinational nodes of the 
plain circuit and propagated to the terminal nodes. 

The experimental results show two noteworthy aspects. 
From the propagated pulse width distribution presented in 
Fig. 4.a, it appears that the circuit is more susceptible to 250ps 
and 450ps SET and that the circuit topology is prone to 
broadening these pulses.  

 SETA reports the overall circuit sensitivity to SET 
effects expressed as the vulnerability factor. The 
vulnerability factor is computed as the total number of circuit 
paths that undergo transient pulse propagation over the total 
number of injected transient pulses. The circuit vulnerability, 
plotted in Fig. 4.b. tends to be stable around an average value 
of 3.8%. Thus, neither a larger pulse width nor a larger 
broadening effect implies an increase in the number of 
sensitive nodes. To confirm this saturated trend of such an 
architecture, an additional campaign was run with a pulse 
width of 1000ps. The results show that with a pulse width 7 
times the smallest pulse width tested of 150ps, there is only a 
2% increase in sensitive FFs. 

A final key aspect of static campaigns is the location of 
sensitive FFs. A cross-analysis of the various experimental 
results obtained showed that the most sensitive nodes are 
those predominantly associated with critical FFs within 
individual MAC units that receive the value of weight or 
input data to be processed. Thus, potentially compromising 
the functionality during task execution. 

C. Dynamic Analysis of Single Event Transient  

Since the memory elements related to weights storage 
were found to be among the most sensitive within the 
architecture and because weights' values and their 
organization in the systolic array define the type of task to be 
implemented, the impact of SETs on the systolic architecture 
during the execution of computation has been evaluated 
dynamically. As a case study, it was decided to analyze the 
architecture SET sensitivity when performing popular digital  
image processing filtering operations. A secondary goal of 
dynamic analysis is also to assess the influence of the data 
patterns on susceptibility to SETs, with the idea that certain 
patterns can be more robust than others. To fulfill this dual 
purpose, four different kernels were chosen to investigate 
whether weights’ values have a SET mitigation impact. The 
used kernels and the effects on an image are presented in Fig. 
5. The dynamic SET injection was performed by 

instrumenting a commercial HDL simulation environment. In 
particular, the SET was implemented by forcing a signal to 
logic state 1 for a time interval corresponding to the pulse 
width.  

The injection time of the SET is random but reproducible 
since it is established before the start of the simulation. The 
signal forcing is superimposed on the normal signal behavior 
but with higher priority. Therefore, the signal restores its 
current correct logic state when the injection duration (i.e., 
pulse width) expires. The detected sensitive nodes coming 
from the static approach described in Section V-B have been 
meticulously investigated by performing different dynamic 
injection campaigns. 

1) SET injection experiment on the unmitigated design 

The dynamic injection considers SETs having fixed pulse 
width as the estimated broadening effect reported by the SET 
analyzer. However, in avoidance of losing the stochasticity 
typical of SETs, the choice of the target injection instant is 
kept random. It follows that even if the SET is sampled, it may 
be the case that the current computation step is not using, or 
will not be used in the next clock cycles, the data stored in the 
affected memory element. Thus, even if the SET turns into an 
SEU, this does not strictly imply a soft error in the running 
task. For each sensitive FF detected during the exhaustive 
static analysis presented in Section V-B.1, 100 SETs have 
been injected, each evaluated for different values of the image 
filter. Table II shows the results of the experiment as a 
percentage of soft errors detected during the task execution. A 
soft error is identified when there is a computational mismatch 
concerning the application’s golden result. Due to 
propagation, a single SET may induce more than one 
computational discrepancy in the same run. However, the 
corruption event is considered a single soft error regardless of 
the number of different values. Therefore, the percentage of 
soft error reported in Table II indicates how many of the total 
injected SETs (related to different nodes) resulted in at least 
one computational mismatch compared to the golden output. 
The severity of the errors concerns the number of corrupted 
output pixels, which depends on the SEU location. 
Specifically, bit position and meaning of the data stored (i.e., 
input, weights, partial result, etc..) lead to different soft errors. 
Specifically, transients captured by FFs used to store a weight 
value inside a MAC unit are more likely to affect all the 
computations, since we adopted a Weight Stationary (WS) 
data mapping policy. As an example, we propose the effect of 
transient pulse captured by weight register bit 2 of MAC4,0 in 
Fig. 6. The percentage of sensitive nodes is calculated starting 
from the total number of nodes tested. A node is targeted 

 

Fig. 5. Image filters used during the SET dynamic evaluation. 

 

Fig. 4. SET sensitivity analysis on the Plain Circuit for 
variable pulse width (a) broadening effect (b) vulnerability 

factor. 

TABLE II 
SOFT-ERROR RATE FOR  SET INJECTIONS AT EACH SENSITIVE NODE 

IDENTIFIED DURING THE STATIC EXHAUSTIVE CAMPAIGN. 

 Edge 
Detection 

Sharpen Emboss Bottom 
Sobel 

Soft Errors [%] 44.89 25.28 44.53 44.28 

Dyn.Sens.Nodes[%] 48.43 30.34 48.43 48.43 

 



dynamically sensitive when at least one of 100 injected SETs 
causes a soft error.  

The preliminary conclusions that can be drawn from these 
experimental results are that (i) not all FFs found to be 
sensitive during static analysis are also sensitive during the 
actual execution of an application (ii) as the 2D convolution 
kernel value changes, the behavior of SETs and their effect 
remains almost stable except for the Sharpen filter. 

We also performed a dynamic evaluation considering the 
case of variable pulse width, using the timing information and 
sensitive nodes identified during the static analysis.  We did 
not experience any relevant aspect confirming that there is no 
particular dependence on the SET pulse width even in soft 
error induction. It is worth noting that the experimental results 
of Table II show a one-to-one correspondence between soft 
error and sensitive nodes. The percentages of the two metrics 
only differ slightly. This aspect is translated in the fact that a 
SET injected in those sensitive FFs, at any instant during task 
execution, generates a soft error 90% of the time.   

2) SET injection experiment on the mitigated design 
Section V-B discussed the implementation of a mitigated 

version of the circuit, based on a method of filtering transients 
by delaying the input data to the FFs. The experimental 
results of the static analysis on the mitigated designs were 
further investigated using the dynamic approach.  

The results illustrated in Fig. 7 are consistent with those 
obtained statically since the filtering approach, by reducing 
the number of sensitive nodes, also results in a reduction of 
application soft errors.  

D.   Remarks on the Experimental Results 

Our analysis of the systolic array has revealed that the 
design is relatively resistant to SETs, thanks to its highly 
pipelined architecture. However, we have identified the 
weight and input data register FFs as the most vulnerable 
nodes in the system, as they play a crucial role in determining 
the functionality of the executed application. Therefore, 
although the number of sensitive nodes is rather low, the 
criticality and impact on the software application must be 
considered. A canonical approach such as the hardware 
filtering methodology proposed during static analysis returns 
a significant improvement. On the other hand, results from the 
dynamic analysis suggest that better filtering action can be 
achieved by choosing weight data patterns strategically, e.g., 
the sharpen filter. Interestingly, we observed a significant 
reduction in the impact of SETs, up to 50%, in this particular 
filter even though the SETs used were identical to those used 
in the other filters. 

Considering the TPU instruction set architecture, the 2D 
convolution used to perform the image filtering task has been 
implemented by arranging the input data and kernels as shown 
in Fig. 8, where it is possible to depict the filter weight values 
for the edge detection (a), sharpen (b), emboss (c) and bottom 

Sobel (d). Furthermore, it is possible to observe how the 
weights (f) are used in the unrolled version of the 2D 
convolution concerning the kernel (e) sliding windows.  

Each flattened-column type kernel is mapped to a single 
MAC column, which, as shown in Fig. 8.f, are concatenated. 
It is possible that the alternating zero-weight disposition in the 
sharpen filter and the flattened-column configuration, Fig.  
8.b , may embody a blocking nature in the transmission of 
SET-induced errors associated with the input tensor. 

In proof of that, a cross-checking between the list of 
detected sensitive nodes for each kernel filter, reveals that 
edge detection, bottom Sobel, and emboss filters share the  
same sensitive FFs, while for the sharpen case, missing nodes 
are associated exclusively with the input tensor FFs. 
 Considering the data streams inside the MMU, as defined 
in Section III, adopting the WS policy implies that each wij 
element of the flatten-column kernel is loaded into its 
respective MACij before the image windows start flowing into 
the array. Hence, they do not change during the computation. 
while the input data is changing at each clock cycle.Therefore, 
having a pattern of alternating zero weights in the kernel 
creates multiple SET-blocking points dislocated in time, since 
if input data are affected by SET, their contribution is nullified 
by the data application itself, hence preventing error 
propagation.  

On the other hand, a different assignment between weights 
matrix-MACs matrix shows even different dynamic behavior.  

The same filters arranged as a 2D array as originally, show 
an increase of soft errors up to 70%, and the sensitive nodes, 
even in the sharpen case, increase up to 83%. Again, the 
difference in behavior, given the same data, is to be found in 
the systolic array structure itself and in the way the processing 
elements are connected, sharing inputs and transferring partial 
sums. Therefore, not only does the susceptibility to SETs 
depend on data patterns, but also on the type of algorithm that 
is implemented in the architecture, given the same sensitive 
nodes, resources, and numerical values. 

These aspects need to be studied in depth but they certainly 
pave the way toward new non-invasive mitigation techniques. 
In modern NN frameworks it is possible to define custom 
functions to initialize weights and to use the weight freezing 
technique [26] to prevent them from being learned during the 
training phase. Thi feature can be exploited to assign strategic 
data patterns. Hence, improving application reliability via pre-
training weight initialization, not requiring additional 
hardware resources or architectural modification.  

1) Improving Application Reliability through Weights 
Initialization in Fixed Pattern 

To evaluate the effectiveness of the proposed 
methodology, a modified edge filter test case, incorporating 
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the sharpen filter structure, has been realized. The filter and 
its results on images are shown in Fig. 9 compared with the 
original and the sharpen. Before conducting further SET 
evaluations on the sensitivity of the proposed filter, its 
validity was tested within a more complex application.  

Typically edge detection filters are used in autonomous 
driving applications for lane detection. Therefore, two 
different lane detection applications were implemented, one 
using the canonical edge kernel and the other using the 
modified one. The comparable effect of the two filters is 
shown in Fig. 10. The modified edge produces a less 
pronounced detection that results in minimal deviation in the 
final processing result (green lane). This confident result 
prompted the evaluation of the effects of SETs on the new 
filter when used under the same computation conditions 
(values, resource organization) as the original edge case.  

Experiments were conducted by injecting the same SETs 
used for the original edge filter campaign presented in Section 
V-C. The results confirm a reduction of SET-induced soft 
error by 50% as well as a reduction in sensitive nodes, which 
are reported in Fig. 11. 

Fig. 9. The SET-optimized edge detection filter and its effect 
compared with the original and the sharpen one. 

Fig. 10. Lane detection output in case of original edge filter (red 
lane)  and the proposed modified version (green line). 

Fig.11. Dynamic SET injections comparative results obtained for the 
edge filter and its modified version.  

VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents an in-depth analysis of SET effects on 
systolic array architecture embedded in TPU cores. The 
analysis conducted at the post-implementation netlist level 
revealed a slight criticality of these architectures concerning 
SETs. It was found that the most sensitive nodes are internal 
to the individual processing elements of the grid, which are 
used for the storage of network weights and inputs to be 
processed. Therefore, the adoption of a mitigation technique 
based on the addition of glitch-filtering circuitry at the input 
of the sensitive nodes was evaluated. The experimental 
results obtained on the mitigated design indicate that 
hardening of the structure can be achieved without 
performance loss. TPU sensitivity was additionally assessed 
during the execution of computational tasks, which revealed 
a dependence on both the values of the data involved and the 
algorithm employed. The latter aspects pave the way for 
future work where these discoveries are intended to be further 
explored and exploited to achieve non-intrusive mitigation 
techniques that do not involve hardware modifications. 
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