
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(35th cycle)

Fast Solutions Strategies for
Integral Equations in
Electromagnetics with

Applications to Brain Computer
Interfaces

Davide Consoli
* * * * *

Supervisors
Francesco P. Andriulli

Doctoral Examination Committee:
Francesco P. Andriulli, Full Professor, Politecnico di Torino
Kristof Cools, Full Professor, Universiteit Gent
Paolo Rocca, Associate Professor, Università degli Studi di Trento
Amir Boag, Full Professor, Tel Aviv University
Roberto Graglia, Full Professor, Politecnico di Torino
Clément Henry, Associate Professor, IMT Atlantique
Adrien Merlini, Associate Professor, IMT Atlantique

Politecnico di Torino



This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Davide Consoli

Turin,

www.creativecommons.org


Summary

This thesis summarizes doctoral research activities on the development of new
stable and accelerated solvers for electromagnetic integral equations and their ap-
plications. This work aimed at pushing the applications scenarios of numerical
solver based on electromagnetic integral equations to new frontiers. The first phase
included analytical and bibliographical research to better understand the issues
that are encountered in some application scenarios. The results obtained dur-
ing this phase have been published in the contribution “Adrian, Dely, Consoli,
Merlini, Andriulli, Electromagnetic integral equations: Insights in conditioning and
preconditioning , (IEEE Open Journal of Antennas and Propagation, 2021)”. Elec-
tromagnetic integral equations are often solved via the boundary element method
(BEM). The BEM has interesting properties that make it one of the most ap-
pealing choices between the available numerical methods for electromagnetic scat-
tering problems. Unfortunately, besides its advantages, it also suffers from ill-
conditioning of the linear system to be solved. Some of the most relevant sources of
ill-conditioning are the low-frequency breakdown, the dense-discretization break-
down, and high-frequency related issues. For this reason, in the work “Merlini,
Henry, Consoli, Rahmouni, Dély, Andriulli, Laplacian Filtered Loop-Star Decom-
positions and Quasi-Helmholtz Laplacian Filters: Definitions, Analysis, and Effi-
cient Algorithms, (arXiv:2211.07704, 2022)” we introduced a new class of precon-
ditioners that are capable of simultaneously solving both low-frequency and dense-
discretization breakdowns. Some of the numerical results relative to one of the
schemes proposed in this work are reported in fig. 1 (fLS labeled curves), where the
condition number is low and clearly not varying with frequency nor discretizaion.

Moreover, a new fast direct solver (FDS) for electromagnetic integral equation
in the high-frequency regime was developed. In addition to be numerically stable
and fast even at very high frequency, the new FDS results in a non-hierarchical
skeleton compression of the involved operators. The solver can be efficiently ap-
plied to solve the problem for several different excitations. This thesis extends
and details the scheme proposed in “Consoli, Henry, Dély, Rahmouni, Guzman,
Chhim, Adrian, Merlini, Andriulli, On the Fast Direct Solution of a Preconditioned
Electromagnetic Integral Equation (International Conference on Electromagnetics
in Advanced Applications, 2022)”.
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Figure 1: Condition number of the EFIE, Loop-Star EFIE, and filtered Loop-Star
EFIE as a function of discretization on the the NASA almond.

Finally, among the applications of the developed solvers, a research front that
was carried out during the doctoral studies concerns brain-computer interfaces
(BCI). Our recent contributions on this front have been presented in “Micheli,
Consoli, Merlini, Ricci, Andriulli, Brain-Computer Interfaces: Investigating the
Transition from Visually Evoked to Purely Imagined Steady-State Potential (Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
2022)”. The scheme, based on visual imagery signals, overcomes the drawbacks of
steady state visually evoked potential (SSVEP) based BCIs that, differently from
our paradigm, need external stimuli for their functioning. Our current research on
this front includes the creation of a new strategy that, leveraging brain imaging
techniques based on electromagnetic integral equation solvers, improves the overall
signal-to-noise ratio and, consequently, the accuracy of the BCI (preliminary results
of the imaging technique are shown in fig. 2).

Figure 2: Dipole activation obtained using ESI techniques on a trial of VI signals.
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Chapter 1

Introduction and Outline

In most of practical cases, such as antenna design or imaging applications, nu-
merical methods are the only options for the solution of electromagnetic problems,
since analytical solutions are available only for specific geometries (e.g. spheres).
Among the numerical solvers from the computational electromagnetics (CEM) com-
munity, the ones based on electromagnetic integral equations, such as the boundary
element method (BEM), show interesting properties in many practical scenarios.
Chapter 2 introduce the theory of electromagnetics and the computation of elec-
tromagnetic fields via BEM, setting the notation used in following chapters.

Another advantage of BEM, compared to other numerical solvers such the fi-
nite element method (FEM), is that in case of homogeneous media, it is possible
to discretize only the boundaries of the geometries involved in the problem. This
translates into a reduced dimensionality and in a more computationally efficient
solution of the problem. However, if employed in their standard version, they often
suffer from numerical instabilities due to ill-conditioning of the linear system aris-
ing from the discretization of the problem. Some of the most the critical sources of
ill-conditioning are the low-frequency breakdown, the dense-discretization break-
down and conditioning issues arising at simulation high-frequency. For this reason,
part of this work deals with the development of new preconditioning strategies for
electromagnetic integral equation solvers that cure the low-frequency and dense-
discretization breakdowns. Details on the source of conditioning issues and the
new preconditioning strategies are reported in chapter 3.

Unfortunately, differently form their competitors that rely on differential equa-
tions, the matrix arising from BEM is usually not sparse, and the inversion of a full
matrix can lessen the computational advantage gained from the reduced dimen-
sionality of the discretization. For this reason, to solve electrically large problems
in feasible time, it is necessary to add acceleration techniques (i.e. fast solver) on
top of the original BEM solvers. Indeed, part of the research work concerns the
development of fast solvers suitable for different application scenarios. Combining
them with ad-hoc numerical and preconditioning strategies allowed to develop a

1



Introduction and Outline

fast direct solver (FDS) that works in high-frequency, providing a direct inverse of
the system. In addition to be numerically stable and fast, the new FDS results in
a non-hierarchical skeleton compression of the involved operators. The solver can
be efficiently applied to solve the problem for several different excitation, and it is
presented in chapter 4.

Finally, chapter 5 is dedicated to brain-computer interfaces (BCIs). In partic-
ular, it presents a new BCI paradigm that overcomes some drawbacks of the BCI
pipelines based on steady-state visually evoked potentials (SSVEP), that currently
represent state-of-the-art BCIs in terms of bit-rate performances. In addition, it in-
clude the introduction of a strategy that leveraging electromagnetic brain modeling
and imaging, based on integral equations solvers, aims at improving the classifica-
tion accuracy of the BCI pipeline. Finally, chapter 6 concludes and discuss future
works.

2



Chapter 2

Background and Notation

This work involves the study of surface electromagnetic integral equations in
both the two-dimensional (2D) and three-dimensional (3D) cases. In this section,
when not specified, the notation refers to the 3D case, since most of the derivations
apply also to the 2D case. Given that this is not always true, when it can not
be avoided, the notation is introduced separately for the two cases. Note that
with the 2D case we actually refer to a 3D structure characterized by the same
2D section along one axis and that is infinitely long. This is for example a good
approximation for the study of structures like wires or waveguides and a great test
bench for formulations that will be further generalized to 3D.

2.1 Maxwell’s Equations
The behavior of electric and magnetic fields in the presence of matter at macro-

scopic level is described by Maxwell’s equations, and for this reason, any doctoral
thesis in computational electromagnetics (CEM) should start with their definition.
In the case of homogeneous dielectric media, the differential form of Maxwell’s
equations, expressed in terms of phasors, reads like

∇ × E = −jωB − M , (2.1)
∇ × H = jωD + J , (2.2)

∇ · D = ρe, (2.3)
∇ · B = ρm, (2.4)

where E is the electric field, H the magnetic field, D the electric induction, B the
magnetic induction, J the electric current density, M the magnetic current density,
ρe the electric charge density, ρm the magnetic charge density, and ω the angular
frequency [51]. For simplicity, the space variable r has been omitted from all the
quantities. Note that M and ρm, as far as we know, are not physical quantities and
are included only to symmetrize the equations and ease the following manipulations.

3



Background and Notation

Alternatively, employing the constitutive relations (D = ϵE and B = µH),
the first two equations, describing respectively Faraday’s law and Maxwell-Ampère
law, can also be expressed as

∇ × E = −jωµH − M , (2.5)
∇ × H = jωϵE + J , (2.6)

where the electric permittivity ϵ and the magnetic permeability µ measures respec-
tively the electric polarizability and the magnetization of the dielectric material.
In general cases, both permittivity and permeability are tensorial parameters, but
in case of linear, homogeneous and isotropic materials, they reduce to scalar values
that can be expressed as

ϵ = ϵrϵ0, (2.7)
µ = µrµ0 (2.8)

where ϵr and µr are the parameters relative to the dielectric material, while ϵ0 and
µ0 are the vacuum permittivity and the vacuum permeability, respectively.

2.2 Electromagnetic Fields in Free Space
In this section we manipulate Maxwell’s equations in order to obtain the elec-

tromagnetic fields generated in free space from electric and magnetic sources.

2.2.1 Vector and scalar potentials
In the following, Maxwell’s are rewritten in terms of vector and scalar potentials.

This manipulation is necessary to define the formulations of the electromagnetic
integral equations that will be solved with the boundary element method (BEM). In
the following, the subscripts e and m means that the relative quantity is generated
form an electric or a magnetic source, respectively.

Electric sources

For fields generated by electric sources, Maxwell’s equations read

∇ × Ee = −jωµHe (2.9)
∇ × He = jωϵEe + J , (2.10)

∇ · De = ρe, (2.11)
∇ · Be = 0. (2.12)

4



2.2 – Electromagnetic Fields in Free Space

Considering eq. (2.12), we now introduce the magnetic vector potential A defining
its curl

∇ × A = µHe, (2.13)

such that ∇ · Be = ∇ · (∇ × A) = 0. Replacing eq. (2.13) in eq. (2.9) we obtain

∇ × (Ee + jωA) = 0, (2.14)

and now we introduce the electric scalar potential Φe defining its gradient

−∇Φe = Ee + jωA, (2.15)

such that ∇ × (Ee + jωA) = −∇ × ∇Φe = 0.

Magnetic sources

For the case of fields generated by magnetic sources we have that

∇ × Em = −jωµHm − M , (2.16)
∇ × Hm = jωϵEm, (2.17)

∇ · Dm = 0, (2.18)
∇ · Bm = ρm, (2.19)

and considering the symmetries of Maxwell’s equations, we introduce analogously
the electric vector potential F and the magnetic scalar potential Φm such that

∇ × F = −ϵEm, (2.20)
−∇Φm = Hm + jωF . (2.21)

2.2.2 Lorenz gauge and Helmholtz equations
So far, we defined the curl of A and the curl of F , but we have not defined yet

their divergence. A convenient option to further simplify the following equations is
to respect the Lorenz gauge conditions

∇ · A = −jωϵµΦe, (2.22)
∇ · F = −jωϵµΦm. (2.23)

The convenience of this choice is evident when we substitute respectively eq. (2.13)
and eq. (2.15) in eq. (2.10), and eq. (2.20) and eq. (2.21) in eq. (2.16) obtaining

∇ ×
(︄

1
µ

∇ × A

)︄
= −jωϵ∇Φe + ω2ϵA + J , (2.24)

∇ ×
(︃

−1
ϵ
∇ × F

)︃
= jωµ∇Φm − ω2µF − M , (2.25)
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and finally applying the vector identity ∇ × ∇ × V = ∇ (∇ · V ) − ∇2V , obtaining

∇ (∇ · A) − ∇2A = −jωϵµ∇Φe + ω2ϵµA + µJ , (2.26)
∇ (∇ · F ) − ∇2F = −jωϵµ∇Φm + ω2ϵµF + ϵM . (2.27)

Now, thanks to the Lorenz gauge conditions, and defining the wavenumber k =
ω

√
ϵµ and applying the vector identity ∇ × ∇ × V = ∇ (∇ · V ) − ∇2V , where ∇2

is the vector Laplacian operator, we can simplify the previous equations and get

∇2A + k2A = −µJ , (2.28)
∇2F + k2F = −ϵM . (2.29)

Equation (2.28) and eq. (2.29) are inhomogeneous Helmholtz equations that can
be solved respectively for A and F leveraging the Green’s function method.

2.2.3 Green’s Function
Defined the dimensionality of the problem and the boundary conditions, a

Green’s function, or fundamental solution, of a differential equation is the impulse
response of the involved differential operator. This section treats the 2D and the
3D cases of the scalar inhomogeneous Helmholtz equations, and further uses these
to retrieve the solution of eq. (2.28) and eq. (2.28) presented in the previous section.
In this work we will always consider Sommerfeld radiation condition as boundary
condition, and hence impose that at infinity the energy radiated by the solution
must disperse. In terms of equations, for a solution u(x), in a domain Rn, and for
a constant k > 0, this translates in

lim
∥x∥→∞

∥x∥
n−1

2

(︄
∂

∂∥x∥
− jk

)︄
u(x) = 0. (2.30)

Under these conditions, we can define the free-space Green’s function G(r, r′)
as the solution of the scalar inhomogeneous Helmholtz equation

∇2G(r, r′) + k2G(r, r′) = −δ(r, r′). (2.31)

Since we work in the frequency domain, and the definition of the Green’s function
depends of the sign convention used to obtain the Fourier transform of a function
in the time domain, we specify that in our convention the Fourier transform of f(t)
is given by

F (ω) =
∫︂ ∞

−∞
f(t)e−jωtdt. (2.32)
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2.2 – Electromagnetic Fields in Free Space

Three-dimensional case

In 3D instead, the Green’s function for k > 0 reads like

G(r, r′) = e−jk∥r−r′∥

4π∥r − r′∥
. (2.33)

In the static limit, when k → 0, we simply have

G0(r, r′) = 1
4π∥r − r′∥

. (2.34)

Two-dimensional case

In 2D, the Green’s function for k > 0 reads like

G(r, r′) = −j

4H
(2)
0 (k∥r − r′∥) , (2.35)

where H
(2)
0 is the Hankel function of the second kind with order zero.

In the static limit, when k → 0, we have instead

G0(r, r′) = − 1
2π

log (∥r − r′∥) . (2.36)

2.2.4 Fields generated by arbitrary sources
Three-dimensional case

We can use the Green’s function approach and solve eq. (2.28) and eq. (2.29) by
convolving eq. (2.31), in the whole domain, respectively with µJ and ϵM , obtaining

µ
∫︂∫︂∫︂

V
G(r, r′)

[︂
∇2 + k2

]︂
J(r′)dr′ = −µJ , (2.37)

ϵ
∫︂∫︂∫︂

V
G(r, r′)

[︂
∇2 + k2

]︂
M (r′)dr′ = −ϵM . (2.38)

Thanks to this passage we can now retrieve the expression for the magnetic and
electric vector potential that solves the two Helmholtz equations, which read

A = µ
∫︂∫︂∫︂

V
G(r, r′)J(r′)dr′, (2.39)

F = ϵ
∫︂∫︂∫︂

V
G(r, r′)M (r′)dr′. (2.40)

At this point we can use the superimposition principle to compute the electric
and the magnetic field in presence of arbitrary electric and magnetic sources. To
compute the electric field we can sum the contribution radiated by the magnetic
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sources Em from eq. (2.20) to the contribution radiated by the magnetic sources
Ee from eq. (2.15), and insert it in eq. (2.22), obtaining

E = −jωA + 1
jωϵµ

∇ (∇ · A) − 1
ϵ
∇ × F (2.41)

= −jω
[︃
1 + 1

k2 ∇∇·
]︃

A − 1
ϵ
∇ × F (2.42)

= −jωµ
∫︂∫︂∫︂

V
G(r, r′)

[︃
1 + 1

k2 ∇′∇′·
]︃

J(r′)dr′ −
∫︂∫︂∫︂

V
G(r, r′)∇′ × M (r′)dr′.

(2.43)

The same is done with the magnetic field, we sum the contribution radiated by the
electric sources He from eq. (2.13) to the contribution radiated by the magnetic
sources Hm from eq. (2.21), and substitute in eq. (2.23), yielding

H = −jωF + 1
jωϵµ

∇ (∇ · F ) + 1
µ

∇ × A (2.44)

= −jω
[︃
1 + 1

k2 ∇∇·
]︃

F + 1
µ

∇ × A (2.45)

= −jωϵ
∫︂∫︂∫︂

V
G(r, r′)

[︃
1 + 1

k2 ∇′∇′·
]︃

M (r′)dr′ +
∫︂∫︂∫︂

V
G(r, r′)∇′ × J(r′)dr′.

(2.46)

Two-dimensional case

In the two-dimensional problems, described at the beginning of this chapter,
the electromagnetic fields can be computed solving the scalar 2D inhomogeneous
Helmholtz equation

∇2φ(r) + k2φ(r) = f(r), (2.47)

where f(r) represent the source generating the filed [52]. Further developments of
the equation are given for the case of an arbitrary shaped object immersed in free
space.

2.3 Electromagnetic Integral Equations
Now that we defined a set of equations suitable to compute electromagnetic fields

in free-space, we can move to the solution of scattering problems in the presence
of an arbitrary obstacle (the scatterer) with known electromagnetic properties.
First, we define the setting of a general scattering problem. There are multiple
options for the source of the electromagnetic fields (e.g. an impinging plane wave,
a dipole, etc.), but in all the cases we call incident field the field generated in
free space by the source (in the absence of the scatterer), that is distinguished

8



2.3 – Electromagnetic Integral Equations

from the scattered field, that can be seen as the total field in presence of the
scatterer to witch the incident field it is subtracted. In the following, the incident,
the scattered, and the total fields are denoted with the respective superscripts inc,
s, tot, respectively. In particular, because of superposition, we have (E, H) =(︂
Etot, H tot

)︂
=
(︂
Einc, H inc

)︂
+ (Es, Hs). In this work, the scattering problems are

solved leveraging formulations based on integral equations.

2.3.1 Boundary Conditions
The properties of the scatterers determine the boundary conditions at the inter-

face between two discontinuous regions, which then determine the integral equation
formulation required to solve the problems. In the following we present the scenar-
ios that are relevant for this work, both for the 3D and 2D cases.

General Discontinuity

In both 2D and 3D, we consider an object described by the region Ω0, with
boundary Γ0 defined by the vector normal to its surface n̂, and immersed in the
infinite region Ω∞ as depicted in fig. 2.1 and fig. 2.2. Considering the electro-
magnetic field inside the region Ω0 is defined as (E0, H0, D0, B0), while in region
Ω∞ we have (E∞, H∞, D∞, B∞), for their limit approaching the two sides of the
boundary Γ, they must satisfy the boundary conditions

n̂ × (E∞ − E0) = −MΓ, (2.48)
n̂ × (H∞ − H0) = JΓ, (2.49)

n̂ · (D∞ − D0) = ρe,Γ, (2.50)
n̂ · (B∞ − B0) = ρm,Γ, (2.51)

at the boundary that determines the discontinuity. This writing is not purely formal
since the limits should be explicitly defined, but it helps to concisely express the
concept and the notation further needed.

Figure 2.1: Regions defined by a 2D scatterer.
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Figure 2.2: Regions defined by a 3D scatterer.

Perfect Electric Conductors

For perfect electric conductor (PEC), the boundary conditions become

n̂ × (E∞ − E0) = 0, (2.52)
n̂ × (H∞ − H0) = JΓ, (2.53)

n̂ · (D∞ − D0) = ρe,Γ, (2.54)
n̂ · (B∞ − B0) = 0. (2.55)

2.3.2 Love’s Equivalence Principle
Three-dimensional case

Equation (2.43) and eq. (2.46) are valid only to compute fields in an infinitely
large and homogeneous media. We can leverage the surface equivalence principle
to extend their application to the computation of electromagnetic fields in presence
of a scatterer. Consider an original problem, depicted in fig. 2.3 (a), in which the
scatterer Ω0 is characterized by (ϵ0, µ0), and the media Ω∞ = Rn\Ω0 is characterized
by (ϵ∞, µ∞).

The equivalence principle states that we can replace the fields (E0, H0), and
eventual current densities (J0, M 0), inside Ω0 with alternative fields (E′

0, H ′
0) and

surface current densities (JΓ, MΓ), while keeping the same total field (E∞, H∞)
in the outside region. The only constraints that need to be respected are that
(E′

0, H ′
0) satisfy Maxwell’s equations, and the boundary conditions

n̂ × (E∞ − E′
0) = −MΓ, (2.56)

n̂ × (H∞ − H ′
0) = JΓ. (2.57)

Now, if we set (E′
0, H ′

0) = (0, 0), the material parameters of the scatterer, in region
Ω0 become irrelevant, so we can replace them with the ones of Ω∞ and study the
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Figure 2.3: Equivalence principle: (a) original problem; (b) equivalent problem.

Love’s equivalent problem shown in fig. 2.3 (b). This problem needs to satisfy the
following boundary conditions

n̂ × E∞ = −MΓ, (2.58)
n̂ × H∞ = JΓ, (2.59)

and now we can use eq. (2.43) and eq. (2.46) to compute the fields (E∞, H∞).

Two-dimensional case

The 2D case, as already mentioned, is actually a 3D problem where we assume
that the scatterer has no variation along the z-axis. In this case, we can consider
only the plane perpendicular to the z-axis. In addition, the problem can be decom-
posed into Transverse Magnetic (TM) and Transverse Electric (TE) polarizations
of the electromagnetic field, and each single problem reduces to the computation
of a scalar field along the one-dimensional (1D) manifold.

We use again the Green’s function approach and we multiply eq. (2.47) by
G(r, r′) and eq. (2.31) by φ(r). Then, integrating their difference in the 2D region,
we obtain the equation∫︂∫︂

Ωinf

[︂
G(r, r′)∇2φ(r) − φ(r)∇2G(r, r′)

]︂
dr′ =∫︂∫︂

Ωs

G(r, r′)f(r)dr′ +
∫︂∫︂

Ωinf
φ(r)δ(r − r′)dr′, (2.60)

where Ωs is the region where f(r) is not zero. This equation, with few more
manipulations omitted here for the sake of brevity, can lead to

φinc(r) + −
∫︂

Γ0

[︄
φ(r′)∂G(r, r′)

∂n̂
− G(r, r′)∂φ(r′)

∂n̂

]︄
dΓ′ =

{︄
φ(r) r ∈ Ωinf

0 r ∈ Ω0,
(2.61)
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where −
∫︁

denote the Cauchy principal value integral and ∂
∂n̂

the normal derivative.
This equation represents the Huygens’ principle for scalar fields, that states that
the field can be evaluated everywhere in that domain if the field and its normal
derivative are known on the boundary of it. Finally, it can derive the equation that
is at the base of 2D electromagnetic integral formulations

φinc(r) + −
∫︂

Γ0

[︄
φ(r′)∂G(r, r′)

∂n̂
− G(r, r′)∂φ(r′)

∂n̂

]︄
dΓ′ = 1

2φ(r) r ∈ Γ0. (2.62)

2.3.3 Main Electromagnetic Integral Equations Formula-
tions

Now we have all the ingredients to define a formulation to solve electromagnetic
scattering problems based on integral equations. Since the formulation depends on
the application scenario, and since in this work we deal with different formulations,
here we introduce only the main 2D and 3D formulations for PEC scatterers, mainly
to define the notation. The complete formulations used for the research work are
shown in their respective chapters, to avoid the reader the need to go back in this
section for the definitions. In chapter 5 some electromagnetic solvers involving multi
layer dielectric scatterers are employed, however, since they are practically used as a
black box, and they are not the focus of this work, we do not give further details on
their formulations, but only cite the relevant references for their implementations.

3D PEC dynamic formulations

Since we are considering a PEC object, we are only interested on the solution
of the exterior problem. For this reason we recall eq. (2.58) eq. (2.59) and we use
the superposition to express them as

MΓ = −n̂ × E∞ = −n̂ × (Einc
∞ + Es

∞), (2.63)
JΓ = n̂ × H∞ = n̂ × (H inc

∞ + Hs
∞). (2.64)

To simplify the notation, in the following we omit the subscript ∞ and Γ. We now
introduce the definition of some boundary integral operators (BIO), in order to
simplify the above expressions

T s,kX = n̂ × jk
∫︂

Γ0
G(r, r′)X(r′)dΓ′, (2.65)

T h,kX = −n̂ × 1
jk

∇
∫︂

Γ0
G(r, r′)∇ · X(r′)dΓ′, (2.66)

T kX = T s,kX + T h,kX, (2.67)

KkX = n̂ ×
∫︂

Γ0
G(r, r′)∇′ × X(r′)dΓ′, (2.68)
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Now, using Love’s equivalence principle, combining this expressions with eq. (2.43)
and eq. (2.46) evaluated on the boundary of the scatterer and using the new defi-
nition of the operators we get

M − ωµ

k
T kJ − KkM = −n̂ × Einc, r ∈ Γ0, (2.69)

J + ωϵ

k
T kM − KkJ = n̂ × H inc, r ∈ Γ0. (2.70)

At this point, since we are in PEC, we can use the fact that the surface magnetic
current is null, as stated in eq. (2.52), leading to

T kJ = 1
η

n̂ × Einc, r ∈ Γ0, (2.71)

J − KkJ = n̂ × H inc, r ∈ Γ0, (2.72)

where η is the characteristic impedance of vacuum, and the fact ωµ = ηk was
used. However, eq. (2.72) cannot be calculated on Γ0, because Kk is singular. In
case of closed, smooth and not infinitely thin surfaces, a proper treatment of the
singularity [52] yields

T kJ = T s,kJ + T h,kJ = 1
η

n̂ × Einc, r ∈ Γ0, (2.73)(︄
I
2 − Kk

)︄
J = n̂ × H inc, r ∈ Γ0. (2.74)

Equation (2.73) and eq. (2.74) are respectively the 3D-PEC electric field integral
equation (EFIE) and the 3D-PEC magnetic field integral equation (MFIE).

2D PEC dynamic formulations

We consider the scenario where we have a 2D structure where the scatterer is a
PEC and k > 0. For 2D problems, to know all the components of the electric and
magnetic fields, we need to solve the problem for both the TM and TE polarizations
[48]. Figure 2.4 helps understanding the orientations of the structure along the z-
axis ẑ, the normal vector n̂ and the tangent vector t̂, relevant in the following
developments. Note that since the orientation of the tangent vector is not unique,
particular attention should be given to the used convention.

TM-EFIE For the TM polarization we know that the electric field satisfies the
Helmholtz equation and the boundary conditions

∇2Ez + k2Ez = jkηJ inc
z r ∈ Ω∞, (2.75)

Ez = 0 r ∈ Γ0, (2.76)
∂Ez

∂n̂
= jkηJs

z = jkηHt r ∈ Γ0, (2.77)
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Figure 2.4: Orientation of the vectors ẑ, n̂ and t̂ in 2D structures.

where η =
√︂

µ0
ϵ0

is the impedance of free-space, J inc
z the source generating the

incident field and Js
z the surface current density induced by the incident field.

Substituting these quantities and boundary conditions in eq. (2.62) we get

jk
∫︂

Γ0
G(r, r′)Js

z (r′)dΓ′ = 1
η

Einc
z (r) r ∈ Γ0. (2.78)

We refer to this equation as the Electric Field Integral Equation (EFIE) with
TM polarization (TM-EFIE). We further simplify the notation defining the
Single Layer Potential operator in 2D (SLP-2D) as

SJs
z (r) =

∫︂
Γ0

G(r, r′)Js
z (r′)dΓ′ (2.79)

getting

jkSJs
z (r) = 1

η
Einc

z (r) r ∈ Γ0. (2.80)

A similar procedure can be applied to retrieve the other formulations starting
form eq. (2.62) and proper boundary conditions. For the following formula-
tions we report only the definitions of the operators and the final equation.

TM-MFIE For the H field with TM polarization we get[︄
1
2I + −

∫︂
Γ0

dΓ′ ∂G(r, r′)
∂n̂

]︄
Js

z (r′) = H inc
t (r) r ∈ Γ0. (2.81)

We refer to this equation as the Magnetic Field Integral Equation (MFIE)
with TM polarization (TM-MFIE). We further simplify the notation defining
the adjoint double layer potential operator in 2D (ADLP-2D) as

D∗Js
z (r) = −

∫︂
Γ0

∂G(r, r′)
∂n̂

Js
z (r′)dΓ′, (2.82)
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getting (︃1
2I + D∗

)︃
Js

z (r′) = H inc
t (r) r ∈ Γ0. (2.83)

TE-EFIE For the E field with TE polarization we get

− 1
jk

∫︂
Γ0

∂

∂n̂

∂G(r, r′)
∂n̂′ Js

t (r′)dΓ′ = 1
η

Einc
t (r) r ∈ Γ0. (2.84)

We refer to this equation as the EFIE with TM polarization (TE-EFIE).
We further simplify the notation defining the hypersingular operator in 2D
(HS-2D) as

N Js
t (r) = − ∂

∂n̂

∫︂
Γ0

∂G(r, r′)
∂n̂′ Js

t (r′)dΓ′ (2.85)

= −
∫︂

Γ0

[︄
k2 + ∂2

∂r̂

]︄
G(r, r′)Js

t (r′)dΓ′, (2.86)

getting
1

jk
N Js

t (r) = 1
η

Einc
t (r) r ∈ Γ0. (2.87)

TE-MFIE For the H field with TE polarization we get

−
[︄

1
2I − −

∫︂
Γ0

∂G(r, r′)
∂n̂

]︄
Js

t (r′) = H inc
z (r) r ∈ Γ0. (2.88)

We refer to this equation as the MFIE with TM polarization (TE-MFIE). We
further simplify the notation defining the double layer potential operator in
2D (DLP-2D) as

DJs
t (r) = −

∫︂
Γ0

∂G(r, r′)
∂n̂′ Js

t (r′)dΓ′, (2.89)

getting

−
(︃1

2I − D
)︃

Js
t (r′) = H inc

t (r) r ∈ Γ0. (2.90)

Note that the operator D is simply the adjoint version of the operator D∗.

2.4 Boundary Element Method
The integral equations defined in the previous section, along with most of differ-

ential and integral equations that arise in physics, can be solved analytically only
for few special geometries. For this reason numerical methods are generally neces-
sary to solve such equations. Boundary integral equations can be solved via BEM,
also known as Method of Moments (MoM), or in some cases Galerkin Method.
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2.4.1 Geometry Discretization
As for most of numerical methods, the problem is discretized dividing the ge-

ometry of the studied scenario in small sub elements. In scattering problems solved
with BEM, it is sufficient to discretize the surface of the scatterer, in contrast to
other solvers such as the Finite Element Method (FEM) or solvers based on Volume
Integral Equations (VIE) where a volumetric discretization is necessary.

Three-dimensional case

In 3D the geometry is discretized Nt with admissible triangular elements, as
depicted in fig. 2.5. Each triangle is parameterized by two-dimensional local coor-
dinates that are used to compute the integrals involved in the formulation. The
mesh is also consisting of Nv vertices, connected by Ne edges, that in triplets form
the triangles and being oriented define the outward-pointing normal vector. In ad-
dition, we also define the global mesh size h as the average edge length, that will
be a relevant parameter in the following section.

Figure 2.5: Human head discretized with triangles.

Two-dimensional case

For the 2D case, the boundary of the scatterer is discretized with Ns segments
defined by the connection of Nv vertices. For closed structures we have Ns = Nv.
An example is depicted in fig. 2.6. In this case, h is the average segment length.
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Figure 2.6: Star like shape discretized with segments.

2.4.2 Basis Functions
In this work the solution of the integral equation solution is approximated using

the Galerkin method or, for some formulations, Petrov-Galerkin method [96]. Using
the Galerkin method, the functional space used to discretize the solution and the
one used for the testing coincide, while using Petrov-Galerkin method they do
not coincide. The geometrical elements described in the previous section serve as
domain for the functions used to discretize the problem. An alternative option is
to use the Nyström (or collocation) method, that can be seen as a degenerate case
of the Galerkin method where Dirac-deltas are used as testing functions, but since
with this method it is trickier to prove numerical stability and set error bounds,
in this work we avoid its usage. In the following, the functional spaces used to
discretize our formulations are presented.

Three-dimensional case

Patch basis functions are scalar polynomial functions of order 0 associated with
the triangular cells of the 3D mesh. Each basis function ρi has as domain
associated cell ci, and is defined as

ρi(r) =
{︄

A−1
i if r ∈ ci ,

0 otherwise,
(2.91)

where Ai is the area of ci.

Pyramid basis functions are scalar polynomial functions of order 1 associated
with the vertices of the 3D mesh. Each basis function λi has as domain the
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cells that have the vertex vi as one of their vertices, and is defined as

λi(r) =

⎧⎪⎪⎨⎪⎪⎩
1 r = vi ,

0 r = vn , n /= i ,

linear otherwise.
(2.92)

Rao-Wilton-Glisson (RWG) basis functions are vectorial and div-conforming
(their divergence is well defined) functions that are capable of correctly dis-
cretizing current densities. Each RWG function f i is associated with one of
the Ne edges, and it is defined as

f i(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r − r+

i

2A+
i

if r ∈ c+
i

−r − r−
i

2A−
i

if r ∈ c−
i ,

(2.93)

where the notation of fig. 2.8 was employed and where A±
i is the area of the

cell c±
i [92].

Figure 2.7: RWG basis functions.

Two-dimensional case

Triangular basis functions are scalar polynomial functions of order 1 (piece-
wise linear) associated with the vertices of the 2D mesh, as depicted in fig. 2.8.
Each function lives on two segment elements, one relative to its increasing part
τ+

i , and one relative to its decreasing part τ−
i , defined as

τ+
i (x) = x − xi−1

xi − xi−1
, (2.94)

τ−
i (x) = xi+1 − x

xi+1 − xi

. (2.95)

The solution and the right hand side (RHS) are approximated by comput-
ing or sampling their value at the vertices of the mesh, to which they are
associated the coefficients a1, a2, . . . aNv .
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2.4 – Boundary Element Method

Figure 2.8: Triangular basis functions in 2D.

2.4.3 Matrix Building
As anticipated, the defined basis functions are used both to discretize the so-

lution of the problem and as testing functions when using the Galerkin method
[96]. The problem is now translated in the solution of a linear algebraic system. In
the following we define some of the matrices arising from the discretization of the
problems in the standard formulations. In order to simplify the following notation
we define the inner product ⟨a, b⟩ =

∫︁
Rn a · bdRn.

Three-dimensional case

The unknown current density in the EFIE defined in eq. (2.73) is discretized
with RWG basis functions, resulting in the approximation

J(r) ≈
Ne∑︂
i=1

⟨f i(r), J(r)⟩f i(r), (2.96)

from which we define the elements of the vector of the unknown coefficients as

j = ⟨fn, J⟩. (2.97)

Using RWG basis functions also for the testing, the elements of the matrix
relative to the Tk operator defined in eq. (2.67) are computed as

Tf
m,n = Tm,n = ⟨n̂ × fm, Tk (fn)⟩, (2.98)

and similarly

Tf
s,(m,n) = Ts,(m,n) = ⟨n̂ × fm, Ts,k (fn)⟩ (2.99)

Tf
h,(m,n) = Th,(m,n) = ⟨n̂ × fm, Th,k (fn)⟩, (2.100)

while the coefficients of the RHS vector as

em = ⟨n̂ × fm, n̂ × Einc⟩.
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Note that particular attention is required for the computation of the matrix ele-
ments in which the Green’s function is singular or nearly-singular. Summarizing,
the solution of the integral equation is approximated by solving the linear system

Tj = (Ts + Th) j = 1
η

e. (2.101)

Alternatively, the EFIE can also be discretized using basis functions on the
dual mesh defined on the barycentric refinement. For the dual RWG discretization,
both Buffa-Christiansen (BC) [21] and Chen-Wilton [24] basis functions can be
used. Since this is not the focus of the work, we omit the explicit definitions of
the dual elements BC that will be denoted by gi. The reader can refer to [6] and
references therein for more details.

In chapter 3 we also need the definition of the standard (RWG) and dual (BC)
Gram matrices in 3D whose entries are respectively computed as Gf

mn = Gmn =
⟨fm,fn⟩ and Gg

mn = Gmn = ⟨gm, gn⟩. Finally, we also define the Gram matrices
corresponding to the patch functions with entries Gρ

mn = ⟨ρm, ρn⟩, and to the
pyramids functions with entries Gλ

mn = ⟨λm, λn⟩. Also in this case, for the sake of
brevity, we omit the definition their dual version, respectively denoted as ρ̃n and
λ̃n, that can be found in [4]. However, we define the corresponding Gram matrices
with entries Gp̃

mn = ⟨ρ̃m, ρ̃n⟩ and Gλ̃
mn =

⟨︂
λ̃m, λ̃n

⟩︂
.

Two-dimensional case

The unknown current density present in the TM-EFIE defined in eq. (2.80) is
discretized with triangular basis functions, resulting in the approximation

Js,z(r) ≈
Nv∑︂
i=1

⟨τi(r), Js,z(r)⟩τi(r), (2.102)

from which we define the elements of the vector of the unknown coefficients as

jz,n = ⟨τn, Js,z⟩. (2.103)

Using triangular basis functions also for the testing, the elements of the matrix
relative to the SLP-2D operator defined in eq. (2.79) are computed as

Sτ
m,n = Sm,n = ⟨τm, Sτn⟩ (2.104)

and the coefficients of the RHS vector as

ez,m = ⟨τm, Einc
z ⟩. (2.105)

Note that, also in this case, particular attention is required for the computation of
the matrix elements in which the Green’s function is singular or nearly-singular.
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Summarizing, the solution of the integral equation is approximated by solving the
linear system

jkSjz = 1
η

ez. (2.106)

Similarly, we can get the linear systems relative to the other formulations, re-
spectively the TM-MFIE, the TE-MFIE and the TE-MFIE, that we report here
omitting straightforward passages(︃1

2G + D∗
)︃

jz = ht (2.107)
1

jk
Njt = 1

η
et (2.108)

−
(︃1

2G − D
)︃

jt = hz, (2.109)

where that G = Gτ is the Gram matrix of the triangular basis functions, with
elements computed as Gτ

m,n = ⟨τm, τn⟩.
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Chapter 3

New Frontiers in Preconditioning
of Electromagnetic Integral
Equations

3.1 Computational Complexity and Precondition-
ing

The computational complexity is a crucial factor for a numerical method. A
high computational complexity limits the range of application of a given method,
because a simulation requiring years of computation is clearly infeasible. For this
reason, it is important to introduce some consideration about the computational
complexity of the MoM and to compare it with the one of other computational
methods. The FEM, for some applications, is a direct competitor of the MoM for
the numerical solution of scattering problems. Pragmatically, both FEM and MoM
require the inversion of a matrix to obtain the solution of scattering problems. From
this point of view, the main difference between the two methods is that since FEM
relies on the discretization of differential equations instead of integral equations, the
matrix that needs to be inverted to retrieve the solution is sparse, while for MoM
it is generally dense. This fact, in case of equal number of unknowns N in the
system, translates into a different computational complexity required for the direct
solution of the system, respectively O(N2) for FEM and O(N3) for MoM. However,
if we consider surface integral equations formulations, we actually need to discretize
only the surface of the scatterers, while with FEM a volume discretization is always
required. In addition, even with the usage of a perfectly matched layer (PML), the
discretization of a part of the region external to the scatterer is also required.
Moreover, FEM shows numerical instabilities, such as pollution or dispersion [36],
that makes the usage of MoM often preferable.
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Finally, with proper manipulation of the formulations and compression tech-
niques, it is possible to develop solvers based on MoM that can work in quasi-linear
complexity (N log N). Such solvers, denoted as fast solvers, also keep the afore-
mentioned advantages, making MoM a preferential choice over FEM in certain
scenarios. In the following we introduce the main steps necessary to build a fast
solver.

3.1.1 Iterative Solvers
Alternatively to the direct inversion of the matrix, that requires O(N3) oper-

ations, linear systems can be solved with iterative solvers based on Krylov sub-
space methods (or orthogonalized versions of it), such as conjugate gradient, conju-
gate gradient squared, biconjugate gradient, minimal residual, transpose free quasi-
minimal residual or generalized minimal residual methods [98, 63, 94, 100].

These methods require multiple iterations of matrix-vector products (MVPs)
between the MoM matrix and a vector that converges to the solution of the system.
The number of iteration necessary to converge depends on many characteristics of
the involved linear system, and it is difficult to accurately estimate it in advance
[91, 55, 98, 17], but one very important parameter is the condition number of the
matrix, that is the ratio between the highest and the lowest singular values of the
matrix. In addition to its impact on the convergence of the iterative solver, the
condition number also limits the numerical accuracy that can be achieved with the
computation, and in both cases a low condition number is desirable.

In practical cases, if the MoM matrix is well conditioned and shows other spec-
tral proprieties, such as clustering of eigenvalues, an iterative solver can converge
in a number of iterations NI that is negligible when compared with the number of
unknowns N . In this case, if also NI does not depend on N , the computational
complexity required to solve the problem scales as the one of the MVP operation,
that in case of general dense matrices is O(N2).

3.1.2 Conditioning and Preconditioning
Because of the aforementioned reasons, when using MoM, it is really important

to study the behavior of the condition number in the regimes that are relevant for
its application. If a scenario where the condition number grows problematically
is encountered, in some cases, it is also possible to avoid this growth and reduce
the condition number by using preconditioning schemes. Those techniques allow
reducing the condition number of the matrix to be inverted and thus improve the
quality of the solution and the computational speed of the solver. For this reason,
preconditioning is in itself a research topic in the CEM community and a central
one in this work.
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Considering the linear system Ax = v, we talk about left preconditioning if
we solve the system LAx = Lb inverting the preconditioned matrix LA, while we
talk about right preconditioning if we solve the system AR˜︁x = b inverting the
preconditioned matrix AR and we then retrieve the solution with x = R˜︁x. In
general, nothing prevents us from using both right and left preconditioning at the
same time, and it is actually necessary if we want the matrix to be inverted to be
symmetric (useful property for certain applications).

3.1.3 Fast Solvers
We have seen already that when we use an iterative solver, and we have N ≫ NI

and NI does not depend on N , the computational complexity is leaded by the one
required for the MVP. Leveraging fast algorithms, it is possible to reduce the com-
putational complexity from O(N2) of the dense MoM matrix MVP to O(N log N).
There are different fast algorithms suitable for different applications. Between them
we cite here the Adaptive Cross Approximation (ACA) [16, 114] and its Multi Level
variant (MLACA) [44, 22], that can be used to compress matrices relative to static,
quasi-static and low frequency problems, and the Fast Multiple Method (FMM)
[29] and its multilevel variant (MLFMM) [83] that instead can be used to compress
matrices arising from medium and high frequency simulations. Summarizing, with
fast algorithms we have all the ingredients necessary to build a fast numerical solver
for electromagnetic integral equations.

3.2 Conditioning Issues of Electromagnetic Inte-
gral Equations

The boundary element method suffers from conditioning issues that can make
it unusable in certain regimes. In the following, the main regimes of interest in
practical applications are reported, as well as an overview of the currently available
preconditioning solutions in such regimes.

3.2.1 Low-Frequency Breakdown
For the three-dimensional case, in the static limit, the decoupling of the electric

and the magnetic fields translates in a source of ill-conditioning of the problem [75].
This phenomenon is known in literature as the low-frequency breakdown. In addi-
tion to the conditioning issue, it implies other challenges to be faced to accurately
compute the scattered field, such as numerical cancellation in the RHS of the equa-
tion. Several strategies have been proposed to solve those problems, and among
them we mention the loop-star and loop-tree decomposition [106], quasi-Helmholtz
projectors [7, 9], the current-charge formulation [104], the augmented EFIE [90]
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and the potential-based formulations [107, 66]. Details on their characteristic and
implementation can be found in [5] and references therein.

3.2.2 Dense-Discretization Breakdown
Another relevant phenomenon that yields ill-conditioning of BEM formulations

is the dense-discretization breakdown. In the usage and testing of numerical solvers,
it is fundamental to have the possibility to improve the numerical accuracy by
further discretizing the geometry. The regime in which we reduce the average edge
length of the mesh h, attempting to improve the numerical accuracy of the solver,
is called h-refinement.

Unfortunately, several of the standard EFIE-based formulations, both in 2D
and in 3D, show a condition number that grows when h → 0. A way to explain
this phenomenon relies on pseudo-differential operators theory [27, 78]. Indeed,
without going into theoretical details, the pseudo-differential order of an operator
is related with its spectral properties in the elliptic region, the region associated
with the high spatial frequency component of the operator. In particular, there is
a relation between the pseudo-differential order of an operator and the behavior of
the singular values in its elliptic region when h → 0. For instance, if we consider
operators with positive pseudo-differential order, behave as a derivative operator,
showing a divergent singular values spectrum, while operators with negative pseudo-
differential order, showing a spectrum clustering to zero singular values. Both
behaviors are undesirable since in such cases the condition number grows. Indeed, it
is fundamental that the operator to be inverted has singular values that accumulate
to a constant values when performing h-refinement.

A category of operators with this propriety are the ones involved in second-kind
Fredholm integral equations, that for brevity we call second-kind operators. Typ-
ically, such operators F , for which we have F = O + K, where the operator O is
spectrally equivalent to the identity operator (O ≍ I) and K is a compact operator,
whose discretization gives rise to matrices with singular values clustering to 0. For
such operators, we have F ≍ I, so the singular values accumulates to a constant
value. For this reason, to solve the dense-discretization breakdown, many precondi-
tioning techniques, such as Calderón-based schemes [8], aim to get a preconditioned
operator that results in a second-kind operator. In order to achieve this, those pre-
conditioning techniques rely on the key fact that when an operator is applied to
another operator their pseudo-differential order is summed. Indeed, preconditioning
a pseudo-differential operator with another operator of opposite pseudo-differential
order often gives rise to a well-conditioned operator of pseudo-differential order 0
that spectrally behaves like a second-kind operator. In the following section 3.3
we present a new preconditioning technique, recently proposed in [80], that tackles
simultaneously both the low-frequency and the dense-discretization breakdowns.
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3.2.3 High-Frequency Issues
At high-frequency, or more precisely for electrically-large scatterers, there are

two main sources of ill-conditioning occurring in electromagnetic integral equations.
When the wavelength λ is comparable with the size of the scatterer, we enter in
the resonant regime of the structure. In this regime, the operators involved in the
EFIEs and the ones involved in the MFIEs suffer from interior resonances. This
phenomenon translates in operators that, when correctly discretized [32], show
a nullspace, and are thus ill-conditioned. For this reason, in the resonant regime,
Combined Field Integral Equations (CFIEs) [1] or Combined Source Integral Equa-
tions (CSIEs) [74] are usually employed. When combined with Calderón strategies,
particular attention should be given to the discretization and the wave numbers of
the operator involved in the preconditioning [79].

If we consider the so called high-frequency regime, in which we keep constant
the ratio between the wave number λ and the mesh size h (λ/h = c, where we
should have at least c > 5 to properly discretize the problem), we have other issues
occurring that limit the convergence speed of the iterative solvers and the numerical
accuracy. Since the solution of these problems is part of the focus of chapter 4,
more details are presented in it, and are not repeated here.

3.3 A Novel Preconditioning Technique for Elec-
tromagnetic Integral Equations

As anticipated, in this section we present a preconditioning scheme recently
introduced in [80]. The scheme is used to solve both the low-frequency and the
dense-discretization breakdowns of the 3D EFIE, as defined in eq. (2.101). The
work also relies on the usage of the quasi-Helmholtz decomposition mentioned in
section 3.2.1, that we introduce here.

If we consider the continuous problem defined in eq. (2.73), the solution J can
be decomposed into solenoidal, irrotational and harmonic components

J = ∇ × n̂λ + ∇sϕ + h . (3.1)

Notice that on simply-connected boundary of the scatterer (genus-0 surface) the
harmonic component, that is both solenoidal and irrotational, is not present. When
using BEM with RWGs as testing and source basis functions, eq. (3.1) has its
discrete counterpart

j = Λl + Σσ + Hh , (3.2)

where Λ ∈ RN×NL and Σ ∈ RN×NS (with N = Ne, NS = Nt, NL = Nv) are the
Loop-to-RWG and Star-to-RWG transformation matrices [76, 64, 111, 105, 10].
Since RWG basis functions are not curl-conforming, the discretized counterparts
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of the irrotational and harmonic components are only non-solenoidal and quasi-
harmonic. Following the convention of fig. 2.7 and eq. (2.93), we can compute their
elements as

[Λ]mn =

⎧⎪⎪⎨⎪⎪⎩
1 if node n equals v+

m ,

−1 if node n equals v−
m ,

0 otherwise,
(3.3)

and

[Σ]mn =

⎧⎪⎪⎨⎪⎪⎩
1 if the cell n equals c+

m ,

−1 if the cell n equals c−
m ,

0 otherwise.
(3.4)

Since not needed, the explicit definition of the matrix H is omitted, however it
could be found in [6] and references therein.

We highlight the fact that ΛTΛ and ΣTΣ are respectively the vertices- and the
cells-based graph Laplacians [10]. We can now define the standard quasi-Helmholtz
projectors as

PΣ = Σ
(︂
ΣTΣ

)︂+
ΣT ,

PΛH = I − PΣ
(3.5)

for the primal ones (where + denotes the Moore-Penrose pseudo-inverse),

PΛ = Λ
(︂
ΛTΛ

)︂+
ΛT ,

PΣH = I − PΛ
(3.6)

for the dual ones, and
PH

(︂
= PH

)︂
= I − PΣ − PΛ (3.7)

for the projector to quasi-harmonic subspace [10, 12].

3.3.1 Laplacian Filtered Loop-Star Decomposition
We now introduce the concept of filtered Loop-Star bases. After introducing

their standard forms and related properties, we generalize to the case of inhomo-
geneous meshes.

The Standard Case

In the following, with X ∈ RN×Nx we refer to a matrix that could be ether Σ or
Λ. To facilitate the introduction of the concept we make use of the singular values
decomposition (SVD)

X = UXSXV†
X, (3.8)
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with UX ∈ RN×N , VX ∈ RNx×Nx , and SX ∈ RN×Nx [40]. The matrix SX is block
diagonal and contains the singular values σX,i of X as entries (in decreasing order),
while the matrices UX and VX are unitary and their columns are the left/right
singular vectors of X. Since in both cases X is a real matrix, we have that the SVD
of (XTX) equals VXST

XSXV†
X. We define the diagonal matrix LX,n ∈ RNx×Nx , with

1 ≤ n ≤ Nx, such that

[LX,n]ii =
{︄

σX,i if i > Nx − n ,

0 otherwise,
(3.9)

and the filtered graph Laplacians

(XTX)n := VXL2
X,nV†

X , (3.10)

that we use to finally introduce the filtered Star-to-RWG matrices and filtered
Loop-to-RWG

Σn = Σ
(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
n

, (3.11)

Λn = Λ
(︂
ΛTΛ

)︂+ (︂
ΛTΛ

)︂
n

. (3.12)

Properties

We now mention some properties of the filtered Loop-Star matrices. Because
ΣTΛ = 0 [6], we have

ΣT
n Λm =

(︂
ΣTΣ

)︂
n

(︂
ΣTΣ

)︂+
ΣTΛ

(︂
ΛTΛ

)︂+ (︂
ΛTΛ

)︂
m

= 0 ∀n, m, (3.13)

meaning that the filtered Loop-Star functions are coefficient-orthogonal (l2-orthogonal)
like their non-filtered counterparts.

From the definition of LX,n in (3.9), it follows that LX,nLX,m = L2
X,min{n,m}. Thus

from (3.10)

(XTX)n(XTX)m = VXLX,nVT
XVXLX,mVT

X

= VXLX,nLX,mVT
X = VXLX,min{n,m}LX,min{n,m}VT

X

= VXLX,min{n,m}VT
XVXLX,min{n,m}VT

X (3.14)
= (XTX)2

min{n,m} .

We thus have

ΣT
mΣn =

(︂
ΣTΣ

)︂
m

(︂
ΣTΣ

)︂+
ΣTΣ

(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
n

=
(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
m

(︂
ΣTΣ

)︂
n

=
(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
min{n,m}

(︂
ΣTΣ

)︂
min{n,m}

(3.15)

= ΣT
min{n,m}Σmin{n,m} .
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Similarly,
ΛT

mΛn = ΛT
min{n,m}Λmin{n,m}. (3.16)

We now introduce two properties that show that non-intersecting differences
of filtered Star or Loop bases are mutually orthogonal and thus generate linearly
independent spaces. Given integers such that m < n < p < q, we have

(Σm − Σn)T (Σp − Σq) = ΣT
m (Σp − Σq) − ΣT

n (Σp − Σq) = 0, (3.17)

and similarly,
(Λm − Λn)T (Λp − Λq) = 0 . (3.18)

These properties are useful to build invertible changes of basis.

Generalization for Inhomogeneous Meshes

When the discretization of the geometry is inhomogeneous, both the standard
discretizations of the EFIE and the graph Laplacian matrices may fail to properly
mimic the spectral properties of their continuous counterparts, resulting in an ill-
conditioning of the matrix. In order to improve the performance of the solver in
such cases, we introduce a version of EFIE and Loop-Star matrices normalized with
fractional power of Gram matrices, in particular we define

T̃ = G−1/2TG−1/2 , (3.19)
T̃s = G−1/2TsG−1/2 , (3.20)
T̃h = G−1/2ThG−1/2 , (3.21)

and

Σ̃ = G−1/2ΣG1/2
p , (3.22)

Λ̃ = G1/2ΛG−1/2
λ . (3.23)

Consistently, the normalized filtered Loop-Star matrices ((3.11) and (3.12)) are
defined as

Σ̃n = Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

n
, (3.24)

Λ̃n = Λ̃
(︃

Λ̃TΛ̃
)︃+ (︃

Λ̃TΛ̃
)︃

n
. (3.25)

When we work with dual Loop-Star decomposition matrices, the normalization
need to be consistent with the dual basis functions used for the discretization, so
we also define the dually-normalized Loop and Star transformation matrices as

Σ̃ = G1/2ΣG−1/2
λ̃

, (3.26)
Λ̃ = G−1/2ΛG1/2

p̃ , (3.27)

30



3.3 – A Novel Preconditioning Technique for Electromagnetic Integral Equations

and consequently

Σ̃n = Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

n
, (3.28)

Λ̃n = Λ̃
(︃

Λ̃TΛ̃
)︃+ (︃

Λ̃TΛ̃
)︃

n
. (3.29)

The orthogonality properties are maintained also from the primal and dual
normalized Loop-Star, so we have

Λ̃TΣ̃ = G−1/2
λ ΛTG1/2G−1/2ΣG1/2

p = 0 , (3.30)

Σ̃TΛ̃ = G1/2
p̃ ΣTG−1/2G1/2ΛG−1/2

λ̃
= 0 , (3.31)

because ΣTΛ = 0. Moreover, since (3.14) holds, we also have that

Σ̃T
mΣ̃n = Σ̃T

min{n,m}Σ̃min{n,m} , (3.32)

Λ̃T
mΛ̃n = Λ̃T

min{n,m}Λ̃min{n,m} , (3.33)

Λ̃T
mΛ̃n = Λ̃T

min{n,m}Λ̃min{n,m} , (3.34)

Σ̃T
mΣ̃n = Σ̃T

min{n,m}Σ̃min{n,m} . (3.35)

Finally, also the counterparts of (3.17) and (3.18) can be obtained by replacing each
matrix with its normalized (“tilde”) counterpart. The other properties previously
presented for the the standard non-normalized filtered Loop-Star matrices also hold.

3.3.2 Quasi-Helmholtz Laplacian Filters
We now leverage the above defined filtered Loop-Star functions to introduce

the quasi-Helmholtz Laplacian filters. Similarly to what is done with the quasi-
Helmholtz projectors, we have an implicit Helmholtz decomposition, that allows
us to implement the proposed preconditioning approach. Indeed, similarly to what
is done with the standard quasi-Helmholtz projectors, we can obtain the quasi-
Helmholtz Laplacian filters, which offer the same preconditioning capabilities as
the filtered Loop and Star bases and at the same the advantages of a basis-free
technique, avoiding the need of detection of global-loop for multiply connected
scatterers.
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The Standard Case

Following the definitions (3.5) and (3.6), and replacing the standard Loop-Star
basis with the new filtered sets, we obtain

Σn

(︂
ΣT

n Σn

)︂+
ΣT

n = Σ
(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
n(︃(︂

ΣTΣ
)︂

n

(︂
ΣTΣ

)︂+
ΣTΣ

(︂
ΣTΣ

)︂+ (︂
ΣTΣ

)︂
n

)︃+

(︂
ΣTΣ

)︂
n

(︂
ΣTΣ

)︂+
ΣT = Σ

(︂
ΣTΣ

)︂+

n
ΣT , (3.36)

and, similarly,
Λn

(︂
ΛT

n Λn

)︂+
ΛT

n = Λ
(︂
ΛTΛ

)︂+

n
ΛT . (3.37)

From this we define the primal quasi-Helmholtz Laplacian filters

PΣ
n = Σ

(︂
ΣTΣ

)︂+

n
ΣT , (3.38)

PΛH
n = Λ

(︂
ΛTΛ

)︂+

n
ΛT + I − PΣ − PΛ (3.39)

and dual ones

PΛ
n = Λ

(︂
ΛTΛ

)︂+

n
ΛT , (3.40)

PΣH
n = Σ

(︂
ΣTΣ

)︂+

n
ΣT + I − PΛ − PΣ . (3.41)

Note that, in the special case of simply connected geometries PΛH
n = Λ

(︂
ΛTΛ

)︂+

n
ΛT

and PΣH
n = Σ

(︂
ΣTΣ

)︂+

n
ΣT since PΛ + PΣ = I. In addition, in case n = NX , we

have

PΣ
NS

= PΣ , (3.42)
PΛ

NL
= PΛ , (3.43)

PΛH
NL

= PΛ + I − PΣ − PΛ = PΛH , (3.44)
PΣH

NS
= PΣ + I − PΛ − PΣ = PΣH , (3.45)

which means that, the quasi-Helmholtz Laplacian filters converge to the standard
quasi-Helmholtz projectors in such cases.

Properties

Here we list some useful properties of the quasi-Helmholtz Laplacian filters that
are retrieved from their definitions. Primarily, we can see that the filters are still
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projectors, since

PΣ
n PΣ

n = Σ
(︂
ΣTΣ

)︂+

n
ΣTΣ

(︂
ΣTΣ

)︂+

n
ΣT

= Σ
(︂
ΣTΣ

)︂+

n
ΣT = PΣ

n ,
(3.46)

PΛ
nPΛ

n = Λ
(︂
ΛTΛ

)︂+

n
ΛTΛ

(︂
ΛTΛ

)︂+

n
ΛT

= Λ
(︂
ΛTΛ

)︂+

n
ΛT = PΛ

n ,
(3.47)

and, similarly,
PΛH

n PΛH
n = PΛH

n , (3.48)
PΣH

n PΣH
n = PΣH

n . (3.49)

In addition, using the properties ΣTΛ = 0 and ΣT
(︂
I − PΣ − PΛ

)︂
= 0, we also

have that ∀m, n

PΣ
mPΛH

n = Σ
(︂
ΣTΣ

)︂+

n
ΣTΛ

(︂
ΛTΛ

)︂+

n
ΛT + Σ

(︂
ΣTΣ

)︂+

n
ΣT

(︂
I − PΣ − PΛ

)︂
(3.50)

= 0 , (3.51)
and similarly for the dual projectors

PΛ
mPΣH

n = 0 , ∀m, n . (3.52)
For integers m < n < p < q, using (3.14), we have the following orthogonality

properties (︂
PΣ

m − PΣ
n

)︂ (︂
PΣ

p − PΣ
q

)︂
=
(︃

Σ
(︂
ΣTΣ

)︂+

m
ΣT − Σ

(︂
ΣTΣ

)︂+

n
ΣT

)︃
(︃

Σ
(︂
ΣTΣ

)︂+

p
ΣT − Σ

(︂
ΣTΣ

)︂+

q
ΣT

)︃
= Σ

(︂
ΣTΣ

)︂+

m
ΣT − Σ

(︂
ΣTΣ

)︂+

m
ΣT

+ Σ
(︂
ΣTΣ

)︂+

n
ΣT − Σ

(︂
ΣTΣ

)︂+

n
ΣT = 0 ,

(3.53)

and (︂
PΛ

m − PΛ
n

)︂ (︂
PΛ

p − PΛ
q

)︂
= 0 . (3.54)

Finally, given that PΛH
n −PΛH

m = PΛ
n −PΛ

m and PΣH
n −PΣH

m = PΣ
n −PΣ

m ∀n, m—which
can be deduced from (3.39) and (3.41)—the remaining properties(︂

PΛH
m − PΛH

n

)︂ (︂
PΛH

p − PΛH
q

)︂
= 0 , (3.55)(︂

PΣH
m − PΣH

n

)︂ (︂
PΣH

p − PΣH
q

)︂
= 0 (3.56)

follow. All the properties listed above are used to build invertible transforms,
similarly to what is done with their basis-based counterpart (3.17).
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Generalization for Inhomogeneous Meshes

Also in this case we propose the generalized version for inhomogeneous mesh,
similarly to what is done for the non-filtered counterpart, defining the normalized
quasi-Helmholtz projectors

P̃Σ = Σ̃
(︃

Σ̃TΣ̃
)︃+

Σ̃T
, (3.57)

P̃Λ = Λ̃
(︃

Λ̃TΛ̃
)︃+

Λ̃T
. (3.58)

As it is proved in appendix A, also the complementarity property

P̃Σ = I − P̃Λ (3.59)

holds on simply connected geometries, while on general geometries, using the defini-
tions (3.24) and (3.25), we define the normalized quasi-Helmholtz Laplacian filters

P̃Σ
n = Σ̃

(︃
Σ̃TΣ̃

)︃+

n
Σ̃T

, (3.60)

P̃ΛH

n = Λ̃
(︃

Λ̃TΛ̃
)︃+

n
Λ̃T + I − P̃Σ − P̃Λ

. (3.61)

Analogously we define the normalized dual quasi-Helmholtz projectors as

P̃Λ = Λ̃
(︃

Λ̃TΛ̃
)︃+

Λ̃T
, (3.62)

P̃Σ = Σ̃
(︃

Σ̃TΣ̃
)︃+

Σ̃T
, (3.63)

again with the property
P̃Λ = I − P̃Σ (3.64)

holding on simply connected geometries (see appendix A). Finally, we define the
normalized dual quasi-Helmholtz Laplacian filters

P̃Λ
n = Λ̃

(︃
Λ̃TΛ̃

)︃+

n
Λ̃T

, (3.65)

P̃ΣH

n = Σ̃
(︃

Σ̃TΣ̃
)︃+

n
Σ̃T + I − P̃Λ − P̃Σ

. (3.66)

Since the primal and dual normalized Loop-Star bases still satisfy the orthogo-
nality properties (3.30) and (3.31) and because of the properties (3.32)-(3.35), the
same reasoning yields all counterparts of the properties (3.46)-(3.56), after replacing
each matrix with its normalized (“tilde”) counterpart.
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3.3.3 Efficient Filtering Algorithms
The filtered Loop-Star functions as previously defined, require the usage of the

SVD that requires a number of operations that scales as O(N2) for sparse matrices
and as O(N3) for full matrices. As mentioned in section 3.1, these scalings are not
compatible with the computational complexity required on fast solvers. For this
reason, in this section we present some algorithms that allow to build in linear or
quasi-linear complexity the filtered Loop-Star functions and of the quasi-Helmholtz
Laplacian filters. The proposed approach deals with the standard Σ and Λ, but,
with minor modifications, similar strategies can be applied when replacing those
matrices with their normalized counterparts Σ̃ and Λ̃. In particular, the additional
products with the inverse square roots of well-conditioned Gram matrices can be
obtained efficiently by using matrix function strategies [50].

Power Method Filtering

Fixing the filtering index n to a quantity that does not depend on the number
of unknowns N , it is possible to use filters built with preconditioned inverse power
methods [40]. This algorithm allows to get the n smallest singular values and
singular vectors of sparse matrices in O(nN) operations. The scheme is well known
in literature and their application for the filters building comes straightforwardly
from their definition, but particular attention should be given in case of degenerate
spectra. For these cases, similar schemes such as the subspace iteration [19] or
Lanczos methods [88] can be employed, or alternatively other schemes presented in
the following.

Butterworth Matrix Filters

Considering again the scenario in which the filtering index n fixed to a quantity
that does not depend on the number of unknowns N , an alternative is to combine a
matrix function approach with a filtering one. Given a scalar squared Butterworth
filter of positive order m and cutoff parameter xc > 0, described by

fm,xc(x) = (1 + (x/xc)m)−1 , x ≥ 0 , (3.67)

the spectrum of a positive semidefinite matrix A ∈ RN×N composed of the set of
singular values {σi(A)}i can be filtered by generalizing fm,xc to matrix arguments
and applying it to A, yielding the filtered matrix

Afilt := fm,xc(A) = (I + (A/xc)m)−1 , (3.68)

with singular values {fm,xc (σi(A))}i. So, the matrix
(︂
ΣTΣ

)︂
n

can be expressed as
(︂
ΣTΣ

)︂
n

= (ΣTΣ) lim
m→∞

fm,σn(ΣTΣ)

(︂
ΣTΣ

)︂
. (3.69)
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However, the presence of high exponents in (3.69) may render its computation un-
stable. For this reason, we propose the usage of the following factorization formula
that leverages the roots of unity

(︂
ΣTΣ

)︂
n

=
(︂
ΣTΣ

)︂
lim

m→∞

m∏︂
k=1

(︄
ΣTΣ

σn(ΣTΣ)
− e(2k+1)iπ/N I

)︄−1

. (3.70)

Clearly, in practice the infinite products in this expression is truncated when the
desired precision is reached. Regarding the value of σn(ΣTΣ), an approximation
can be obtained either with ad-hoc heuristics or by the approximation σn(ΣTΣ) ≈
(Ns −n)/∥

(︂
ΣTΣ

)︂+
∥. Finally, when the filtering point is a constant with respect to

the number of unknowns, a multigrid approach is effective in providing the inversion
required by (3.70) [102].

Filter Approximation via Chebyshev Polynomials

We now propose a strategy for the scenarios where the filtering index n is
proportional to the number of unknowns N (for instance, n = NS/2). To avoid the
computational burden previously described, we leverage the ideas of polynomial
preconditioning and graph wavelets [53, 14, 47, 62] and adopt a method based on a
polynomial expansion of the spectral filter. In particular, we leverage a polynomial
approximation of fm,xc on the interval [0, σNS

(ΣTΣ)]. The Chebyshev polynomials
{Tn(x)}n represent a natural basis for this approximation, and we define them by
the recurrence relation

Tn(x) =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 0
x if n = 1
2xTn−1(x) − Tn−2(x) otherwise.

(3.71)

The approximated filtered matrix now reads

(︂
ΣTΣ

)︂
n

≈ −c0

2 I +
nc∑︂

k=1
ckTk

(︄
ΣTΣ

σn(ΣTΣ)

)︄
, (3.72)

where the cn are the expansion coefficients of fm,σn(ΣTΣ) in the basis of the first nc+1
Chebyshev polynomials that can be computed as proposed in [89]. The order of the
polynomial required to obtain a given approximation of the Butterworth filter, does
not need to be changed with increasing discretizations, because the cutoff frequency
of this filter is proportional to the number of unknowns and so is the domain size.
In other words, the filters obtained by following this approach require the same
number of sparse matrix-vector multiplication for increasing discretization when
the filtering index is proportional to the number of degrees of freedom.
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3.3.4 Laplacian Filter Applied to Preconditioning
A first application case of the introduced filters is their usage in developing two

families of preconditioners for the EFIE defined in (2.101). As already mentioned
in section 3.2, this equation is known to suffer from both the low-frequency and
dense-discretization breakdowns. Both these conditioning issues are cured by the
preconditioners obtained with the filtered functions decompositions or with the
quasi-Helmholtz Laplacian filters.

Note that in this Section and in the subsequent ones, we will study the singular
value spectrum of potentially singular matrices. When dealing with such matrices,
the condition number will be defined as cond(A) = ∥A∥∥A+∥. Moreover, inverse
powers of singular matrices in the following will always denote the corresponding
positive power of the pseudoinverse of the matrix.

Filtered Bases Approach

There exists in literature some preconditioning techniques for the single layer
and the hypersingular operator based on primal and dual Laplacians [85, 84, 3, 87].
This means that VΛ, and VΣ combined with proper diagonal preconditioning are
valid bases for regularizing the vector and scalar potential parts of the EFIE and
avoid the dense-discretization breakdown.

For the hypersingular operator matrix Th, this results comes from the fact
that an operator spectrally equivalent to the single layer can be obtained from
it. In fact, noticing that Th = ΣTρ

s ΣT [113], where Tρ
s is the patch-function dis-

cretization of the single layer operator, i.e. [Tρ
s ]mn = ⟨ρm, Sρn⟩. We also define

T̃ρ

s := G−1/2
p Tρ

s G−1/2
p , we obtain T̃h = Σ̃T̃ρ

s Σ̃T, and it follows the equivalence be-

tween
(︃

Σ̃TΣ̃
)︃+

Σ̃TT̃hΣ̃
(︃

Σ̃TΣ̃
)︃+

and T̃ρ

s . We know from pseudo-differential theory
that (︃

Σ̃TΣ̃
)︃1/4

T̃ρ

s

(︃
Σ̃TΣ̃

)︃1/4
= ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃T̃ρ

s ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃ , (3.73)

is well conditioned even for increasing discretization, as is proven in [87]. This is
because Σ̃TΣ̃ is a valid discretization of a Laplacian matrix [13] and for h → 0 we
have

cond
(︄

ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃

(︃
Σ̃TΣ̃

)︃+
Σ̃TT̃h Σ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃

)︄
= O(1).

(3.74)
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Since ṼΣ̃ is unitary, we can simplify the previous equation and get

cond
(︄

ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃

(︃
Σ̃TΣ̃

)︃+
Σ̃TT̃h Σ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃

)︄
=

(3.75)

cond
(︄(︃

S̃T
Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃

(︃
Σ̃TΣ̃

)︃+
Σ̃TT̃h Σ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
)︄

.

(3.76)

However, such an approach would require the computation of the matrix ṼΣ̃ and
S̃Σ̃ which are prohibitively expensive to obtain. Fortunately, we do not need to
use the entire diagonal of S̃Σ̃, but it is sufficient to take a logarithmic sampling of
its elements only. In mathematical terms, we define DΣ̃ the vector containing the
entries of the diagonal of S̃T

Σ̃S̃Σ̃ and the block diagonal matrix

D̃Σ̃,α = diag
(︂
[DΣ̃]NS−NS,α+1 INrem

S,α
, [DΣ̃]

NS−
NS,α

α
+1

INS,α
α

, . . . , [DΣ̃]NS
I1

)︃
, (3.77)

where NS,α = α⌊logα(NS)⌋, N rem
S,α = NS − (1 − NS,α) (1 − α)−1, and In is the identity

matrix of size n. With more implementation-oriented definition, we can compute
the diagonal elements of D̃Σ̃,α as[︂

D̃Σ̃,α

]︂
ii

= [DΣ̃]fΣ̃(i) , (3.78)

with fΣ̃(i) = NS − α⌊logα(NS−i+1)⌋ + 1. Note that the construction of this matrix
only requires explicit knowledge of logα(NS) terms of DΣ̃. Similarly to what happen
with hierarchical strategies [6], it can be shown that for h → 0 we have

cond
(︄

D̃1/4
Σ̃,αṼT

Σ̃

(︃
Σ̃TΣ̃

)︃+
Σ̃TT̃hΣ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃D̃1/4

Σ̃,α

)︄
= O(α) = O(1) , (3.79)

Because ṼΣ̃ is unitary, we obtain equivalently

cond
(︄

ṼΣ̃D̃1/4
Σ̃,αṼT

Σ̃

(︃
Σ̃TΣ̃

)︃+
Σ̃TT̃h Σ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃D̃1/4

Σ̃,αṼT
Σ̃

)︄
= O(α) = O(1) .

(3.80)
Note that this is symmetric left and right preconditioning scheme. We now intro-
duce an additional Laplacian in (3.74), adjusting the exponent of S̃T

Σ̃S̃Σ̃ accordingly,
so we have

Σ̃
(︃

Σ̃TΣ̃
)︃+

ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃1/4
ṼT

Σ̃ = Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

ṼΣ̃

(︃
S̃T

Σ̃S̃Σ̃

)︃−3/4
ṼT

Σ̃ . (3.81)
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This allows to leverage the filtered basis presented in section 3.3.1, in particular,
thanks to the properties introduced there, we have

Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

ṼΣ̃D̃−3/4
Σ̃,α ṼT

Σ̃ = (3.82)
NS,α∑︂
l=2

(︂
Σ̃αl−1 − Σ̃αl−1−1

)︂
[DΣ̃]−3/4

NS−αl−1+1 +
(︂
Σ̃ − Σ̃

α
NS,α −1

)︂
[DΣ̃]−3/4

NS−NS,α+1 =: Σ̃p,α

(3.83)

and thus from (3.81) and (3.82) it follows that

cond
(︃

Σ̃T
p,αT̃hΣ̃p,α

)︃
= O(1) , h → 0 . (3.84)

A similar approach can be used to precondition T̃s, starting from the fact that

cond
(︄(︃

S̃T
Λ̃ S̃Λ̃

)︃−1/4
ṼT

Λ̃ Λ̃TT̃sΛ̃ṼΛ̃

(︃
S̃T

Λ̃ S̃Λ̃

)︃−1/4
)︄

= O(1) (3.85)

and that for h → 0

cond
(︄

ṼΛ̃

(︃
S̃T

Λ̃ S̃Λ̃

)︃−1/4
ṼT

Λ̃ Λ̃TT̃s Λ̃ṼΛ̃

(︃
S̃T

Λ̃ S̃Λ̃

)︃−1/4
ṼT

Λ̃

)︄
= O(1) . (3.86)

Dually to what is done in the previous section, for h → 0 we also have

cond
(︃

Λ̃T
p,αT̃sΛ̃p,α

)︃
= O(1). (3.87)

where

Λ̃
(︃

Λ̃TΛ̃
)︃+ (︃

Λ̃TΛ̃
)︃

ṼΛ̃D̃−1/4
Λ̃,α ṼT

Λ̃ = (3.88)
NL,α∑︂
l=2

(︂
Λ̃αl−1 − Λ̃αl−1−1

)︂
[DΛ̃]−1/4

NL−αl−1+1 +
(︂
Λ̃ − Λ̃

α
NL,α −1

)︂
[DΛ̃]−1/4

NL−NL,α+1 =: Λ̃p,α ,

(3.89)

and

D̃Λ̃,α = diag
(︂
[DΛ̃]NL−NL,α+1 INrem

L,α
, [DΛ̃]

NL−
NL,α

α
+1

INL,α
α

, . . . , [DΛ̃]NL
I1

)︃
, (3.90)

with N rem
L,α = NL − (1 − NL,α) (1 − α)−1, DΛ̃ the vector containing the elements of

the diagonal of S̃T
Λ̃ S̃Λ̃, and NL,α = α⌊logα(NL)⌋.
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The previous preconditioners can then be combined to obtain a complete reg-
ularization of the EFIE system, for both low-frequency and dense-discretization
breakdowns, that reads

W̃TT̃W̃j̃ = W̃Tṽ , (3.91)

where ṽ = G−1/2v, j = G−1/2W̃j̃, W̃ =
[︂√

cΛ̃Λ̃p,α
√

cΣ̃Σ̃p,α

]︂
, cΣ̃ = ∥Σ̃T

p,αT̃hΣ̃p,α∥−1,
cΛ̃ = ∥Λ̃T

p,αT̃sΛ̃p,α∥−1, and where we assume that the appropriate number of columns
have been removed from Σ̃p,α and Λ̃p,α. In particular, for a simply connected and
closed scatterer, one column must be removed from each of the two, to account for
the linear dependence in the underlying Loop and Star bases [108], as is done in
standard Loop-Star preconditioning. Lamentably, as in the case of standard Loop-
Star functions, this operations creates a small number of isolated zero singular
values, that however will not impact the convergence properties of the precondi-
tioned equation. Differently, this effect is not present in the scheme presented in
the next Section.

The dense-discretization regularization effect of this preconditioner can be de-
duced from the previous derivations for each of the potentials [20]. The low fre-
quency regularization, can be demonstrated following the same reasoning as for
standard Loop-Star approaches [6], since the new filtered bases retain the crucial
properties that made Loop-Star so adapted for low-frequency regularization in the
first place—Λ̃T

p,αT̃h = 0, T̃hΛ̃p,α = 0, and Λ̃T
p,αΣ̃p,α = 0. Finally, we have

cond
(︃

W̃TT̃W̃
)︃

= O(1) , when h → 0 , k → 0 . (3.92)

Quasi-Helmholtz Filters Approach

In several application scenarios, an explicit quasi-Helmholtz decomposition,
such as the Loop-Star decomposition, is not necessary, and quasi-Helmholtz pro-
jectors could be used instead [6]. Similarly, instead of using filtered Loop-Star
preconditioning approaches, basis-free approaches based on the quasi-Helmholtz
Laplacian filters, are often more effective. In this section we explore this approach
that, as an additional advantage, avoid the computational overhead of global-loop
detection for multiply connected scatterers.

Similarly to what is done in the previous section, we combine a preconditioner
for the solenoidal part of T̃s with a preconditioner for T̃h, in order to precondition
the full EFIE. The transition from the bases approach to the projector one is done
by leveraging the correspondences between Σ̃ and Λ̃ and their respective projectors
P̃Σ and P̃Λ. In particular, because

B̃Σ̃ := Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

ṼΣ̃D̃−3/4
Σ̃,α ṼT

Σ̃ (3.93)
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is a valid left and right symmetric preconditioner for T̃h, we can apply
[︂
B̃Σ̃ 0

]︂
left and right to T̃h, yielding a block diagonal matrix which, away from its large
nullspace, is well conditioned. This, in turns, means that using

[︂
C̃Σ̃ 0

]︂
, with

C̃Σ̃ := Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

ṼΣ̃D̃−5/4
Σ̃ ṼT

Σ̃ṼΣ̃D̃1/2
Σ̃ (3.94)

also yields a well-conditioned matrix (up to its nullspace). Finally, because multi-
plications by unitary matrices do not compromise conditioning properties, we can
form the preconditioner

Σ̃
(︃

Σ̃TΣ̃
)︃+ (︃

Σ̃TΣ̃
)︃

ṼΣ̃D̃−5/4
Σ̃ ṼT

Σ̃ṼΣ̃

[︂
D̃1/2

Σ̃ 0
]︂

ŨT
Σ̃ = Σ̃

(︃
Σ̃TΣ̃

)︃+
ṼΣ̃D̃−1/4

Σ̃ ṼT
Σ̃Σ̃T

.

(3.95)
This allows us to form the preconditioner Q̃Σ̃

p,α, of additive Schwarz type, based on
quasi-Helmholtz Laplacian filters

Σ̃
(︃

Σ̃TΣ̃
)︃+

ṼΣ̃D̃−1/4
Σ̃ ṼT

Σ̃Σ̃T = (3.96)
NS,α∑︂
l=2

(︃
P̃Σ̃

αl−1 − P̃Σ̃
αl−1−1

)︃
[DΣ̃]−1/4

NS−αl−1+1 +
(︃

P̃Σ̃ − P̃Σ̃
α

NS,α −1

)︃
[DΣ̃]−1/4

NS−NS,α+1 =: Q̃Σ̃
p,α

(3.97)
for which

cond
(︃

Q̃Σ̃
p,αT̃hQ̃Σ̃

p,α

)︃
= O(1) , h → 0 . (3.98)

Similarly, a preconditioner for the solenoidal part of T̃s is

Q̃Λ̃
p,α :=

NL,α∑︂
l=2

(︃
P̃Λ̃

αl−1 − P̃Λ̃
αl−1−1

)︃
[DΛ̃]1/4

NL−αl−1+1 +
(︃

P̃Λ̃ − P̃Λ̃
α

NL,α −1

)︃
[DΛ̃]1/4

NL−NL,α+1

(3.99)
for which

cond
(︃

Q̃Λ̃
p,αT̃sQ̃

Λ̃
p,α

)︃
= O(1) , h → 0 . (3.100)

The full EFIE preconditioner is then an appropriate linear combination of the
solenoidal and non-solenoidal preconditioners above to cure also the low-frequency
breakdown. In particular we define

Q̃ =
√︂

bΛ̃Q̃Λ̃
p,α + i

√︂
bΣ̃Q̃Σ̃

p,α +
√︂

bH̃P̃H
, (3.101)

where P̃H = I − P̃Σ − P̃Λ and

bΛ̃ = ∥Q̃Λ̃
p,αT̃sQ̃

Λ̃
p,α∥−1 , (3.102)

bΣ̃ = ∥Q̃Σ̃
p,αT̃hQ̃Σ̃

p,α∥−1 , (3.103)

bH̃ = ∥P̃H̃T̃sP̃
H∥−1 , (3.104)
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account for the frequency-scaling of the operators and the diameter of Γ. The
preconditioned EFIE system is

Q̃T̃Q̃j̃qH = Q̃ṽ , (3.105)

with j = G−1/2Q̃j̃qH.

3.3.5 Implementation Related Details and Further Improve-
ments

The usage of the efficient filtering algorithms presented in section 3.3.3 is not
sufficient to obtain a fast and efficient implementation of the proposed precondi-
tioning scheme. A first precaution is to explicitly set to 0 all the terms of the
form ThQΛ

p,α, QΛ
p,αTh, PHTh, or ThPH , in order to avoid numerical instabilities. In

addition, further treatments on the right hand side and on the solution vector are
required to ensure that the solution of the system remains accurate until arbitrarily
low frequencies. These treatments are straightforward generalization of those re-
quired for standard quasi-Helmholtz preconditioning techniques that can be found
in [5].

It is also possible to further lower the resulting condition number of the schemes
by slightly modifying the preconditioners. In particular, the diagonal precondi-
tioning based on the theoretical Laplacian eigenvalues can be modified using the
matrices norms, resulting in the new preconditioners

QΣ
p,α =

NS,α∑︂
l=2

(︂
PΣ

αl−1 − PΣ
αl−1−1

)︂
bl +

(︂
PΣ − PΣ

α
NS,α −1

)︂
bNS,α+1 , (3.106)

where

bl =
⃦⃦⃦⃦(︂

PΣ
αl−1 − PΣ

αl−1−1

)︂T
Th

(︂
PΣ

αl−1 − PΣ
αl−1−1

)︂⃦⃦⃦⃦−1/2
2 ≤ l ≤ NS,α ,

(3.107)

bNS,α+1 =
⃦⃦⃦⃦(︂

PΣ − PΣ
α

NS,α −1

)︂T
Th

(︂
PΣ − PΣ

α
NS,α −1

)︂⃦⃦⃦⃦−1/2
, (3.108)

and

QΛ
p,α =

NL,α∑︂
l=2

(︂
PΛ

αl−1 − PΛ
αl−1−1

)︂
dl +

(︂
PΛ − PΛ

α
NL,α −1

)︂
dNS,α+1 , (3.109)

with

dl =
⃦⃦⃦⃦(︂

PΛ
αl−1 − PΛ

αl−1−1

)︂T
Ts
(︂
PΛ

αl−1 − PΛ
αl−1−1

)︂⃦⃦⃦⃦−1/2
, 2 ≤ l ≤ NL,α ,

(3.110)

dNS,α+1 =
⃦⃦⃦⃦(︂

PΛ − PΛ
α

NL,α −1

)︂T
Ts
(︂
PΛ − PΛ

α
NL,α −1

)︂⃦⃦⃦⃦−1/2
. (3.111)
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To avoid that the overall complexity of the algorithm increases, the values of {bl}l

and {dl}l can be efficiently computed using, for example, power methods (in this
case only to compute the norm of the matrix, and not to build a filter).

In conclusion, the overall efficient scheme can be obtained by combining the
usage of Chebyshev filters to build the band-pass/high-pass filters with filtering
indices that depends on N and the usage of power methods filtering or high order
Butterworth matrix filters for the initial low-pass filters, where Chebyshev filters’
performance can be poor. However, keeping the same truncation for the Chebyshev
filters could render them less efficient in the transition region, as they decrease in
efficiency away from the middle of the spectrum [62]. Fortunately, all precondition-
ing real case scenarios presented here, are not impacted by this fact as shown in
the following section on numerical results.

3.4 Numerical Results
The following results are obtained with non-normalized matrices (Λ, Σ). This

also highlight that in practical cases it is not necessary to use normalized matrices
(Λ̃, Σ̃). The first set of results are obtained using filters based on SVD, focusing
on the performance of the new filtering approach, leaving to the last set of results
the focus on SVD-free implementation.

Figures 3.1 and 3.2 illustrate the spectral equivalence of Ts and Th and ap-
propriately scaled base obtained with the filtered Loop-Star preconditioning ap-
proach. The shown (ordered) spectra are obtained by projecting the operator ma-
trices against the eigenvectors of the graph Laplacians. The spectrum of the not
preconditioned version of Ts and Th respectively show, as predicted by pseudo-
differential operator theory, a trend of ξ−1/2 and ξ1/2, where ξ is the spectral index.
Indeed, the preconditioners prove to be effective in countering this trend and thus
preconditioning operators.

The capability of the filtered bases preconditioning schemes in regularizing the
EFIE is shown in fig. 3.3. Here we show the condition number of the EFIE, the
Loop-Star regularized EFIE and the filtered Loop-Star regularized EFIE (eq. (3.91))
for varying frequencies and discretization on the NASA almond [110]. It can be
noticed that the standard Loop-Star approach regularize the low frequency condi-
tioning breakdown, but not the dense discretization breakdowns, while the proposed
approach is capable of regularizing the both.

Similarly to what is done for the filtered bases preconditioning schemes, in
figs. 3.4 and 3.5 we show the spectra of the solenoidal and non-solenoidal parts
of the EFIE obtained leveraging the filtered projectors schemes. Figure 3.6 shows
the preconditioning performance on the overall EFIE system for a torus geometry.
This also proves that the scheme can handle multiply-connected geometries.

Finally, as anticipated, we show some result obtained with SVD-free filter. In
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particular, fig. 3.7 shows the conditioning study of the NASA almond obtained
using Chebyshev-interpolated filters (eq. (3.72)), approximating Butterworth filters
of order 100 with 200 Chebyshev polynomials. The presented fast preconditioned
scheme proves to be stable also for a structure such as the NASA almond.
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Figure 3.1: Filtered Loop-Star preconditioning approach: Spectra (normalized so
that their first singular value is one) of the solenoidal part of the vector potential, its
preconditioner, and its preconditioned counterpart obtained for a smoothly-deformed
sphere with a maximum diameter 7.17 m, frequency 106 Hz, and two different aver-
age edge lengths h 0.31 m and 0.20 m.

3.5 Conclusions
In this chapter we introduced the main conditioning issues arising when dealing

with electromagnetic integral equations and we proposed a new family of strategies
for solving the low-frequency and the dense-discretization breakdowns. In addi-
tion, we also introduced the concept of fast solvers and we discussed techniques
to make the new family of preconditioning strategies compatible with it. Prelim-
inary application of frequency and h-refinement preconditioning of the EFIE has
been presented and numerical results show the practical effectiveness of the newly
proposed schemes.
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Figure 3.2: Filtered Loop-Star preconditioning approach: Spectra (normalized so
that their first singular value is one) of the non-solenoidal part of the vector poten-
tial, its preconditioner, and its preconditioned counterpart obtained for a smoothly-
deformed sphere with a maximum diameter 7.17 m, frequency 106 Hz, and two dif-
ferent average edge lengths h 0.31 m and 0.20 m.
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Figure 3.3: Filtered Loop-Star preconditioning approach:Condition number (ob-
tained after eliminating the isolated singular values by deletion of one column from
each preconditioning matrices) of the EFIE eq. (2.101), Loop-Star EFIE, and fil-
tered Loop-Star EFIE eq. (3.91) as a function of discretization for several frequen-
cies. The simulated structure is the NASA almond re-scaled to be enclosed in a
bounding box of diameter 1.09 m.
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Figure 3.4: Filtered projectors preconditioning approach: Spectra (normalized so
that their first singular value is one) of the solenoidal part of the vector potential, its
preconditioner, and its preconditioned counterpart obtained for a smoothly-deformed
sphere with a maximum diameter 7.17 m, frequency 106 Hz, and two different aver-
age edge lengths h 0.31 m and 0.20 m.
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Figure 3.5: Filtered projectors preconditioning approach: Spectra (normalized so
that their first singular value is one) of the non-solenoidal part of the vector poten-
tial, its preconditioner, and its preconditioned counterpart obtained for a smoothly-
deformed sphere with a maximum diameter 7.17 m, frequency 106 Hz, and two dif-
ferent average edge lengths h 0.31 m and 0.20 m.
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Figure 3.6: Filtered projectors preconditioning approach: Condition number (ob-
tained after eliminating the isolated singular values by deletion of one column from
each preconditioning matrices) of the EFIE eq. (2.101), quasi-Helmholtz (qH) pro-
jector EFIE, and filtered qH projector EFIE eq. (3.105) as a function of discretiza-
tion for several frequencies. The simulated structure is a torus with inner radius
0.9 m and outer radius 1.1 m.
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Figure 3.7: SVD-free filtered projectors preconditioning approach: Condition
number of the EFIE eq. (2.101), quasi-Helmholtz (qH) projector EFIE, and fil-
tered qH projector EFIE eq. (3.105) as a function of discretization. The simulated
structure is the NASA almond re-scaled to be enclosed in a bounding box of diam-
eter 1.09 m. The filters obtained with Chebyshev-interpolated Butterworth filters of
order 100, expanded into 200 Chebyshev polynomials.
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Chapter 4

Fast Direct Solution of
Electromagnetic Integral
Equations

As we mentioned in chapter 3, when fast matrix-multiplication algorithms com-
bined with preconditioning technique and iterative solvers are employed, integral
equations strategies are an effective tool for solving scattering and radiation prob-
lems. However, if this approach is used when the solution for numerous RHSs is
required, the repeated use of iterative solvers could lead to a high computational
burden. In those scenarios, fast direct solvers (FDSs), which consist in directly
building a compressed form of the inverse of the system matrix in reduced com-
plexity, are more efficient options. Several effective strategies for direct solutions
are available in literature—they often rely on hierarchical decompositions (see [2,
43, 97] and references therein)—but few of them are suitable to the high-frequency
regime.

With the aim of filling this gap, in this chapter we tackle two problems. First
we solve the conditioning issues appearing in the high-frequency regime that we
mentioned in section 3.2, then we propose a scheme that results in a FDS suitable
for this regime.

4.1 Introduction
In this section we extend the work presented in [31] to other formulations and

application scenarios. First, we introduce the preconditioned equations used in the
scheme, whose operators can be seen as the sum of a principal part contribution
and a remainder. Peculiarly, to build our scheme, we then extract an associated cir-
culant problem. This procedure has the advantage of automatically extracting the
principal part contribution, leaving a remainder that, in case of smooth scatterers,
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can be compressed in favorable complexity. The resulting equation is amenable to a
non-hierarchical FDS, for which a single skeleton form is required, and the solution
for several RHSs can be obtained efficiently. Theoretical considerations are corrob-
orated with numerical results, confirming and showing the practical relevance of
the proposed scheme.

4.2 High Frequency Fast Direct Solver for Two-
Dimensional Smooth Scatterers

The analysis is developed for 2D formulations, however, the same principles can
be applied to 3D formulations.

4.2.1 Notation and Background
The 2D EFIE and MFIE modeling the electromagnetic scattering from a PEC

body given a TE or a TM excitation have already been defined in section 2.4.3.
As a first step to build our solver for high frequency, we define the combined field
integral equation (CFIE) that, as mentioned in section 3.2.3, is a suitable solution
to cure the resonances that appear in high frequency when using the standalone
EFIE or MFIE, that can be observed for example in the spectrum of the MFIE,
shown in fig. 4.1. The figure shows the singular values spectra of the TE-MFIE
for increasing frequency calculated analytically on a circular geometry, ordered
following the Fourier content of the eigenvectors of the operators (spatial frequency).
In particular, the x-axis represents the spectral index of the associated eigenvalue,
associating to the index 0 the highest negative spatial frequency and to the last
index the highest positive spatial frequency, leaving in the middle of each curve the
index associated to the constant eigenvector (null spatial frequency). The TM and
TE CFIEs in 2D read respectively(︄

jkSk + G
2 + D∗,k

)︄
jz = −1

η
ez + ht, (4.1)(︄

− 1
jk

Nk + G
2 − Dk

)︄
jt = −1

η
et − hz , (4.2)

where the superscript k indicates the wavenumber used to compute the matrix
elements (parameter relevant for the following passages). Since we choose equal
balancing between the EFIE and the MFIE in our equations, we omitted the com-
bination coefficient α that is usually present in the CFIEs definition (see for example
[5, Equation 13]).

Unfortunately, in the high-frequency regime the CFIE still shows a condition
number that grows with the frequency. For this reason, our solver is based on a
modified version of the CFIE, introduced in the following section.
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4.2.2 A Suitable Integral Equation and its Spectral Analy-
sis

A well-conditioned and resonance-free equation is obtained by leveraging a mod-
ified version of the preconditioner proposed in [11], resulting, for the TM and TE
modes respectively, in the equations(︄

Nk̃G−1Sk +
(︄

G
2 − D∗,k̃

)︄
G−1

(︄
G
2 + D∗,k

)︄)︄
jz = − 1

jkη
Nk̃G−1ez +

(︄
G
2 − D∗,k̃

)︄
G−1ht ,

(4.3)(︄
Sk̃G−1Nk +

(︄
G
2 + Dk̃

)︄
G−1

(︄
G
2 − Dk

)︄)︄
jt = jk

η
Sk̃G−1et −

(︄
G
2 + Dk̃

)︄
G−1hz ,

(4.4)

where k̃ := k − 0.4jk1/3a−2/3, following [34, 20], with a being a suitable average of
the radii of curvature along Γ. Figure 4.2 shows the analytical spectrum of the left
hand sides (LHS) of eq. (4.4), following the same ordering previously described.
In this case the spectral content of eq. (4.4) is resonance-free and it clusters, as
expected, around the value 0.5. In addition, one can note that it is maximal
around the surface resonant point attained when the spatial frequency equals |ka|.
By retaining the information related to the singular vectors corresponding to this
region of maximal spectral strength, and filtering out the deviation from the halved
identity of the others, allows the compression of the electromagnetic operator in
the high-frequency regime.

Figure 4.1: Continuous spectrum of the 2D TE-MFIE obtained for a cylinder.
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Figure 4.2: Spectrum of the TE version of the modified Calderón CFIE used this
work (continuous counterpart of (4.4)) obtained for a cylinder.

4.2.3 Handling the Error on the Elliptic Spectrum
The spectra of the continuous counterparts of the LHSs of eq. (4.3) and eq. (4.4)

(fig. 4.2) suggest that, by subtracting the identity G/2 to both sides of eq. (4.3)
and eq. (4.4), we can obtain operator matrices which are suitable for compression
in skeleton form. Unfortunately, the discretization error in the elliptic part of the
spectrum of such operators can limit the compressibility when this approach is
employed. Indeed, the discretization causes a constant relative error (with respect
to the identity) in the elliptic spectrum for second kind preconditioned operators,
as shown in fig. 4.3. In this figure, on the y axis we show what we call ordered
singular values, i.e. a form of projection of the operator matrix on the Laplacian
operator of the structure.

As clearly visible from fig. 4.3, by setting a low enough threshold for the com-
pression of such a spectrum, we would include in the skeleton many singular values
in the elliptic spectrum, growing in number with frequency, leading to prohibitive
computational complexity.

To overcome this problem, we adopted a different strategy that is based on sub-
tracting an equivalent circular problem from the operators defined on γ, instead of
simply subtracting the identity G/2. More details on the implementation are given
in section 4.3. The advantage is that, by extracting in this way the second kind part
of the original operators, only a compact operator is left, for which the spectrum
in the elliptic region is decreasing for growing spatial-frequencies. The practical
impact of this strategy is evident when comparing fig. 4.3 with fig. 4.4, which rep-
resents the ordered singular values of the extracted part of eq. (4.4) resulting from
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the subtraction of the equivalent circulant problem. Indeed, differently from the
case above, the compression threshold can be set at an arbitrarily low value without
compromising the accuracy of the results and the computational complexity.

Figure 4.3: Projected singular values of the operator on the LHS of eq. (4.4) after
subtracting G/2.

Figure 4.4: Projected singular values of the operator on the LHS of eq. (4.4) after
subtracting the equivalent circulant problem.

4.3 The Direct Solver and Implementation De-
tails

In this work the geometry is discretized with curvilinear segments that follow
the boundary of the structures, of length lΓ. Practically, cubic splines are used to
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describe the cells of the geometry and parameterize them with a curvilinear abscissa.
Clearly, the resolution is determined by the number of points used to describe
each segment (that is generally way lager then the number of basis functions used
to discretize the problem). The obtained curvilinear cells are the domain of the
triangular basis functions, described in section 2.4.2, used as both source and testing
basis functions. Finally, we consider that the discretization will be uniform for all
the geometries, so the length of each single curvilinear element will be equal to
lΓ/N .

For the implementation of the extraction based on the equivalent circulant prob-
lem, mentioned in section 4.2.3, we consider the manifold describing the boundary
of the studied geometry Γ, with length lΓ, and a circular manifold Γc built such
that its length lΓc equals the one of the manifold under study (lΓ = lΓc). Because
of the symmetries of the circle and up to the choice of the center (irrelevant for our
interest), the determination of this circular manifold is univocal.

Consider now the MoM matrices relative to any of the integral operators in-
volved in eq. (4.3) or eq. (4.4) evaluated on the basis functions lying on Γ and Γc,
generally denoted respectively with O and Oc (from now on, each interaction matrix
relative to the circulant manifold will be distinguished by the subscript c). Given
these definitions, we define our extracted operator as Oe := O − Oc. Note that,
because of the uniformity of the discretization, we have by construction G = Gc.
Moreover, we also notice that each matrix Oc is circulant. Finally, we specify that
the matrices Oe are not built implicitly as subtraction between the O and the Oc

contributions, but by explicit computation, i.e. the extraction is performed at the
operator level by properly modifying the Green’s function.

The definition of such operators is crucial for our direct solver, because they
improve the compressibility of the operators on the LHS of eq. (4.3) and eq. (4.4).
We define the operators

CT M := Nk̃G−1Sk +
(︄

G
2 − D∗,k̃

)︄
G−1

(︄
G
2 + D∗,k

)︄
, (4.5)

CT E := Sk̃G−1Nk +
(︄

G
2 + Dk̃

)︄
G−1

(︄
G
2 − Dk

)︄
(4.6)

and, similarly to what was said above (and considering G = Gc because of the
uniformity of the mesh), their contributions

Cc,T M := Nk̃
c G−1Sk

c +
(︄

G
2 − D∗,k̃

c

)︄
G−1

(︄
G
2 + D∗,k

c

)︄
, (4.7)

Cc,T E := Sk̃
c G−1Nk

c +
(︄

G
2 + Dk̃

c

)︄
G−1

(︄
G
2 − Dk

c

)︄
, (4.8)

Ce,T M := CT M − Cc,T M , (4.9)
Ce,T E := CT E − Cc,T E. (4.10)
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The matrices Ce,T M and Ce,T E can be generally compressed in skeleton form in
favorable complexity. Indeed, differently from the matrices CT M − G

2 and CT E − G
2 ,

Ce,T M and Ce,T E do not show criticalities in the elliptic region of the spectrum that
limit their compressibility.

However, to achieve the coveted compressibility, particular care needs to be
given in the computation of Ce,T M and Ce,T M . To better understand, we expand
here CT M and CT E in the matrix products necessary for their computation, recalling
that the decomposition O = Oc + Oe holds for each operator involved, getting

CT M := Nk̃
c G−1Sk

c⏞ ⏟⏟ ⏞
Circulant

+ Nk̃
c G−1Sk

e + Nk̃
eG−1Sk

c + Nk̃
eG−1Sk

e⏞ ⏟⏟ ⏞
Extracted

+

G
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c

2 + D∗,k
c

2⏞ ⏟⏟ ⏞
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− D∗,k̃
e

2 + D∗,k
e

2⏞ ⏟⏟ ⏞
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−

D∗,k̃
c G−1D∗,k

c⏞ ⏟⏟ ⏞
Circulant

− D∗,k̃
c G−1D∗,k

e − D∗,k̃
e G−1D∗,k

c − D∗,k̃
e G−1D∗,k

e⏞ ⏟⏟ ⏞
Extracted

, (4.11)

CT E := Sk̃
c G−1Nk

c⏞ ⏟⏟ ⏞
Circulant

+ Sk̃
c G−1Nk

e + Sk̃
eG−1Nk

c + Sk̃
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e⏞ ⏟⏟ ⏞
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c
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+ Dk̃
e
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e − Dk̃
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, (4.12)

where we highlighted the circulant components to be subtracted. Therefore, the
circulant parts are given by

Ce,T M := Nk̃
c G−1Sk

e + Nk̃
eG−1Sk

c + Nk̃
eG−1Sk

e⏞ ⏟⏟ ⏞
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, (4.13)

Ce,T E := Sk̃
c G−1Nk

e + Sk̃
eG−1Nk

c + Sk̃
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e⏞ ⏟⏟ ⏞
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+
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e

2 − Dk
e
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. (4.14)

We redirect to section 4.2.3 for comparison between spectral behavior Ce,T E and
the one of CT E − G

2 . In addition, fig. 4.5 and fig. 4.6 show, respectively, the ordered
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spectra of CT E and CT E on an ellipse (semi-major axis 2 m and semi-minor axis
1 m) for increasing frequency. It can be noticed that, in both cases the norm of the
of the operators grows only mildly, and that the singular values in the elliptic part
of the spectrum of Ce,T E do not interfere in the compression of the operators, as
they decay toward higher spectral indices. However, as it can be noticed in fig. 4.6,
in the low spatial frequency region, we can have some singular values that have
small value compared to the operator norm, but still not negligible. Since also
those singular values heavily impact the compression performance of the scheme,
they set a lower-bound for the achievable accuracy. Fortunately, in general cases,
for higher simulation frequencies those singular values decrease in norm. Finally,
because of the decrease in value with growing frequency, it could be possible to lower
the compression threshold while increasing the frequency, improving the accuracy
while mildly affecting the compression.

Figure 4.5: Ordered spectrum, normalized by the inverse Gram matrix G−1, of
the CT E for increasing frequencies. The green markers indicate which singular
values/singular vectors are selected by the compression scheme.

Consequently, we can use a randomized adaptive cross approximation scheme,
such as the one presented in [45, Algorithm 4.2], to compress the operator in skele-
ton form, resulting in

Ce,T M ≈ UT MVT
T M , (4.15)

Ce,T E ≈ UT EVT
T E. (4.16)

The threshold of the compression algorithm ϵ is set to guarantee the desired accu-
racy on the solution.
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Figure 4.6: Ordered spectrum, normalized by the inverse Gram matrix G−1, of
the Ce,T E for increasing frequencies. The green markers indicate which singular
values/singular vectors are selected by the compression scheme.

Finally, by noticing that

CT M = Cc,T M

(︂
I + (Cc,T M)−1 UT MVT

T M

)︂
, (4.17)

CT E = Cc,T E

(︂
I + (Cc,T E)−1 UT EVT

T E

)︂
, (4.18)

where I is the identity matrix, the direct solver can be obtained by leveraging the
Woodbury matrix identity [49], resulting in

C−1
T M = C−1

c,T M − C−1
c,T MUT M

(︂
I + VT

T MC−1
c,T MUT M

)︂−1
VT

T MC−1
c,T M , (4.19)

C−1
T E = C−1

c,T E − C−1
c,T EUT E

(︂
I + VT

T EC−1
c,T EUT E

)︂−1
VT

T EC−1
c,T E. (4.20)

Indeed, the above inverse matrices can be computed efficiently given the low-rank
nature of the skeleton forms and by exploiting circulant algebra.

4.3.1 Details on Fast Implementation
To simulate electrically large structures at very high frequencies in reasonable

time, we combined different strategies for the computation. As already mentioned,
circulant algebra can be used to efficiently compute the inverse of the circulant
matrices in eq. (4.19) and eq. (4.20) and their multiplication with a given RHS
b. In particular, in case of fast implementation, it is possible to compute the fast
Fourier transform (FFT) of a row/column of the involved circulant matrix, perform
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an element-wise inversion to invert the operator, compute the FFT of the RHS b,
perform the element wise product between the two transformed vectors and finally
compute the inverse fast Fourier transform (IFFT).

Note also that the number of such MVPs that needs to be computed in eq. (4.19)
and eq. (4.20) is limited to the rank of the skeleton that, in general cases, when
the operator is correctly compressed, is significantly smaller then the number of un-
knowns. We already mentioned the usage of [45, Algorithm 4.2] for the computation
of the skeleton. However, since Ce,T M and Ce,T E involve the summation of matrices
obtained by multiplying multiple operators, fast MVPs are needed to obtain the
columns required by the compressing algorithm in quasi-linear complexity.

In eq. (4.13) and eq. (4.14) we can distinguish three different categories of op-
erators involved in the formulation, that are (i) the circulant operators, (ii) the
inverse Gram matrices and (iii) the extracted operators. For the first category,
the fast MVP can be obtained relying on the FFT-IFFT approach just proposed.
The inverse Gram matrix can be easily applied by using an iterative solver, since
the matrix is sparse and well conditioned. Differently, the fast MVPs that involve
extracted operators require using more complex strategies.

For this reason, we used an ad-hoc implementation of MLFMM that works with
the curvilinear manifolds and is based on the circular extraction mentioned in the
previous section. The computational core is based on the scheme proposed in the
OpenFMM solver [39]. However, since the kernel of the extracted operators differs
from the standard ones, their direct computation would require a preliminary study
to obtain the plane-wave expansions necessary in the disaggregation-aggregation
procedure performed for the computation of the far interactions. Fortunately, we
notice that, in order to overcome the issue encountered in the elliptic part of the
spectrum that limits the compressibility of the operator, mentioned in section 4.2.3,
only the near interactions need to be computed by explicitly integrating the modi-
fied kernel. The far interactions, instead, can be computed implicitly by subtract-
ing the elements of the circulant operator to the elements of the standard operator,
without compromising the final compressibility. Summarizing, we have that the
fast MVP of a general extracted operator Oe can be computed as the summation
of multiple components. In terms of equation we have

Oe = On,e + Of − Of,c = On,e + Of − Oc + On,c. (4.21)

where, as before, the subscripts c and e indicate the circulant and the extracted
parts of an operator, but we have in addition the subscripts n and f , referring to
the near and to the far interactions of an operator. By computing each extracted
operator with this definition we obtain the final fast solver.
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4.4 Numerical Results
Numerical results are reported both for the case where the MVP, and vector-

matrix products (VMPs), are performed naively on the full matrices, and for the
case where fast methods are employed. The results involves error checks only on
the computation of the currents, jz and jt, that are the solution of the linear sys-
tems. Since numerical issues of the solver would manifest during their computation,
making those checks a conservative choice.

Numerical results are reported for an elliptical manifold with semi-major axis
1 m and semi-minor axis 0.5 m. To obtain the skeleton of Ce,T M and Ce,T E it the
randomized compression algorithm mentioned in section 4.3 has been used. The
probability coefficient hyperparameter has been set to 7.0 for all the experiments,
and different relative compression thresholds are used (respectively normalized by
the norm of CT M and CT E). The computational cost is estimated in function of
the wavenumber k, that for 2D structures in the high-frequency regime is in linear
relationship with the number of unknowns. In the following experiments, the ratio
between the wavelength λ and the discretization parameter h is kept fixed at 10.
For the check of the solution error, the vectors on the RHS are computed for a
plane wave excitation with polar incident angle 2/3π and amplitude 1.

Figure 4.7 and fig. 4.8 show the rank of the compressed skeleton for varying
frequency and different compression thresholds, respectively for the TM and TE
polarizations. For both polarizations, after a certain simulation frequency (that
depends on the compression threshold), the rank shows a growth that scales as k

1
3

(a bound that can be theoretically predicted for the circular case). For high sim-
ulation frequencies, this provides an overall computational complexity that, when
the MVP/VMP are performed naively, scales as O(k 7

3 ). Figure 4.9 and fig. 4.10
show the relative error on the solution for the two polarizations. As mentioned in
section 4.3, the beginning of the aimed compression regime start at higher frequen-
cies for a lower threshold. More accurate considerations about the optimal setting
of the compression threshold are left for future work. In any case, in this frequency
range, the error on the solution is always inferior to the respective compression
threshold, and we can even observe a decreasing trend for both polarizations.

The second set of experiments reports the performance of the solver when the
fast solvers based implementation for the MVPs/VMPs is employed. The far inter-
actions are compressed with the MLFMM implementation mentioned in section 4.3,
with a compression threshold of 10−9, while for the randomized compression algo-
rithm we used a relative threshold of 0.05. Table 4.1 reports the relative errors on
the solution for different frequencies and for both polarizations. It can be noticed
that the error is always inferior to the compression threshold. For higher frequen-
cies, no checks are performed on the solution error since we do not have available
references that can be computed in feasible time, and we assume the correctness
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Figure 4.7: TM formulation: check of the compression performance of the fast
compression algorithm in function of k for different tolerances. Green dashed curves
show the trend of k

1
3 .

Figure 4.8: TE formulation: check of the compression performance of the fast
compression algorithm in function of k for different tolerances. Green dashed curves
show the trend of k

1
3 .

60



4.4 – Numerical Results

Figure 4.9: TM formulation: check of the relative error of the fast compression
algorithm in function of k for different tolerances.

Figure 4.10: TE formulation: check of the relative error of the fast compression
algorithm in function of k for different tolerances.

of the scheme considering its behavior at lower frequencies. The rank of the skele-
ton and the overall setup and compression time are reported for several simulation
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frequencies in fig. 4.11 and fig. 4.12, respectively (running on a single node and
single thread). It can be noticed that, as expected, the rank and the timing respec-
tively scale as O(k 1

3 ) and O(k 4
3 ) (a more precise estimate of the trend of the timing

could also include the logarithmic factor resulting from the usage of the FFT and
MLFMM).

ω [rad/s] 6 · 1010 8 · 1010 1011

TM formulation 2.5% 2.5% 2.1%
TE formulation 2.2% 2.2% 2.0%

Table 4.1: Relative error on the solution of the fast implementation of the direct
solver against the non compressed formulation for different simulation frequencies.

Figure 4.11: Rank of the compressed skeletons of the fast direct solver in function
of k for TM and TE formulations.

4.5 Conclusion
Summarizing, we presented a new scheme for solving a electromagnetic integral

equations at high frequency in a fast and direct way. The solver relies on a formula-
tion that is well conditioned and stable in many applications scenarios, specially at
very high frequency, where, combined with the usage of fast methods, can retrieve
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Figure 4.12: Total set-up and computation time of the fast direct solver in func-
tion of k for TM and TE formulations.

the direct solution of the problem with a computational complexity that scale as
O(N 4

3 ).
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Chapter 5

Brain-Computer Interfaces and
Brain Modeling Techniques

In this chapter we present some application scenarios where our solver can be
applied. In particular, we focus on biomedical applications related to the brain.
The chapter starts with an introduction to brain-computer interfaces (BCIs), then
we present our recent contributions regarding a new BCI paradigm [82]. The ap-
plication of the new paradigm shows encouraging results that have been presented
at a conference of the reference community. Further publications with new results
are work-in-progress and this chapter summarizes what has been achieved so far.
Finally, we show the role of numerical methods for this application and in brain
source imaging.

5.1 Introduction on Brain-Computer Interfaces
Brain-computer interfaces are systems that allow to control an external device

through the neural activity, creating new non-muscular channels to transmit the
person’s intentions [86]. Their relevance crosses different clinical fields, from per-
formance enhancements, to life quality improvement for patients suffering from
motor impairments (e.g. like amyotrophic lateral sclerosis , paralysis, locked-in
syndrome or brain stem stroke) [59]. Summarizing, in a BCI setting we have a
subject performing a task among the ones in a predefined set, the brain activity of
the subject generates an electrical signal that is monitored, processed and classified
to predict which task the subject is executing. The result of the prediction(s) is
used to drive the interface, that could be either purely software or, in some cases,
electromechanical. The block scheme of a BCI is shown in fig. 5.1.

Among the existing recording (or monitoring) techniques used in BCIs, the elec-
troencephalography (EEG) is the most widely adopted both in research and in com-
mercial applications. EEG measures the electric potential related to the subject’s
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brain activity through a set of electrodes placed on its scalp. It is a non invasive
technique, characterized by great temporal resolution but, unfortunately, by poor
spatial resolution when compared to other approaches. The main EEG signals,
related to specific brain behaviors, that are commonly used in BCIs are: slow cor-
tical potentials, P300 evoked potentials, sensory motor rhythms, and steady-state
visually evoked potentials (SSVEPs) [109]. In particular, SSVEPs have gained at-
tention in BCI studies, by virtue of the high information transfer rate, the minimal
training required and the significant robustness of the paradigm [25, 26, 103]. The
SSVEPs are defined as brain activity modulations occurring in the occipital area of
the brain after repetitive visual stimuli, such as a pattern-changing checkerboard or
a light flashing [33], usually in the frequency range 5-15 Hz, which result in peaks
in the power spectral density (PSD) of the EEG acquisitions, both at the frequency
of the stimulus and at its higher order harmonics. The pipeline setting requires a
set of patterns flickering at different frequencies to be presented to the user. The
objective of the subject driving the interface is to focus and fixate the gaze on only
one of them, then a PSD analysis can discriminate among the panels and find the
selected one.

Figure 5.1: A general BCI pipeline: (1) a subject perform a task among the ones
of a predetermined set; (2) a characteristic electric activity associated to the task
is generated in the subject’s brain; (3) the electric brain activity is recorded with
monitoring techniques; (4) the recorded signals are processed and used as feature to
feed a classifier; (5) the predicted labels is used to control an interface.
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5.2 A New BCI Paradigm Based on Visual Im-
agery Signals

A full SSVEP-BCI pipeline has been set-up in the CERL@Polito laboratory in
Turin. Unfortunately, the SSVEP-BCIs come with some drawbacks. Eye-gazing a
target might be unsuitable for patients with degraded vision or severely impaired
motor conditions. Furthermore, the continuous flashing at the eyes might become
annoying and stressful for the user, in addition to cause eye fatigue. For those
reasons, we developed an alternative and innovative BCI paradigm that could over-
come the limits of SSVEPs, based on visual imagery (VI), which may be defined as
the representation of information related to perception in absence of retinal inputs
[54]. This concept collides with the usual visual perception (VP) notion, which on
the contrary is associated with the achievement of visual information through the
eyes [57].

5.2.1 Visual Imagery Signals
The origin and the regions of activation of VI signals are still a subject of debate,

as it can be evidenced among previous literature works [38, 60, 72]. Many studies
demonstrated that the occipital region is suitable to acquire VP signals, and sev-
eral research groups investigated if there is an activation of the same regions during
VI. However, until now, there are not evident proofs of this, and there is also the
possibility that only memory-associated areas are actually implied, excluding the
involvement of the occipital area, as Roland and Gulyás stated [93]. During imag-
ination, an important part of the VP hierarchy is missing, that is the acquisition
through the eyes, resulting, perhaps, in different stimulation of the visual cortex.
Studies based on fMRI demonstrated that during VI tasks, an activation of the cal-
carine region could be observed [60]. Furthermore, Sabbah et al. experimented a
condition derived from the observation and the consequent visual recall of a flashing
light, evidencing not only an activation of the occipital zone, but also of other parts
of the brain implied in visual perception, that Sabbah et al. described as extrastri-
ate visual areas [95]. However, other groups did not observe a clear activation of
the occipital region [57], while some others highlighted the involvement of frontal
and parietal networks during VI tasks [56]. De Borst et al. in 2012 determined
that the frontal area would have a critical role while performing visual imagery,
connecting to parietal and occipital regions, reflecting retrieval and integration of
the information [35]. This was confirmed by other research groups, which defined
the frontal and parietal networks (mainly on the right) as the principal activation
zones during visual imagery [15, 99].

Recently, EEG BCIs based on visual imagery were proposed. For instance,
Azmy et al. detected brain activation signals that could be provided to a BCI
system to control a robot. They reported that the optimal location was given by
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Figure 5.2: Brain model showing the main region of interest (right-frontal area,
F8) useful to control BCIs based on visual imagery, according to Azmy et al. [15].

position F8, as shown in fig. 5.2 [15]. Moreover, Sousa et al. stated that EEG-
recorded visual motion imagery signals are usable to drive multi-class BCIs, as a
consequence of frontal α band power changes [101]. In 2018 Kosmyna et al. made
a group of participants observe a visual cue, asking them to imagine it, obtaining
classification accuracy above 70% both between VI and rest and between VI and
visual observation, by virtue of VI related α band power alterations [56]. Finally,
in 2019 Lee et al. obtained a robust classification of 13 classes (12 words/images
and rest) of both visual imagery and imagined speech, with a precision of 26.7%
[61].

In this work, we propose a new scheme for the acquisition and classification
of VI signals deriving from visual imagination of flickering patterns. In particu-
lar, we examined whether mental reproductions of flashing images could provide
frequency-specific power increases in PSD analyses, similar to those experienced
with SSVEPs, thus making the continuous gaze of a screen unnecessary. Moreover,
such implementation might grant the users the capability of switching the BCI off
and on at will, addressing the issue of BCIs relying on external stimuli.

5.2.2 Experiments Setup
In order to accomplish the training of the subjects, we realized three experimen-

tal protocols. These protocols, explained in details in following sections, allowed
to obtain both the visualization and the classification of SSVEP, rest and VI EEG
signals. This study included 5 participants between 23 and 27 years old (all males,
mean age 25 years old), without any disabilities proclaimed. All the participants
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were part of our research group, and all the subjects were new to EEG recordings.
Preliminary experiments were conducted only on one subject (Subject 1 ), so as to
test the feasibility of the paradigm.

The experimental setting for this study consisted of a workstation (with Intel
Core i9 9700K @ 3.60GHz CPU, a Nvidia GeForce RTX 2080Ti GPU and 64
GB RAM), a g.HIamp EEG amplifier (256 channels, FDA and CE approved), a
g.Nautilus EEG cap (g.GAMMAcap2), 16 active electrodes, a 64-channel driver
box, a monitor showing from one to two checkerboards flickering at controllable
frequencies, and three speakers allowing the reproduction of auditory stimuli.

Many previous studies in literature showed reliable SSVEP-signal EEG record-
ings with the electrodes mainly located in the occipital and parietal area, most
commonly in Oz, O1, O2, PO3, PO4, PO7, PO8 and Pz, following the Interna-
tional 10 − 20 system [112, 42, 71]. Regarding VI, the principal locations found
were: AF4, F4, F8, O1, O2, Pz, P3, P4, Fz, Cz, Oz, T7, T8, P7 and P8 [15, 56, 61,
72]. Considering that, as stated in section 5.2.1, the exact position of VI-elicited
brain activation is still uncertain, all the electrodes previously mentioned were
taken into consideration for acquisitions. Figure 5.3 displays the setup adopted.
The reference electrode was placed on the left earlobe, and the ground electrode
was located in AFz.

As software, different tools are used, in particular Simulink, Matlab, Unity and
SimBCI, an object-oriented open source MATLAB framework that can be used to
generate simulated BCI data to test and debug BCI signal processing and classifi-
cation approaches [65]. Our BCI pipeline was divided in three main components,
that will be presented in following sections.

5.2.3 The Protocol
The sampling rate was set to 256 Hz for all the acquisitions. The frequencies

used are in the low and medium frequency range (LF, MF respectively), in the
range 5 and 12 Hz [73]. In particular, we use the frequencies 5 and 7 Hz, for
all the protocols developed proposed in this work. These frequencies were chosen
because they were considered sufficiently distant from each other to be correctly
classified, and at the same time adequately low to be imagined by the subjects. In
the first protocol, experiments are conducted using one single frequency at a time
(either 5 or 7 Hz), concurrently classifying VI trials with SSVEP and rest trials. As
previously mentioned, in VI trials the user has to imagine SSVEP-elicited visual
stimuli. For this reason, SSVEP trials are also part of the training protocol, in
order to introduce the user to the task it needs to imagine.

The first protocol involves tests performed with a single (slower) frequency. In
its first two steps (1.a and 1.b in the list below), an additional support is supplied
to the subject: the learning process is improved through the inclusion of auditory
co-stimuli during VI trials, beeping at the same frequency chosen for the VI task
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Figure 5.3: Electrode positioning on the EEG cap, using the international 10−20
system. Our signal acquisition electrodes are indicated in green, while yellow and
blue indicate the the ground and reference electrodes, respectively.

[81]. Then, once the users feel more confident with VI, these acoustic co-stimuli are
removed (experiments from 1.c to 3.a). In the second protocol, experiments involve
two different frequencies at a time (5 and 7 Hz), with the concurrent classification
of both SSVEP, VI and rest trials. The imagination exercise requested to the user
is the same as in the first protocol, but without auditory co-stimuli. In the third
and last protocol, experiments involve again two different frequencies at a time (5
and 7 Hz). However, in this case SSVEP-related trials are not included, as well as
auditory co-stimuli, resulting in a sessions with concurrent classification of VI and
rest trials only.

The aforementioned protocols are summarized in the list below. The first three
numbers of the passages respectively stand for the trial duration (in seconds), the
number of repetitions of the trials, and the amount of different classes involved per
session.

1. Single frequency concurrent VI and SSVEP − Concurrent classification
of SSVEP, VI, and rest at one single frequency

(a) 6s × 15 × 3 at 5 Hz, with SSVEP, VI, rest, with auditory co-stimuli
during VI trials;
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(b) 6s × 15 × 3 at 7 Hz, with SSVEP, VI, rest, with auditory co-stimuli
during VI trials;

(c) 6s × 15 × 3 at 5 Hz, with SSVEP, VI, rest;
(d) 6s × 15 × 3 at 7 Hz, with SSVEP, VI, rest;

2. Multiple frequencies concurrent VI and SSVEP − Concurrent classi-
fication of SSVEP, VI and rest at two frequencies

(a) 6s × 18 × 5, with 5 Hz on the left side of the monitor and 7 Hz on the
right side (for SSVEPs only), including SSVEP, VI, and rest;

3. Multiple frequencies VI only − Concurrent classification of VI and rest
classes at two frequencies

(a) 9s × 20 × 3, with 5 Hz and 7 Hz, including only VI and rest trials;

On each experiment, a buzzer notifies the beginning of the successive trial 200 ms
before the end of the previous one. The total time required for a single repetition of
all the tests is 36 minutes, without considering any pauses. In most cases, with the
purpose of recording more data to analyze and for better training the participants,
this protocols are repeated multiple times. Figure 5.4 shows the patterns that
are shown to the user during the SSVEP experiments. The graphic interface is
implemented inside the Unity framework. During single frequencies SSVEP trials
(protocols from 1.a to 1.d), a single checkerboard flickering at the desired frequency
is shown to the user (fig. 5.4.a). With the inclusion of two frequencies in the same
trial, a second checkerboard is added to the Unity scene, providing an arrow which
indicates where the subject has to focus his gaze (fig. 5.4.d, protocol 2.a). Similarly,
the subject can perform VI using a completely black screen (fig. 5.4.b shows a
green checkerboard only for visualization purposes). With the same arrow system
described above, the user can perform VI even inserting two frequencies at a time,
choosing the frequency to focus at depending on the arrow orientation. The rest
condition is distinguished from VI trials through the insertion of a blue rectangle
(fig. 5.4.c), for all protocols.

5.2.4 The BCI Pipeline
During off-line experiments, the data acquired with EEG is collected and divided

in two sets, one for the training and one for the testing. As explained more in details
in the following, a part of the training set is used as validation set to determine
which electrode channels to use for each experiment.

The processing and the classification are implemented in MATLAB and in par-
ticular inside the SimBCI environment [65], a software framework that allows to
develop and simulate BCIs pipelines. A pre-processing of the data is performed, in
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(a) (b)

(c) (d)

Figure 5.4: (a) Checkerboard used for SSVEP signals. (b) Visual Imagery state
(green checkerboard present only for graphic purposes). (c) Rest condition. (d)
Setup for two frequencies at the same time for SSVEP signals.

order to achieve a sufficient signal-to-noise ratio (SNR), applying two filters to all
the acquisitions: a 60 Hz low-pass filter for electromyography and high frequency
noise attenuation, and a 48–52 Hz notch filter for the line noise rejection. In addi-
tion, a 8th order Butterworth with band-pass frequencies in the range 2–36 Hz filter
is also applied. Then, the collected raw data is cropped into windows of 4 seconds
for each trial, keeping seconds from 2 to 6 for the first two protocols and seconds
from 3 to 7 for the third protocol. For each electrode and each windowed trial,
PSDs estimations is performed, obtaining, for each trial-electrode combination, a
vector containing the average power spectral density, with content in frequency
ranging 2–36 Hz. These data vectors are therefore used as input features for the
classifier [67]. For all the experiments, the classification is performed via a regular-
ized multi-class support vector machine (SVM) classifier [68], using a linear kernel
and based a multiple One-vs-All implementation [23]. The classifier has the role of
predicting the labels associated with a certain task performed from a user.

The whole pipeline includes two hyper-parameters to be set. The first one, as
anticipated, is the set of electrodes to be used for the classification. The second
one is the C-regularization parameter of the SVM classifier. We decided to keep
those hyper-parameters because, as explained in the introduction to VI signals,
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the literature does not yet agree on a precise location of VI-related EEG activity,
and also we noticed that for each subject/experiment the classification accuracy
is particularly sensible to the value of the regularization parameter. To determine
those hyper-parameters, we implemented a heuristic algorithm that by using a part
of the training set as a validation set iteratively adds or removes an electrode from
the final set, or tune more and more finely the C-parameter.

Finally, the processing and classification parts of the pipeline are coupled with
interactive interface implemented within the Simulink and Unity environments.
In particular, the two environments communicate to each other via transmission
control protocol (TCP), and Simulink, being part of the Mathworks suite that
includes MATLAB as well, communicates with SimBCI. The Simulink part of the
interface is shown in fig. 5.5.

Figure 5.5: Block scheme of the Simulink part of the interface.

5.2.5 BCIs Enhanced via Inverse Source Techniques
A front of research investigated the usage of inverse source techniques in EEG-

based BCI to improve their performance [28, 69, 70, 18, 37, 30]. To the best of our
knowledge, no ground-breaking results were obtained so far with those approaches.
However, if properly exploited, the usage of the bio-electrical description of the
brain, should help to improve the quantity of information that a classifier can
exploit to better predict the correct label. For this reason, we are convinced that
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EEG source imaging (ESI) techniques, if properly used, could be a relevant help to
improve the BCI performance. As mentioned in [67], in this context, ESI should be
seen as a spatial filter that, by removing information that is outside the regions of
interest of the classified signals, can improve the overall SNR. Indeed, we decided
to explore the usage of such filters that we build via accurate brain models that we
obtain with the numerical methods that are the central topic of previous sections.
The usage of spatial filters could fill the gap of performance that there is between
SSVEP-BCI and VI-BCI, leading to a new state-of-the-art. Unfortunately, at the
moment, the achieved improvements are still minimal, but still promising, and since
it is part of the current research we report some implementation details.

The first step required for ESI is the solution of the forward problem (FP),
that for a certain dipole (used to model the electric activity of a cluster of neurons
inside brain tissues) characterized by a position and a momentum allows to compute
the associated electric potential on the scalp of a subject. The solution of the
FP allows to solve the inverse problem (IP), that is the estimation of the dipoles
activity starting from the electric potential recorded from the EEG [41, 46]. Several
options are available for solving both the FP and the IP. For the solution of the FP
problem we used a model obtained with an implementation of the BEM single layer
formulation proposed in [58]. For the resolution of the IP, after having comparing
performance of various techniques, we chose to adopt the Weighted Minimum Norm
(WMN) inverse algorithm. Processed and windowed EEG acquisitions are filtered
through session-specific narrow band-pass Chebyshev II IIR digital filters, for each
trial/electrode combination. Thus, the sources of EEG signals is imaged through
the WMN inverse algorithm. Consequently, during the training phase, a set of
sources is selected through one-way analysis of variance (ANOVA1) statistical test,
keeping the most prominent sources emerging characterized by a lower p-value,
that are supposed to give an higher impact to the SNR. In conclusion, the new
BCI pipeline is slightly modified with respect to fig. 5.1, adding an additional block
relative to the ESI, as shown in fig. 5.6.

5.3 Numerical Results
Our result are obtained conducting experiments on one subject member of our

research group (male, 23 years old). As preliminary result, fig. 5.8 shows the power
spectral density analysis of the processed recordings averaged among the trials,
giving a visual insight on the spectral content of VI signals. When comparing the
curve in the center (background brain activity) with the top curve (VI at 5 Hz)
and with the bottom one (VI at 7 Hz), it can be noticed that we have an increase
of the spectral component at the task VI frequency.

Then, the performance of the full BCI pipeline are reported in terms of clas-
sification accuracy of the model on both the training and testing datasets. The
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Figure 5.6: A ESI-based BCI pipeline: (1) a subject perform a task among the
ones of in a predetermined set; (2) a characteristic electric activity associated to
the task is generated in the subject’s brain; (3) the electric brain activity is recorded
with EEG; (4) an ESI techniques are used to pass from EEG potential to the electric
sources activities; (5) the electric sources activities are processed and used as feature
to feed a classifier; (6) the predicted labels is used to control an interface.

performance on all the steps of the three protocols for a collection of recordings
obtained from multiple sessions are reported in table 5.1. The last two columns of
table 5.1 report the size of the training and testing sets (total number of trials) for
the different phases.

The initial protocol phases 1.a − 1.b, relative to single frequency experiments
with auditory co-stimuli (see section 5.2), show a prediction accuracy superior to
80% on the testing dataset. When the auditory co-stimuli are removed, in protocol
phases 1.c − 1.d, the average prediction accuracy slightly decreases, but the per-
formance are comparable. In single frequency experiments, some of the sessions
under-performed. This is probably due to the fact that in these tests we can ob-
serve that the model is over-fitting. This leaves margins for future improvements by
simply better regularizing the classification algorithm. In two-frequencies sessions
(protocol phase 2.a) the accuracy attained for the test set is 72.78%, comparable
to the one of the experiments including only visually imagined patterns and rest
(protocol phase 3.a), with accuracy of 71.39%. It can be noticed that an even in the
most critical case a percentage above 70% is reached, a value significantly higher
than the case related to random classification (33.3% for 3 classes experiments),
and rendering promising the usage of the proposed VI signals for BCIs applica-
tions. In this setting the offline bit-rate is approximately 4 bits/min, following the
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Figure 5.7: Block scheme of the EEG source imaging procedure: the first step
requires the discretizaion of the subject head in a multi-layer triangular mesh; the
second step requires to use an electromagnetic solver to model the neural activity.

Table 5.1: Classification accuracy on training and testing sets, “Train/Test acc.”
and relative size of data-sets in number of trials, “Train/Test #”. Table legend:
“5-7 Hz w/ s.”: single frequency with auditory co-stimuli; “5-7 Hz w/o s.”: sin-
gle frequency without auditory co-stimuli; “Mult. freq.”: multiple frequencies with
SSVEPs; “Pure VI”: only VI multiple frequencies and rest, no visual stimuli.

Session Train acc. Test acc. Train # Test #
5 Hz w/ s. 100.00% 81.11% 450 180
7 Hz w/ s. 96.48% 88.15% 540 270

5 Hz w/o s. 94.72% 85.00% 360 180
7 Hz w/o s. 100.00% 75.56% 450 180
Mult. freq. 91.67% 72.78% 1080 540

Pure VI 75.77% 71.39% 780 360

definition of [77]. Additional details on the performance can be obtained observing
the confusion matrices reported in fig. 5.9. In particular, it can be noticed from the
last experiment that the wrong guesses often involve the confusion between the two
VI classes, highlighting that in any case it is possible to distinguish the VI activity
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Figure 5.8: Averaged PSD of the signals regarding the sessions involving visual
imagination and rest only, acquired from the AF4 electrode. Peaks can be seen at
5 Hz and at 7 Hz.

from the rest one.
To validate the robustness of our paradigm, additional tests were conducted on

the same subject after a period of time of 9 months, during which the user did
not perform further experiments. The new recordings are used as testing data-set,
while as training data-set all previously recorded data are used. The so obtained
results are shown in table 5.2, where, comparing with the results in table 5.1, it is
visible that the accuracy even increased in most of the cases. Even if this increase is
probably due to the larger size of the training dataset, the result suggests that a BCI
based on VI signals would not require an extensive and continuous training. The
results presented here are very preliminary and have to be confirmed by following
the protocol on a larger number of subjects, and this is part of the current work.

At the moment, the usage of spatial filters based on ESI did not lead to relevant
improvements of the BCI performance. However, since the preliminary results
already helped us in visualizing the VI signals and the brain cortex level, we report
here a sample of them. The brain leadfield was obtained with the aforementioned
BEM solver, with the help of the Brainstorm MATLAB toolbox (3.4.0.0 version)
for the placement of the electrodes on the head scalp. As for the head model, we
used a non-linear average of 152 T1-weighted MRI scans of the brain obtained from
152 different subjects (ICBM152 template). The MRI data are segmented in the
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Figure 5.9: Confusion matrices of the classification results shown in Table 5.1.
Experiments ordered from top left to bottom right follow the order used for the Table.

different tissues and a surface mesh of multiple nested layers is obtained. For the
electrodes we used an ASA 10 − 20 EEG cap configuration (94 electrodes). The
solver is used to build the leadfield matrix with dimensions 94 × 45006 (number of
electrodes × number of sources for the unconstrained problem, with 3 coordinate
values for every vertex). Figure 5.10 shows the dipole activity estimated inverting
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Table 5.2: Average classification accuracy for tests on the same subject after 9
months without training. Classification accuracy on training and testing sets,
“Train/Test acc.” and relative size of data-sets in number of trials, “Train/Test
#”. Table legend: “5-7 Hz w/ s.”: single frequency with auditory co-stimuli; “5-
7 Hz w/o s.”: single frequency without auditory co-stimuli; “Mult. freq.”: multiple
frequencies with SSVEPs; “Pure VI”: only VI multiple frequencies and rest, no
visual stimuli.

Session Train acc. Test acc. Train # Test #
5 Hz w/ s. 100.00% 82.22% 630 45
7 Hz w/ s. 95.80% 88.89% 810 45

5 Hz w/o s. 93.15% 91.11% 540 45
7 Hz w/o s. 100.00% 86.67% 630 45
Mult. freq. 89.38% 72.22% 1620 90

Pure VI 76.93% 73.33% 1140 60

with the WMN algorithm leadfield matrix and applying it to the pre-processed
potentials recorded during a trial of VI signals. It can be noticed that in some
areas the activity is more evident. It is difficult to validate our ESI approach
because of the different opinions present in literature, but future works aim to have
a functional validation of our method.

Figure 5.10: Dipole activation obtained using ESI techniques on a trial of VI
signals.
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5.4 Conclusion
In conclusion, we have seen one application of CEM techniques to BCIs. In addi-

tion, we proposed a new BCI paradigm based on flickering VI signals that overcomes
the unpracticalities SSVEP BCIs. Even if the results are only preliminary, they
seem quite promising, and the usage of BCI enhanced with ESI techniques could
be an option to reach, or exceed, the performance of state-of-the-art BCI pipelines
also in term of bit-rates, in addition to the already achieved practical advantages.
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Chapter 6

Conclusion and Future Works

This work focused on the analysis, the resolution, and the application of elec-
tromagnetic integral equations. We proposed new preconditioning strategies that
can cure the low-frequency and dense discretization breakdowns simultaneously.
The proposed schemes rely on the new concepts of filtered Loop-Star bases and
quasi-Helmholtz Laplacian filters. Preliminary results on the 3D-PEC EFIE show
promising performances, leaving room for further research and extension to other
applications.

In addition, we developed a new fast direct solver capable of working in the
high-frequency regime on electrically large objects. The final solver results in a
hierarchical-free skeleton that can be efficiently applied to several RHS. In this work,
we also detailed their implementation and key concepts. Preliminary numerical
results demonstrate relevant performances, especially when accelerated with fast
solvers. The solver has been presented for a 2D formulation, but most of the
introduced concepts apply also to 3D formulations. Indeed, extension to 3D is part
of the current research.

Finally, an innovative brain-computer interfaces paradigm has been presented.
The scheme, based on visual imagery signals, overcomes the drawbacks of SSVEP
based BCIs that need external stimuli for their functioning. The obtained prelimi-
nary results are encouraging, and even if the performances in terms of bit-rate are
still not the same of SSVEP algorithms, they are already comparable. On going
research focuses on the usage of new feature extraction and classifications strategies
to render the paradigm the new state-of-the-art. Among the new strategies, we are
trying to create a spatial filter that by filtering out, at the brain cortex level, the
component of the signals that does not contribute to functional information aims
to improve the overall signal-to-noise ratio, and consequently the classification ac-
curacy. Those spatial filters are built leveraging the solution of electromagnetic
integral equations obtained with our solvers. Further developments on both the
CEM solvers and the BCI fronts will jointly and reciprocally enable their advances.
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Appendix A

Complementarity of the projectors

This appendix shows that P̃Λ + P̃Σ = I and P̃Λ + P̃Σ = I hold true on genus-0
geometries. Similarly to what is done in eq. (3.2), where we assume that the proper
number of columns from the matrices is removed to ensure a full column rank, we
prove that j̃ can be decomposed as

j̃ = G− 1
2 j = Λ̃l̃ + Σ̃s̃, (A.1)

in which l̃ and s̃ are the coefficient vectors of the normalized Loop and Star parts.
Since G, Gρ, and Gλ are invertible matrices, we have that rank(Σ̃) = rank(Σ) and
rank(Λ̃) = rank(Λ). In addition, since Λ̃TΣ̃ = 0, we also have that the columns of
Λ̃ and Σ̃ are independent, meaning that rank([Λ̃ Σ̃]) = rank(Λ̃) + rank(Σ̃) = N ,
stating existence and unicity of eq. (A.1).

Now, we apply Λ̃T and Σ̃T to eq. (A.1) in order to express j̃ in the two different
bases

Λ̃Tj̃ = Λ̃TΛ̃l̃ , (A.2)

Σ̃Tj̃ = Σ̃TΣ̃s̃ , (A.3)

where we used that the fact that Λ̃TΣ̃ = 0 and Σ̃TΛ̃ = 0, as stated in eq. (3.13). At
this point, the coefficients of the normalized Loop and Star bases can be expressed
as a function of j̃

l̃ =
(︃

Λ̃TΛ̃
)︃+

Λ̃Tj̃ , (A.4)

s̃ =
(︃

Σ̃TΣ̃
)︃+

Σ̃Tj̃ . (A.5)
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Finally, applying Λ̃ and Σ̃ to eq. (A.4) and eq. (A.5) we obtain a new set of nor-
malized projectors

Λ̃l̃ = Λ̃
(︃

Λ̃TΛ̃
)︃+

Λ̃Tj̃ = P̃Λj̃ , (A.6)

Σ̃s̃ = Σ̃
(︃

Σ̃TΣ̃
)︃+

Σ̃Tj̃ = P̃Σj̃ , (A.7)

with P̃Λ +P̃Σ = I by leveraging eq. (A.6), eq. (A.7), and eq. (A.1). Similarly, simply
using Λ̃ and Σ̃ in the initial decomposition, it can be shown that also P̃Λ + P̃Σ = I
holds true.
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List of Symbols

Abbreviations

1D One dimension/dimensional

2D Two dimension/dimensional

3D Three dimension/dimensional

ADLP Adjoint Double Layer Potential

BC Buffa-Christiansen

BCI Brain Computer Interface

BEM Boundary Element Method

BIO Boundary Integral Operator

CEM Computational ElectroMagnetics

CFIE Combined Field Integral Equation

DLP Double Layer Potential

EEG ElectroEncephaloGraphy

EFIE Electric Field Integral Equation

ESI EEG Source Imaging

FDS Fast Direct Solver

FEM Finite Element Method

FFT Fast Fourier Transform

HS HyperSingular

IFFT Inverse Fast Fourier Transform
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List of Symbols

LHS Left Hand Side

MFIE Magnetic Field Integral Equation

MoM Method of Moments

MVP Matrix Vector Product

PEC Perfect Electric Conductor

PML Perfectly Matched Layer

PSD Power Spectral Density

RHS Right Hand Side

RWG Rao-Wilton-Glisson

SLP Single Layer Potential

SNR Signal-to-Noise Ratio

SSVEP Steady-State Visually Evoked Potentials

SVD Singular Value Decomposition

SVM Support Vector Machine

TE Transverse Electric

TM Transverse Magnetic

VI Visual Imagery

VIE Volume Integral Equation

WMN Weighed Minimum Norm

Functions

G Green’s function

G0 Green’s function in statics

Matrices

I Identity matrix

O General MoM matrix of an integral operator
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List of Symbols

Notations

a, b Scalar in C

a, b Vector in Cm

A, B Matrix in Cm×n

(A)mn Element (m, n) of A

A†, b† Conjugate-transpose of A, b

AT, bT Transpose of A, b

A−1 Matrix inverse of A

A+ Moore-Penrose pseudo inverse of A

ℜ, ℑ Real, imaginary part

∥ · ∥ Euclidean norm or matrix spectral norm

∇ × A Curl of A

∇ · A Divergence of A

∇Φ Gradient of Φ

∇2, ∆ Laplace operator

O Big-O Landau symbol

Physical Quantities

ϵ, ϵ0, ϵr Electric permittivity, of the vacuum (F/m), relative

µ, µ0, µr Magnetic permeability, of the vacuum (H/m), relative

η Characteristic impedance of the vacum (Ω)

f Frequency (Hz)

ω Angular frequency (rad/s)

λ Wavelength (m)

k Wave number (rad/m)

c Speed of light (m/s)
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List of Symbols

Other Quantities

n̂ Unit normal vector

t̂ Unit tangent vector

h Average mesh element edge length (m)

σn(A) Nth singular value of A
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