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Efficient Deep Learning Models for
Privacy-preserving People Counting on

Low-resolution Infrared Arrays
Chen Xie, Member, IEEE, Francesco Daghero, Member, IEEE, Yukai Chen, Member, IEEE, Marco Castellano,

Luca Gandolfi, Andrea Calimera, Member, IEEE, Enrico Macii, Fellow, IEEE, Massimo Poncino, Fellow, IEEE,
and Daniele Jahier Pagliari Member, IEEE

Abstract—Ultra-low-resolution Infrared (IR) array sensors
offer a low-cost, energy-efficient, and privacy-preserving solution
for people counting, with applications such as occupancy mon-
itoring and visitor flow analysis in private and public spaces.
Previous work has shown that Deep Learning (DL) can yield
superior performance on this task. However, the literature was
missing an extensive comparative analysis of various efficient DL
architectures for IR array-based people counting, that considers
not only their accuracy, but also the cost of deploying them
on memory- and energy-constrained Internet of Things (IoT)
edge nodes. Such analysis is key for system designers, since
it helps them select the most appropriate DL model given the
constraints of their target hardware. In this work, we address
this need by comparing 6 different DL architectures on a novel
dataset composed of IR images collected from a commercial
8x8 array, which we made openly available. With a wide
architectural exploration of each model type, we obtain a rich
set of Pareto-optimal solutions, spanning cross-validated balanced
accuracy scores in the 55.70-82.70% range. When deployed on a
commercial Microcontroller (MCU) by STMicroelectronics, the
STM32L4A6ZG, these models occupy 0.41-9.28kB of memory,
and require 1.10-7.74ms per inference, while consuming 17.18-
120.43 µJ of energy. Our models are significantly more accurate
than a previous deterministic method (up to +39.9%), while
being up to 3.53x faster and more energy efficient. So, our work
serves also as a demonstration that DL can not only achieve
higher accuracy, but also higher efficiency compared to classic
algorithms for this type of task. Further, our models’ accuracy is
comparable to state-of-the-art DL solutions on similar resolution
sensors, despite a much lower complexity. All our models enable
continuous, real-time inference on a MCU-based IoT node, with
years of autonomous operation without battery recharging.

Index Terms—Infrared Sensors, People Counting, Edge Com-
puting, Deep Learning, Microcontrollers, Energy Efficiency
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DEEP learning (DL) has recently received attention in
many Internet of Things (IoT) applications, ranging from

embedded computer vision to time series forecasting, due to its
remarkable predictive performance [1]–[5]. A direct execution
of DL-based prediction tasks on extreme-edge IoT nodes
such as smart sensors can provide unique benefits compared
with traditional cloud-based approaches, by eliminating the
need of transmitting large amounts of raw data through a
wireless network link [1], [6], [7]. Specifically, on-device
execution makes the IoT node responsive even in bad or no-
connectivity conditions, with a predictable latency. Moreover,
the only information (optionally) transmitted to the cloud is
the aggregated output of the DL model, e.g., a class label.
This is beneficial for confidentiality, as it reduces the risk of
accidental or malicious leakage of sensitive raw data (e.g.,
images, audio, video, etc) [1], [6].

However, DL algorithms originally designed for the cloud
are energy-hungry and require high computational complexity,
far beyond the capacity of memory- and energy-constrained
IoT nodes, which are typically based on battery-operated and
resource-limited Microcontrollers (MCUs). Bridging this gap
in order to successfully deploy DL applications at the extreme
edge requires a thorough selection of the employed models
and of the corresponding hyper-parameters [5].

Among the IoT applications that benefit from DL, people
counting is increasingly popular due to its vast number of
use cases in public safety, urban planning and commercial
assistance [8]. Practical tasks range from monitoring the
occupancy of indoor work spaces, museums and hospitals, to
analysing the people flow statistics at the entrance of shops,
supermarkets and other public places, to monitoring social
distance violations or safety norms infringements especially
in the context of the COVID-19 pandemic [9]–[11].

There exist a wide range of technical solutions based on
IoT for people counting, mainly split into two categories:
instrumented and uninstrumented [12]. The former approaches
exploit the transceivers present in devices already owned by
(or given to) users, such as smartphones, smartwatches, or
tags [13]. However, these methods are heavily limited by
voluntary participation and instrumental equipment, and are
hard to apply in most real-world scenarios, especially in public
places. On the other hand, uninstrumented solutions are free
of the individuals’ participation and rely on external sensors,
such as proximity sensors, optical cameras, infrared arrays
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etc [12], [14]–[16]. Among these, infrared beam sensors and
passive infrared sensors are inexpensive and simple to use, but
rely on specific conditions such as object motion, and cannot
easily distinguish multiple nearby people, which makes them
often inaccurate [17]. As computer vision and video analy-
sis techniques keep improving, vision-based people counting
solutions are thus progressively replacing them. Most current
vision-based approaches use optical cameras, processing each
frame with a Machine Learning (ML) algorithm to recognize
and locate individuals [18]–[20]. While effective, they face
severe privacy issues, since sensitive details of individuals such
as facial information and body morphology are also recorded
and processed.

In this scenario, low-resolution infrared (IR) array sensors
offer a promising alternative, with advantages in terms of
low energy consumption, low cost and privacy preservation.
The latter is due to the fact that IR arrays only detect body
temperatures, and given their low spatial resolutions (typically
8x8 or 16x16 thermal pixels), they can only capture the rough
body shapes, hiding all privacy-sensitive details of individuals.
While other works have studied the combination of IR array
sensors with DL models for people counting [21]–[24], they:
i) target higher resolution arrays, which simplifies the task but
results in higher cost, higher energy consumption, and lower
privacy and ii) consider a single type of DL model.

In this work, we perform the first detailed exploration and
comparison of multiple DL model families for people counting
based on a single, ultra-low-resolution (8x8) IR array. We
focus on efficient models, deployable on MCU-class platforms.
The following is a summary of our main contributions:

• We compare multiple efficient DL models for predicting
the people count based on data from a single 8x8 IR array.
For each type of model, we perform an extensive archi-
tecture exploration, obtaining a rich set of Pareto-optimal
solutions in terms of performance and complexity.

• Analyzing the results of our exploration, we derive some
interesting guidelines on the best type of model to prefer
based on the target accuracy range and cost metric
(model size or operations count). Overall, our models
span a 55.70%-82.70% range in balanced accuracy, with
parameters and operation counts varying in 0.4k-2.4k
and 2.9k-20k respectively. The best balanced accuracy
is up to 39.9% higher than the one of a state-of-the-
art deterministic algorithm [25], and comparable with
previous DL solutions on similar resolution data [21].

• We deploy some of the found models on a commer-
cial MCU by STMicroelectronics, the STM32L4A6ZG,
obtaining model size, inference latency, and inference
energy values ranging in 0.41-9.28kB, 1.10-7.74ms and
17.18-120.43µJ respectively. Our models are up to 3.53x
faster and more energy efficient than [25], while also
being significantly more accurate. Furthermore, all of
them allow real-time inference at 10 frames per second
with very low energy consumption, which would permit
years of continuous operation without battery recharging.

The rest of the paper is structured as follows: Section II
provides the background and overviews the related work on

Fig. 1. People counting with IR array sensors: problem formulation. Depend-
ing on the work, the prediction function f̂(X) can be obtained either with
a rule-based deterministic algorithm or learned from data using ML/DL, and
the predicted person count ŷt can be either a scalar or a class label.

person counting applications based on IR sensors at edge.
Section III presents a detailed description of the target dataset
and of the various considered DL models, and describes
the architecture exploration and deployment flow. Section IV
reports the experimental results, and Section V concludes the
paper.

II. BACKGROUND AND RELATED WORKS

People counting based on visual data is typically formulated
as an object recognition problem [34]. Several sensor types
have been utilized to implement both single- or multi-sensor
systems for this task [11], [35]. When considering this kind of
sensor, the problem reduces to a classification or regression on
image-like data, as shown in Fig. 1. Namely, at time instant t,
and calling xt the latest IR frame (i.e., “image”) collected, the
input to the recognition model is either a single frame Xt = xt

or a window of consecutive frames X = {xt−W+1,...,xt},
where W is the window size (W = 3 in the figure). The
output is the predicted people count ŷt = f̂(Xt), obtained
either as a continuous scalar, then rounded to the nearest
integer (regression formulation), or as a categorical value
corresponding to one in a set of possible counts (classification
formulation). The input/output relationship f̂(X) can be either
obtained with a deterministic rule-based algorithm or learned
from a training dataset using ML/DL approaches.

A summary of the most relevant literature works on people
counting with multi-pixel IR arrays is reported in Table I.
In particular, we report the sensor model and resolution, its
position, the target dataset, the counting algorithms, and the
IoT device considered the in each work for deployment. In
detail, prior works leverage both deterministic algorithms [11],
[25]–[28], [30], classic ML models [32] or DL [21]–[24].
Among deterministic approaches, [11] implemented a novel
real-time pattern recognition algorithm to process data sensed
from doorway-mounted low-resolution IR array sensors to
determine the number of people in a room. Similarly, [26] also
takes advantage of a doorway-mounted sensor, combined with
a body extraction and localization algorithm, and background
determination. [27] proposed a similar lightweight determin-
istic solution based on a single array sensor positioned on a
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TABLE I
STATE-OF-THE-ART PEOPLE COUNTING SOLUTIONS BASED ON INFRARED ARRAYS

Work Sensor Positioning Dataset Algorithm Deployment Target

Perra et al. [11] Grid EYE (8x8) Door Private Deterministic Z-Uno
Mohammadmoradi et al. [26] Grid EYE (8x8) Door Private Deterministic Raspberry Pi Zero
Wang et al. [27] MLX90641 (12x16) Door Private Deterministic ESP8266
Rabiee et al. [28] Grid EYE (8x8) Ceiling Private/Nagoya-OMRON Dataset [29] Deterministic -
Singh et al. [30] MLX90621 (16x4) Ceiling/Side Wall Private Deterministic Arduino Uno
Panasonic [25] Grid EYE (8x8) Ceiling LINAIGE [31] (*) Deterministic STM32L4 (*)

Chidurala et al. [32]
Grid EYE (8x8)
MLX90640 (32x24)
Lepton (80x60)

Ceiling Private

Naive Bayes
KNN
SVM
RF

Raspberry Pi 3

Bouazizi et al. [21] MLX90640 (32x24) Ceiling Private CNN Raspberry Pi 3
Gomez et al. [22] Lepton (80x60) Wall Private CNN NXP LPC54102

Metwaly et al. [23] MLX90640 (32x24) Ceiling Private
FNN
CNN
GRU

STM32F4/F7

Kraft et al. [24] MLX90640 (32x24) Ceiling Thermo Presence [24] CNN Raspberry Pi 4
Xie et al. [10] Grid EYE (8x8) Ceiling LINAIGE [31] CNN (2 variants) STM32L4
Xie et al. [33] Grid EYE (8x8) Ceiling LINAIGE [31] Wake-up Trigger + CNN STM32L4

This Work Grid EYE (8x8) Ceiling LINAIGE [31]
CNN (4 variants)
CNN-LSTM
CNN-TCN

STM32L4

(*) These entries refer to our deployment of the method described in [25].

door, to monitor trajectories of objects entering and exiting a
room, and estimate the indoor people count accordingly. While
interesting due to their use of a single, low-resolution sensor,
these works solve a simplified and limited-scope version of the
generic people counting problem. In fact, they only permit the
counting of people entering/exiting a room through a doorway.

A more general deterministic method based on a ceiling-
mounted sensor is described in [25]. This solution is based on
the separation of moving thermal objects from the background
by means of smoothing, linear interpolation and hot area
labeling and clustering. After that, threshold-based human
detection is performed on each labelled thermal object to
determine if it corresponds to a person or not. The reference
background image is updated regularly to automatically filter
stationary warm objects.

Furthermore, multi-sensor deterministic solutions have also
been explored. Specifically, [28] proposed a people flow count-
ing algorithm to monitor occupancy in smart buildings. To
achieve this goal, multiple low-resolution sensors are deployed
in connection points between different building areas, in order
to count the number of people moving across adjacent zones.
The work of [30], instead, presents a framework to count
people indoors based on two deterministic algorithms. Their
method requires three 16x4 thermal sensors deployed at dif-
ferent locations, pointing to x, y, and z directions respectively.

Among classic ML works, [32] considers three ceiling-
mounted IR arrays with different resolutions (8x8, 32x24,
80x60). It applies several preprocessing and feature extraction
steps (active pixel and active frame detection, connected
components analysis, statistical features), and then compares
multiple classification algorithms for people counting. The
considered algorithms are Naive Bayes, K-Nearest Neighbors
(KNN), Support Vector Machines (SVM) and Random Forests
(RFs). On a private dataset, they show that, for the lowest-
resolution array, the best score is achieved with a RF.

Lastly, several DL-based solutions have been proposed. The
authors of [21] use a Convolutional Neural Network (CNN)
with 9 convolutional layers and 1 dense layer to process data
from a ceiling-mounted, 32x24 pixels IR sensor to locate
and count people indoors. Optionally, their proposed method
allows the collection of lower-resolution samples (down to
8x6 pixels) to reduce sensor costs, thanks to the usage of
a separate 8-layer CNN for frame upscaling. [22] developed
a head detection and people counting algorithm for wall-
mounted sensors, based on a small-sized CNN model, and
targeting a limited-memory low-power platform deployment,
but focusing on a relatively high-resolution 80x60 pixels
array. [23] considered Feedforward Neural Networks (FNNs),
CNNs and Gated Recurrent Units (GRU) for indoor occupancy
estimation, based on ceiling-mounted 24x32 resolution IR
arrays. The work of [24] also adopts a ceiling-mounted 24x32
resolution IR array, and leverages an encoder-decoder CNN
architecture (a simplified version of U-Net) to reconstruct the
position of people in the frame.

Most recently, in our previous work of [10], we applied, to
our knowledge for the first time, a DL model directly to the
output of an ultra-low-resolution (8x8) array. However, that
work considered a simplified version of the people counting
problem, where the goal was simply to detect if the area
covered by the sensor contained 2 or more people, in the
context of social distance monitoring to combat the spread
of COVID-19. The same task variant was tackled also in [33],
where an additional deterministic wake-up-trigger was used
to avoid useless invocations to the CNN when no people are
present in the frame, further reducing the energy consumption
of the system.

All aforementioned data-driven (ML or DL) works suffer
from important limitations: [32] and [21] only focus on de-
ploying person counting on a high-end mobile Central Process-
ing Unit (CPU), and they do not report detailed deployment
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results in terms of memory occupation of the models, inference
latency, and energy consumption. [22] and [23] focus on
relatively high-resolution arrays, which are more costly and
power-consuming, besides possibly allowing the identification
of users, thus reducing privacy. [21] supports low-resolution
sensors only through an auxiliary CNN model for frame
upscaling, which contributes to the total inference complexity.
Furthermore, the excellent results obtained by many of these
works [22], [23], [32] are tainted by unfair data splitting, based
on a random sampling at the level of individual frames or
sliding windows. As explained in Sec. III, this unrealistically
oversimplifies the task. The only work that performs a realistic
data split at the session level is [21]. Lastly, as mentioned, [10]
and [33] focus on a simplified task variant.

In this work, we study for the first time the application of
DL methods to a people counting problem based on the output
on a single, ceiling-mounted, ultra-low-resolution IR array
(only 8x8 pixels). With an extensive architectural exploration
of six families of efficient DL models, and many different
hyper-parameters settings, we show that DL can not only
provide significantly better counting performance compared
to a deterministic algorithm, but also obtain benefits in terms
of energy consumption, and latency.

III. MATERIALS AND METHODS

A. Motivation

The goal of this work is to perform a detailed exploration
and comparison of various DL model families for people
counting based on a single, ultra-low-resolution (8x8) IR array.
We focus on this setup due to its several practical advantages
with respect to multi-sensor or higher-resolution alternatives,
including better privacy preservation, lower overall system
cost, and lower power consumption, especially for processing,
as shown in our results of Sec. IV. In fact, intuitively, process-
ing multiple and/or higher resolution images requires a higher
number of operations, regardless of the specific algorithm
employed, which is critical for ultra-low-power systems that
need to operate for years on battery power.

As anticipated in Sec. I, the main motivation for this study
is that, to our knowledge, such an extensive comparison of
DL models has not been performed before for this particular
task. Therefore, we believe that it serves two related pur-
poses: on the one hand, it provides a useful guidance for
system designers that want to use this kind of sensor, for
selecting an appropriate family of DL models based on the
required accuracy and on the hardware memory, latency and
energy constraints; on the other hand, it serves as a practical
demonstration of the fact that DL can not only achieve higher
accuracy, but also higher efficiency, compared to a classic
algorithm [25].

B. Dataset

There exists several public datasets containing IR array
thermal images. However, most of them have been collected by
relatively high-resolution sensors from 160 x 120 to 640 x 480,

Fig. 2. Sensor mounting and example of the IR frames.

targeting applications such as pedestrian detection, and intel-
ligent driving [36]–[39]. One public dataset containing low-
resolution IR images is described in [40], and employs three
wall-mounted sensors pointing in different directions, targeting
human activity recognition tasks. Another low-resolution IR
dataset containing 16x16 IR sensor arrays is described in [29],
in this case for a ceiling-mounted sensor and specifically
tailored for activity recognition. However, in this dataset at
most one person appears in the frame, which deviates from
the original people counting purpose. The dataset in [24] is
instead dedicated to people counting applications, with up
to 5 people in one frame. Each frame is annotated with the
people’s locations, which can be simply converted into counts,
but the dataset is collected with a relatively high-resolution
array (24x32 pixels). None of these datasets are suitable for
experimenting on low-cost, energy-efficient people counting
on ultra-low-resolution IR arrays. Indeed, as shown in Table I,
most literature on this task uses privately-collected data.

Given this scenario, we collected and made openly available
a new dataset called LINAIGE (Low-resolution INfrared-array
data for AI on the edGE) [31]. LINAIGE targets specifically
people counting and presence detection tasks in indoor envi-
ronments, and its first version was described in our previous
work of [10]. The dataset includes IR samples collected with
a Panasonic Grid-EYE (AMG8833) sensor [25] outputting a
8 x 8 array, at 10 Frames Per Second (FPS). Each frame is
associated with the corresponding people count label. During
data collection, the sensor was ceiling-mounted as shown in
Fig. 2a, and positioned in different indoor environments such
as offices, laboratories and corridors, using a lens with a view
angle of 60°. Volunteers passed in the view range of the
sensor by walking, standing, running, etc, during a number of
data collection sessions. Some examples of collected frames
and corresponding people counts are shown in Fig. 2b. As
detailed in [10], depending on the sensor height in different
environments, the maximum distance between in-frame people
varies in [1.53:2.04] m and the counting area is up to ≈ 2
m2. People counting on larger areas can be simply achieved
by combining the outputs of multiple sensors, appropriately
positioned. With respect to the original dataset described
in [10], this work is based on a new version with improved
data quality. Namely, we removed the very rare frames with
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> 3 people (0.66% of the total), which were present only
in one session, complicating the training and cross-validation
of ML/DL models. Further, we also removed the shortest
session (session 4 in [10]) which contained only 196 frames,
i.e. around 20s worth of data, and unrealistically altered the
recognition performance metrics. After these changes, the new
dataset contains 25110 samples, split into 5 sessions. Each
session is associated with a timestamp, environment name and
room temperature.

IR frames have been labelled using a semi-automatic
method: a data collection system based on a single-board
computer named Raspberry Pi 3B has been set up, including
both the IR sensor and an optical camera, pointing in the
same direction and collecting synchronized frames. Optical
frames have been then processed with a pre-trained object
detection model (Mask R-CNN [41]) to automatically count
the number of people in them, and associate the same count
to the corresponding IR frame. The results have been double-
checked by a human labeller to correct CNN mispredictions.
Further, the human labeller also associated each frame with
a binary confidence measure, which can be used to exclude
frames for which it was difficult to assess the exact people
count due to the imperfect alignment of the viewing angles
between the IR sensor and the optical camera. More details
on the labelling are found in [10].

In all experiments of this work, we excluded “hard-to-label”
frames from training and testing, both for our method and
for state-of-the-art comparisons. Moreover, in contrast to [10]
where a simple per-session train/test split was used, here we
adopt a per-session Cross Validation (CV) approach, to make
our model evaluation independent from the characteristics of
a specific test session. The cross validation strategy is shown
in Table II. Given that Session 1 is significantly larger than
all others (17958 frames versus a maximum of 2202 for other
sessions, and 71% of the total data), we always kept it in the
training set. Sessions 2, 3, 4 and 5 have been rotated as the test
set in different iterations, with all other data in the training set,
yielding 4 CV folds. This leave-one-session-out CV strategy
ensures the fairness of model evaluation, by making sure that
test frames correspond to a different environment, date-time,
and room temperature setting compared to training frames.
This is close to a realistic scenario, in which the system is
likely to be tested in a different environment from where it
was trained. In contrast, a purely random per-frame split would
cause a leakage of information between training and testing,
oversimplifying the problem.

C. Model Architectures

We considered six families of DL models to predict the
people count in IR frames, exploring some of the key hyper-
parameters of each. A graphic representation of all considered
models is shown in Fig. 3.

1) Single-frame CNN: The first considered architecture is
a simple CNN, which is known to be effective in many
image-based pattern recognition tasks. The general template
of the considered CNNs is shown in Figure 3a; it includes up
to 2 Convolutional (Conv) layers with Rectified Linear Unit

(ReLU) activation, 1 optional Max Pooling layer and up to
2 Fully Connected (FC) layers. The first FC layer has 64
hidden units and a ReLU activation, while the output layer
has a number of neurons equal to the possible count “classes”
(from 0 to 3 people, corresponding to 4 output neurons,
in our experiments). Furthermore, compared to our previous
work of [10], which focused on a simpler social distancing
problem, we added Batch Normalization (BN) layers after
each Conv layer to improve the classification performance.
Utilizing this template as a starting point, a vast architecture
exploration was performed, by eliminating/retaining layers
which are enclosed in dashed boxes in Fig. 3a. Namely, we
considered architectures with:

• 1 or 2 Conv layers, each followed by BN;
• 1 or 2 FC layers;
• 0 or 1 Max Pooling layers;

Besides varying the number of layers, we also explored the
number of feature maps (i.e., channels) in each Conv layer,
considering values in {8, 16, 32, 64}. Conv. and Pooling kernel
sizes are fixed at 3x3 and 2x2 respectively. The input processed
by this CNN model is a single IR array frame Xt = xt, with
a tensor shape (8, 8, 1). In total, we evaluate 48 different
Single-frame CNN variants.

2) Multi-channel CNN: While the previous model consid-
ers a single IR array frame as input, all other models try to
exploit the temporal information enclosed in a sequence of
consecutive frames to improve the people counting accuracy.
The rationale is that considering a sliding window of IR frames
as input can reveal information on people movement, which
in turn can improve the prediction accuracy in complex cases.
For instance, Fig. 4 shows that a single hot area (highlighted
by a purple box in the last frame) can be correctly associated
with two people close to each other, rather than with a single
person, by observing the movement of the two people (red and
orange cycles) in preceding frames.

The first and simplest mechanism that we considered to
process multiple IR frames consists in feeding them to a
CNN as different input channels. Specifically, calling W the
length of the sliding window, a tensor with shape (8, 8, W) is
formed by stacking IR frames Xt = {xt−W+1,...,xt} along
the channels axis. The tensor is then associated with the
people count label of the last frame yt for training and testing.
These inputs and outputs are also used for all the other multi-
frame architectures described in the following. The template
of the Multi-channel CNN model is shown in Fig. 3b. We
explored the same hyper-parameters settings considered for
Single-frame CNNs in terms of the number of layers, and
the number of Conv channels. In addition, we also varied the
window size W in {3, 5, 7, 9}. This exploration is interesting
because, intuitively, with a too-short window the advantages of
accessing past frames are limited, whereas a too-long window
will provide useless information (too far in the past), while
increasing the time and memory complexity of the first Conv
layer.

3) Majority Voting CNN: Majority voting is a simple yet
effective ensemble learning approach that takes advantage
of multiple classification results to generate final predictions
with lower variance [42]. In recent years, several literature
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TABLE II
DATASET STATISTICS AND CROSS VALIDATION STRATEGY.

Train Fold Test Fold

Session Sample N. People Counts Statistics [%] Session Sample N. People Counts Statistics [%]
0 1 2 3 0 1 2 3

1, 3, 4, 5 23529 26.07 43.49 23.61 6.83 2 1581 14.86 30.68 54.46 0
1, 2, 4, 5 23591 22.37 44.03 26.84 6.77 3 1519 71.89 21.72 5.66 0.72
1, 2, 3, 5 22908 25.3 41.85 26.17 6.67 4 2202 26.02 51.27 19.16 3.54
1, 2, 3, 4 23260 24.69 43.02 26.08 6.20 5 1850 33.78 38.38 18.92 8.92

(a) Single-frame CNN (b) Multi-channel CNN

(c) Majority Voting CNN (d) Concatenated CNN

(e) CNN-LSTM (f) CNN-TCN

Fig. 3. Model Architectures considered in this work

!

Fig. 4. Example of the IR frames sequence corresponding to 2 people moving
close to each other.

works have applied this technique, using either different
classifiers [43], multiple instances of the same model trained
differently [44] or a single trained model fed with different
inputs [45]. In our work, we follow the latter approach,
applying majority voting (i.e., mode inference) to the W
predictions obtained by executing a Single-frame CNN on
each frame of the sliding window. A high-level scheme of
this solution is shown in Fig. 3c. The clear advantage of
this technique, from the point of view of edge inference, is
that it requires approximately the same memory as a single-
frame CNN, while possibly improving the prediction accuracy
by filtering-out occasional mispredictions. The latency/energy
cost for inference, instead, is roughly W times higher than that
of a single-frame model. We consider again W values in {3,
5, 7, 9}. Note that majority voting requires an odd window
size; thus, for fairness of comparison, all other multi-frame
architectures have been tested only with odd W values.

To make our architectural exploration tractable, we consider

the majority-voting models obtained using Pareto-optimal
Single-frame CNNs as individual predictors. More specifically,
we apply majority voting on top of all single-frame CNNs
found in the Pareto front in terms of people counting accuracy
versus model size or versus number of operations.

4) Concatenated CNNs: While the main advantage of
majority voting is that it does not require extra trainable
parameters, its main drawback is that it cannot assign dif-
ferent importance to the various IR frames in the sliding
window. Intuitively, more recent frames should be given more
importance to determine the people count, especially with
large W . Although this could be approached by a weighted
voting mechanism, such solution requires a difficult hand-
tuning of the weights assigned to each frame. Thus, our
next considered DL model exploits a feature concatenation
approach to overcome this limitation [46], [47]. Specifically,
as illustrated in Fig. 3d, each frame of the sliding window
is individually fed into a feature extractor module to extract
time-independent features. Then, all outputs are flattened and
concatenated into a unique feature vector, and further pro-
cessed by two FC layers to generate the final prediction. In this
way, the training process can automatically assign appropriate
weights to different frames’ features. We consider the Conv
and Pooling layer configurations (i.e., the part highlighted by
an orange box in Fig. 3a) found in each Pareto-Optimal Single-
frame model as possible feature extractors for concatenated
CNNs. Furthermore, besides exploring the usual 4 values of
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W , we also vary the number of neurons in the first FC layer
in {8, 16, 32, 64}. Altogether, given N Pareto-optimal feature
extractors, we evaluate a total of 4*4*N Concatenated CNNs.

5) CNN-LSTM: The next multi-frame model explicitly con-
siders the time dependency between frames, replacing the
simple feature concatenation with a Long-Short Term Memory
(LSTM) cell. Several works have considered CNN-LSTM
models to combine spatial and temporal information [48]–
[50]. The closest work to ours is [29], which applied a
CNN-LSTM for human activity recognition based on a 16x16
IR array. These works have demonstrated the remarkable
performance achieved by CNN-LSTMs. However, LSTM cells
are less hardware-friendly than CNNs [51] (see Sec. III-C6).
Therefore, it is interesting to compare this model with other
architectures, considering the trade-off between complexity
and performance.

Our CNN-LSTM template is shown in Fig. 3e. The W
feature extractor outputs are flattened and fed to the LSTM
cell sequentially. One or two FC layers are then connected
to the last hidden state produced by the LSTM to generate
the output prediction. We apply the same feature extractors
selection strategy illustrated above for Concatendated CNNs.
Moreover, we vary W as before, and we also explore the
number of hidden units in the LSTM cell, with values in {8,
16, 32, 64}. Again, given N Pareto-optimal feature extractors,
a total of 4*4*N CNN-LSTM architectures are evaluated.

6) CNN-TCN: The last type of model considered is based
on Temporal Convolutional Networks (TCN) [51] which have
recently emerged as a more hardware-friendly alternative
to LSTMs, and have been applied to several edge-relevant
tasks [5], [52]. TCNs are simply 1D CNNs, with the peculiar-
ity of using causal convolution, which is appropriate for time-
series processing. Compared to LSTMs, these networks exhibit
more data reuse and are more resilient to integer quantization,
both of which are advantageous for edge deployment [51].
Therefore, our last architectural template is built by combining
the outputs of the usual 2D CNN feature extractors applied to
single IR frames with a single TCN layer, as shown in Fig. 3f.
The TCN output is then flattened and fed to 1 or 2 FC layers
to generate a prediction. We fix the 1D Conv kernel size at
3x1, and the dilation at 1. Besides varying W as in previous
models, we explore the number of output channels of the
TCN layer, considering values in {8, 16, 32, 64}. Therefore,
with N feature extractors, also in this case we explore 4*4*N
architectures.

D. Training and Deployment Flow

All models are trained with the leave-one-session-out CV
strategy described in Sec. III-B. At first, we perform a standard
floating point model training with Keras/TensorFlow 2.0 [53],
for a maximum of 500 epochs per fold. We optimize a cate-
gorical cross-entropy loss function using the ADAM optimizer,
with an initial learning rate of 10−3. A learning rate reduction
of factor 0.3 is applied when the training loss is stagnating,
with a patience of 5 epochs. Early-stopping is applied after 10
non-improving epochs. Given the strong class imbalance of
the LINAIGE dataset (see Table II), we apply class-dependent

weights to the loss during training, which are computed as the
inverse of the class frequencies.

After this initial floating point training, we quantize the
parameters, inputs, outputs, and intermediate activations of
the resulting models to 8-bit integers, using the TensorFlow
Model Optimization (TFMOT) API. This step is important to
further reduce the memory occupation, latency, and energy
consumption of the models, when deployed on constrained
MCU-based IoT nodes [54]. We then apply quantization-
aware training (QAT) [55] to recover the accuracy drop due
to quantization as much as possible. We use the same training
protocol described above, with the only two differences that
the initial learning rate is set to 5 × 10−4 and the learning
rate scheduling and early stopping patience values are set to
10 and 20 epochs respectively. Note that the QAT of LSTM
cells is not supported by the TFMOT API yet. Therefore, the
CNN-LSTM models are directly deployed in floating point to
the MCU. This turns out to be a major practical limitation of
CNN-LSTMs.

The trained and quantized models are then converted into
TensorFlow Lite (TFLite) format [53]. Lastly, we utilize the X-
CUBE-AI toolchain 7.2.0 [56] to convert the TFLite files into
optimized C language implementations for our deployment
target, i.e., the ultra-low-power STM32L4A6ZG MCU by
ST Microelectronics, which is based on a 32-bit Cortex-M4
core [57]. The latency and energy results refer to the MCU
running at 80MHz, with a supply voltage of 1.8V.

IV. EXPERIMENTAL RESULTS

A. Setup

To evaluate the performance of our models, we mainly
consider the Balanced Accuracy (Bal. Acc.) metric, i.e., the
average of recall on each class. Compared to the standard
accuracy (Acc.), i.e., the fraction of correct predictions, which
we also report for completeness, the Bal. Acc. is more suitable
for class-unbalanced datasets. Moreover, we also measure the
F1-Score (F1), defined as the harmonic mean of precision
and recall. Since ours is a multiclass problem, we compute
the weighted average of the F1 on each class. Lastly, we
also report the Mean Absolute Error (MAE) and the Mean
Squared Error (MSE) between ground truth and predicted
people counts. We consider MAE and MSE although our task
is a classification, because they allow taking into account the
significance of errors: e.g., for a frame with a ground truth
people count of 3, a model that outputs 2 makes a “smaller”
error compared to one that outputs 1. All metrics are reported
as the mean ± standard deviation over the 4 CV folds, where
each fold is weighted by the number of its test samples over
the total test samples.

To estimate the hardware-independent computational com-
plexity of each model, we consider the number of parameters
as a proxy for model size, and the number of Multiply-and-
Accumulate (MAC) operations, i.e., the dominant operations
in DL inference, as a proxy for energy and latency. We then
deploy on the target MCU a selection of Pareto-optimal models
in the Bal. Acc. versus parameters and MACs planes. For
deployed models, we derive the total memory occupation,
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Fig. 5. Results in terms of balanced accuracy versus number of parameters and number of MAC operations for all considered models. All models (left), and
isolated Pareto fronts (right).

as well as the total clock cycles, energy consumption and
latency per prediction, from measurements on the real hard-
ware, i.e, the STM32L4A6ZG MCU by ST Microelectronics.
Concerning memory occupation, both the model size and the
total Flash usage are measured. In particular, model size is
obtained from the X-CUBE-AI toolchain when generating
C code for our DL models, while Flash usage is evaluated
using the STM32CubeIDE [58] during deployment. The CPU
cycles per inference, which determine the total latency, are also
measured using STM32CubeIDE, and in turn used to compute
the energy consumption based on the average active power of
the MCU from the datasheet. We consider the STM32L4A6ZG
MCU working at 80MHz clock frequency, with 1.8V supply
voltage [57]. The latency and energy consumption estimates
for each architecture have been obtained running the models
and the baselines 1000 times, and reported as the mean ±
standard deviation, as shown in Table IV.

Our main baseline for comparison is [25], i.e., the only
publicly available people counting solution based on a ceiling-
mounted IR array with the same resolution sensor as ours.
We compiled and executed the code of [25], written in C
language, on our target MCU, using the same compilation
flags of our models, and we tested it on the LINAIGE dataset.
Furthermore, we also compare with [21]–[24], [32], although
only qualitatively, since those works target different datasets
and hardware platforms.

B. Architecture Exploration

Figure 5 shows the results of our architecture exploration.
In particular, the top (bottom) graphs show the results before
(after) 8-bit quantization. For each data precision and target
cost metric (MACs or parameters), we report both the entire
set of considered models (left), and a “zoom” on the Pareto
frontier (right), highlighted by a black dashed line. The people
counting performance is reported in terms of the average Bal.
Acc. over the CV test folds. Each marker shape refers to one
model type, whereas colors correspond to different sliding
window sizes W . Note that LSTM-based models are not
present in Fig.5b because their quantization is not supported by
TFMOT. The performance of our comparison baseline of [25]
is shown by a horizontal red line.

The complete graphs show the breadth of our architectural
exploration, which includes models that span more than two
orders of magnitude in terms of MACs (2.9k-364k) and pa-
rameters (0.4k-153k). When considering only Pareto-optimal
models, the MACs range is 2.9k-14k for float models and 2.9k-
20k for quantized models, while parameters vary in 0.4k-2.4k
and 0.4k-1.6k respectively. The Bal. Acc. spanned by these
models ranges in 55.70-82.70% for float models and 62.88-
82.17% for quantized ones.

All Pareto-optimal models outperform the deterministic ap-
proach of [25], showing the benefit of data-driven methods for
this task. Moreover, all 6 considered model families are present
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in at least one Pareto front, demonstrating that focusing on
a single architectural template would be sub-optimal. Single-
frame CNNs are only achieving optimal trade-offs in the
lowest end of the accuracy range. At the same time, models
with W = 9 are rarely on the frontier, highlighting at the same
time the importance of processing a sequence of IR frames to
achieve high accuracy, and the fact that too long sequences
stop providing useful information and lead to over-fitting.
Lastly, comparing Fig. 5a and Fig. 5b, shows that quantization
does not cause relevant accuracy drops, and rather yields a
Bal. Acc. increase on most models, especially the lowest
complexity ones. This is due to its well-known regularizing
effect [55], which again helps to reduce overfitting.

Going more into the details of each chart, we note that
each Pareto front is formed by a different combination of
model types, showing that different architectures are preferable
for optimizing the model size or the number of operations.
Specifically, when considering the Bal. Acc. versus MAC
graphs, Single-frame and Multi-channel CNNs (crosses in the
charts) occupy most of the Pareto front, for both float and
8-bit models. In contrast, when considering the number of
parameters as a cost metric, the front is mainly composed of
Majority voting (squares) and Concatenated CNNs (circles).
This is expected, since for W > 1, Multi-channel CNNs
require additional MACs only in the first Conv layer, whereas
all subsequent layers remain identical to the case of W = 1.
In contrast, Majority-voting and Concatenated CNNs repeat
the execution of the entire network, or feature extractor, on
each frame, which makes the total MACs grow almost linearly
with W . Therefore, these models “pay” the Bal. Acc. benefits
deriving from a larger W with a much larger number of
operations. Vice versa, since the weights used to process each
IR frame are shared, the cost increase in terms of model size is
lower. Specifically, it is near-zero for Majority-voting CNNs,
and limited to the final FC layers for Concatenated CNNs.
Accordingly, when considering the parameters as a cost metric,
these models are able to outperform multi-channel CNNs and
reach the Pareto frontier.

Predictably, the most complex models (CNN-LSTM and
CNN-TCN) appear in the high-accuracy part of the Pareto
curves. Namely, the most accurate floating point model is a
CNN-LSTM, reaching 82.7% Bal. Acc. with ≈ 14k MACs
and 2.38k parameters, whereas two CNN-TCN appear in the
MACs-related Pareto front for quantized models, close to the
top. However, in general, most instances of these two types
of model suffer from over-fitting, achieving sub-optimal per-
formance, while incurring a high cost in terms of MACs and
parameters, as shown by the fact that they mostly occupy the
right side of the complete charts. Overall, we can conclude that
simple and efficient solutions to combine multiple IR frames
(multi-channel, mode inference, and feature concatenation) are
preferable for this relatively simple task and small dataset.

Table III reports a summary of all considered DL models,
highlighting the features and requirements of each type based
on our results. The table reports only qualitative trends, since
the exact numerical results could change for different sensors
or datasets. Specifically, for each model type, we summarize
our Pareto analysis on both floating point and quantized

TABLE III
SUMMARY OF THE CHARACTERISTICS OF THE CONSIDERED DL MODELS.

Model Best For Bal. Acc. Target Max Input Win.
Single-frame Latency/Energy Low 1
Multi-frame Latency/Energy Mid 3

Majority Memory Whole Range 7
Concat Memory Mid 7

CNN-LSTM Memory High 9
CNN-TCN Latency/Energy High 3

implementations, reporting: i) whether a given model is most
effective for memory reduction or for latency/energy reduction,
depending on whether it is found more frequently on the
parameters or MACs Pareto frontier respectively (Best For
column); ii) the accuracy range for which such model is prefer-
able (Bal. Acc. Target column), which also implicitly defines
the corresponding resource range (memory or latency/energy);
iii) The maximum IR frames window length that yields Pareto-
optimal results for that model family (Max Input Win.). Ap-
proximately, Low, Mid, and High Bal. Acc. ranges correspond
to < 75%, 75% − 80% and > 80% respectively. The table
provides, at a glance, a general guidance for system designers.
For instance, it shows that single-frame CNNs are a good
choice when the objective is to obtain a fast and energy-
efficient inference, and very high accuracy is not required.
Similarly, it shows that Majority voting is a very effective
solution for memory reduction, across the whole accuracy
range, or that CNN-LSTMs are the only models for which
a window length > 7 is useful for improving accuracy, etc.

C. Deployment

We have selected 5 floating point and 5 quantized architec-
tures from the Pareto curves derived in Sec. IV-B to deploy on
the target MCU. Namely, we deployed: i) the model achieving
the best balanced accuracy (Top); ii) the smallest model overall
(Size-L) and the one requiring the least number of MACs
(MAC-L); iii) the smallest/fewest-MAC models that achieve
a Bal. Acc. drop < 5% with respect to Top (Size-H/MAC-H).

Table IV shows the detailed deployment results for these
architectures on the STM32L4A6ZG MCU. Quantized models
are denoted with a “-Q” suffix. Besides people counting
accuracy metrics, we also report the memory occupation,
energy consumption and inference latency of each model.
In particular, for what concerns memory, we report both
the model size and the total occupied Flash, which also
includes code size. The same quantities are also reported
for [25] for comparison. The rightmost column summarizes
the architecture of each deployed neural network. Namely, the
symbols inside the square brackets indicate the model type,
using the same marker shape of Fig. 5 (e.g., ▲ corresponds
to a CNN-LSTM). The number in brackets corresponds to the
value of W . Then, the sequence of layers in the model is
encoded as follows: “Cn” corresponds to a Conv layer with
n output channels, with implicit BatchNorm and ReLU, “FC”
is a fully-connected layer, “P” a max. pooling layer, “Lm” a
LSTM cell with hidden size m, and “Cat” a concatenation.

As shown, all quantized models, as well as most floating-
point models (except Size-L and MAC-L) greatly outperform
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TABLE IV
DETAILED EVALUATION AND DEPLOYMENT RESULTS OF SELECTED ARCHITECTURES.

Model Bal. Acc. Acc. F1 MSE MAE Model Size Tot. Mem. Energy Latency Architecture
[%] [%] [kB] [kB] [µJ] [ms]

Top 82.70±6.15 84.34±7.84 0.85±0.07 0.18±0.09 0.16±0.08 9.28 82.38 80.26±0.10 5.16±0.0064 [▲3] C8-P-C8-L16-FC
Size-H 76.25±5.54 78.13±9.08 0.79±0.08 0.24±0.09 0.23±0.09 2.97 68.73 54.96±0.01 3.53±0.0006 [•3] C8-P-C8-Cat-FC

MAC-H 77.62±5.98 78.04±8.18 0.80±0.07 0.27±0.11 0.24±0.09 5.7 42.95 29.25±0.01 1.88±0.0003 [×3] C8-P-C16-FC
Size-L 57.08±11.37 51.10±22.49 0.52±0.23 0.78±0.70 0.58±0.36 1.45 37.88 85.75±0.06 5.51±0.0036 [■5] C8-P-FC

MAC-L 55.70±11.86 50.35±21.31 0.51±0.21 0.81±0.68 0.59±0.35 1.45 37.59 17.18±0.01 1.10±0.0007 [×1] C8-P-FC
Top-Q 82.17±6.42 86.06±5.59 0.86±0.05 0.15±0.05 0.14±0.05 1.71 78.01 120.43±0.02 7.74±0.0010 [■5] C8-P-C8-FC-FC

Size-H-Q/MAC-H-Q 77.08±6.05 79.48±6.53 0.81±0.06 0.24±0.07 0.22±0.07 0.9 76.32 27.70±0.02 1.78±0.0010 [×3] C8-P-C8-FC
Size-L-Q 63.87±10.76 70.83±13.79 0.70±0.14 0.33±0.12 0.30±0.13 0.41 71.56 61.90±0.02 3.98±0.0010 [■3] C8-P-FC

MAC-L-Q 62.88±7.52 68.97±14.03 0.69±0.14 0.36±0.13 0.33±0.14 0.41 71.39 20.45±0.01 1.32±0.0007 [×1] C8-P-FC
[25] 42.77±14.50 57.54±11.50 0.56±0.12 0.61±0.21 0.49±0.14 - 20.07 60.34±0.005 3.88±0.0003 -

[25] in all considered accuracy metrics. In terms of balanced
accuracy, our models outperform [25] by 20.1%-39.4% and
12.9-39.9% for integer and floating-point data representations
respectively. Moreover, MAC-H and MAC-L in both imple-
mentations are faster and more energy efficient (from 2.06x to
3.51x) than [25], while still significantly outperforming it. For
example, MAC-H-Q is 2.18x times faster and more energy
efficient than [25], while also achieving +34.3% Bal. Acc.,
+21.9% Acc., 1.44x higher F1 Score, and 2.54x/2.22x lower
MSE/MAE.

The model size of all selected architectures is extremely
small, with the smallest one occupying only 0.408 KB. The
total memory, instead, is larger than [25], but this is mostly
due to the large code size of X-CUBE-AI libraries, which
contributes to up to 97% of the Flash occupation. As shown
in the table, the resulting memory depends on the types of
layers present in the model (e.g., the “Top” floating point
model requires more memory partly because of the additional
inclusion of LSTM-related code). Further, quantized models
have a larger code size compared to floating point ones
on average, probably due to the more complex logic for
handling scaling factors and re-quantization operations [55].
Nonetheless, all considered models can easily fit in memory-
limited IoT nodes, requiring 37.6-82.4kB of Flash, which
corresponds to 3.7%-8% of the 1MB available on the MCU
considered for our experiments.

All our models also have a latency < 10ms , which is
below the real-time constraint, considering the 10FPS acqui-
sition rate of our target dataset. Furthermore, considering a
small 1400mAh@3.7V battery, and ignoring non-idealities and
conversion losses for simplicity, a model such as MAC-H-Q
would be able to continuously run inferences at that frame rate
for more than 2 years without recharging.

D. Comparison with state-of-the-art ML/DL Approaches

Table V compares our work with the most relevant Machine
Learning and Deep Learning approaches for people counting
with IR array sensors. Of course, the comparison is only
qualitative, since most previous works have been tested on
private datasets, and deployed on different hardware. In the
table, besides the input frame size, we report the Acc., F1 and
MSE scores when available (other metrics were not considered
by previous works). All scores are directly taken from the orig-
inal papers. We also report the model size and the number of
operations (OPs) per inference, as two hardware-independent

TABLE V
COMPARISON WITH THE STATE OF THE ART.

Result Input Acc. [%] F1 MSE Size [kB] OPs
[21] 8x6 n.a. 0.88 n.a. 450 34·106

[22]∗,† 10x10 95.9 n.a. n.a. 13.6 117·103

[23]∗ 32x24 98.9 n.a. 0.01 400 400·103

[32]∗ 8x8 94.6 0.95 n.a. n.a. n.a.
[24]§ 32x24 94.1 n.a. 0.057 520.8 25·106

Top-Q 8x8 86.1 0.86 0.15 1.71 20·103

Top-Q∗ 8x8 95.3 0.95 0.05 20.1 80·103

(*) Train/test split based on random sampling, not per-session.
(§) Train/validation/test split based on sequences splitting in different locations,
not per-session.
(†) Numbers refer to the processing of a single 10x10 sliding window. This
approach also localizes people.

complexity metrics. For DL solutions, we approximate OPs
with the number of MACs, and when either Size or OPs are
not reported by the authors, we calculated them based on the
layers’ geometries. For [32], instead, estimating Size and OPs
was not possible, since the authors did not report the number
and maximum depth of the decision trees that compose their
best-performing RF.

We report two results for our work: the first one corresponds
to the “Top-Q” network of Table IV, found using the described
per-session CV approach. Additionally, since [22], [23], [32]
use a purely random sampling method to separate training and
test sets, we also report the best quantized results obtained with
such kind of splitting. Precisely, we repeat the architecture
search using a random 80%/20% train/test split, and report
the average test set results over 4 iterations. Note that the
resulting Top-Q∗ model has a different architecture from
Top-Q. Namely, it is a quantized CNN-TCN model with
the following structure: [♦9] C8-P-C32-TCN32-FC-FC, where
TCNo refers to a TCN (1D Conv) layer with o output channels.

Our main reference for comparison among state-of-the-art
DL methods is [21], which uses a per-session split and a
similar input resolution. Compared to this work, we obtain
a comparable F1 Score with our Top-Q, but since our classi-
fication model is significantly smaller, and we do not need
an additional super-resolution network, we achieve a 263x
reduction in size and 1700x fewer OPs. The work of [24]
also uses a time-based data split, although simpler than ours:
they assign to different data buckets the frames collected in
the same location at different times. Their work achieves a
higher Accuracy than our Top-Q (94.1% vs 86.1%) but this is
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mostly due to the 12x higher resolution input. Furthermore,
their model requires about 130k floating point parameters,
resulting in a model size of 521kB, which is 304x more than
that of Top-Q. Similarly, the number of OPs is in the order of
millions, more than 1000x larger than Top-Q.

Since the dataset of [24] is publicly available, we also ran
two additional experiments on it. First, we down-sampled the
images to 8x8 resolution and excluded all samples with more
than 3 people to fairly compare with LINAIGE. Then, we
trained our “Top” model from Table IV using only the data
from [24] and maintaining our training protocol. We obtained
an accuracy of 72.6%, much lower than the one achieved
by their model, but acceptable given the lower resolution of
our inputs and the striking > 1000x complexity reduction.
Further, the dataset in [24] only contains ≈ 9k samples with
less than 3 people, versus the > 20k of LINAIGE. Thus,
we also tried to use the down-sampled data from [24] to
augment the LINAIGE training dataset in each CV fold. In this
case, the “Top” model improves in all classification metrics
on average (Acc. +4.8%, F1 +0.04, MSE -0.06, MAE -0.05)
except for the Bal. Acc (-1.2%) with respect to pure LINAIGE
training. This shows that, potentially, using a larger dataset
could further improve the results achieved by our efficient DL
models, especially the most complex architectures.

When considering a random data split, Top-Q∗ obtains
slightly lower accuracy and higher MSE compared to [23], but
uses a smaller-resolution input, and requires a 233x smaller
model and 20x fewer inference operations. It also achieves
comparable accuracy and F1 score with respect to the RF-
based approach of [32]. Lastly, [22] uses a model smaller than
Top-Q∗ to achieve a slightly higher accuracy on a 10x10 input.
However, the inputs processed by [22] are patches extracted
from a much higher resolution input (80x60), which is further
upscaled to 120x90 and 160x120. All three versions of the
image are then processed by the CNN in 10x10 sliding-
window patches. Therefore, the total number of inference
operations is huge for this solution (approximately 450·106

based on our calculations), which translates into very long
latencies and high energy consumption. Indeed, the authors
report a total latency of 63s and an energy of 2.2J, orders of
magnitude higher than those achieved by our models. It must
be underlined that [22] attempts not only to count people in the
frame, but also to localize their heads, which is significantly
different from our goal, and only possible due to their higher-
resolution input. Indeed, the 95.9% accuracy reported in the
table refers to head detection on a single 10x10 patch, whereas
the final counting accuracy is just 53.7%.

In summary, these comparisons show that our proposed
models achieve comparable counting accuracy with much
lower complexity on average, compared to state-of-the-art
solutions. This is particularly important for deployment at the
IoT edge, where devices have very tight memory budgets, and
extreme constraints in terms of energy consumption, being
typically battery powered and expected to operate for years
without recharging. The tiny and efficient DL models ex-
plored in this work could enable novel pervasive and privacy-
preserving people counting solutions in environments where
access to the power grid is not available, which would exclude

most of the energy-hungry state-of-the-art solutions.

V. CONCLUSION

We have conducted the first systematic study on efficient
DL architectures for person counting based on ultra-low-
resolution IR arrays, obtaining a wide range of trade-offs
between classification scores, memory occupation, latency and
energy consumption, and showing that different types of DL
models are preferable for different objectives. The resulting
Pareto-optimal models obtain counting accuracy scores that
are significantly higher than those of a publicly available
deterministic solution [25] (up to 82.70% balanced accuracy
vs 42.77%), and comparable with a state-of-the-art DL ap-
proach [21] (0.86 vs 0.88 F1-score), while reducing the latency
and energy requirements by up to more than 2x with respect
to the former, e.g. 1.78ms/27.70µJ vs 3.88ms/60.34µJ per
inference at approximately +34.3% balanced accuracy for our
method. Furthermore, our models enable continuous real-time
inference (< 10ms latency) on IoT edge devices based on
MCUs, with years of autonomous operation, while requiring
less than 100kB of memory.
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