
Doctoral Dissertation - Executive Summary

Doctoral Program in Computer and Systems Engineering (35thcycle)

Vulnerability-Tolerant Architectures
for Resource-Constrained Devices

By

Gianluca Roascio

Supervisor(s):
Prof. Paolo Prinetto, Supervisor

Doctoral Examination Committee:
Prof. Alessandro Armando, Referee, Università degli Studi di Genova
Prof. Giorgio Di Natale, Referee, Université Grenoble Alpes
Prof. Alessandro Cilardo, Università degli Studi di Napoli Federico II
Prof. Gabriele Costa, Scuola IMT Alti Studi Lucca
Prof. Matteo Sonza Reorda, Politecnico di Torino

Politecnico di Torino

2023

Summary

The research work described in this dissertation is composed of elements from a
path that began almost four years ago, investigating cybersecurity from a foundation
perspective: device security is no longer seen as an ancillary feature that can be
added, but as a foundational element of systems, which must already be designed to
respond to an external threat, that is always assumed to exist. Based on my research
group’s and my department’s extensive experience and tradition on the design of
hardware and computing architectures, the work has delved into the broad (but
recent) strand combining security with hardware. This intermingling generates two
different facets, which nevertheless tend toward a single end: the design of hardware
that is defended against attacks that directly target its physical and electronic nature,
and the design of hardware that is defending, i.e., that by virtue of its security also
enables the protection of the upper abstraction layers of computing systems, such as
software and communications.

Hardware, like software, data, or communication infrastructure, must be designed,
built, tested, used, and maintained while considering potential cyber attacks and
their consequences. Indeed, hardware runs software and constitutes the last line of
defense: if the hardware is compromised, any mechanism introduced to secure may
be rendered ineffective. Unprotected hardware can be a weak point in the chain,
providing at the same time an easy and powerful access point to the system functions
and data.

The present research path, borrowing a well-established term in the culture of
hardware design, investigates principles and methods of the design of vulnerability-
tolerant architectures, i.e., platforms designed to ensure system security even in
the presence of a vulnerability found, for example, in the software being executed.
The concept traces the already well-known concept of fault tolerance, whereby the
presence of a hardware fault does not cause the system to fail. In this dissertation,

2

the concept takes shape from a major software security problem for its prevalence
and danger, namely the presence of memory corruption vulnerabilities, which enable
the attacker to force malicious executions on the victim system, sometimes without
even the need to inject code.

The target domain is embedded systems, i.e., the small electronic controllers
that are hidden in the objects that surround our daily lives. Here, the effects of
the dangerousness of such attacks are manifested to an even greater extent, as the
hardware is often designed in such a way as to exclusively respond to functional
needs, and with policies of maximum resource saving, leaving apart those features
that could constitute a safeguard against attacks. Likewise, the code executed
by such systems is largely written in languages, such as C or Assembly, which
allow a deep optimization of resources, but at the same time open the way for the
corruption vulnerabilities mentioned above. The goal is then to create sensitivity
and knowledge about secure hardware design, particularly to address control flow
corruption vulnerabilities: hardware architectures must assume such weaknesses as
inescapably present in the software they will eventually run in their life cycle, and be
able to block penetration attempts by construction.

The scientific contribution of this research work can be split in serveral parts.
First, an important point of view on low-level computer security is introduced, with
definitions and taxonomies that can be of special help in the hardware security field.
It is defined what is meant by threat, danger, weakness, and attack in computer
security, and what are the pillar properties on which security is based. The concept
of vulnerability is detailed, and what are the categories within which to classify one
of them. The zero-trust principle is discussed, and how a design that wants to be
secure from the ground up and provide security to other domains must assume the
presence of vulnerabilities and threats in the surrounding environment as certain. In
the context of computer security, the role of hardware has been discussed, as the
physical substrate of the systems from which they cannot disregard, and on which
the design of a vulnerability-tolerant architecture is necessarily based.

Among all the security issues, the study focused on issues originating from the
software these devices run, and opening the possibility for the attacker to corrupt
the memory of these devices in such a way as to force them to execute sequences
of unintended code. Thus, the so-called binary attacks have been discussed, their
history, the classical defenses that the community has devised to defend itself, and

3

also how attackers have engineered the attack to escape them. The concept of
control-flow integrity (CFI) was introduced as a security property, ensuring that
a program only follows execution paths as originally designed for the mission of
that system. The original philosophy of this concept, together its advancement
and conjugation throughout the recent history of the scientific literature, have been
discussed discussed. A taxonomy was given to the various CFI proposals, which
distinguishes the various techniques based on the domain in which they are applied,
the static or dynamic nature of their policies, the type of software instrumentation
applied to the programs, and most importantly, the granularity of the checks that are
performed to verify compliance with the flow integrity.

This has led to the presentation of the formal theory behind PROLEPSIS, that
is the main scientific output of this dissertation. PROLEPSIS is a theoretical and
practical framework for devising vulnerability-tolerant architectures for embedded
systems, that guarantee control-flow integrity which is simultaneously fine-grained,
real-time and interrupt-aware. With respect to what has been elaborated in the
control-flow integrity research field, PROLEPSIS advances the knowledge importing
a model which is completely abstract from practical details, such as the used computer
architecture or monitor technology, while offering a maximum coverage against
any code redirection, and granting minimal overhead on runtime, memory size and
hardware resource occupancy. Using a formal language derived from some distinct
precedents in the literature, the behavior of an embedded program is described, and
how it can be hijacked to illegal executions through the intervention of an attacker.
The concept of tainted branch is then introduced and defined, as a branch from
which execution can escape from predefined paths. An algorithm for finding a
minimal number of such branches within a program has been devised, as well as the
behavior of a monitor that performs detection and inhibition of hijacking attempts at
these points. Such a monitor is based on the classical Policy Decision Point (PDP)
architecture, whereby Policy Information Points (PIP) and Policy Enforcement Points
(PEP) are inserted within the program to be supervised. Theorems on which the
operation of the monitor is based are formally demonstrated. A protected execution
environment according to the rules of such a monitor corresponds to a vulnerability-
tolerant architecture, at least for vulnerabilities originating control-flow attacks.

To give empirical strength to the formal findings, the monitor has been imple-
mented targeting two examples of vulnerability-tolerant architecture. In the former
one, the monitor is on an external hardware with respect to an ARM-based processor,

4

and receives control information necessary for verification; in the latter, the monitor
represents an extension of a RISC-V processor, and is implemented internally. The
technical details of the two architectures are presented, and based on scientifically es-
tablished practices, performance parameters have been evaluated, in terms of binary
size increase, additional time required for execution, and cost in terms of hardware
resources. In the case of the external monitor, a 17.88% additional code base size
has been measured, and a 1.10% additional execution time over a standard set of
benchmarks, with a cost on the external reconfigurable hardware hosting the monitor
logic below 3%. In the case of the internal monitor, we have got even better results,
i.e., around 0.4-0.6% additional cost on all evaluation parameters. These results
significantly outperform previous solutions, and provide evidence that the framework
implementation can lead to solutions falling within the real-time requirements of
the target domain. In both cases, such results are better than a group of reference
solution identified for each type of monitor, where usually fine-grained solutions
have double-digit percentage costs in all parameters, while coarse-grained solutions
are more efficient but highly ineffective. Regarding practical security evaluation,
the framework includes a new runtime evaluation benchmark based on established
practices in the literature, but specifically designed for embedded architectures. The
experimental results have shown 100% coverage on all considered attack cases,
empirically demonstrating the theoretical conclusions reached by the elaboration of
the formal theory.

The results of this dissertation can lead to architectural solutions with a clear
degree of novelty compared to what has been scientifically elaborated so far. In
addition to the abovementioned results, it is important to note that the framework
abstracts from the analysis of software vulnerabilities that the architecture is then
charged with executing. Many CFI solutions presented in the literature require some
degree of branch regulation, i.e., to change the nature of control-flow transfers,
or even the high-level code style itself, to reduce vulnerabilities. On the contrary,
the advantage of PROLEPSIS is not to require any security analysis, but offering
solutions that can be resilient to a precise attack pattern in all its variants. Among
other advantages, it is also worth mentioning how it does not require any pre-existing
architectural support. Everything required to implement protection is imported,
without requiring anything from the architecture. On the contrary, many proposals
require cryptographic extensions or modules such as the Last Branch Record (LBR)
from which to read program activity. Above all, PROLEPSIS is not based on any

5

secret: even when the attacker gets the control-flow graph information, he cannot
exploit it in any way to his advantage. The communication with the monitor has a
precise protocol, and excluding the possibility for the attacker to inject or modify the
code, there are no combinations of using instrumentation instructions to escape the
security checks.

In the end, a final corollary part of the dissertation describes the research work
done on a topic which is discussed centrally in the thesis, i.e., on Education and
Training of Hardware Security. The importance of the topic stems from our expe-
rience with the main topics covered in this thesis, and the particular relevance of
secure hardware design practices on which to train the next generation of experts.
The Appendix details and shows the results of a study carried out in order to face
the challenge of integrating this topic within the practical training paths specialized
on cybersecurity, also in the context of relevant projects in the Italian and European
contexts.

