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Abstract
In this article, we propose a stochastic network model for the spread of
common sexually transmitted infections (STIs). The model expands the stan-
dard susceptible–infected–susceptible model by incorporating asymptomatic
infected individuals—who are unaware that they are posing a health threat
to themselves and the population—and individuals’ behavioral preferences
with regard to the use of protective measures during encounters. Behavioral
preferences evolve according to a nontrivial mechanism accounting for the
cost of using protection, the perceived risk, and persuasive effects due to sex-
ual encounters with different-minded individuals. The disease spreads on a
time-varying network of sexual contacts, generated using a mechanism inspired
by continuous-time activity-driven networks. Such a network accounts for regu-
lar partners and casual encounters, which are regulated by a negotiation process
that accounts for the individuals’ behavioral preferences. Finally, three control
measures are included in the model: (i) condom (social) marketing campaigns,
(ii) routine screening at STI clinics, and (iii) partner notification. We use a
mean-field approach to analytically derive the epidemic threshold in the limit
of large-scale populations, in the absence of a partner network, for two dis-
tinct negotiation processes. Our results indicate that routine screening is key to
the eradication of local outbreaks, while condom marketing campaigns become
effective only when combined with screening. Monte Carlo simulations are then
employed to extend our analytical findings, casting lights on the role of the part-
ner network and on partner notification as a control measure in the spread of
STIs.

K E Y W O R D S

activity-driven network, epidemics models, nonlinear models and systems, sexually transmitted
infections, stability

1 INTRODUCTION

Sexually transmitted infections (STIs) such as syphilis, chlamydia, trichomoniasis, and gonorrhea have been present and
widely diffused in the population for many a century, some believe ever since the origin of mankind.1 A recent study from
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the United States (US) Centers for Disease Control and Prevention estimated that more than 20% of the US population
is currently affected by an STI.2 If left untreated, STIs can lead to serious health problems among which, but not exclu-
sively, stillbirths, infertility, chronic neurological problems, and cancer.3 Since the discovery of penicillin by the Scottish
physician Alexander Fleming in 1928, however, common STIs have been underestimated adversaries for decades. In fact,
such a “miracle drug” penicillin effectively rid society of grim visual reminders in the form of syphilitic facial deformities,
allowing people to forget the sheer devastation caused by STIs. For almost a century now, humans have been misusing
and overusing antibiotics,4,5 and, as a consequence, STIs—especially gonorrhea—are starting to develop antibiotic resis-
tance, with potentially disastrous consequences for the treatment options.6 This is concerning, since over one million
people are infected with a common STI every day,3 and the prevalence is rising: in 2019, the combined cases of gonorrhea,
chlamydia and syphilis in the US rose to an all-time high for the sixth consecutive year.7 It appears that after a century
of careless behavior with regard to antibiotics, STIs are coming back with a vengeance. Aggravating the problem is the
COVID-19 pandemic, which, since its inception in January 2020, resulted in a disruption in STI services and a realloca-
tion of resources,8 significantly reducing the number of visits to STI clinics.9 On the other hand, research studies have
provided evidence that risky sexual behavior did not decrease during the government-mandated lockdowns and as a con-
sequence of social distancing,10 thereby not reducing the risk of transmitting STIs. Since STIs are often asymptomatic or
mildly symptomatic,11 the reduction in visits to the clinic is problematic, and presents a peril in the possible escalation of
a silent global pandemic, lurking in the shadows of the current COVID-19 health crisis. While condoms are very effective
in preventing the spread of sexually transmitted diseases, they are used at varying degrees and risky sexual behavior is
much too prevalent.12 Hence, the current situation with STIs calls for a better understanding of the dynamics underlying
the current trends of risky behavior and their impact on the spread of STIs, which could be key to help formulate and
implement more effective control strategies.

Mathematical epidemic models on networks provide a powerful framework to represent and study the spread of infec-
tious diseases in real-world populations.13-17 By analysing such models, the obtained insights can be used to inform control
policies to aid in the eradication of the disease.14,17 In order to capture the real-world time-varying patterns of interactions
between individuals, temporal networks are glowingly employed.17-19 Most of the literature on epidemic models focuses
on air-borne infections,20 for example, influenza viruses, SARS, and, more recently, great effort has been put toward
successfully modeling COVID-19.21,22 In these models, the role of human behavior has often been overlooked or oversim-
plified, by assuming a priori an impact of human behavior on the model parameters (possibly identified using available
data),23 or by modeling a behavioral response governed by an awareness-driven reaction mechanism.24-26 However, since
the spreading of STIs is directly linked to the sexual behavior of individuals, one should not readily assume that general
epidemic models that neglect or simplify human behavior can adequately describe the spread of STIs. Some efforts have
been made to propose network epidemic models tailored to represent the spreading of STIs. In Eames et al.,27 a frame-
work is introduced that deals with heterogeneity within contact networks. To study the effect of casual partners on the
spread of STIs, a multilayer temporal network model is employed in Vajdi et al.28 In Yan et al.,29 a heterosexual contact
network is modeled by employing a bipartite network. However, all these works do not explicitly take into account and
model human behavioral preferences on the use of protections and how they change, limiting their applicability. Fur-
thermore, the impact of control actions to mitigate the spread of STIs has often been oversimplified in the literature, for
instance, by simply re-scaling the infection rate.27

In this article, we propose a network model for the spreading of STIs that explicitly incorporates sex-
ual behavioral tendencies and models their evolution. Specifically, we expand on the well-known stochastic
susceptible–infected–susceptible (SIS) network model,17 used to model common STIs,30 by adding further compartments
to represent (i) individuals’ behavioral preferences with regard to the use of protection when engaging in sexual encoun-
ters; (ii) the presence of asymptomatic, unaware—but infectious—individuals; and (iii) treatment. Individual behavioral
preferences are determined by the trade-off between the cost of using protection and the perceived risk (which depends
on the detected infection prevalence), and it may also change due to an encounter with an individual having a different
behavioral preference, who may be able to persuade the other individual to change their preferences. Sexual encounters
are generated in a two-step probabilistic manner. First, an individual proposes a sexual encounter to another individ-
ual, according to a mechanism inspired by continuous-time activity-driven networks (ADNs), in which each individual
initiates interactions with their peers in a stochastic fashion, yielding a time-varying pattern of social contacts.31,32 Specif-
ically, the proposed mechanism takes into account the pattern of romantic relations in the population and the individuals’
tendency to cheat. Second, initiatives result in a sexual encounter according to a stochastic negotiation process, which
accounts for the individuals’ level of complaisance during negotiation processes on the use of protection. In this arti-
cle, we propose and study two different negotiation processes. Finally, we further incorporate three control measures
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to impact the spread of infections: (i) condom (social) marketing campaigns, which have been shown through system-
atic studies to have a positive impact on the likelihood of the use of protective measures;33 (ii) routine screening at
STI clinics, determined to be most effective approach in controlling the spread of STIs;11 and (iii) partner notification,
known to be an effective method in detecting infected individuals.34 Contact tracing of casual encounters comes with
many challenges,35 and patients themselves typically notify their romantic partners, but not their casual contacts,36 so
we let partner notification be restricted to romantic partners in this article. We will refer to our model as the behavioral
SIS model.

In addition to the mathematical formulation of the behavioral SIS model, the main contributions of this article are
twofold. First, we explicitly derive the epidemic threshold for the model, for two distinct negotiation processes on the
use of protection, in the absence of a network of romantic relations and under some homogeneity assumptions on the
model parameters. Our results, obtained through a mean-field analysis in the limit of large populations,37 elucidate the
role of routine screening and marketing campaigns in the spreading of STIs, and their effectiveness in controlling it.
Specifically, we find that routine screening is key to combat the spreading of STIs, whereas marketing campaigns are only
effective when combined with the former. Second, we perform numerical simulations to validate our theoretical findings
and to extend them beyond the limitations of our analysis. Specifically, simulations are employed to examine the role
of heterogeneity in the parameters, and to investigate the impact of partners on the epidemic spreading and the role of
partner notification as a control measure. Our numerical findings suggest that homogeneous models can be good proxies
for real-world systems, at least in the absence of partner networks, suggesting that our theoretical findings might be
applied beyond the limitations of the homogeneity assumption. Furthermore, the analysis of the role of partners suggests
that there is a nontrivial interplay between faithfulness and complaisance, depending on the negotiation process, while
partner notification seems key to reduce the spread of STIs in faithful populations, suggesting that contact tracing for
casual encounters might be a valuable additional measure to combat STIs.34

Some preliminary results have appeared in Frieswijk et al.,38 in which a similar extension of a behavioral SIS model
was proposed, and the epidemic threshold was derived in two limiting cases. Here, we build on that preliminary effort
and extend it along several directions. First, we expand the mathematical model with the inclusion of a network contain-
ing romantic partners and with a further control measure, that is, partner notification. Second, we consider an additional
negotiation process, and examine its effect on the epidemic threshold. Third, we derive a general expression for the epi-
demic threshold, for both negotiation processes, which holds beyond the limiting cases analysed in the preliminary study.
Fourth, we perform a campaign of numerical simulations of the model to further investigate its properties.

The rest of the article is organized as follows. After introducing some mathematical preliminaries and notation in
Section 1.1, we formulate the mathematical model in Section 2. In Section 3, we derive the dynamical system that gov-
erns the network model. The theoretical results and simulations are presented in Section 4 and 5, respectively. Section 6
concludes our article and discusses future research avenues.

1.1 Mathematical Preliminaries

Here, we gather the notational conventions used throughout the article, and we report some preliminary notions. The
set of real, non-negative real, strictly positive real and non-negative integer numbers is denoted by R, R≥0, R>0 and Z≥0,
respectively. Given two nodes j, k of a network, we denote by {j, k} an undirected link between the nodes, and by (j, k) a
directed link from j to k. Given a function x(t) with t ∈ R≥0, we define x(t+) = lims↘t x(s), and x(t−) = lims↗t x(s). Given
an event E, we denote by P[E] its probability.

In the following, we provide the definitions of Poisson clocks and continuous-time Markov processes, and some
important properties of Poisson clocks, which will be used throughout the article.

Definition 1 (Poisson clock39). A Poisson clock with rate 𝛾 ∈ R≥0 is a continuous-time stochastic point process that
can be represented by its counting process N(t), which is a nondecreasing function that takes values in Z≥0. Specifically,
the probability that the Poisson clock has an increment in a time step of duration Δt ∈ R>0 is equal to

P[N(t + Δt) − N(t) = 1] = 𝛾Δt + o(Δt), (1)

where the Landau little-o notation o(Δt) is associated with the limitΔt ↘ 0; hence limΔt↘0 P[N(t + Δt) − N(t) = 1]∕Δt =
𝛾 . If N(t) has an increment at time t ∈ R≥0, we say that the clock clicks at time t.
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FRIESWIJK et al. 4787

Proposition 1 (Event triggered by Poisson clocks39). The following two properties hold true:

i) Let E be an event that is associated with a set of Poisson clocks N1,… ,N𝓁 with rates 𝛾1,… , 𝛾𝓁 , respectively, each one
independent of the others, and E occurs whenever one of the clocks in the set clicks. Then, we can equivalently describe
the occurrences of event E as triggered by a Poisson clock NE with rate equal to 𝛾E ∶=

∑𝓁
h=1𝛾h.

ii) Let E be an event that is associated with a Poisson clock N with rate 𝛾 , and let E occur when the clock clicks with probability
p ∈ [0, 1], independent of the Poisson clock. Then, we can equivalently describe the occurrences of event E as triggered by
a Poisson clock NE with rate equal to 𝛾E ∶= p𝛾 .

Definition 2 (Markov process40). A continuous-time stochastic process X(t)with the state space is a Markov process
if, for any h, k ∈ , it holds that

P[X(t + Δt) = k|X(t) = h] = 𝛿hk + qhkΔt + o(Δt) , (2)

where qhk ∈ R≥0, for all h ≠ k ∈ , is the transition rate. Furthermore, qhh ∶= −
∑

k≠h qhk, and

𝛿hk ∶=

{
1 if h = k,
0 if h ≠ k.

(3)

The transition rates are gathered in the transition rate matrix Q ∈ R||×||.

From (2), it worth noticing that the transitions of a Markov process are regulated by Poisson clocks, each independent
of the others. Hence, one can define a Markov process by defining all its transitions by means of independent Poisson
clocks.

2 MODEL

In this section, we will introduce the mathematical model. In Section 2.1, we introduce the network structure. Next, in
Section 2.2, we discuss the modeling of sexual initiatives. Subsequently, we introduce the behavioral SIS model and the
negotiation processes in Section 2.3, before moving on with the control parameters in Section 2.4.

2.1 Population and partner network

We consider a population of n individuals  = {1,… ,n}. Each individual is represented by a node in a time-invariant
undirected network P = ( , P), termed partner network. The edge set P defines the partner relationships between indi-
viduals, so that {j, k} ∈ P if and only if j has a romantic relationship with k. In general, the partner network is not
connected as it is formed by small-connected components. In fact, real-world partner networks are typically formed by
pairs of nodes (steady couples) and isolated nodes (single individuals), but our modeling framework is flexible to cap-
ture more complex romantic relationships, for example, polyamorous relations, which have recently been estimated to be
4–5% of relations in the US.41 For each individual j ∈  , we define the set of partners of j as j ∶= {k ∈  ∶ {j, k} ∈ P}.
Compared to the spreading of STIs, the partner network evolves at a much slower pace, so we make the simplifying
assumption that P is constant over time.

2.2 Network of sexual initiatives

The STI may be transmitted from an infectious to a susceptible individual by means of an unprotected sexual encounter
between the two individuals. Sexual encounters are modeled through a two-step stochastic mechanism. First, one indi-
vidual makes a proposal to a second individual (to which we will refer as a sexual initiative), who in turn may or may
not consider the proposal, as detailed below. Then, if the proposal is considered, it is accepted or rejected according to a
negotiation process (detailed in Section 2.3), where it is assumed that romantic partner proposals are always considered

 10991239, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5930 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [10/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4788 FRIESWIJK et al.

and accepted. In the first step, we generate a time-varying directed network of considered sexual initiatives(t) = ( , (t)),
with t ∈ R≥0, such that the directed edge (j, k) ∈ (t) means that individual k considers a proposal made by individual j
at time t.

In the following, we will detail the mechanism that generates sexual initiatives, which is inspired by continuous-time
ADNs and acts as follows.32 Each individual j is equipped with a Poisson clock with unit rate, independent of the others.
When a clock clicks, the individual associated to it activates and proposes a sexual encounter to another member of the
population. Such a member is selected according to a stochastic mechanism. Specifically, to each j ∈  , we furthermore
assign an individual-specific probability pj ∈ [0, 1], which represents the level of faithfulness to the partner relationship(s)
of j, with the understanding that, if individual j is single (j = ∅), then pj = 0. Then, with probability pj, individual j makes
a proposal to one of their partners in j (selected uniformly at random among them, if multiple partners are present);
otherwise, with probability 1 − pj, the individual makes the proposal to a random individual in the rest of the population
k ∈  ⧵ {j, j}, who considers the proposal with probability 1 − pk.

To sum up, the network formation process is encapsulated by the following algorithm.

i) At time t = 0, initialize (t) = ∅.
ii) If at time t ∈ R>0, the Poisson clock associated with individual j ∈  ticks, then j activates and proposes a sexual

encounter to another individual, which is selected as follows:
a) with probability pj, individual j selects one of their romantic partners k ∈ j (chosen uniformly at random if j has

multiple partners);
b) with probability 1 − pj, individual j initiates a casual encounter, where an individual k ∈  ⧵ {j,j} is selected

uniformly at random. Individual k considers a casual encounter with individual j with probability 1 − pk, or
immediately declines the request with probability pk.

If the sexual request of individual j is taken into consideration by k, then the ephemeral edge (j, k) is added to (t).
iii) Immediately afterwards, the Poisson clock associated with j is reset, (t+) = ∅, and the algorithm resumes to step ii),

from time t+.

Some illustrative examples of the network formation process are shown and discussed in Figure 1.

Remark 1. For the sake of simplicity, we make the assumption in this article that all the individuals activate with the
same (unit) rate, which allows us to better focus on the role of the parameters that are related to the epidemic–behavioral
model and to derive analytical results. However, heterogeneous tendencies to initiate sexual encounters can be easily
incorporated within the modeling framework by assigning a parameter to each individual that determines the rate of the
Poisson clock associated with their activation, similar to heterogeneous continuous-time activity driven networks,32,42 as
proposed in our preliminary work.38

F I G U R E 1 Example of four time-instances of the network of sexual initiatives (t). The partner network P is represented in gray. In
(A), at time t1, the clock associated to 5 clicks; the node has faithfulness p5 = 0.5 and, according to the stochastic mechanism, the individual
proposes an encounter to the partner (node 6), so (5, 6) ∈ (t1). In (B), at time t2, the clock associated to node 5 clicks again; this time, the
individual proposes an encounter to a random individual (8), who is single and always considers the proposal, so (5, 8) ∈ (t2). In (C), at time
t3, the clock associated to 8 clicks; the individual is single (p8 = 0), so they always makes a proposal to a random individual. The mechanism
selects individual 7, who is single, so (8, 7) ∈ (t3). In (D), at time t4, the clock associated to 8 clicks again, and the individual proposes to 3.
However, 3 has p3 = 1 and turns down the proposal without even considering it. Hence, (t4) = ∅
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2.3 Disease propagation and behavior

In this section, we present the epidemic model. In particular, we propose an extension of a classical network SIS model,16,17

in which we include additional compartments to account for detected infected individuals who are receiving treatment,
and for behavioral preferences with regard to the use of protective measures during sexual encounters. We will refer to
this model as the behavioral SIS model. As in Frieswijk et al.,38 each individual j ∈  is characterized by a state Xj(t) ∈
{Sr, Sp, Ir, Ip, It}, which reflects their health state and behavioral preference at time t ∈ R≥0. Specifically,

Xj(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Sr if j is susceptible and prefers to not use protective measures (risky),
Sp if j is susceptible and prefers to use protective measures,
Ir if j is infected, unaware, and prefers to not use protective measures (risky),
Ip if j is infected, unaware, and prefers to use protective measures,
It if j is infected, aware, and is receiving treatment,

at time t. We assume that treatment immediately follows if infected individuals become aware of their health sta-
tus, either due to a positive screening result, or due to the development of symptoms. Here, we simplify matters by
neglecting the possible time delay between the symptom onset and diagnosis, and between diagnosis and beginning
of the treatment. Note that individuals who do not have symptoms—that is, susceptible and asymptomatic, infected
individuals—display the same behavioral patterns, as long as they are unaware of their health state (so before screening
takes place). States are gathered in the n-dimensional vector X(t) =

(
X1(t), … ,Xn(t)

)
, which represents the system’s state

at time t.
STIs spread through pairwise encounters between infected and susceptible individuals, which occur in consonance

with a mechanism detailed as follows. To each individual j ∈  , we assign a parameter 𝜎j ∈ [0, 1], which represents indi-
vidual j’s level of complaisance in negotiation processes. Specifically, the parameter 𝜎j captures the deference of individual
j to the wishes of others and the individual’s willingness to please them. Hence, as 𝜎j increases, individual j will more
likely accept to have a sexual encounter, regardless of their own behavioral preference. If (j, k) ∈ (t), this means that
at time t individual j makes a proposal to individual k, who considers the proposal. In this article, we will assume that
individuals behave morally, which implies that individuals who are under treatment never propose or accept to have an
unprotected intercourse. Hence, they never spread the STI. For the sake of simplicity, we can assume that if one of the
individuals j and k is receiving treatment (i.e., Xj(t) = It or Xk(t) = It), then a proposal is always rejected. If both j and k
are not under treatment then, dependent on j’s behavioral inclination, j proposes to play risky

(
if Xj(t) ∈ {Sr, Ir}

)
, or use

protective measures
(
if Xj(t) ∈ {Sp, Ip}

)
. Here, we assume that proposals from romantic partners are always accepted,

whereas for casual encounters, the use of protection is decided by negotiation between the nonpartners. In this article,
we investigate two different negotiation processes for casual encounters, which are detailed below.

1-stage negotiation process. When k considers a proposal made by j ∉ k and the two individuals have the same behav-
ioral preference, then k always accepts. If individual k’s behavioral preference differs,
the proposal is accepted with probability 𝜎k, while the proposal is rejected with proba-
bility 1 − 𝜎k and no sexual encounter occurs. A schematic of this negotiation process is
illustrated in Figure 2A.

2-stage negotiation process. When k considers a proposal made by j ∉ k, individual k always accepts if the
two individuals have the same behavioral preference. Otherwise, the proposal is
accepted with probability 𝜎k, whereas, with probability 1 − 𝜎k, individual k makes a
counter-proposal (according to their behavioral preference). Individual j subsequently
accepts the counter-proposal with probability 𝜎j, or declines it with probability 1 − 𝜎j. If
j declines, no sexual encounter takes place. A schematic of this negotiation process is
illustrated in Figure 2B.

If an individual accepts a proposal which conflicts with their original behavioral state (e.g., if an individ-
ual with a risky preference accepts a proposal from someone who prefers to use protective measures), then the
behavioral preference of the individual changes accordingly (to a protective behavioral preference), consonant
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F I G U R E 2 Flow chart of (A) a 1-stage negotiation process between nonpartners, and (B) a 2-stage negotiation process

with the literature on decision inertia, that is, people’s penchant for repeating past decisions.43,44 The
evolution of the state of an individual j ∈  over time is described by the following processes and illustrated in Figure 3.

Behavioral changes due to persuasion. If a risky-minded individual
(

Xj(t−) ∈ {Sr, Ir}
)

agrees to have a protected
sexual encounter, then they switch to favoring the use of protection(

Xj(t+) ∈ {Sp, Ip}
)
. Similarly, if an individual who favors the use of protective

measures
(

Xj(t−) ∈ {Sp, Ip}
)

agrees to have an unprotected sexual encounter,
then they change to a risky-minded behavioral preference

(
Xj(t+) ∈ {Sr, Ir}

)
.

Concurrently, a contagion may occur, detailed as follows.
Spontaneous rejection of protection. Besides the behavioral change due to a sexual encounter with a risky-minded

individual, an individual with a protective preference
(

Xj(t−) ∈ {Sp, Ip}
)

may
spontaneously forego the will to protect

(
Xj(t+) ∈ {Sr, Ir}

)
due to the cost of

using protective measures, according to a Poisson clock with rate c ∈ R>0.
Epidemic fear. Apart from the behavioral change due to a sexual encounter with an indi-

vidual who favors the use of protection, an individual with a risky behav-
ioral tendency

(
Xj(t−) ∈ {Sr, Ir}

)
may start to desire the use of protection(

Xj(t+) ∈ {Sp, Ip}
)

in response to epidemic spreading. Specifically, we define
the detected infection prevalence at time t,

It(t) ∶=
1
n
|
|
|
{j ∈  ∶ Xj(t) = It}

|
|
|
, (4)

and we model such a mechanism by employing a Poisson clock with a rate
proportional to the detected prevalence, that is, when It(t) = It, we set the
rate of the Poisson clock equal to 𝜁It, where 𝜁 ∈ R≥0.

Contagion. If a susceptible individual
(

Xj(t−) ∈ {Sr, Sp}
)

has an unprotected sexual
encounter with an infected individual k

(
Xk(t−) ∈ {Ir, Ip}

)
, then j becomes

infected
(

Xj(t+) = Ir
)

with probability 𝜆, where 𝜆 ∈ [0, 1] is the per-contact
infection probability.

Symptom onset. An asymptomatic infected individual
(

Xj(t−) ∈ {Ir, Ip}
)

spontaneously
develops symptoms and is diagnosed

(
Xj(t+) = It

)
according to a Poisson

clock with rate 𝜇 ∈ R>0.
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FRIESWIJK et al. 4791

F I G U R E 3 State transitions of the epidemic model for j ∈  . Rates in black refer to spontaneously triggered transitions, rates in cyan
refer to transitions triggered by a sexual encounter (i.e., by pairwise interactions), and rates in blue refer to transitions driven by control actions

Recovery. An infected individual receiving treatment
(

Xj(t−) = It
)

spontaneously
recovers according to a Poisson clock with rate 𝛽 ∈ R>0, as is typically
assumed in stochastic epidemic models.14,17 We assume that after having
recovered, j prefers to use protective measures

(
Xj(t+) = Sp

)
.

Remark 2. The model is amenable to several straightforward extensions. For instance, different costs for the individuals
cj can be set to capture heterogeneity in the population regarding the subjective cost of employing protective measures,
which may be affected by social stigmas, prevailing moral norms, wealth status, and religious interdicts.45 Moreover,
more complex functions of the epidemic prevalence can be considered to model the epidemic fear, for example, to capture
possible over-reacting or slow-to-react populations.46

2.4 Control parameters

Besides the spontaneous transition dynamics that regulate the epidemic–behavioral model, discussed in the previous
section, we consider three control measures that may be implemented to mitigate the spreading of STIs.

Condom (social) marketing campaign. Social marketing programs induce individuals to employ protective mea-
sures during sexual encounters. The impact of such campaigns is imple-
mented in the model by reducing the cost of using protection by um ∈ [0, c],
that is, by replacing c by c − um in the “spontaneous rejection of protection”
mechanism.

Routine screening at STI clinics. We investigate the impact of routine screening at STI clinics, and the dis-
tribution of free condoms after the test. By offering free STI screening,
individuals who do not show symptoms are incentivized to undergo testing.
Asymptotic infected individuals

(
Xj(t−) ∈ {Ir, Ip}

)
are diagnosed and treated(

Xj(t+) = It
)

according to a Poisson clock with rate us ∈ R≥0, representing
the rate of routine screening. Susceptible individuals

(
Xj(t−) ∈ {Sr, Sp}

)
may

also undergo the same screening practices following a Poisson clock with
rate us. After screening, we assume that susceptible individuals change their
behavior to favoring the use of protective measures

(
Xj(t+) = Sp

)
, as they

receive free condoms, and are moreover reminded of the perils of STIs.
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4792 FRIESWIJK et al.

T A B L E 1 Notation and parameters of the behavioral SIS model

Symbol Meaning Symbol Meaning

Xj(t) State of individual j at time t 𝜆 Per-contact infection probability

j Set of partner(s) of j 𝜇 Rate of symptom onset

pj Faithfulness of j 𝛽 Recovery rate

𝜎j Complaisance of j um Control effort in marketing campaign

c Cost associated with protection us Control effort in screening campaign

𝜁 Epidemic fear un Control effort in partner(s) notification

Partner notification. During the process of partner notification, romantic partners of a detected,
infected individual k (j ∈ k ∶ Xk(t−) = It) are contacted and informed of a
potential exposure, and are requested to undergo screening. This measure is
included in the modeling framework as follows. When X(t) = (X1, · · · , Xn),
we define

𝜂j∶= un
|
|
|

{
k ∈ j ∶ Xk = It

}|
|
|
, (5)

where un ∈ R≥0 represents the enforcement level of partner notification.
Depending on whether infection is detected among their romantic part-
ner(s), individuals are tested according to a Poisson clock with rate 𝜂j (in
addition to the rate for routine screening). Note that 𝜂j is proportional to the
number of infected partners to account for multiple notifications, in accor-
dance with Proposition 1. Similar to routine screening, after testing, infected
individuals

(
Xj(t−) ∈ {Ir, Ip}

)
are treated

(
Xj(t+) = It

)
, whereas susceptible

individuals
(

Xj(t−) ∈ {Sr, Sp}
)

change their behavioral preference to favoring
the use of protective measures

(
Xj(t+) = Sp

)
.

All the parameters of the model are summarized in Table 1. Before presenting the details of the dynamical systems
induced by these mechanisms, it is worth noticing that the model is characterized by sets of parameters that are clearly
disentangled, and can thus be estimated independently, leaving few parameters to be identified from real-world epidemi-
ological data. Such an important property will be key toward utilizing the proposed model in real-world scenarios, where
the identification of many parameters from real-world data might be challenging or unfeasible.

In our model, in fact, the epidemic parameters 𝜆, 𝜇, and 𝛽 are specific properties of the STI in consideration and are
independent of human behavior. Hence, they can be calibrated from clinical and epidemiological data. The behavioral
parameters pj and 𝜎j, which determine an individual’s faithfulness and complaisance, respectively, are characteristics of
the population. Questionnaires and social surveys might be designed to estimate the distribution of these parameters in
the population under analysis. The control parameters us and 𝜂j are rates of Poisson clocks. Hence, their inverses are the
average detection time of STIs via routine screening and partner notification, respectively, which characterize the effec-
tiveness of these control measures. Finally, once all of these parameters are secured from clinical and sociological data,
few parameters (i.e., the cost associated with protection c, the epidemic fear scalar 𝜁 , and the control effort in marketing
campaigns um) are left to be determined. These parameters, which are deeply related with the coevolution of an epidemic
and behavior, might be then identified from real-world data on the diffusion of STIs and on the use of protective measures.

3 DYNAMICS

In this section, we will present the details of the dynamical systems induced by the mechanisms described in the previous
section. First, we observe that all the mechanisms in the model are triggered by Poisson clocks, each one independent
of the others. Hence, in view of the observations made in Section 1.1, the system’s state X(t) evolves according to a
continuous-time n-dimensional Markov process in the state space {Sr, Sp, Ir, Ip, It}n. As illustrated in Figure 3, the generic
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FRIESWIJK et al. 4793

jth entry of the vector X(t) can undergo nine different state transitions. Three of them—namely, the ones from Ip and Ir
to It, and the one from It to Sp—are just triggered by spontaneous mechanisms, and the corresponding transition rates
are simply equal to the sum of the rates of the Poisson clocks involved in the process, in accordance with Proposition 1.
Hence, we obtain that:

• the transition rate from Ir to It is equal to the sum of the symptom onset rate 𝜇, the control effort placed in routine
screening us, and the partner notification 𝜂j;

• the transition rate from Ip to It is equal to the above, that is, 𝜇 + us + 𝜂j; and
• the transition rate from It to Sp is equal to 𝛽.

The other six transitions, on the other hand, involve mechanisms that are triggered by interactions between individ-
uals. These mechanisms are the contagion process (which may occur when a susceptible individual has an unprotected
encounter with an infected individuals) and the behavioral changes due to persuasion (which occur when an individual
accepts an encounter in conflict with their behavioral preference). For a generic individual j, we denote by 𝜅p,j and 𝜅r,j the
rate corresponding to their contagion process if they have a protective or risky behavioral preference, respectively, and by
𝜈p,j and 𝜈r,j the rate of the persuasion process to a protective and risky preference, respectively. The explicit expressions for
these rates depend on the nature of the negotiation process; the expressions for the two negotiation processes considered
in this article are derived below.

Similar to the other three rates, we derive the expression for the overall transition rate from one state to another by
summing all the rates of the mechanisms that may trigger the transition, in accordance with Proposition 1, which gives
that:

• the transition rate from Sr to Ir is equal to the contagion rate 𝜅r,j;
• the transition rate from Sp to Ir is equal to the contagion rate 𝜅p,j;
• the transition rate from Sr to Sp is equal to the sum of the persuasion effect 𝜈p,j, the risk perception 𝜁It, the control effort

placed in routine screening us, and partner notification 𝜂j;
• the transition rate from Ir to Ip is equal to the sum of the persuasion effect 𝜈p,j and the risk perception 𝜁It (since an

infected individual that undergoes screening would test positive and transition to the diagnosed compartment It);
• the transition rate from Ip to Ir is equal to the sum of the persuasion effect 𝜈r,j and the cost of using protective measures

minus the control effort placed in marketing campaigns c − um;
• the transition rate from Sp to Sr is equal to the one above, reduced by 𝜅p,j due to contagion taking place. Hence, it is

equal to 𝜈r,j + c − um − 𝜅p,j.

To sum up, the nine rates described above can be gathered into the transition rate matrix for the generic jth component
of the Markov process X(t) as

Qj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋅ 𝜈p,j + 𝜁It + us + 𝜂j 𝜅r,j 0 0
𝜈r,j + c − um − 𝜅p,j ⋅ 𝜅p,j 0 0

0 0 ⋅ 𝜈p,j + 𝜁It 𝜇 + us + 𝜂j

0 0 𝜈r,j + c − um ⋅ 𝜇 + us + 𝜂j

0 𝛽 0 0 ⋅

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where the rows (columns) correspond to state Sr, Sp, Ir, Ip, and It, respectively. The diagonal elements equal the opposite
of the sum of the other elements of the row, so each row of Qj sums to zero. Hence, following Definition 2, for any
h, k ∈ {Sr, Sp, Ir, Ip, It} with h ≠ k,

P
[
Xj(t + Δt) = k|Xj(t) = h

]
= (Qj)hkΔt + o (Δt) . (7)

In the following subsections, we explicitly derive the expressions for the contagion and the persuasion rates, for the
1-stage and the 2-stage negotiation process.
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4794 FRIESWIJK et al.

3.1 The 1-stage negotiation process

For the 1-stage negotiation process, we derive the following expressions for the rates associated with contagion and
persuasion.

Contagion. If Xj(t−) = Sr, then j can contract the disease (Xj(t+) = Ir). Specifically, this happens if one of the following
events occurs: (i) j proposes an encounter to an infected partner (recalling that partners always accept
proposals); (ii) j proposes an encounter to an infected nonpartner who has a preference for risky behavior;
(iii) j proposes an encounter to an infected nonpartner who prefers to use protection, but j persuades the
nonpartner to have an unprotected encounter; (iv) a partner of j who has a preference for risky behavior
proposes an encounter to j; or (v) someone who is not a partner of j and has a preference for risky behavior
proposes an encounter to j. Hence, in accordance with Proposition 1, contagion occurs according to a
Poisson clock with rate equal to the sum of the rates of the five possible events described above, multiplied
by the per-contact infection probability 𝜆, which yields

𝜅r,j = 𝜅(1)r,j ∶= 𝜆

⎛
⎜
⎜
⎜
⎜
⎝

pj

|j|

∑

k∈j∶
Xk∈{Ir,Ip}

1 +
1 − pj

n − 1 − |j|

⎡
⎢
⎢
⎢
⎢
⎣

∑

k∈⧵{j,j}∶
Xk=Ir

(1 − pk) +
∑

k∈⧵{j,j}∶
Xk=Ip

(1 − pk)𝜎k

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

+ 𝜆
⎛
⎜
⎜
⎜
⎝

∑

k∈j∶
Xk=Ir

pk

|k|
+ (1 − pj)

∑

k∈⧵{j,j}∶
Xk=Ir

1 − pk

n − 1 − |k|

⎞
⎟
⎟
⎟
⎠

, (8)

with the convention (kept throughout the article) that sums over empty sets are omitted. If Xj(t−) = Sp,
individual j can also become infected (Xj(t+) = Ir). In particular, this happens if one of the following events
occurs: (i) a partner of j who has a preference for risky behavior proposes an encounter to j, who always
accepts; or (ii) someone who is not a partner of j and has a preference for a risky behavior proposes an
encounter to j, who is persuaded. Hence, in accordance with Proposition 1, contagion occurs according to a
Poisson clock with rate equal to the sum of the rates of the two possible events described above, multiplied
by the per-contact infection probability 𝜆, yielding

𝜅p,j = 𝜅(1)p,j ∶= 𝜆
⎛
⎜
⎜
⎜
⎝

∑

k∈j∶
Xk=Ir

pk

|k|
+ (1 − pj)𝜎j

∑

k∈⧵{j,j}∶
Xk=Ir

1 − pk

n − 1 − |k|

⎞
⎟
⎟
⎟
⎠

. (9)

Persuasion. If Xj(t) ∈ {Sp, Ip}, j can stop favoring the use of protective measures
(

Xj(t+) ∈ {Sr, Ir}
)
. This occurs if j is

persuaded by a proposal from a risky-minded individual (partner or nonpartner). Recalling that proposals
from partners are always accepted and using Proposition 1, this happens according to a Poisson clock with
rate

𝜈r,j = 𝜈(1)r,j ∶=
∑

k∈j∶
Xk∈{Sr,Ir}

pk

|k|
+ (1 − pj)𝜎j

∑

k∈⧵{j,j}∶
Xk∈{Sr,Ir}

1 − pk

n − 1 − |k|
. (10)

If Xj(t−) ∈ {Sr, Ir}, j can start to desire the use of protection
(

Xj(t+) ∈ {Sp, Ip}
)
. This happens if j is

persuaded by a proposal of someone (partner or nonpartner) who has a preference for using protec-
tive measures. Recalling that proposals from partners are always accepted and using Proposition 1, this
happens according to a Poisson clock with rate

𝜈p,j = 𝜈(1)p,j ∶=
∑

k∈j∶
Xk∈{Sp,Ip}

pk

|k|
+ (1 − pj)𝜎j

∑

k∈⧵{j,j}∶
Xk∈{Sp,Ip}

1 − pk

n − 1 − |k|
. (11)
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FRIESWIJK et al. 4795

3.2 The 2-stage negotiation process

For the 2-stage negotiation process, individuals make a counter-proposal if they decline the original proposal. As a result,
contagion and persuasion may occur in all the events listed for the 1-stage negotiation process (see Section 3.1), but also
upon acceptance of counter-proposals. Hence, according to Proposition 1, the corresponding rates are augmented by an
additional term that accounts for the acceptance of a counter-proposal by a nonpartner, while partners always accept the
proposal (so no counter-proposal will be made). Hence, we summarize the rates as follows.

Contagion. If Xj(t−) = Sr, j gets infected (Xj(t+) = Ir) according to a Poisson clock with rate

𝜅r,j = 𝜅(2)r,j ∶= 𝜅
(1)
r,j + 𝜆(1 − pj)(1 − 𝜎j)

∑

k∈⧵{j,j}∶
Xk=Ip

𝜎k(1 − pk)
n − 1 − |k|

. (12)

If Xj(t−) = Sp, individual j contracts the disease (Xj(t+) = Ir) following a Poisson clock with rate

𝜅p,j = 𝜅(2)p,j ∶= 𝜅
(1)
p,j + 𝜆𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}∶
Xk=Ir

(1 − pk)(1 − 𝜎k). (13)

Persuasion. If Xj(t) ∈ {Sp, Ip}, j is persuaded to no longer desire the use of protection
(

Xj(t+) ∈ {Sr, Ir}
)

according to
a Poisson clock with rate

𝜈r,j = 𝜈(2)r,j ∶= 𝜈
(1)
r,j + 𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}∶
Xk∈{Sr,Ir}

(1 − pk)(1 − 𝜎k). (14)

If Xj(t−) ∈ {Sr, Ir}, j is persuaded to start desiring the use of protective measures
(

Xj(t+) ∈ {Sp, Ip}
)

according to a Poisson clock with rate

𝜈p,j = 𝜈(2)p,j ∶= 𝜈
(1)
p,j + 𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}∶
Xk∈{Sp,Ip}

(1 − pk)(1 − 𝜎k). (15)

Now, we are ready to present our main results in the following section.

4 MAIN RESULTS

In this section, we derive some analytical insight into the system. Specifically, we focus on the computation of the epidemic
threshold of the model for the two negotiation processes. The epidemic threshold determines a region in the parameter
space in which local outbreaks are always quickly eradicated and never give rise to global pandemics.

We start our analysis by observing that the transition matrix for individual j defined in (6) is dependent on
the state of the other individuals. This complicates the direct analysis of the Markov process X(t) for large-scale
populations, since the nodal dynamics cannot be decoupled, and as a consequence, the dimension of the state space of
the system grows exponentially with n. Hence, as often done in the literature,37,47 we rely on a continuous-state deter-
ministic mean-field relaxation of the stochastic system, which approximates the evolution of the stochastic system in the
thermodynamic limit of large-scale populations n →∞. Specifically, for all individuals j ∈  , we define the following five
probabilities:

sr,j(t) ∶= P
[
Xj(t) = Sr

]
, sp,j(t) ∶= P

[
Xj(t) = Sp

]
, ir,j(t) ∶= P

[
Xj(t) = Ir

]
,

ip,j(t) ∶= P
[
Xj(t) = Ip

]
, it,j(t) ∶= P

[
Xj(t) = It

]
, (16)
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4796 FRIESWIJK et al.

that is, the probability that individual j is in each of the five states at time t. The mean-field relaxation37 consists of the
study of a system of 5n ordinary differential equations (ODEs) that governs the evolution of the variables defined in (16),
for all j ∈  . These ODEs are derived as

(
ṡr,j ṡp,j i̇r,j i̇p,j i̇t,j

)
=
(

sr,j sp,j ir,j ip,j it,j
)

Q̃j, where Q̃j is the mean-field expression
of the transition rate matrix in (6), which is obtained by substituting the indicator functions in the sums in 𝜅r,j, 𝜅p,j, 𝜈r,j,
and 𝜈p,j with the corresponding probabilities defined in (16), obtaining the mean-field expressions �̃�r,j, �̃�p,j, �̃�r,j, and �̃�p,j,
respectively (see Appendix A for more details and their explicit derivations). Such a procedure leads to the following
result.

Proposition 2. The mean-field evolution of the behavioral SIS model X(t) defined in (6) is governed by the following system:

ṡr,j = −

(

�̃�p, j + us + 𝜁
1
n
∑

k∈
it,k + 𝜂j + �̃�r, j

)

sr,j +
(
�̃�r,j + c − um − �̃�p,j

)
sp,j,

ṡp,j =

(

�̃�p,j + us + 𝜁
1
n
∑

k∈
it,k + 𝜂j

)

sr,j −
(
�̃�r,j + c − um

)
sp,j + 𝛽it,j,

i̇r,j = �̃�r,jsr,j + �̃�p,jsp,j −

(

�̃�p,j + 𝜁
1
n
∑

k∈
it,k + 𝜇 + us + 𝜂j

)

ir,j +
(
�̃�r,j + c − um

)
ip,j,

i̇p,j =

(

�̃�p,j + 𝜁
1
n
∑

k∈
it,k

)

ir,j −
(
�̃�r,j + c − um + 𝜇 + us + 𝜂j

)
ip,j,

i̇t,j =
(
𝜇 + us + 𝜂j

)
ir,j +

(
𝜇 + us + 𝜂j

)
ip,j − 𝛽it,j, (17)

for all j ∈  , where the explicit expressions of the mean-field transition rates �̃�r,j, �̃�p,j, �̃�r,j, and �̃�p,j are reported in Appendix A.
In order to perform the numerical and theoretical analysis of system (17), we will first show that the system is

well-defined, that is, that
(

sr,j(t) sp,j(t) ir,j(t) ip,j(t) it,j(t)
)

governed by (17) forms a probability vector for all j ∈  , and for
all t ∈ R≥0.

Lemma 1. The set {
(

sr,j sp,j ir,j ip,j it,j
)
∶ sr,j, sp,j, ir,j, ip,j, it,j ≥ 0, sr,j + sp,j + ir,j + ip,j + it,j = 1} is positive invariant under

(17), for all j ∈  .

Proof. From (17), we immediately observe that ṡr,j + ṡp,j + i̇r,j + i̇p,j + i̇t,j = 0, for all j ∈  . If the initial condition is
well-defined, then necessarily sr,j + sp,j + ir,j + ip,j + it,j = 1 for all t ∈ R≥0. Finally, we observe that if one of the probabil-
ities governed by (17) is equal to zero, then its time-derivative is always non-negative. Thus, sr,j, sp,j, ir,j, ip,j, it,j ≥ 0 for all
t ∈ R≥0. ▪

It follows from Lemma 1 that system (17) consists of 4n linearly independent differential equations, which will be
useful to simplify the computations in the next section.

Before stating our results, let us introduce some more notation. We define five macroscopic quantities that measure
the average probability for a randomly selected individual to be in state Sr, Sp, Ir, Ip, and It as

ys,r ∶=
1
n
∑

j∈
sr,j, ys,p ∶=

1
n
∑

j∈
sp,j, yi,r ∶=

1
n
∑

j∈
ir,j, yi,p ∶=

1
n
∑

j∈
ip,j, and yi,t ∶=

1
n
∑

j∈
it,j, (18)

respectively. The relation between the original stochastic system defined through the transition matrix (6) and its
mean-field approximation is now discussed. For a sufficiently large enough population size n, the prevalence of the states
can be arbitrarily closely approximated by (18) for any finite time-horizon,42,48 that is,

Sr(t) ∶=
1
n
|{j ∈  ∶ Xj(t) = Sr}| ≈ ys,r, Sp(t) ∶=

1
n
|{j ∈  ∶ Xj(t) = Sp}| ≈ ys,p,

Ip(t) ∶=
1
n
|{j ∈  ∶ Xj(t) = Ip}| ≈ yi,p, Ir(t) ∶=

1
n
|{j ∈  ∶ Xj(t) = Ir}| ≈ yi,r,

and It(t) ≈ yi,t. Figure 4 shows the accuracy of this approximation in the scenario of a 1-stage negotiation process (detailed
in the following subsection) as the population size n grows large. Hence, even though the mean-field approximation may
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FRIESWIJK et al. 4797

F I G U R E 4 Simulations of the behavioral SIS model (solid curves) and its deterministic approximation (dashed curves) for population
size (A) n = 1 000; and (B) n = 100 000. The model parameters are 𝜆 = 0.5, us = 0.1, c = 0.4, um = 0.1, 𝜇 = 0.04, 𝜁 = 1, 𝛽 = 0.5, and 𝜎j = 0.4,
for all j ∈  . In both simulations, we have utilized the 1-stage negotiation process, and we have assumed that there is no partner network

not be able to accurately predict the individual-level behavior, it allows to precisely reproduce the emergent behavior of
the system at the level of the macroscopic variables, providing a tool to determine whether an epidemic outbreak will be
quickly eradicated or if it will spread in the population.

Due to the complexity of the dynamics and the large number of parameters involved in the model, the analytical
computation of the threshold is in general unfeasible. Here, we derive its analytical expression under some simplifying
assumptions, that is, by assuming a population with homogeneous complaisance 𝜎j = 𝜎, for all j ∈  , and by neglecting
the partner backbone. Numerical simulations will be employed to extend our findings beyond these limitations. Hence,
for the rest of this section, we will consider the system under the following assumption.

Assumption 1. We assume that j = ∅ and 𝜎j = 𝜎 ∈ [0, 1], for all j ∈  .

In Sections 4.1 and 4.2, we will derive the explicit expressions of the mean-field equations for the 1-stage and the 2-stage
negotiation process, respectively, and subsequently use them to derive the epidemic threshold for the two scenarios.

4.1 The 1-stage negotiation process

In this section, we derive the epidemic threshold for our behavioral SIS model, under the 1-stage negotiation pro-
cess, to shed light on the impact of condom (social) marketing campaigns and routine screening on the spreading of
STIs. We achieve this by taking the mean-field relaxation, resulting in the following proposition, which is obtained
from Proposition 2, by substituting the mean-field expressions of (8)–(11), which are reported in Appendix A, into (17).
Explicit computations are straightforward, so we can safely omit them here and report the final result. For the sake of
completeness, the proof of Proposition 3 is reported in Appendix B.

Proposition 3. Under Assumption 1 and with the 1-stage negotiation process, the mean-field evolution of the behavioral
SIS model follows

ṡr,j = −

(

𝛾p,j + us + 𝜁
1
n
∑

k∈
it,k +

𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎ip,k

)
)

sr,j +

(

𝛾r,j + c − um −
𝜆𝜎

n − 1
∑

k∈⧵{j}
ir,k

)

sp,j,

ṡp,j =

(

𝛾p,j + us + 𝜁
1
n
∑

k∈
it,k

)

sr,j −
(
𝛾r,j + c − um

)
sp,j + 𝛽it,j,

i̇r,j =

(
𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎ip,k

)
)

sr,j +

(
𝜆𝜎

n − 1
∑

k∈⧵{j}
ir,k

)

sp,j −

(

𝛾p,j + 𝜁
1
n
∑

k∈
it,k + 𝜇 + us

)

ir,j +
(
𝛾r,j + c − um

)
ip,j,

i̇p,j =

(

𝛾p,j + 𝜁
1
n
∑

k∈
it,k

)

ir,j −
(
𝛾r,j + c − um + 𝜇 + us

)
ip,j,

i̇t,j = (𝜇 + us) ir,j + (𝜇 + us) ip,j − 𝛽it,j, (19)
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4798 FRIESWIJK et al.

for all j ∈  , where we define

𝛾r,j ∶=
𝜎

n − 1
∑

k∈⧵{j}

(
sr,k + ir,k

)
, and 𝛾p,j ∶=

𝜎

n − 1
∑

k∈⧵{j}

(
sp,k + ip,k

)
. (20)

In view of the above, we will use the macroscopic variables defined in (18) to study the behavior of large pop-
ulations. Specifically, we aspire to determine whether there exist conditions that prevent the escalation of a local
outbreak of the disease into an endemic situation. Formally, we aim to obtain the necessary condition(s) for the
existence of a (locally) asymptotically stable disease-free equilibrium. In the following theorem, we present this con-
dition, that is, the epidemic threshold, for system (19). Here, the threshold is presented as a critical value of the
parameter 𝜇. If the rate of symptom onset 𝜇 is higher than the critical value 𝜇∗, then the outbreak is quickly erad-
icated; if not, it becomes endemic. Note that 𝜇 ∈ R>0, so for any negative value of 𝜇∗, eradication of the outbreak
is guaranteed.

Theorem 1. Consider the behavioral SIS model for a 1-stage negotiation process under Assumption 1, given by (19),
in the limit n →∞. Then, the system has a unique disease-free equilibrium (with yi,r = yi,p = yi,t = 0), which is locally
asymptotically stable if and only if

𝜇 > 𝜇
∗
1 ∶= −

1
2
𝜎 − 1

2(us + c − um)

[
2u2

s + (c − um)2 + (c − um)(3us − 2𝜆) − 𝜆𝜎us −
√
𝜈1

]
, (21)

where

𝜈1 ∶= (c − um)4 + 2(c − um)3 [2𝜆 + 𝜎 + us] + (c − um)2
[
𝜎

2 + (2𝜆 + us)2 + 2𝜎(2𝜆 + us(𝜆 + 2))
]

+ 2𝜎us(c − um)
[
2𝜆2 + 𝜆(us + 3𝜎 − 2) + 𝜎 + us

]
+ 𝜎2u2

s (𝜆 − 1)2. (22)

Proof. First, it can be observed from (19) that there is a unique disease-free equilibrium with yi,r = yi,p = yi,t = 0, which
is given by

(
sr,j, sp,j, ir,j, ip,j, it,j

)
=
(

c − um

us + c − um
,

us

us + c − um
, 0, 0, 0

)

, (23)

for all j ∈  . Equilibrium (23) is always globally asymptotically stable when restricting the dynamics to the disease-free
manifold ir,j = ip,j = it,j = 0 for all j ∈  . To study its local stability, instead of directly studying the system of 4n linearly
independent equations for the individual-level variables (16) in (19), we utilize the macroscopic variables defined in (18),
observing that the disease-free equilibrium is stable if and only if

(
c−um

us+c−um
,

us
us+c−um

, 0, 0, 0
)

is a stable equilibrium for
the system of macroscopic variables. For the sake of readability, we define a change of variables, where the macroscopic
variable ys,p is substituted by the auxiliary variable

yq ∶=
1
n
∑

j∈

(

sp,j −
us

us + c − um

)

= ys,p −
us

us + c − um
, (24)

while we choose to omit variable ys,r (as a consequence of Lemma 1), since is not independent of the other four
macroscopic variables. Note that, in the new system of four variables, the disease-free equilibrium coincides with the
origin. Substituting system (19) into (18) and (24), and subsequently linearising the result about the disease-free equi-
librium (i.e., the origin in the new system of variables yq, yi,r, yi,p, and yi,t), gives the following linearly independent
system:

ẏq = − (us + c − um) yq −
(

𝜎
us

us + c − um
+ us

)

yi,r +
(

𝜎

(

1 − us

us + c − um

)

− us

)

yi,p

+
(

𝜁

(

1 − us

us + c − um

)

+ 𝛽 − us

)

yi,t,
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FRIESWIJK et al. 4799

ẏi,r =
(

(𝜆𝜎 − 2𝜆 − 𝜎) us

us + c − um
+ 2𝜆 − us − 𝜇

)

yi,r +
(

𝜎(𝜆 + 1)
(

1 − us

us + c − um

)

+ c − um

)

yi,p,

ẏi,p = 𝜎
us

us + c − um
yi,r −

(

𝜎

(

1 − us

us + c − um

)

+ c − um + 𝜇 + us

)

yi,p,

ẏi,t = (𝜇 + us) yi,r + (𝜇 + us) yi,p − 𝛽yi,t. (25)

Equilibrium (23) is (locally) asymptotically stable for (19) if and only if the origin is (locally) asymptotically stable
under (25). From (25), we explicitly compute the eigenvalues of the Jacobian matrix, obtaining two terms that are always
negative, −(us + c − um) < 0 and −𝛽 < 0, and

−𝜇 − 1
2
𝜎 − 1

2(us + c − um)

[
2u2

s + (c − um)2 + (c − um)(3us − 2𝜆) − 𝜆𝜎us ±
√
𝜈1

]
, (26)

where 𝜈1 is defined in (22). Note that 𝜎(2𝜆2 + 𝜆(3𝜎 − 2) + 𝜎) ≥ 0, so 𝜈1 ≥ 0. Thus, the largest eigenvalue is negative (and so
the origin is stable) if and only if the eigenvalue with the “−” sign before the square root is negative, yielding the condition
𝜇 > 𝜇

∗
1 , which completes the proof. ▪

Remark 3. Note that if us = 0, then 𝜇∗1 = 2𝜆. This implies that if there is zero effort put in routine screening as a control
measure, then condom (social) marketing campaigns have no effect on the epidemic threshold.

The result in Theorem 1 extends our preliminary findings in Frieswijk et al.,38 in which conditions for the (local)
stability of the disease-free equilibrium of the behavioral SIS model with a 1-stage negotiation process were estab-
lished for the limit cases us ≪ c − um and us ≫ c − um. These two limit cases can capture extreme scenarios in which
the effect of routine screening at STI clinics is negligible with respect to the cost of using protection, or vice versa.
On the contrary, Theorem 1 establishes a general result, which characterizes the nontrivial conditions for stabil-
ity of the disease-free equilibrium over the entire parameter space, and thus allows us to shed light on the role
played by the control measures (um and us), as illustrated in Figure 5 and discussed at the end of the following
section.

4.2 The 2-stage negotiation process

We now consider the 2-stage negotiation process, and we derive the epidemic threshold for the behavioral SIS model.
Similar to the 1-stage model, we can derive the set of equations that govern the mean-field evolution of the system from
Proposition 2 and the mean-field expressions of (12)–(15), obtaining the following result, whose proof is reported in
Appendix C.

F I G U R E 5 Value of the epidemic thresholds computed analytically for different values of the two control parameters modeling the
impact of condom marketing (um) and routine screening (us) for the two different negotiation processes and their comparison. In (A), we
show the threshold for the 1-stage negotiation process, 𝜇∗1 ; in (B), the one for the 2-stage negotiation process, 𝜇∗2 . Panel (C) illustrates the
difference 𝜇∗2 − 𝜇

∗
1 . Common parameters are 𝜆 = 0.1, 𝜎 = 0.4, and c = 0.1
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4800 FRIESWIJK et al.

Proposition 4. Under Assumption 1 and with the 2-stage negotiation process, the mean-field evolution of the behavioral
SIS model is governed by

ṡr,j = −

(

𝛾p,j + us + 𝜁
1
n
∑

k∈
it,k +

𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎(2 − 𝜎)ip,k

)
)

sr,j +

(

𝛾 r,j + c − um −
𝜆𝜎(2 − 𝜎)

n − 1
∑

k∈⧵{j}
ir,k

)

sp,j,

ṡp,j =

(

𝛾p,j + us + 𝜁
1
n
∑

k∈
it,k

)

sr,j −
(
𝛾r,j + c − um

)
sp,j + 𝛽it,j,

i̇r,j =

(
𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎(2 − 𝜎)ip,k

)
)

sr,j +

(
𝜆𝜎(2 − 𝜎)

n − 1
∑

k∈⧵{j}
ir,k

)

sp,j −

(

𝛾p,j + 𝜁
1
n
∑

k∈
it,k + 𝜇 + us

)

ir,j

+
(
𝛾 r,j + c − um

)
ip,j,

i̇p,j =

(

𝛾p,j + 𝜁
1
n
∑

k∈
it,k

)

ir,j −
(
𝛾r,j + c − um + 𝜇 + us

)
ip,j,

i̇t,j = (𝜇 + us) ir,j + (𝜇 + us) ip,j − 𝛽it,j, (27)

for all j ∈  , where we use the notation

𝛾 r,j ∶=
𝜎(2 − 𝜎)

n − 1
∑

k∈⧵{j}

(
sr,k + ir,k

)
, and 𝛾p,j ∶=

𝜎(2 − 𝜎)
n − 1

∑

k∈⧵{j}

(
sp,k + ip,k

)
. (28)

Observe by comparing Proposition 3 and 4 that the addition of a counter-proposal mechanism to the negotiation
process leads to the replacement of 𝜎 with 𝜎(2 − 𝜎) in (19) and (20).

The following theorem presents conditions required for (local) asymptotic stability of the disease-free equilibrium for
system (27), for a 2-stage negotiation process.

Theorem 2. Consider the behavioral SIS model for a 2-stage negotiation process under Assumption 1, given by (27), in the
limit n → ∞. Then, the system has a unique disease-free equilibrium (with yi,r = yi,p = yi,t = 0) which is locally asymptotically
stable if and only if

𝜇 > 𝜇
∗
2 ∶= −

1
2
𝜎(2 − 𝜎) − 1

2(us + c − um)

[
2u2

s + (c − um)2 + (c − um)(3us − 2𝜆) − 𝜆𝜎(2 − 𝜎)us −
√
𝜈2

]
, (29)

where

𝜈2 ∶= (c − um)4 + 2(c − um)3 [2𝜆 + 𝜎(2 − 𝜎) + us] + (c − um)2
[
𝜎

2(2 − 𝜎)2 + (2𝜆 + us)2 + 2𝜎(2 − 𝜎)(2𝜆 + us(𝜆 + 2))
]

+ 2𝜎(2 − 𝜎)us(c − um)
[
2𝜆2 + 𝜆(us + 3𝜎(2 − 𝜎) − 2) + 𝜎(2 − 𝜎) + us

]
+ 𝜎2(2 − 𝜎)2u2

s (𝜆 − 1)2. (30)

Proof. Since Proposition 4 is equivalent to the substitution of 𝜎 with 𝜎(2 − 𝜎) in Proposition 3, Theorem 2 is proved by
following the proof of Theorem 1 and substituting each occurrence of 𝜎 with 𝜎(2 − 𝜎). For the sake of completeness, the
complete proof can be found in Appendix D. ▪

Observe that 𝜇∗2 = 2𝜆 if there is no effort put toward routine screening as a control action, that is, if us = 0. Thus, if
us = 0, then there is no effect of condom (social) marketing campaigns on the asymptotic (local) stability of the disease-free
equilibrium, and therefore no effect on the eradication of local outbreaks of the disease. This phenomenon is illus-
trated by the behavior of the epidemic threshold on the left side of Figure 5A,B, for the 1-stage and 2-stage negotiation
process, respectively. If some effort is put into routine screening, that is, us > 0, then the epidemic thresh-
olds 𝜇

∗
1 and 𝜇

∗
2 are monotonically decreasing with respect to the control measures us and um, as shown in

Figure 5A,B.
By comparing the two figures, excluding the boundary cases us = 0 and um = c, we observe that the inclusion of a

counter-proposal mechanism in the negotiation process always leads to an increase in the value of the epidemic thresh-
old, thus making it more difficult to extinguish local outbreaks. This effect is illustrated by Figure 5C, which shows the
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FRIESWIJK et al. 4801

F I G U R E 6 Simulations of the behavioral SIS model with (A) heterogeneous and (B) homogeneous levels of complaisance 𝜎 for a
1-stage negotiation process. In (A), we distributed complaisance randomly, following a power-law distribution with lower and higher barrier
at 0.1 and 1, respectively, and negative exponent equal to −3, that is, P[𝜎j = 𝜎] ∝ 𝜎−3. In (B), we set 𝜎j = 0.4806, for all j ∈  , that is, the
average complaisance across the population in (A). Common model parameters are n = 10 000, 𝜆 = 0.5, us = 0.1, c = 0.4, um = 0.1, 𝜇 = 0.04,
𝜁 = 1, and 𝛽 = 0.5

difference between the values of 𝜇∗2 and 𝜇∗1 , for different values of the control effort put in the control measures us and
um. For the boundary cases, however, we have a different behavior. In fact, if um = c, then we have 𝜇∗1 = −𝜎 − us + 𝜆𝜎 and
𝜇
∗
2 = −𝜎(2 − 𝜎) − us + 𝜆𝜎(2 − 𝜎), which gives 𝜇∗2 − 𝜇

∗
1 = −𝜎(1 − 𝜎)(1 − 𝜆) < 0. If us = 0, then 𝜇∗2 − 𝜇

∗
1 = 2𝜆 − 2𝜆 = 0.

Hence, we can conclude that, in the presence of routine screening and in the absence of a very strong marketing
campaign, the counter-proposal has a negative effect on the stability of the disease-free equilibrium, favoring the inception
of epidemic outbreaks and their spread. Therefore, neglecting this behavioral mechanism might lead to a potentially
disastrous underestimation of the risk of the spreading of STIs.

Finally, we recall that our theoretical results were derived under the assumption that all the individuals have the same
level of complaisance, that is, 𝜎j = 𝜎, for all j ∈  . However, the simulations illustrated in Figure 6 suggest that our theo-
retical findings obtained under the assumption that the population is homogeneous might still be applied as a good proxy
for heterogeneous populations, since heterogeneity in 𝜎 seems to have a negligible effect on the spread of the disease. In
fact, the temporal evolution of the system with highly heterogeneous complaisance across the population, in Figure 6A,
appears not to differ sensibly from the one of a system with homogeneous complaisance equal to the average of the hetero-
geneous one, in Figure 6B. The results illustrated in Figure 6 are obtained while considering a 1-stage negotiation process.
Similar results (here omitted) are obtained for a 2-stage negotiation process. Hence, it seems that the complaisance may
be approximated as homogeneous across the population.

5 SIMULATIONS

In this section, we employ numerical simulations to extend our theoretical findings. The formulation of the model as
a Markov process allows us to perform fast Monte Carlo simulations of the dynamics.49 Specifically, we investigate the
role of the partner network on the spreading of STIs and assess the effectiveness of partner notification as a control
measure. In all our simulations we consider the same population of n = 10 000 individuals, and, for each simulation, we
generate a partner network in which a fixed fraction of the population (50%, in our simulations) is involved in a dyadic
relationship, while the rest of the population is not involved in any relation. These relations are generated uniformly
at random, utilizing a method similar to a configuration model.50 Observe that, for the sake of simplicity, we neglect
polyamorous relations in our simulations.

We investigate the role of the partner network by comparing the outcome of the behavioral SIS model for differ-
ent values of faithfulness and complaisance. Specifically, we perform Monte Carlo simulations of the system (averaged
over 100 independent runs) to estimate the long-run infection prevalence, measured as Ip(tend) + Ir(tend) + It(tend), where
tend = 200 is the time-window of our simulations. For the sake of simplicity, and considering our observations in the
previous section based on Figure 6, we assume that all individuals have the same level of complaisance, that is, 𝜎j = 𝜎,
for all j ∈  , and that all individuals involved in relationships have the same degree of faithfulness, that is, pj = p,
for all j ∈  with j ≠ ∅. Hence, we estimate the epidemic infection prevalence for complaisance levels ranging from
0 to 1—which model the limit cases of a completely stubborn and an easy-to-persuade population, respectively—and
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faithfulness levels that range from 0 to 1, representing the extreme cases of an always-cheating and a never-cheating
population.

Our findings, illustrated in Figure 7, confirm the intuition that casual partners can play a key role in the spread
of STIs, consistent with the findings in Vajdi et al.28 In fact, as the level of faithfulness decreases (i.e., a higher
fraction of the individuals have extra-relationship encounters), the long-run epidemic prevalence increases. Is it inter-
esting to notice in Figure 7A,B that, for STIs with a small per-contact infection probability (𝜆 = 0.1), faithfulness
can determine whether the system is in a fast-extinction regime (white region) or if the disease becomes endemic
(red region, where the intensity is the estimated prevalence at the endemic equilibrium). Predictably, we also observe
that the maximum effect of the counter proposal is achieved at intermediate values of 𝜎, that is, for those val-
ues in the neighborhood of 𝜎 = 0.5, which maximizes the fraction of counter proposals made and accepted—which
is equal to 𝜎(1 − 𝜎). Furthermore, we observe that the system exhibits a nontrivial interplay between individu-
als’ complaisance, the infection probability, and the nature of the negotiation process on the long-run epidemic
prevalence. While the addition of a counter-proposal always favors the spread of the infection, its effect is not uni-
form. Specifically, we observe that the counter-proposal has an extremely strong impact for small values of the
per-contact infection probability, where it may cause the system to switch from the fast-extinction regime to the one
where the infection becomes endemic, while the impact becomes milder for extremely contagious diseases (compare
Figure 7C with F).

Finally, we investigate the effectiveness of partner notification as a control measure. To this aim, we consider two
different scenarios—in the presence of the other control measures us and um, and in their absence—and we assess the
impact of increasing the enforcement level of partner notification un up to 2, for different levels of faithfulness p. In
order to visualize such an impact, we report the difference in the long-run epidemic prevalence with respect to the
scenario with no partner notification (un = 0). Our findings, summarized in Figure 8, suggest that partner notification
is a very effective control measure, in particular when combined with other control measures (Figure 8B). When no
other measures are implemented, its impact is still non-negligible, especially for faithful populations (see Figure 8A
for p large). Clearly, in the limit case p = 1, individuals involved in a romantic partnership have no casual encounters,
limiting the need and impact of notifications. The decreasing effectiveness for unfaithful population suggests that extend-
ing such a notification measure to trace casual contacts might be a valuable technique to further combat the spread
of STIs.

F I G U R E 7 Monte Carlo estimation (over 100 independent runs) of the long-run epidemic prevalence Ip + Ir + It, measured at time
tend = 200 (intensity of red) for different values of faithfulness p and complaisance 𝜎, for (A–C) 𝜆 = 0.1 and (D–F) 𝜆 = 0.6, for the 1-stage (in
(A,D)) and the 2-stage (in (B,E)) negotiation process. Panels (C,F) show the difference in the long-run prevalence between the two negotiation
processes (intensity of violet). Common parameters are: n = 10 000, 𝜇 = 0.04, c = 0.5, 𝜁 = 1, 𝛽 = 0.5, us = 0.1, um = 0.1, and un = 0. The
partner network is generated at random, with 50% of the individuals involved in a dyadic relation, and the rest not involved in any relation
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F I G U R E 8 Monte Carlo estimation (over 100 independent runs) of the decrease in the long-run epidemic prevalence Ip + Ir + It

(measured at time tend = 200) as an effect of partner notification un (intensity of cyan) for different values of faithfulness p, in the absence of
control measures us and um (in (A)) and in their presence (in (B)). Common parameters are: n = 10 000, 𝜇 = 0.04, c = 0.5, 𝜁 = 1, 𝛽 = 0.5,
𝜆 = 0.5, and 𝜎 = 0.4, where we consider a 1-stage negotiation process. In (B), us = um = 0.1. The partner network is generated at random,
with 50% of the individuals involved in a dyadic relation, and the rest not involved in any relation

6 CONCLUSION

We proposed a time-varying network model for the spread of STIs, which accounts for behavioral preferences, and
considers two distinct negotiation processes between nonpartners on the use of protective measures. Our epidemic
model allows to cast light on the role of condom (social) marketing campaigns, routine screening at STI clinics,
and partner notification in the spreading of STIs. Employing a mean-field approach in the limit or large-scale pop-
ulations, we analytically derived the epidemic threshold for both negotiation processes, in the absence of a partner
backbone. Our theoretical results indicate that routine screening is crucial in the eradication of local outbreaks,
whereas marketing campaigns are beneficial only if combined with routine screening. The formulation of the model
as a Markov process enables its further analysis via fast Monte Carlo numerical simulations.49 Thus, we numeri-
cally examined the role of partner networks in the spreading, for different levels of complaisance and faithfulness.
The simulations illustrate the negative impact of the addition of a counter-proposal in the negotiation process on
the spread of the infection, which especially forms a problem for small values of the per-contact infection proba-
bility. Furthermore, simulations showed that partner notification is mainly effective when combined with screen-
ing and marketing campaigns, but still has some impact as a sole measure for populations with a high degree of
faithfulness.

The model proposed in this article and its analysis rely on some simplifying assumptions. However, due to its flexibility,
many additional features can be incorporated in the modeling framework without fundamentally changing its fabric.
First, we have assumed that all the individuals have the same tendency to initiate sexual encounters. Moreover, sexual
encounters are generated without considering gender and sexual orientation of individuals. However, heterogeneity and
further constraints can be straightforwardly incorporated in the formation process of the network of sexual initiatives,
similar to continuous-time ADNs.32,38,42

For future research, one could incorporate these features within the modeling framework and thereby extend both
the theoretical and the numerical analysis of the model. These extensions would also allow to consider other aspects
of sexual behavior, as well as asymmetries and heterogeneity in the per-encounter infection probabilities depending on
individuals’ gender and sexual orientation.51 Besides these generalizations, an analytical treatment of the dynamical sys-
tem above the epidemic threshold is still missing, and it will be an important direction for future theoretical studies. Our
model incorporates several control actions, captured by different control parameters. However, a rigorous technique to
map the implementation of real-world control actions into changes in the model parameters is still an open problem,
calling for the use of real-world data to calibrate the model. In particular, one may use data from existing surveys and
design questionnaires to calibrate these parameters. For instance, the question “Did you start/stop using condoms?
If so, for which main reason?” can be used to determine the relative magnitude of the model parameters involved
in the corresponding behavioral transitions, while changes in the outcome of these surveys from before to after a
marketing campaign can be used to estimate its impact. Furthermore, in view of the good effectiveness of partner
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4804 FRIESWIJK et al.

notification registered in our simulations, future research may consider extending such a control measure to include
tracing of casual encounters happened during a restrictive time period before diagnosis.34 Finally, a better understand-
ing of the very nature of real-life negotiation processes should be achieved. Experimental sociological studies might be
designed and performed to this aim. The inclusion of these further features and the design of experimentally-grounded
negotiation processes will finally allow us to validate the proposed model against real-world data on the spread
of STIs.
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APPENDIX A. MEAN-FIELD EXPRESSIONS OF THE TRANSITION RATES

The mean-field expressions of the transition rates in matrix Qj in (6) can be obtained by substituting the indicator functions
in the sums in 𝜅r,j, 𝜅p,j, 𝜈r,j, and 𝜈p,j with the corresponding probabilities defined in (16). For the 1-stage negotiation process
and j ∈  , we obtain from (8)–(11):
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For the 2-stage negotiation process, (12)–(15) yield
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k∈⧵{j,j}

𝜎k(1 − pk)
n − 1 − |k|

ip,k, (A5)

�̃�p,j = �̃�(2)p,j = �̃�
(1)
p,j + 𝜆𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}
(1 − pk)(1 − 𝜎k)ir,k, (A6)

�̃�r,j = �̃�(2)r,j = �̃�
(1)
r,j + 𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}
(1 − pk)(1 − 𝜎k)(sr,k + ir,k), (A7)

�̃�p,j = �̃�(2)p,j = �̃�
(1)
p,j + 𝜎j

1 − pj

n − 1 − |j|

∑

k∈⧵{j,j}
(1 − pk)(1 − 𝜎k)(sp,k + ip,k). (A8)

APPENDIX B. PROOF OF PROPOSITION 3

Proof. Let us consider the 1-stage negotiation process. Note that under Assumption 1, the rate of the Poisson clock
associated with the contagion process of individual j ∈  in (A1) reduces to

�̃�
(1)
r,j =

𝜆

n − 1

(
∑

k∈⧵{j}
2ir,k +

∑

k∈⧵{j}
𝜎ip,k

)

= 𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎ip,k

)
, (B1)
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as the first and fourth terms in (A1) are omitted, while the others can be simplified (since j = ∅, pj = 0, and 𝜎j = 𝜎, for
all j ∈ ). Likewise, for (A2)–(A4), we respectively find the following mean-field expressions, under Assumption 1:

�̃�
(1)
p,j =

𝜆𝜎

n − 1
∑

k∈⧵{j}
ir,k, �̃�

(1)
r,j =

𝜎

n − 1
∑

k∈⧵{j}

(
sr,k + ir,k

)
= 𝛾r,j, �̃�

(1)
p,j =

𝜎

n − 1
∑

k∈⧵{j}

(
sp,k + ip,k

)
= 𝛾p,j, (B2)

as defined in (20). Finally, plugging this in (17) immediately yields (19), where 𝜂j = 0 because of Assumption 1. ▪

APPENDIX C. PROOF OF PROPOSITION 4

Proof. Let us consider the 2-stage negotiation process. Under Assumption 1, (A5) simplifies to

�̃�
(2)
r,j =

𝜆

n − 1

(
∑

k∈⧵{j}
2ir,k +

∑

k∈⧵{j}
𝜎(2 − 𝜎)ip,k

)

= 𝜆

n − 1
∑

k∈⧵{j}

(
2ir,k + 𝜎(2 − 𝜎)ip,k

)
. (C1)

Similarly, rates in (A6)–(A8) respectively yield the following mean-field expressions:

�̃�
(2)
p,j =

𝜆𝜎(2 − 𝜎)
n − 1

∑

k∈⧵{j}
ir,k, �̃�

(2)
r,j =

𝜎(2 − 𝜎)
n − 1

∑

k∈⧵{j}

(
sr,k + ir,k

)
= 𝛾r,j, �̃�

(2)
p,j =

𝜎(2 − 𝜎)
n − 1

∑

k∈⧵{j}

(
sp,k + ip,k

)
= 𝛾p,j, (C2)

as in (28). Plugging this in (17) , while noting that 𝜂j = 0 for all j ∈  due to Assumption 1, we obtain (27). ▪

APPENDIX D. PROOF OF THEOREM 2

Proof. The proof has a similar structure to the one of Theorem 1, so we report just the main computations. First, we
observe that the disease-free equilibrium of (27) is unique and coincides with (23). Then, by considering the system of
four independent macroscopic variables, performing the same change of variables in (24), and linearising about the origin
(i.e., the disease-free equilibrium), we obtain the following system of equations:

ẏq = − (us + c − um) yq −
(

𝜎(2 − 𝜎) us

us + c − um
+ us

)

yi,r +
(

𝜎(2 − 𝜎)
(

1 − us

us + c − um

)

− us

)

yi,p

+
(

𝜁

(

1 − us

us + c − um

)

+ 𝛽 − us

)

yi,t,

ẏi,r =
(

[𝜎(2 − 𝜎)(𝜆 − 1) − 2𝜆] us

us + c − um
+ 2𝜆 − us − 𝜇

)

yi,r +
(

𝜎(2 − 𝜎)(𝜆 + 1)
(

1 − us

us + c − um

)

+ c − um

)

yi,p,

ẏi,p = 𝜎(2 − 𝜎)
us

us + c − um
yi,r −

(

𝜎(2 − 𝜎)
(

1 − us

us + c − um

)

+ c − um + 𝜇 + us

)

yi,p,

ẏi,t = (𝜇 + us) yi,r + (𝜇 + us) yi,p − 𝛽yi,t. (D1)

We compute the eigenvalues of the Jacobian matrix, obtaining two that are always negative, namely, −(us + c − um) < 0
and −𝛽 < 0, and

−𝜇 − 1
2
𝜎(2 − 𝜎) − 1

2(us + c − um)

[
2u2

s + (c − um)2 + (c − um)(3us − 2𝜆) − 𝜆𝜎(2 − 𝜎)us ±
√
𝜈2

]
, (D2)

where 𝜈2 is defined in (30). Finally, we observe that 𝜎(2 − 𝜎)[2𝜆2 + 𝜆(3𝜎(2 − 𝜎) − 2) + 𝜎(2 − 𝜎)] ≥ 0, so 𝜈2 ≥ 0. Hence, we
conclude that the largest eigenvalue is negative if and only if 𝜇 > 𝜇∗2 . ▪

 10991239, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.5930 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [10/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	A time-varying network model for sexually transmitted infections accounting for behavior and control actions 
	1 Introduction
	1.1 Mathematical Preliminaries

	2 Model
	2.1 Population and partner network
	2.2 Network of sexual initiatives
	2.3 Disease propagation and behavior
	2.4 Control parameters

	3 Dynamics
	3.1 The 1-stage negotiation process
	3.2 The 2-stage negotiation process

	4 Main Results
	4.1 The 1-stage negotiation process
	4.2 The 2-stage negotiation process

	5 Simulations
	6 Conclusion

	Acknowledgments
	Conflict of Interest
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX A. MEAN-FIELD EXPRESSIONS OF THE TRANSITION RATES
	APPENDIX B. PROOF OF PROPOSITION 3
	APPENDIX C. PROOF OF PROPOSITION 4
	APPENDIX D. PROOF OF THEOREM 2

