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Abstract—Predicting the Quality of Transmission (QoT) of a
Lightpath (LP) before its actual deployment is important for
efficient resource utilization. Conventionally, analytical models
using closed-loop formulation estimate QoT, which imposes
substantial margins to avoid network outages. Recently, data-
driven techniques have been shown as a potential alternative with
excellent precision and real-time applicability. However, data-
driven techniques require sufficient training data, which might
be challenging to acquire during real network operations. In this
context, we proposed a novel unsupervised Iterative learning (IL)
framework developed on top of the Random forest (RF) classifier
for QoT estimation of LP before deployment. We considered
the Generalized signal-to-noise ratio (GSNR) as a characterizing
parameter for QoT estimation of LP. Our simulation results
illustrate that, by employing the proposed iterative learning
approach, we can obtain 99% classification accuracy with a
reduced number of training samples compared to the traditional
supervised learning approach.

Index Terms—Machine learning; Quality of Transmission es-
timation; Generalized SNR; Iterative learning.

I. INTRODUCTION

The main phase in the design and operation of optical
networks is the prediction of the QoT of an LP. The modern
alternative to the analytical models, such as the Gaussian
Noise (GN) model, which implements conservative approaches
to account for model generalizations and to cater to any
imperfections, is the use of Machine learning (ML) techniques
for QoT estimation [1]–[5]. These data-driven methods for
QoT prediction of LPs are generally based on supervised
learning techniques, which demand a considerable volume of
data of already-deployed LPs to acquire a training dataset
from which ML-based models can understand the augmented
knowledge to assist the operator in the estimation of the QoT
of forthcoming LPs [6].

Nevertheless, in a real operational network, the size of
acquired telemetry is limited, and thus the training dataset
size of supervised learning algorithms is comprised. Parallel
to insufficient telemetry, it is also highly improbable that
abnormal LPs will be noticed during regular network operation
mainly due to the conservative system-design implementation,

which ensures that the network will never turn out of service.
This further decreased the size of the training dataset and
added more bias to the data, affecting the accuracy of data-
driven techniques. For the supervised ML-based models, the
training dataset realizations must be sufficiently large, and the
dataset must mimic the actual operational scenario in order to
obtain a reasonable level of prediction accuracy.

In this context, IL (also known as "active learning" or
sometimes "query learning") emerged as a promising solution
in many contemporary ML problems, where it is difficult to
obtain a decent amount of labeled data for training. IL-based
algorithms aim to enhance the classification performance by
utilizing the sequentially added useful training samples while
lowering the labeling cost [7]. Contrary to IL, in traditional
supervised learning, obtaining a large amount of labeled
data to train the predictive model is fairly expensive, while
obtaining a large volume of unlabeled data is relatively simple.
The core concept of IL is that if the freedom is given to the ML
model to select the data it learns from, it can achieve greater
accuracy with less labeled training samples. The comparison
between traditional supervised learning and query-based IL is
demonstrated in Fig. 1. In traditional supervised learning, the
entire dataset is labeled by an expert and given at once to
train the machine learning model. In contrast, the query-based
IL approach tries to minimize the overhead of data labeling
by querying the label of selective unlabeled samples from
the human annotator or oracle in each iteration [8], [9]. In
this manner, the training dataset is increased sequentially in
each iteration, the ML model is retrained on the newly added
samples, and obtain highly accurate results with a few data
samples while lowering the cost of acquiring labeled data.
The effectiveness of IL approach is demonstrated in variety
of applications such as image classification [10], semantic
segmentation [11] and text classification [12]. In [13] and
[14], active learning based approach is employed for QoT
estimation as well.

In this work, we proposed a novel unsupervised query-
based IL approach for classifying LP into good or bad QoT



before its deployment. We consider an unsupervised learning
approach to distinguish our work from the previous works [13]
and [14]. In contrast, IL is applied as a supervised learning
problem in previous works, where they initialize the model’s
training with few labeled data samples. In our scenario, we
assume that no labeled dataset is available for initial training.
The effectiveness of the unsupervised active learning-based
approach is also demonstrated in [15] for linear regression
problems. The major contributions of our works are as follows:

• An unsupervised query-based IL approach is proposed to
classify the LP QoT into good or bad before deployment.

• We propose to use uncertainty sampling with entropy for
sample selection.

• We demonstrate the good performance of our proposed
scheme compared to the traditional approach.

II. ITERATIVE LEARNING ENGINE FOR QOT ESTIMATION

We proposed to develop the pool-based unsupervised IL
framework on top of the RF classifier to evaluate the QoT of an
unestablished LP in advance. The main goal of the IL approach
is to increase the number of training samples iteratively by
choosing the most useful samples. In this manner, our RF
classifier will be trained on the most informative set of samples
and achieve high performance with a reduced number of
training samples. The proposed IL framework is developed
using a high-level python-based Scikit-learn library [16].

A. Random Forest Classifier

RF classifier is based on the ensemble learning approach
that is comprised of several decision trees. It was initially
presented to address the classification problems [17]. Each tree
generates a prediction for a new testing sample. Consequently,
the test sample gets voted for that prediction class. The class
with the highest votes serves as the sample’s prediction label.
We developed the RF classifier using the feature space vector
V , containing power, ASE noise, NLI, and the number of spans
to classify an LP into good or bad QoT.

B. Query-based iterative learning solution

Considering the available dataset D={x1, x2, . . . , xn},
where xi represents a sample of dimension vector V . The
label y for a sample xi is yi ∈ {0,1}. The selected pool of
unlabeled samples is given by P {x1, x2, . . . , xn}, where P ∈
D. The IL framework aims to develop the efficient data model
by repeatedly querying the labels of most useful samples U
from the expert system while considering the threshold value
of a fixed budget B. Let L={x1, x2, . . . , xn} is a dataset
in which labeled samples are added. The flowchart of our
proposed methodology is illustrated in Fig. 2. In the first step,
we randomly select the pool P of 1000 unlabeled samples
(500 samples for each class) from the given dataset D. We
initialize the RF classifier with the unlabeled pool of data to
extract the underlying distribution of data. Note that, we wrap
our RF classifier using the Sklearn Classifier method described
in [16] to cope with missing label values. Each labeled sample
belongs to a certain class i.e, 0 or 1 in our case, while the

(a)

(b)

Fig. 1: (a), Traditional Supervised Learning Approach (b),
Iterative Learning Approach

labels for the samples in dataset P are unknown to us. For
every unlabeled sample in dataset P , we assume a random
variable Y which denotes the membership class. We obtain
the probabilities P̂ for membership class estimation of Y from
our RF classifier. The degree of uncertainty of Y in class
membership is computed in terms of entropy as follows:

E(Y ) = −
∑
y

(
P̂(y|xP )logP̂(y|xP )

)
(1)

where y denotes the classes, xP represents a sample from
the dataset P . The higher value of E indicates the increased
uncertainty of a classifier about the distribution of a sample
class. In each round of IL, we calculate the probabilities of
class membership for all the samples in dataset P . To select the
most useful samples from the set P for training, we utilized
uncertainly sampling with the entropy method. The sample
with the highest value of entropy is queried from an expert
system to obtain a label. Let (xL, yL) be a sample for which
label is obtained from the expert system, this sample will
be added to the training dataset L={x1, x2, . . . , xn}, and at
the same time, the corresponding sample is removed from the
dataset P . The RF classifier is retrained on the dataset L until
the budget is exhausted (number of iterations in our case)



Fig. 2: Proposed Iterative Learning based Framework.
TABLE I: Network simulation parameters.

Simulation Parameters
Launch Power/ Channel 0 dBm
Dispersion (D) 16.0 ps/nm/km
Attenuation coefficient (α) 0.2 dB/km
Channel Spacing (C-Band) 50 GHz
Span Length 80 km
WDM Comb (C-Band) 80
Baud Rate (C-Band) 32 Gbaud
Amplifier Noise Figure [3.5 - 4.5] dB [18]
Amplifier Gain Ripple Variation of 1 dB
Fiber Type Standard SMF

III. SIMULATION ENVIRONMENT AND DATASET
GENERATION

In this work, we consider a software-defined open optical
network, with an Optical line system (OLS) serving as an
instance of network edges and Reconfigurable optical add-
drop multiplexers (ROADMs) operating as an instance of
network nodes [19]. The considered OLSs are being operated
at their optimal working point, and the perturbed behaviour
of the physical layer is described mainly by the ripple gain
of the amplifier. These ripples gain fluctuates around when
the spectral load variates. Therefore, even with some degree
of uncertainty in the operating point, OLS controllers can
guarantee that they are running at the nominal operating point.
To connect the transceivers and allow for the use of dual-
polarization multilevel modulation formats, LPs are deployed
transparently on the Wavelength division multiplexing (WDM)
flexible grid system at the transmission layer. In the course of
transmission, LPs are degraded by a number of impairments,
the most significant of which are Amplified spontaneous noise
(ASE) and Non-linear impairments (NLI). Each In-line ampli-
fier’s (ILA) contribution to the ASE noise in the propagation
is statistically independent, yet it all adds up. However, there
is a statistically significant correlation between each span’s
NLI [20]. The overall GSNR of each LP traversing through
OLS is given as:

1

GSNR
=

∑
n

1

GSNRn
(2)

where n is the number of OLSs that the LP passed along a
particular path, the ASE and NLI over the specified path are
both taken into account by the GSNR metric.

The simulation framework considers the EU network op-
erating over a traditional C-band network. The traditional
C-band has a total bandwidth of ≈ 4 THz, which has the
potential of carrying 80 channels over a standard 50 GHz
grid. The transceivers of the traditional C-band band operate at
32 Gbaud, shaped with a raised-root-cosine filter. The Erbium-
doped-fiber amplifiers (EDFAs) considered for both networks
are configured to operate in a constant output power mode with
0 dBm/channel. The network connections are assumed to work
with standard Single-mode fiber (SMF) with a span of 80 km.
The ILAs are considered to have a randomly selected noise
figure for each amplifier in the 3.5 to 4.5 dB range, along
with a random gain ripple with a 1 dB variation. The details
of network simulation parameters are reported in Table I [21].

The scenario is modeled by generating synthetic datasets
that abstract the physical layer using the open-source GNPy
tool. With the help of the GNPy library, a full stack sim-
ulation environment of physical layer network models is
simulated [18]. For a traditional C-band network, the generated
dataset is a subset of 280, with 80 channels as the maximum
possible realization of the spectral load. The traffic load
utilization is 34% to 100% of the total bandwidth utilization.

IV. PERFORMANCE ANALYSIS AND RESULTS

In this section, we evaluate the performance of the IL
approach for QoT estimation. The QoT estimation metric for
any given LP traversed by OLSs from any source to the
destination is given by the GSNR metric, which incorporates
the effect of ASE from the amplifier and fiber NLI (see Eq. 3).

GSNR =
PRx

PASE + PNLI
=

(
OSNR−1 + SNR−1

NL

)−1
(3)

where OSNR = PRx/PASE, SNRNL = PRx/PNLI, PRx is the
signal power of the particular channel at the receiver, PASE

is the power of the ASE noise and PNLI is the power of the
NLI. The GSNR accurately calculates the Bit error rate (BER)
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Fig. 3: Comparison of traditional and proposed IL approach in terms of classification accuracy and F1 Score.

by analyzing the transceiver’s back-to-back characterization,
as the BER has been thoroughly mentioned in several vendor
demonstrations using commercial products [22]. The proposed
scheme enables the operator to predict the status of upcoming
deploying LP in terms of its QoT (GSNR). The proposed
IL approach works as a binary classifier and makes the
classification based on the GSNR estimation of LP (see Eq. 4).
The OSNR sensitivity threshold at the receiver considered in
this analysis is based on [23]

GSNR > OSNRRx −→ 1 (otherwise 0) (4)

The performance of the proposed approach is analyzed on
1000 samples of test data. The proposed model is evaluated
using the accuracy and F1 score metric. The evaluation of the
test dataset is repeated 100 times to obtain meaningful results
for both accuracy and F1 score. We compare the performance
of our proposed IL approach with the traditional supervised
learning approach which adopts the random sampling method
for training data selection. In the random sampling approach,
data samples are chosen with the same probability, while in
our approach samples are selected on the basis of uncertainty
sampling based on entropy. The considered supervised learn-
ing model is initially trained on 50 labeled data samples. Both
schemes are based on an iterative approach and a new data
sample is added to the training dataset in each iteration. We
run the IL cycles 50 times (B=50). Fig. 3 plots the accuracy
against the number of data samples for each scheme. We
varied the number of samples from 50 to 350 to analyse the
performance. The performance of both approaches is improved
as we increase the number of training samples. As we can see
that our proposed IL outperforms the traditional supervised
learning approach using only the 50 new data samples. The
accuracy of 99% is achieved with the IL approach considering
250 data samples, while for the same number of data samples
supervised learning approach obtains 83% accuracy. To further
assess the performance of our proposed approach, we plot the
F1 score obtained against the training samples as shown in the
Fig. 3. Our proposed approach is able to achieve a 95% F1
score with 150 data samples, whereas the traditional approach

with random sampling obtains a 79% F1 score with the same
number of samples. By observing the results, it is evident that
IL based approach shows excellent results for the classification
of LP into good or bad QoT.

V. CONCLUSIONS

In this work, we investigated a novel IL-based framework
which utilizes the entropy-based uncertainty-sampling method
to determine the most useful samples for training the machine
learning model. This framework does not require any initial
labeled dataset for training. It is demonstrated in the results
that, without using any initially labeled dataset for initial train-
ing, with the reduced number of labeled training samples, IL
based approach is able to achieve 99% accuracy in classifying
the good or bad QoT of LPs before deployment.
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