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Modelling the Effect of Vaccination and Human Behaviour on the
Spread of Epidemic Diseases on Temporal Networks

Kathinka Frieswijk, Lorenzo Zino, and Ming Cao

Abstract— Motivated by the increasing number of COVID-
19 cases that have been observed in many countries after the
vaccination campaign and relaxation of non-pharmaceutical in-
terventions (NPIs), we propose a network model for the spread
of recurrent epidemic diseases in a partially vaccinated popula-
tion. The model encapsulates several realistic features, such as
different vaccine efficacy against transmission and development
of severe symptoms, testing practices, implementation of NPIs,
isolation of detected individuals, and human behaviour. Using
a mean-field approach, we analytically derive the epidemic
threshold of the model and, if the system is below such a
threshold, we compute the epidemic prevalence at the endemic
equilibrium. These theoretical results show that precautious
human behaviour and effective testing practices are key towards
avoiding epidemic outbreaks. Interestingly, we found that, in
many realistic scenarios, vaccination is successful in mitigating
the outbreak by reducing the prevalence of seriously ill patients,
but it could be a double-edged sword, favouring resurgent
outbreaks, and it thus calls for higher testing rates, more
cautiousness and responsibility among the population, or the
reintroduction of NPIs to achieve full eradication.

I. INTRODUCTION

The COVID-19 pandemic shook the world to its core,
spreading quickly, while leaving death, economical distress
and despair in its path [1]. To control the spread of the
disease, unrivalled efforts have been directed towards the
development of effective vaccines [2]. Although COVID-
19 vaccines offer protection against the development of
severe symptoms and transmission, they do not provide
full immunity [3]. Hence, it is unclear whether a high
vaccination coverage alone is sufficient to eradicate the
pandemic, as massive outbreaks have been recently registered
even in countries with high vaccination rates [1], as soon
as non-pharmaceutical interventions (NPIs) were relaxed.
To gain insight into the mechanics behind the spread of
infections, it is standard practice within the scientific com-
munity to employ mathematical models [4]–[7]. In particular,
epidemic models on temporal networks have become very
popular in the last decade for their ability to capture the
complex and time-varying patterns of human encounters,
through which epidemic diseases are transmitted [8], [9].
The analysis of such models leads to knowledge that can
be used to inform control and intervention strategies [5],
[6], [9], [10]. During the past phases of the COVID-19
health crisis, the systems and control community has worked
incessantly towards developing models to predict the spread
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of the pandemic [11]–[13], understand the effectiveness of
NPIs [14]–[16], and optimise the planning of vaccination
campaigns [17]–[19]. Hence, mathematical modelling can be
a key tool for studying the current challenges of the COVID-
19 pandemic, specifically those related to the effectiveness of
vaccination and the possibility to fully eradicate the disease.

To this aim, we propose a network model for the spread of
recurrent epidemic diseases, for instance those caused by fast
mutating viruses (e.g. influenza viruses) or those that do not
provide permanent immunity (e.g. COVID-19). In our model,
we use a mechanism inspired by continuous-time activity-
driven networks [20], [21] to generate the time-varying pat-
tern of physical encounters at close promixity, through which
the disease is transmitted. The proposed mechanism takes
into account the specific human behaviour in the form of a
responsibility level, which represents the probability that an
individual will choose to protect others (e.g. by maintaining
distance), when only mild symptoms of the infection are
apparent. To incorporate this human behaviour, we add extra
compartments to a standard susceptible–infected–susceptible
(SIS) model [9], to account for individuals that are mildly
symptomatic and for those that have severe symptoms, and
are thus restrained from having social interactions at close
proximity. In our model, we include three control measures
which impact the spreading of the virus: i) vaccination,
where we have distinct factors for capturing its efficacy
against transmission and developing serious illness; ii) NPIs,
such as mandatory face masks and physical distancing;
and iii) testing campaigns, which aim at identifying mildly
symptomatic individuals and isolate them, thus reducing the
contagions.

The main contribution of this paper is three-fold. First,
we propose a parsimonious yet flexible epidemic model that
incorporates human behaviour, vaccination and its efficacy,
testing, and NPIs. Second, we perform a theoretical analysis
of the proposed epidemic model, utilising a mean-field
approach in the limit of large-scale populations [22]. Our
analysis allows to compute the epidemic threshold and the
endemic equilibrium (EE), that is, the epidemic prevalence
if the outbreak trespasses the epidemic threshold and the
disease becomes endemic. Third, we discuss a case study
calibrated on the COVID-19 pandemic. Our findings eluci-
date the role of vaccination efforts on the spreading of fast
transforming viruses, and suggest that although vaccines are
typically highly effective in mitigating an epidemic outbreak
by reducing the population with severe symptoms, they may
make controlling local outbreaks more challenging.

Notation. The set of strictly positive integer, real non-
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negative, and strictly positive real numbers is denoted by N,
R≥0, and R>0, respectively. Given a set S, |S| denotes its
cardinality. Given a function x(t) with t ∈ R≥0, we define
x(t+) = lims↘t x(s), and x(t−) = lims↗t x(s).

II. MODEL

We consider n individuals labelled as V = {1, . . . , n} who
interact on an undirected network (V, E(t)), whose edge set
evolves in continuous time t ∈ R≥0. If (j, k) ∈ E(t), then a
physical encounter in close proximity is occurring between
individuals j and k at time t.

A. Disease transmission model

We extend the classical network SIS model [9] by dividing
infected individuals in two separate compartments: infec-
tious (i.e. infected individuals who are untested and mildly
symptomatic) and quarantined (due to the presence of severe
symptoms or of a positive test). We assume that individuals
with severe symptoms are always quarantined. Hence, the
health state of individual j ∈ V at time t ∈ R≥0 is defined
by the variable Xj(t) ∈ {S, I,Q}, denoting susceptible (S),
infectious (I), and quarantined infected individuals (Q).

Here, we make the assumption that quarantined individuals
(Q) do not actively participate in the society because they
are too unwell or due to prohibitions enforced by public
health authorities. Infectious individuals with mild symptoms
(I) can participate, however. Specifically, we introduce a
parameter σ ∈ [0, 1] that captures the individuals’ level of
responsibility. If an individual j is mildly symptomatic, they
choose to protect others and maintain physical distance with
probability σ; whereas with probability 1 − σ, j disregards
the symptoms and physically interacts with others in close
proximity. We assume that each individual makes their
decision independently of the others and of the past. For the
sake of simplicity, we will assume that all the individuals
have the same level of responsibility, but heterogeneous
responsibilities could easily be introduced in the model.

The time-varying network of physical encounters in close
proximity is generated in a stochastic fashion. Inspired by
continuous-time adaptive activity-driven networks [21], we
attach to each individual a Poisson clock with unit rate1,
ticking independently of the others. If the clock associated
with individual j ∈ V ticks at time t ∈ R≥0, then j activates
and has an interaction with another individual k, selected
uniformly at random from V \ {j}. Whether a susceptible
individual has an encounter in close proximity depends on
the state and responsibility level of the individuals involved
in the interaction. Specifically, if j is susceptible at the
moment of activation (Xj(t

−) = S) and selects an infected
and mildly symptomatic individual (Xk(t

−) = I), then the
encounter takes place in close proximity with probability
equal to 1− σ; while if k is susceptible (Xk(t

−) = S), then
a physical encounter in close proximity always takes place.
If an individual j who is infected and mildly symptomatic

1A Poisson clock with rate ζ is a continuous-time stochastic process that
ticks in a time-interval of length ∆t with probability ζ∆t+ o(∆t).

(Xj(t
−) = I) activates and selects a susceptible individ-

ual k (Xk(t
−) = S), then the encounter occurs in close

proximity with probability 1− σ; if j selects another mildly
symptomatic individual k (Xk(t

−) = I), then they interact
in close proximity with probability (1 − σ)2 (i.e. if both
individuals disregard the symptoms). Quarantined individuals
(Xk(t

−) = Q) do not participate in any (risky) encounters.
If a physical encounter in close proximity occurs, then the
ephemeral edge (j, k) is added to the edge set E(t), and
immediately removed afterwards.

The health state of an individual j ∈ V evolves over time
according to the following two mechanisms.

Contagion. Infection transmission occurs through pair-
wise physical encounters at close proximity, hereafter de-
noted by contacts. Specifically, if a susceptible individual j
(Xj(t

−) = S) has contact with an infected individual k with
Xk(t

−) = I, i.e. (j, k) ∈ E(t), the infection is transmitted
to j with per-contact infection probability λ ∈ [0, 1]. We
assume that contact with an infected individual k (Xk(t

−) =
Q) does not lead to transmission of the infection, since they
will use protections, as they are aware of the risk. After
being infected, individual j will develop severe symptoms
(Xj(t

+) = Q) with probability pq ∈ [0, 1], while j will be
mildly symptomatic (Xj(t

+) = I) with probability 1− pq.
Recovery. An infected individual (Xj(t

−) ∈ {I,Q})
spontaneously recovers according to a Poisson clock with
rate β ∈ R>0, becoming again susceptible (Xj(t

+) = S).

B. Control measures
We introduce three control measures that public health

authorities can take to control the spread of a disease.
Vaccination. We reduce the probability of infection trans-

mission and the probability of the development of severe
symptoms. To model these effects, we introduce the param-
eters γt ∈ [0, 1] and γq ∈ [0, 1], respectively. Let v ∈ [0, 1]
denote the vaccination coverage of the population, i.e. the
probability that a generic individual is vaccinated. The effect
of vaccination is implemented in the model in a mean-field
fashion, by multiplying the per-contact infection probability
λ and the probability of developing severe symptoms pq by
the re-scaling factors (1− γtv) and (1− γqv), respectively.

NPIs. We introduce a parameter η ∈ [0, 1] that models
the effectiveness of the NPIs implemented in preventing
transmission. Hence, their effect is modelled by multiplying
the per-contact infection probability λ by the quantity (1−η).

Testing. By offering free testing campaigns, individuals
with mild symptoms (Xj(t) = I) are triggered to get tested.
To quantify the effect of this measure, we introduce a Poisson
clock with rate ct ∈ R≥0, representing the rate at which
testing takes place. Thus, mildly symptomatic infectious
individuals (Xj(t

−) = I) are diagnosed according to a
Poisson clock with rate ct. After diagnosis, the infectious
individuals quarantine themselves (Xj(t

+) = Q), whereby
they avoid having (risky) encounters, until they recover.

III. DYNAMICS

All the mechanisms described in Sec. II are prompted by
independent Poisson clocks, so the n-dimensional state of the
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Fig. 1: State transitions of the epidemic model for j ∈ V .

population X(t) := (X1(t) X2(t) · · ·Xn(t)) ∈ {S, I,Q}n
evolves according to a continuous-time Markov process [23].
As shown in Fig. 1, an individual can undergo five different
state transitions, governed by the mechanisms of contagion,
recovery, and testing, as described above. The three tran-
sitions triggered by recovery and testing are spontaneous
processes, which occur with rate β and ct, as detailed in
Secs. II-A and II-B, respectively. The two triggered by
contagion, instead, involve interactions between individuals
and the corresponding rates are derived as follows.

If Xj(t
−) = S, then j can become infected if they have

contact with an infectious mildly symptomatic individual (I).
Such a contact occurs with rate equal to 2 1−σ

n−1 · |{k ∈ V :
Xk(t) = I}|, where the term 2 comes from the fact that
both j and k can initiate the encounter. If such a contact
occurs, j becomes infected with probability λ, reduced by
the presence of NPIs and the efficacy of vaccination against
transmission. Then, j becomes severely symptomatic with
probability equal to pq(1 − γqv), otherwise they become
infectious. We conclude that Xj(t

−) = S becomes infectious
(Xj(t

+) = I) according to a Poisson clock with rate

κj := 2(1− η)λ (1− γtv) · [1− pq (1− γqv)]
1− σ

n− 1

∑
k∈V:Xk=I

1,

while they become quarantined (Xj(t
+) = Q) according to

a Poisson clock with rate

νj := 2(1− η)λ (1− γtv) · pq (1− γqv)
1− σ

n− 1

∑
k∈V:Xk=I

1.

For a generic jth entry of the Markov process X(t),
the transition rate matrix is Qj =

[ −κj − νj κj νj
β −β − ct ct
β 0 −β

]
,

where the rows (columns) correspond to state S, I, and
Q, respectively. For any p, q ∈ {S, I,Q} with p ̸= q,
lim∆t↘0 P[Xj(t+∆t) = q |Xj(t) = p]/∆t = (Qj)pq . We
begin our analysis by noting that the first row of the transition
rate matrix Qj depends on the states of the other individuals.
Hence, the individual dynamics cannot be decoupled, com-
plicating the analysis for large-scale populations, where the
state space dimension grows exponentially with n. Thus, as is
common practice in the study of these complex systems [10],
[22], we employ a continuous-state deterministic mean-field
relaxation of the system. In particular, instead of studying
the actual evolution of the health state for each individual
j ∈ V , we study the evolution of the probabilities that the
individual is susceptible, infectious, or quarantined, denoted
as sj(t) := P[Xj(t) = S], ij(t) := P[Xj(t) = I],
and qj(t) := P[Xj(t) = Q], respectively. In the mean-
field approximation, the evolution of these probabilities is

50 100 150

0.5

1

0
0

t

S(t), ys(t)

I(t), yi(t)

Q(t), yq(t)

Fig. 2: Simulated trajectories of the Markov process (solid
curves) and its deterministic approximation (dashed curves).
The grey dotted lines are the EE, from Theorem 2. Here,
n = 10 000, σ = 0.4, λ = 0.2, pq = 0.2, β = 0.02, v = 0.5,
γt = 0.5, γq = 0.9, η = 0.2, and ct = 0.05.

governed by the system of ordinary differential equations(
ṡj i̇j q̇j

)
= (sj ij qj)Qj , or equivalently

ṡj= −2sj(1− η)λ (1− γtv) ·
1− σ

n− 1

∑
k∈V\{j}

ik + βij + βqj, (1)

i̇j = 2sj(1− η)λ (1− γtv) [1− pq (1− γqv)]·
1− σ

n− 1

∑
k∈V\{j}

ik − (β + ct)ij,

q̇j= 2sj(1− η)λ (1− γtv) pq (1− γqv) ·
1− σ

n− 1

∑
k∈V\{j}

ik + ctij − βqj,

for all j ∈ V . Before moving to the mean-field analysis of
the system, we define ys := 1

n

∑
j∈V sj , yi :=

1
n

∑
j∈V ij ,

and yq := 1
n

∑
j∈V qj , which is the average probability for

a randomly selected individual to be in state S, I, and Q,
respectively. For a sufficiently large enough n and for any
finite time-horizon, the fraction of individuals in a certain
state can be arbitrarily closely approximated by the average
probabilities, i.e. S(t) := 1

n |{j ∈ V : Xj(t) = S}| ≈ ys,
I(t) := 1

n |{j ∈ V : Xj(t) = I}| ≈ yi, and Q(t) := 1
n |{j ∈

V : Xj(t) = Q}| ≈ yq [21], [24], as illustrated in Fig. 2. This
supports the use of the mean-field approximation to study
the emergent behaviour of the system for large populations
employing (ys, yi, yq) and (1).

IV. MAIN RESULTS

Here, we rigorously analyse the system in (1), to elucidate
the role of vaccination and the level of responsibility in the
epidemic spreading. Before presenting the main results, we
show that the system in (1) is well-defined, i.e. that (sj ij qj)
is a probability vector for all j ∈ V and t ∈ R≥0.

Lemma 1. For all j ∈ V , the set {(sj ij qj) : sj , ij , qj ≥
0, sj + ij + qj = 1} is positive invariant under (1).

Proof. Observe that if one of the probabilities governed by
(1) is equal to zero, then its respective time-derivative is
always non-negative. Furthermore, ṡj + i̇j + q̇j = 0, for all
j ∈ V , so sj + ij + qj = 1 for all t ∈ R≥0.

Lemma 1 also implies that only 2n of the 3n equations
are linearly independent, as sj(t)+ ij(t)+ qj(t) = 1, for all
t ∈ R≥0 and j ∈ V , simplifying the analysis of the system.

The first thing we want to investigate is whether a local
outbreak of the infection will escalate into a pandemic. Theo-
rem 1 presents the required conditions for (local) asymptotic
stability of the disease-free equilibrium (DFE) of system (1),



which is coined as the epidemic threshold. The threshold is
presented as a critical value for the rate of testing ct. If the
testing rate is larger than c̄t, as defined below, then the local
outbreak is quickly extinguished; if not, it becomes endemic.

Theorem 1. Consider the dynamical system in (1). In the
thermodynamic limit of large-scale systems n → ∞, the
epidemic threshold is equal to

c̄t := 2(1−η)(1−σ)λ (1− γtv) [1− pq (1− γqv)]−β. (2)

In particular, if ct > c̄t, the DFE (with yi = yq = 0) is
locally asymptotically stable.

Proof. First, we immediately verify that the disease-free state
of (1), that is, (sj , ij , qj) = (1, 0, 0) for all j ∈ V , is always
an equilibrium of the dynamics, as it nullifies the right-hand
side of (1). To study its local stability, we consider a system
made of the three macroscopic variables ys, yi, yq, where its
dynamics can be derived from (1) as

ẏs =−2(1− η)λ (1− γtv) (1− σ)yiys + βyi + βyq, (3)
ẏi =2(1− η)λ (1− γtv) [1− pq (1− γqv)] (1− σ)yiys − (β + ct)yi,

ẏq =2(1− η)λ (1− γtv) pq (1− γqv) (1− σ)yiys + ctyi − βyq.

Since ys + yi + yq = 1 (as a consequence of Lemma 1),
the system in (3) can be reduced to a planar system. For
our analysis, we take the second and third equation of (3).
Due to the definition of the macroscopic variables, the DFE
of (1) is asymptotically stable if and only if the origin
is asymptotically stable for the planar system (yi, yq). We
subsequently linearize (3) around the origin in the limit of
large-scale systems, n → ∞, and obtain

ẏi =2(1− η)λ (1− γtv) [1− pq (1− γqv)] (1− σ)yi − (β + ct)yi,

ẏq =[2(1− η)λ (1− γtv) pq (1− γqv) (1− σ) + ct] yi − βyq. (4)

The eigenvalues of the Jacobian matrix are given by −β <
0, and 2(1−η)(1−σ)λ (1− γtv) [1− pq (1− γqv)]−β−ct,
where the latter is negative if and only if ct > c̄t.

This theoretical result provides a rigorous tool to shed
light on how the effectiveness of the vaccine and human
behaviour impact the epidemic threshold of an infection, and
thereby determine whether an epidemic outbreak could be
easily controlled, or if higher testing efforts or more severe
NPIs should be implemented. This will be discussed in the
following remarks, and illustrated in the next section.

Remark 1. From (2), we observe that ∂c̄t
∂γt

< 0 and ∂c̄t
∂γq

>
0. Hence, while high vaccine efficacy against transmission
favours the control of an epidemic outbreak, high efficacy
against severe illness hinders complete eradication. We com-
pute ∂c̄t

∂v = 2(1−η)(1−σ)λ[pqγq−γt(1−pq)−2pqγtγqv],
finding that whether an increase in the vaccination coverage
facilitates complete eradication is non-trivial and depends
on pq, γt, γq, and v. Interestingly, at the beginning of the
vaccination campaign, only vaccines with γt/γq > pq/(1−
pq) favour complete eradication.

The following theorem characterises the global behaviour
of the system in (1) and provides an analytical expression

(a) Seriously ill ξ (b) Threshold c̄t

Fig. 3: (a) Fraction of seriously ill population ξ and (b)
epidemic threshold c̄t for different levels of efficacy against
severe illness γq and against transmission γt. Common
parameters are σ = 0.4, v = 0.821, η = 0.19, ct = 0.06
λ = 0.36, pq = 0.19, and β = 0.1.

of the EE of the system, when the DFE is unstable. The
simulation in Fig. 2 confirms our theoretical findings.

Theorem 2. Consider the dynamical system in (1), in the
thermodynamic limit of large-scale systems n → ∞. If ct ≥
c̄t, the system converges to the DFE (ys, yi, yq) = (1, 0, 0).
If ct < c̄t and yi(0) > 0, then the system converges to the
EE (y∗s , y

∗
i , y

∗
q), where y∗q = 1− y∗s − y∗i ,

y∗s = β+ct
2(1−η)(1−σ)λ(1−γtv)[1−pq(1−γqv)]

,

y∗i =
β[1−pq(1−γqv)]

β+ct
− β

2(1−η)(1−σ)λ(1−γtv)
.

(5)

Proof. For this analysis, we use again the fact that ys +
yi + yq = 1 (Lemma 1) and we take the first and second
equation of (3). Note that the domain is bounded (Lemma
1), so we can employ the Bendixson-Dulac theorem [25].
For ϕ(ys, yi) = (ysyi)

−1 we find ∂(ϕẏs)
∂ys

+ ∂(ϕẏi)
∂yi

=

− β
y2

s

(
1 + 1−yi

yi

)
< 0, so there do not exist periodic solutions

of (3). If ct > c̄t, then the DFE (ys, yi, yq) = (1, 0, 0)
is the unique equilibrium of (3) and therefore globally
asymptotically stable. If ct < c̄t, then one can easily verify
that there exists one other equilibrium given by (5). Since
there do not exist periodic solutions and the DFE is unstable
for ct < c̄t, the EE is asymptotically stable. For ct = c̄t, (5)
is equal to the DFE, hence, we conclude that for ct = c̄t,
the DFE is asymptotically stable.

Remark 2. In the EE (5), with ct < c̄t for existence, the
fraction of seriously ill individuals in the population can be
computed as ξ := (1 − y∗s )pq (1− γqv). Using the explicit
expression of y∗s , we can compute ∂ξ

∂v = β+ct
(β+c̄t)2

∂c̄t
∂v pq(1 −

γqv)−
(
1− β+ct

β+c̄t

)
pqγq, where c̄t is defined in (2) and ∂c̄t

∂v is
computed in Remark 1. Hence, vaccination seems beneficial
in reducing the fraction of people with severe illness for the
set of parameters that satisfy ∂ξ

∂v < 0, which includes all
the cases in which the vaccine facilitates the control of the
epidemic (Remark 1).

Our theoretical findings highlight that, for a wide range
of parameters (Remark 2), vaccination is a powerful control
measure for the mitigation of an epidemic outbreak, as it
is able to successfully reduce the number of seriously ill



individuals in the population. However, Remark 1 shows that,
in some of these scenarios, vaccination could act as a double-
edged sword, whereby, despite reducing severe infections, it
could hinder complete eradication of the disease. In these
scenarios, the epidemic disease tends to become endemic,
unless stronger control measures are enacted (NPIs or effi-
cient testing practices) or people increase their responsibility
level, restraining themselves from having interactions with
others if they have symptoms, as indicated by Theorem 1.
In the next section, we will illustrate this non-trivial effect
of vaccination by means of a case study, inspired by the
ongoing COVID-19 pandemic and vaccination campaign.

V. CASE STUDY AND DISCUSSION

We present a case study to provide insights into the theo-
retical results presented in Sec. IV. Motivated by the ongoing
COVID-19 pandemic and global vaccination campaign, we
calibrate our model to reflect some characteristics of COVID-
19 and of the situation in the Netherlands as of early
November 2021. In [26], it was estimated that the infection
probability of a contact is 36%, which was reduced to 29%
after governmental NPIs. Thus, we take λ = 0.36, and derive
from λ(1 − η) = 0.29 that η = 0.19. According to clinical
data, 81% of COVID-19 cases are classified as mild [27], so
we set pq = 0.19. For this choice of parameters, the vaccine
seems to be almost always beneficial in mitigating the disease
(by checking the condition in Remark 2), but, depending on
the characteristics γt and γq of the vaccine in question, it
may hinder the possibility of fully eradicating the disease
without increasing NPIs or testing, or relying on a more
responsible population. Vaccine efficacy is dependent on the
type of vaccine, the time passed from its administration,
and the virus strain, and there is not yet a consensus in the
scientific community on reliable estimations for γt and γq.

In view of these high levels of uncertainty, we use our
theoretical findings to examine the effect of γt and γq on the
prevalence of severe illness (Fig. 3a) and on the epidemic
threshold (Fig. 3b). From Fig. 3, we observe that although
a vaccination coverage of 82.1% (that is, the coverage in
the Netherlands as of November 5, 2021 [28], [29]) has a
strongly beneficial effect on the reduction of the prevalence
of seriously ill individuals (Fig. 3a), the epidemic threshold is
monotonically increasing in the efficacy against severe illness
γq (Fig. 3b). This implies that, unless testing is performed
at a very high rate, the current vaccination coverage in the
Netherlands as of early November 2021 is not enough to
stop local outbreaks from becoming endemic and completely
eradicate the disease. In other words, despite vaccines being
highly effective in the prevention of severe illness, thereby
reducing the pressure on hospitals, they may complicate the
control of local outbreaks. This is a consequence of the
increased social activity of infected individuals, who are less
likely to develop severe symptoms, and thus are less likely
to be detected and isolated.

Finally, we consider a specific scenario calibrated on the
BNT162b2 mRNA vaccine (Comirnaty by Pfizer-BioNTech),
which is the most used vaccine in the Netherlands [28]. We

consider a scenario in which we set γt = 0.65, as [30]
indicated a reduction of the risk of transmission of 65%
for Comirnaty. According to clinical studies [31], a full
vaccination status reduces the probability of severe symptom
development with 92%, so we set γq = 0.92. In Fig. 4,
we show that the epidemic threshold and the fraction of
seriously ill population are both monotonically decreasing
in the vaccination coverage v and the responsibility level σ.
However, compared to the responsibility level, vaccination
has a lower impact, and does not lead to a complete erad-
ication of the disease at low responsibility levels (Fig. 4a),
suggesting that responsibility is key to achieve eradication
of the disease. Some recent clinical studies suggest that the
efficacy of Comirnaty —in particular against transmission—
may quickly wane over the course of a few months after
the second shot, calling for the need of a booster shot
campaign [32]. While there is still not a consensus in the
scientific community about waning immunity and its timing,
we perform some further analysis by assuming that, after
some months, the efficacy against transmission reduces to a
fourth of the nominal value, i.e. γt = 0.165. Our findings
suggest that although a high vaccination coverage is still
effective in keeping the fraction of seriously ill population
under control (Fig. 4c), it is not beneficial in facilitating full
eradication of the disease, since the degree of vaccination
coverage has no effect on the epidemic threshold (Fig. 4d).
Before concluding this paper, we would like to remark
that our results are derived with a simple epidemic model
that does not capture important features of COVID-19 like
latency period and (temporary) immunisation after recovery.
Hence, the case study discussed here should be meant as
a preliminary qualitative analysis of our theoretical results
inspired by a real-world scenario and a motivation to perform
future research with more complex epidemic models [11]–
[15], towards deriving rigorous quantitative conclusions.

VI. CONCLUSION

We proposed a mathematical model for the spreading of
recurrent epidemic infections in a partially vaccinated popu-
lation, and studied the impact of vaccination campaigns on
the epidemic prevalence and the control of local outbreaks.
Employing a mean-field approximation of the system, in the
limit of large-scale populations, we derived the epidemic
threshold and an expression for the endemic equilibrium.
Our theoretical results indicate that although vaccines have a
beneficial effect on the prevalence of individuals with severe
symptoms, it may impede the control of local outbreaks.
To manage such outbreaks, the combination of responsible
behaviour of individuals and effective testing practices is key.

Our promising preliminary results pave the way for several
avenues of future research. First, we plan to incorporate
further compartments, e.g. to capture (temporary) immunity
after recovery and latency periods, similar to [11]–[15].
Second, similar to [33]–[35], we aim at encapsulating in the
model a game-theoretic decision-making process, whereby
individuals make the decision to protect others or vaccinate
based on a combination of external factors. Finally, one



(a) Seriously ill ξ (b) Threshold c̄t (c) Seriously ill ξ (d) Threshold c̄t

Fig. 4: (a,c) Fraction of seriously ill population ξ and (b,d) epidemic threshold c̄t for different vaccination levels v and
responsibility σ. In (a-b), γt = 0.65; in (c-d), γt = 0.165. Common parameters are γq = 0.92, η = 0.19, λ = 0.36,
pq = 0.19, ct = 0.06, and β = 0.1.

may consider interactions between multi-populations with
a different vaccination coverage, and study the effect of a
community with a very low vaccination rate (e.g. the Bible
Belt in the Netherlands [29]) on epidemic spreading.
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