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Robust determination of relaxation times spectra of long-time multirelaxation processes
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Long-time relaxation processes occur in numerous physical systems. They are often regarded as multirelax-
ation processes, which are a superposition of exponential decays with a certain distribution of relaxation times.
The relaxation times spectra often convey information about the underlying physics. Extracting the spectrum of
relaxation times from experimental data is, however, difficult. This is partly due to the mathematical properties
of the problem and partly due to experimental limitations. In this paper, we perform the inversion of time-series
relaxation data into a relaxation spectrum using the singular value decomposition accompanied by the Akaike
information criterion estimator. We show that this approach does not need any a priori information on the spectral
shape and that it delivers a solution that consistently approximates the best one achievable for given experimental
dataset. On the contrary, we show that the solution obtained imposing an optimal fit of experimental data is often
far from reconstructing well the distribution of relaxation times.

DOI: 10.1103/PhysRevE.107.035302

I. INTRODUCTION

Long-time relaxation is common to numerous physical
processes: elastic slow dynamics in nonclassical media [1,2],
stress-induced conditioning [3], dispersion in nematic liquid
crystals [4,5], magnetization processes in nanoparticles [6],
relaxation in glass forming liquids [7,8], macromolecules
relaxation [9,10], and many others. A lot of the interest
in these kind of processes stems from geophysical applica-
tions [11–15].

The description and understanding of the long-time re-
laxation depends strongly on the underlying physics. Albeit
other approaches to describe these phenomena have been pro-
posed [16–18], regarding them as a multirelaxation process
seems to be the most common. Multirelaxation is a combina-
tion of exponential relaxation processes with different time
constants [9,11,19,20], which create the spectrum of relax-
ation times. It has been shown for certain physical systems
that the properties of relaxation times spectra can correlate
with typical space scales present in the system, e.g., pore
radii [9], grain sizes [21,22], or correlation lengths [23].

In order to analyze the spectrum of relaxation times, an
inversion of the relaxation curve must be done, i.e., time-
series experimental data need to be interpreted by means of
a distribution function of relaxation times [24]. The inversion
procedure is complex for two main reasons. First, the qual-
ity of experimental data is usually limited by the fact that
relaxation times often span over up to six decades and both
short and long times are important. It can be challenging to
sample the relaxation curve sufficiently in all timescales and
at the same time to minimize the presence of noise. Second,
the mathematical inversion is a not well-posed problem. As a
consequence, the inversed relaxation spectrum describing the
phenomenon might not be unique [7,20].

Different approaches have been proposed to derive the
relaxation-time spectrum distribution: Using a finite, discrete

basis of exponentials for the inversion [19], proposing an
“ad hoc” continuous function to describe the spectrum mo-
tivated by physical considerations [1,25], or combining the
two approaches and proposing a continuous function derived
by fitting data with a discrete exponential basis [20]. More
often, a general analytical approach based on the inversion
of the matrix of exponentials is used [4]. Due to the high
dimension of the exponential basis matrix, the inverse solution
is numerically unstable and highly dependent on the noise in
time-series data. Therefore, an approximate inverted matrix
needs to be computed using the singular value decomposition
(SVD) where the rank order is truncated based on the proper-
ties of data to be inverted [26,27].

Several approaches have been proposed to estimate the
optimal truncated rank order of SVD, such as using the
maximum-entropy criterion [28] or Tikhonov [29] or non-
convex [30] regularization, often tailored to specific problems
and needing an a priori information about the solution to be
found. These approaches, however, partly fail when long-time
relaxation phenomena are at play. In particular, the choice of
the optimal truncated rank consists in separating the ensem-
ble of SVD solutions as a function of rank order into two
subsets. For large rank of the SVD matrix, overfitting occurs
(resulting in fitting experimental noise); for low rank of the
SVD underfitting occurs (the basis is insufficient to correctly
fit data). Thus the problem becomes that of defining a criterion
to separate rank intervals in which different models of these
subsets apply. It could be solved using the Akaike information
criterion (AIC) [31–34], which found several applications in
extracting the subset of data fitting a model from noisy sig-
nals [35–38].

We test the approach by inverting synthetic data. After
having defined a distribution function of relaxation times and
having derived synthetic data using a multirelaxation for-
mulation (Sec. II), we invert data using the SVD approach
combined with the AIC, as introduced in Sec. III. Albeit the
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obtained solution approximates the best one achievable for
a given dataset, still it contains important deviations in the
estimated spectrum of relaxation times with respect to the
exact one (Sec. IV), which has to be taken into consideration
when interpreting results of an experiment (Sec. V). We also
discuss the “empirical” robustness of the approach (not in a
statistical sense) by proving the efficiency is independent from
the experimental conditions or the properties of the solution to
be found, at least up to a certain extent.

II. THEORETICAL DETERMINATION OF THE
DISTRIBUTION OF RELAXATION TIMES

A. Multirelaxation processes

Multirelaxation processes are observed in a wide variety
of physical systems. The evolution of the relevant physical
variable over time y(t ) can be described as the superposition
of relaxation processes with relaxation times τ distributed
according to a given distribution function F (τ ), from now on
called τ spectrum:

y(t ) =
∫ ∞

0
F (τ )e−t/τ dτ. (1)

Often the τ spectrum spans up to six decades while both
short and long times are important in the process. It is favor-
able to treat the problem in the logarithmic τ space. Thus, we
look for a fitting solution y(t ) in the form:

y(t ) =
∫ ∞

0
G(τ )e−t/τ d (log10(τ )) ∀t 0 � t � ∞, (2)

where G(τ ) = τF (τ ) ln 10 is the τ spectrum in the
log10(τ ) space.

Through experimental measurements, the evolution of y
is sampled in time. Let us assume the vector representation
of y sampled at time instances ti, which are uniformly dis-
tributed in logarithmic space between tmin and tmax into M
bins. Furthermore, let us discretize Eq. (2) introducing the
vector representation of the τ spectrum G and the (M × N )
matrix T containing exponentials with rows corresponding to
a time index (denoted by y data) and columns to the τ index,

y = GT . (3)

Here and in the following the vectors y and G correspond
to the discrete representation of the continuous functions y(t )
and G(τ ). The elements of matrix T are

Ti j = e−ti/τ j , (4)

where τ j values are uniformly distributed in the log space
in the interval τmin < τ < τmax and N is the dimension of the
basis used for the inversion of the experimental data. The τ

range is uniformly partitioned in N bins and τ j represents the
center of the corresponding bin.

Generally, the τ spectrum can be obtained by computing
the inverse matrix T −1 as

G = T −1y. (5)

The inversion is, however, not straightforward due to the prop-
erties of the T matrix, which is sparse, generally not square,
with a high condition number, i.e., high sensitivity to small

variations in the input. The matrix T is sparse since in each
row most elements are close to zero because of the nature
of the exponential function in the wide range of values of τ

needed.

B. Singular value decomposition approach

A robust way to compute the inverse matrix T −1 is the
SVD, which allows us to control the properties of the inverse
matrix by thresholding. The (MxN ) matrix T can be factor-
ized as:

T = USV ∗, (6)

where U is a unitary matrix, S is a diagonal matrix with
ordered elements, and V ∗ is the transposed conjugate of a
matrix V . It follows:

T −1 = VWU ∗

Ĝ = VWU ∗y, (7)

where W is a diagonal matrix with dimension N and ele-
ments given by

Wi = 1/Sii. (8)

Derivation of all matrices used in the above equations is a
standard calculation [14] and subroutines for SVD are avail-
able in most software packages.

C. Thresholding of the diagonal elements of the SVD matrix

The SVD matrix S is a M × N matrix with nonzero el-
ements only on the diagonal and usually ordered such that
Sii > S j j when i > j. Most of the elements Sii are close to
zero, which leads to huge errors when the computation of Ĝ
from Eq. (7) is performed. Thresholding is thus needed, and it
is obtained by setting to zero all elements of Wi with Sii < s0,
where s0 is a defined threshold. The thresholding procedure
is equivalent to reducing the number of singular vectors in
U and V . An optimal threshold s0 must therefore be defined
to balance between the need of having enough information
(sufficient dimension of the singular basis given by the num-
ber of nonzero diagonal elements in the SVD matrix) and of
filtering contributions determined from noise (numerical or
experimental). The relaxation distribution obtained through
the SVD approach, Ĝ, depends on the chosen threshold and
the properties of time-series data y.

III. ROBUST DETERMINATION OF THE OPTIMAL
THRESHOLD

A. Synthetic data

To introduce an optimal and reliable procedure for in-
verting Eq. (3) [i.e., derive F̂ (τ ) from a given dataset], we
create synthetic datasets y(t ) assuming a known theoretical
distribution of relaxation times F (τ ):

y(t ) =
∫ ∞

0
F (τ )e−t/τ dτ + n0ξ (t ). (9)

Apart from multirelaxation curve, the dataset contains an
additive white noise (which corresponds to the most common
noise for experimental data) with noise level n0, ξ (t ) being a
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TABLE I. Synthetic data: Chosen theoretical τ spectra. We recall
that G(τ ) = F (τ )τ ln 10. The corresponding functions are shown in
Fig. 1. The parameters chosen for the Weibull distribution are a =
0.5 s, b = −1.5, and c = −2.5. For the rectangular distribution we
have τmin = 0.025 s and τmax = 40 s.

Case F (τ ) Equation

A Weibull F (τ ) = (
τ

a

)b
e−( τ

a )c

B Rectangular F (τ ) = c0 for τmin < τ < τmax

C Two Weibull F (τ ) =
(

τ

a1

)b1
e−

(
τ

a1

)c1

+
(

τ

a2

)b2
e−( τ

a2
)c2

random function with uniform distribution of values between
−1 and 1. Three choices of F are considered (see Table I)
and the corresponding time series (without noise) are shown
in Fig. 1.

It is noteworthy to recall that determining the distribution
of relaxation times is important since it reflects a distribution
of features on the microscopic scale of the material, responsi-
ble of some physical macroscopic properties, e.g., viscoelastic
parameters in macromolecules [9], permeability in sand [17],
or the critical spin-glass correlation length in monocrys-
tals [23]. In natural materials, the microscopic spatial scales
(grain sizes [20], distribution of contact areas at crack sur-
faces [39], or pore-sizes [14]) are normally not uniformly
distributed and present a most likely dimension (maximum),
represented in our study by the Weibull distribution. Arti-
ficially made materials (e.g., glass or metal beads [40] or
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FIG. 1. Left column: Noiseless y(t ) functions data used for the
analysis shown in the logarithmic time. Right column: Correspond-
ing relaxation distributions G(τ ). Details of the three distributions
are reported in Table I.

magnetic nanoparticles distributed in a liquid or a gel [41])
are as well originating long-time relaxation processes, but
the spatial scale can be precisely controlled and often their
uniform distribution (rectangular) is the optimal choice. In
some cases, features with distinct spatial scales (e.g., grains
and crack [21,42]) might be simultaneously present.

B. Quantification of the inversion

In order to quantify the results of the inversion procedure,
parameters describing the accuracy of τ -spectrum determina-
tion and temporal data fitting are introduced. The inversion
is performed on synthetic dataset y(t ) with the known un-
derlying distribution of relaxation times G(τ ). The result of
the inversion according to Eq. (7) is Ĝ(τ ). The evaluation
of Ĝ(τ ) is dependent on the input data y(t ) but also on the
threshold level of the approximation of T −1. It is useful to
evaluate the resulting fitting curve of the time-series data ŷ(t )
by substituting Ĝ(τ ) in Eq. (9).

We quantify the accuracy in reproducing the theoretically
expected τ spectrum through the parameter p:

p = 1 − r, (10)

where r is the Pearson coefficient, a statistical indicator
defining the correlation coefficient between expected and re-
constructed spectra (G and Ĝ, respectively),

r = cov(G, Ĝ)

σGσĜ

. (11)

Here cov denotes the covariance of the theoretical and re-
constructed distributions and σ the standard deviation of the
corresponding distribution. Note that such a quantity is gener-
ally unavailable and will be used here to asses the quality of
the inversion.

We also indicate the accuracy of the fit of the temporal
evolution ŷ(t ) introducing the sum of the squared residuals
SSR, defined as:

SSR =
M∑

i=1

(yi − ŷi )
2. (12)

C. Thresholding effects on the inversion

There is a single parameter controlling the accuracy of the
inversed τ spectrum Ĝ and that is the threshold level s0 for
SVD evaluation of the inverse matrix T −1. The result of the
inversion is computed directly from time-series data y which
inherently minimizes (for given T −1) the deviation of fitted
curve ŷ from the input data y quantified by parameter SSR. As
will be shown further, the threshold minimizing SSR does not
lead to the best approximation of the τ spectrum.

The schematic in Fig. 2 represents the evolution of p and
SSR for case A, when input data contains a certain noise
level. The representation is fundamentally valid for all cases
of underlying distributions. The optimal threshold choice cor-
responds to that which minimises the corresponding function.
However, optimization of the fit of experimental data (SSR)
and of the reconstruction of the τ spectrum (p) is not achieved
at the same threshold level.
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FIG. 2. Schematic representation of the different phases of the
inversion procedure. Here SSR (quality of the temporal fit) and
p (quality of the correlation of reconstructed and theoretical distribu-
tions) are shown as a function of the threshold s0. Circles represent
the threshold values to obtain optimal fit of the data (sF ) and the best
correlation of reconstructed and theoretical distributions (sC). The
threshold sA shown in the plot corresponds to the estimated threshold
found with our approach, whose definition will be given later.

The behavior observed in Fig. 2 identifies three regions
for both parameters. For very low threshold values (red lines)
we have numerical instability resulting in poor performance
both in SSR and p. For large threshold values (green lines),
the singular basis dimension is strongly reduced and becomes
insufficient to provide fit of the data and the τ spectrum. The
range of threshold values in between is distinct for SSR and
p. The evolution of SSR presents a slightly increasing plateau
with the minimum sF right next to the numerical instability
limit. The evolution of p presents a “V”-shaped curve with a
narrow range of threshold values resulting in good reconstruc-
tion of G.

In Fig. 3 we show the results of the inversion in the
aforementioned regions for case A. In the first row (s0 <

sF < sC) the solution for the τ distribution (right column) is
numerically unstable, resulting in a poor fit (although still
reasonable) of experimental data (first column). Increasing
the threshold to s0 = sF (second row), optimal fit of data is
obtained, but we still have a bad estimation of G(τ ). This
is caused by overfitting, i.e., fitting the relaxation curve y(t )
as well as the noise ξ (t ). Indeed, as shown in the third
row of Fig. 3, for s0 = sC optimal reconstruction of G(τ )
is achieved, being the same for the fit of the data. When
the threshold is large (fourth row), the singular basis di-
mension becomes too small and both fit and correlations
are poor.

The main issue to be solved is that only the parameter SSR
can be quantified in an experiment, as y(t ) is known and G(τ )
unknown. The goal, as discussed in the following, is thus to
introduce an approach able to estimate the threshold s0 = sC

from the curve SSR(s0). Results from inverting synthetic data
and corresponding to the schematic representation of Fig. 2
are shown in Figs. 4(a) and 4(b).
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FIG. 3. Dependence of the reconstructed ŷ (left column) and τ

spectrum (Ĝ) on the threshold level s0. Data for case A without added
noise (n0 = 0) have been inverted.

D. Akaike criterion for the definition of the optimal threshold

When considering the dependence of SSR on the threshold
(see Fig. 2), setting aside the numerical instability interval
s0 < sF , it can be separated into two subsets divided by the op-
timal threshold sC . For threshold s0 < sC , the size of singular
basis is too high and noise is being fitted by ŷ, which has the
effect of reducing standard deviation SSR beyond the level of
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dicate the estimated optimal threshold from the three approaches.
(c) Akaike indicator vs. threshold, the minimum being corresponding
to the Akaike threshold sA. (d) p vs. noise when using thresholds
obtained in the three approaches.

035302-4



ROBUST DETERMINATION OF RELAXATION TIMES … PHYSICAL REVIEW E 107, 035302 (2023)

additive noise. For threshold s0 > sC , the size of singular basis
is too low, information is being lost and SSR rapidly increases.
It will be shown that such transition in SSR(s0) curve can be
detected by the AIC [31–34].

The AIC estimate of the optimal threshold is based on the
part of the SSR(s0) dependence for s0 � sF . We consider, that
the truncated SSR(s0 > sF ) is composed of two subsequent
stationary autoregressive (AR) processes. One describing the
noise-fitting range of s0 and the other the underfitting range
(see Fig. 2). AIC is a statistical approach allowing us to
determine the most probable separation threshold between the
two processes.

For the sake of clarity, let us introduce the truncated de-
pendence as the vector x, i.e., x( j) = SSR(s j ) with sF � s j �
smax, and let us denote the length of x as L. We then split the
vector x into two intervals separated by the index k. Let us call
z1( j) = x( j) (for 1 � j < k) and z2( j) = x( j + k − 1) (for
1 � j � L − k + 1). An autoregressive model of the order Q
is defined as:

zi( j) =
Q∑

q=1

ai(q)zi( j − q) + ei( j)

i = 1, 2; j = Q + 1 : length(zi ), (13)

where ai(q) are the coefficients of the model and ei( j) are
the nondeterministic parts, for each interval i. We can evaluate
the variance σ 2

i (k) of the nondeterministic parts (ei) for a
range of separation indexes k = Q + 1, . . . , L − Q. The AIC
function can be written as

AIC(k) = (k − Q) log
(
σ 2

1 (k)
) + (L − Q − k) log

(
σ 2

2 (k)
)
.

(14)

The minimum of the AIC function corresponds to the
optimal separation index between the two stationary AR mod-
els, meaning that we get the best fitting of both models in
the least-squares sense, i.e., the contribution to fit of the
nondeterministic part is minimised. The complex statistical
justification is beyond the scope here and can be found in
Ref. [43]. The corresponding sk value gives the AIC esti-
mate of optimal threshold sA. The results shown here were
calculated using the Burg method [44] to estimate AR model
coefficients for a fixed model order Q = 2. Increasing the
model order has no effect on the AIC estimate. The minimum
of the AIC function is sharp, as shown in Fig. 4(c) and can be
easily identified. The thresholds obtained with this approach
are reported as diamond symbols in Figs. 4(a) and 4(b). Data
refer to case A (with three noise levels specified in the plots).
The thresholds sF and sC are reported as squares and circles,
respectively.

The Akaike threshold sA can be determined solely from ex-
perimental data and it is equivalent to the optimal threshold sC ,
which is unknown for real data. The quality of the distribution
of relaxation times obtained using sA as a threshold is similar
to the best achievable with SVD (using the optimal threshold),
as shown in Fig. 4(d), where the parameter p is shown as a
function of noise for all threshold definitions. In all cases p
increases with increasing noise level. The inversion using the
AIC allows us to obtain a reconstructed spectrum Ĝ which is
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FIG. 5. Reconstructed distribution of relaxation times obtained
using different thresholds (case A).

always a good approximation of the best one achievable by the
SVD procedure, as will be demonstrated in the next section.

IV. RESULTS

The validity of choosing the Akaike threshold is confirmed
when plotting the reconstructed distribution, as shown in
Fig. 5. Ĝ obtained using the Akaike criterion always approx-
imates well the optimal reconstructed distribution, which is
evidenced by the values of the Pearson correlation coefficient
r in Table II. From now on we refer to inversion results
obtained using the SVD approach applied in conjunction with
the AIC.

The reconstructed distributions for the three cases reported
in Table I are shown in Fig. 6 for two different noise levels.
The corresponding Pearson correlation coefficients r are given
in Table III. When noise on the inverted data is not present
(upper row), the reconstruction is always optimal. Even in the
case of a square distribution of relaxation times [Fig. 6(b)],
which presents sharp discontinuities, we still get a correlation
close to 1. Even low noise levels (results are shown in the
right column of Fig. 6) lead to distortions of the reconstructed
distributions. The errors in the reconstruction of G increase
with the complexity of the distribution function and result in
a nonexact determination of the position of the distribution
peak. The solution still remains acceptable in terms of r as can
be seen in Table III. Also, as mentioned, it is near the optimal
solution which could be determined using the SVD approach.

The comparison of results obtained with different ap-
proaches, application to invert experimental data and con-
siderations about the empirical robustness of the method are
given in Appendices A–C.

TABLE II. Pearson correlation coefficient r for distributions
shown in Fig. 5.

Threshold n0 = 0 n0 = 2 × 10−4 n0 = 0.38

sA 0.99 0.998 0.978
sC 0.999 0.999 0.985
sF 0.999 0.02 0.001

035302-5



J. KOBER, M. SCALERANDI, AND D. GABRIEL PHYSICAL REVIEW E 107, 035302 (2023)

10-2 100 102

0

0.5

1
G

(
)

10-2 100 102

0

0.5

1

G
(

)

Noise level 0

10-2 100 102 104

 [s]

0

0.5

1

G
(

)

Noise level 0.5%

10-2 100 102 104

 [s]

0

0.5

1

G
(

)

10-2 100 102 104

0

0.5

1

G
(

)

10-2 100 102 104

0

0.5

1

G
(

)

(a) (d)

(b) (e)

(c) (f)
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One of the most important properties of G(τ ) is the most
relevant relaxation time τm, which is often connected to the
dominant microstructural scale (grain size, porosity, etc.). In
Fig. 7 we report, as a function of the noise level n0, the error
in the determination of the most relevant relaxation time:

δτm = (τ̂m − τm)/τm. (15)

Notice that in the case of the Weibull distribution the most
relevant relaxation time corresponds to the most likely relax-
ation time, i.e., the τ value corresponding to the maximum of
F (τ ), while for the rectangular distribution τm corresponds to
the upper bound of the distribution.

As expected, the Akaike information criterion allows us
to obtain errors in the determination of the position of the
maximum of G(τ ) comparable to the ones obtained with
the optimal criterion. For low noise levels the error is less
than 10% for the Weibull distribution. The correctness of
the determination of τm becomes poor for large noise levels.
Experimental conditions in general correspond to noise levels
between 10−4 and 10−2, where the accuracy for the Weibull
distribution is about 20% , which is acceptable considering

TABLE III. Pearson correlation coefficient r for distributions
shown in Fig. 6, i.e., for three relaxation times distributions and two
noise levels.

r(sA) Weibull Uniform Double Weibull

n0 = 0 0.999 0.954 0.999
n0 = 0.005 0.990 0.889 0.989
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FIG. 7. Accuracy of the approach in determining the most rele-
vant relaxation time [τ value corresponding to the maximum in the
distribution function for the Weibull distribution (a) and correspond-
ing to the maximum relaxation time for the rectangular distribution
(b)]. We report the error in the estimation of τm [see Eq. (15)] as
a function of noise level. The typical intervals of the experimental
noise level are shown as dashed vertical lines.

that in practical cases the determination of the order of magni-
tude of the most relevant relaxation time is already of interest.

V. DISCUSSION

As we have discussed so far, the approach proposed allows
us to predict a τ spectrum which approximates the best one
which can be obtained using the SVD approach. Nevertheless,
due to the presence of noise in experimental data, even the
best solution is not perfect. Thus, in this section we discuss
the limits of reliability of the derived distribution of relaxation
times when inverting experimental data (see also an example
of inversion in Appendix B). As we will show, a margin of
uncertainty in the estimation of the relevant properties of the
distribution must always be considered and it could be large
under some experimental conditions.

A. Noise level

Experimental data are often affected by noise and here
we quantify its effect by considering an additive white noise
[see Eq. (9)], which is a good approximation of environ-
mental noise. Multiplicative noise (more related to noise due
to the environmental setup) [45] gives similar effects; see
Appendix C.

The influence of noise is discussed in Fig. 8. We recall
that n0 is the inverse of the signal-to-noise ratio which in
experiments typically is in the range from 10−4 to 10−2. From
subplot (a) we notice that the thresholding procedure leads to
removal of most of the elements of the diagonal SVD matrix
W [see Eq. (8)]. Here the fraction of elements of the diagonal
SVD matrix which are set to zero is shown and increases
significantly with noise [linearly vs. log(n0)], leading to a
loss of information which results in a poorer reconstruction
of G(τ ) as is clear in subplot (b): The parameter p increases
with noise level, but we still have a cross-correlation with a
Pearson coefficient r = 1 − p ≈ 0.995 for n0 = 0.01 for the
two continuous distributions (Weibull and double Weibull),
which is close to 1. The situation is worse for the discontinu-
ous distribution (square): r ≈ 0.92 already for n0 = 0.005. On
the contrary, the fit of data (y(t )) shows low SSR even for large
noise values [Fig. 8(c)], thus further confirming that a good
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FIG. 8. Effects of noise on the procedure of deriving the time
relaxation distribution function. (a) Fraction of elements set to zero
in the diagonal SVD matrix; (b) cross-correlation between the recon-
structed and expected distribution function (p = 1 − r); (c) residuals
of the reconstructed and used dataset (SSR). On the x axes we always
have the noise level n0.

data fit does not always correspond to a correct reconstruction
of G(τ ).

B. Incompleteness of the dataset

Experimental datasets are often incomplete, either because
early data are not accessible (due to the intrinsic time needed
for the acquisition) or because experiments are stopped before
reaching the final equilibrium state. In order to simulate these
situations and analyze their influence on the reconstruction of
the distribution of relaxation times, we have considered case
A of Table I (Weibull distribution of the relaxation times) and
built incomplete datasets as:

y(t ) =
∫ ∞

0
G(τ )e−t/τ d (log10(τ )) t1 � t � t2. (16)

Refer to Fig. 1(a) for a plot of the complete dataset and the
timescales present. First [Fig. 9(a)] we consider the case in
which t2 → ∞ and analyze the reconstructed relaxation times
distribution as a function of t1. To quantify the quality of the
reconstruction of G(τ ) we use again the indicator p defined in
Eq. (10), related to the cross-correlation of the reconstructed
distribution with the theoretical one. The accuracy of the re-
constructed G(τ ) remains constant increasing t1 up to almost
1 s [both in the case of noisy (red) and not noisy (cyan) data].
Thus, we still obtain r � 0.99 up to when the experimental
data covers at least a portion of the time region t < τm [see
Fig. 1(a) where τm is the most likely relaxation time]. Later,
the performances of the approach decrease with increasing t1.

We also observed that p does not depend on t2, that is, the
incompleteness of the datasets at late times is not relevant (not
shown).

Two additional issues are to be considered when dealing
with experimental data:
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FIG. 9. Effects of incompleteness of the experimental dataset
on the reconstruction of the time relaxation distribution function.
(a) Effects of missing data for early time relaxation. t1 indicates the
time corresponding to the first data acquisition. (b) Effects of a wrong
estimate of the onset time of relaxation (t0). (c) Effects of a wrong
estimate of the asymptotic value of the variable (offset y0 in the data).
In all plots, data for exact (cyan symbols) and noisy (red symbols)
data are reported. Noise was n0 = 0.005.

(i) yexp(t ) = y(t − t0). The onset time of relaxation is of-
ten difficult to define or measure accurately. It follows that
experimental timescale is affected by an error which could be
as large as the time corresponding to the first data acquisition,
resulting in a time shift of the dataset given by the variable
t0 above and corresponding to the lag between estimated and
real time of onset of relaxation effects;

(ii) yexp(t ) = y(t ) + y0. Often y is measured as a variation
with respect to an asymptotic equilibrium value (t → ∞).
The uncertainties in the estimation of the equilibrium position
leads to an offset of the measured signal y0.

The influence of t0 and y0 on the reconstruction of G(τ )
is shown in Figs. 9(b) and 9(c), respectively. In the case of
noiseless data (cyan symbols) the quality of the reconstruction
of G decreases steadily with increasing t0 or y0. For noisy
data (red symbols) the uncertainties in the experimental de-
termination of onset relaxation time and offset are mostly
smaller than uncertainties due to noise (the parameter p is
almost independent from t0 and y0 and starts increasing only
for large values of t0 and only slightly for y0). The approach
thus still works reasonably well in the cases of interest on
practice, where t0 << τm, i.e., t0 � 1 s (r = 1 − p > 0.99).
More critical from the experimental point of view is the deter-
mination of the offset, for which errors up to 10 or 20% can
be easily reached, having thus a considerable influence on the
reconstruction of G.

C. Peak detection and resolution

In this subsection we analyze the efficiency of the ap-
proach in resolving the presence of more than one peak in the

035302-7



J. KOBER, M. SCALERANDI, AND D. GABRIEL PHYSICAL REVIEW E 107, 035302 (2023)

0 0.05 0.1
n

0

11

12

13

14

15

m
 [s

]100 102

0

0.5

1

G
(

)

100 102

0

0.5

1

G
(

)

10-1 100 101 102

 [s]

0

0.5

1

G
(

)

(a)

(b)

FIG. 10. Resolution accuracy: (a) Examples of double Weibull
distributions used for the analysis for three values of resolution pa-
rameter (distance between peaks): Red solid lines are the theoretical
distributions while dashed blue and solid green lines represent the
reconstructed distributions in the absence and in the presence of noise
(n0 = 0.005), respectively. (b) Minimum peak distance detectable
with the proposed approach as a function of noise level.

τ spectrum. To this purpose, we have considered the case of
a double Weibull distribution, when two peaks are present: τ 1

m
and τ 2

m. The position of the peak corresponding to the lower
relaxation time is modified and we introduce the resolution
parameter � = τ 2

m − τ 1
m. Examples of the distributions are

reported in Fig. 10(a). While the presence of the two peaks
is always discernible in the theoretical distributions (red solid
lines) and in the reconstructed distribution when there is no
noise (blue dashed line), this is not the case when noise is
present (green curve refers to the case of n0 = 0.005).

The resolution parameter �m, i.e., the minimum distance
between peaks which can be detected [as shown in Fig. 10(b)]
decreases significantly with increasing noise. We remark that
the presence of the lowest peak was indistinguishable already
in the theoretical solution for � < 10.5 s.

VI. CONCLUSIONS

The inversion of noisy experimental data of long-time re-
laxation processes to obtain a spectrum of relaxation times is
an ill-posed problem with a nonunique solution. The inversion
using SVD approach allows us to find an approximate solution
based on a certain threshold value. The criterion often adopted
of determining the threshold as the one which allows best
fitting of experimental data is often far from being satisfactory
and the optimal fit of the data does not always correspond to
the optimal reconstruction of the τ spectrum. We have shown
here on controlled synthetic data that an optimal threshold of
the SVD inversion exists and that it is strongly dependent on
the properties of the dataset. By combining the SVD inver-
sion with the Akaike information criterion, a solution which
approximates the optimal one can be reached without any
a priori knowledge about the spectrum.

Despite the approach discussed here has advantages with
respect to other approaches proposed in the literature, still the
obtained distribution of relaxation times could be regarded
as only a qualitative approximation of the real solution. In-
deed, as shown here inverting synthetic data, the quality of

the correlation between the expected solution and the one
found inverting data decreases rapidly with increasing noise.
When the signal-to-noise ratio is good (noise level <0.005),
as in most experiments, results of the inversion procedure
proposed here could provide quantitatively meaningful re-
sults. For higher noise levels, only a general agreement of
the distribution shape and the order of magnitude of the most
relevant relaxation time can be inferred.

However, despite the fact that our results confirm the ex-
istence of critical issues, the possibility with the proposed
approach to obtain a qualitative description of the distribution
of relaxation times and discriminate between distributions
with one or two peaks or with a given asymmetry is funda-
mental in view of solving the problem. Indeed, the solution
found combining AIC and SVD suggests a plausible model of
the distribution, at least in terms of asymmetry and presence
of maxima. Therefore, our approach allows us to obtain from
data (as opposed to a priori hypotheses) some information
which allows us to simplify the problem and reducing it to
determining a few parameters (those defining the distribution)
by fitting experimental data. As shown elsewhere, postulat-
ing a suitable analytical form for the solution works well
in practice, giving accurate information about the main fea-
tures of the distribution: determination of the most relevant
relaxation time, width of the distribution, asymmetry, and
relaxation times range [9,20].
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APPENDIX A: COMPARISON WITH OTHER METHODS

Other methods have been proposed in the literature as
a solution to the long-time relaxation inversion. Here a
comparison of a method based on SVD inversion and on
multirelaxation fitting will be given.

For what concerns SVD, a solution for determining the
optimal threshold consists in iteratively repeating the SVD ap-
proach to eliminate all negative values of the solution, which
are not physical [13]. In practice, starting with a full matrix T ,
a tentative solution G is computed. If all components are non-
negative, then the solution is accepted. Otherwise, the column
of T corresponding to the least amplitude is eliminated and a
reduced matrix T ′ obtained. The corresponding component in
G is set to zero and also eliminated to form a reduced vector
G′. The procedure is repeated iteratively up to convergence.

This procedure was applied to invert synthetic data (case
A with a low noise n0 = 0.001). Results are reported in the
second row of Fig. 11 and compared with the results obtained
with our approach (first row). In Fig. 11(e), we report as
dashed lines G̃ obtained for two different choices of the initial
matrix T (i.e., the choice of the range of τ values used for
the inversion). The two cases refer to the choices 10−4 s <
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FIG. 11. Inversion using different approaches. Case A with small
noise (n0 = 0.001). First column: y vs. t . Second column: distribu-
tion of relaxation times vs. τ . [(a) and (d)] SVD + AIC approach;
[(b) and (e)] SVD with zeros elimination; [(c) and (f)] inversion
fitting with a discrete number of exponentials.

τ < 106 s and 10−5 s < τ < 105 s, respectively. Each solu-
tion reconstructs part of the theoretical distribution (blue solid
line), but they are sensitive to the inversion parameters. Av-
eraging solutions for different choices of the matrix T is thus
necessary. The result averaging over 20 realizations is shown
as a red solid line and fits the theoretical distribution with a
Pearson coefficient r = 0.982. Despite that the quality of fit
is comparable to that obtained with our approach [compare
Fig. 11(a) and 11(b)], the SVD+AIC approach gives a better
reconstruction of the distribution [Fig. 11(d), with r = 0.999].

An alternative consists in fitting data with the sum of a
finite number of exponentials [19]. A basis of relaxation times
is defined B = {B1, B2, . . . BN }, where Bi = log10(τi ) with
elements equally spaced in the log(τ ) space. It follows:

ŷ =
N∑

i=1

Gie
−t/10Bi

, (A1)

where the coefficients Gi can be derived by fitting the
experimental data. By adopting different choices for B1 and
inverting independently for each choice, an ensemble of sets
of coefficients Gi could be determined, leading to a continuous
spectrum of values.

The results of the application of the procedure to the same
synthetic data of the previous case are shown as circles in
Fig. 11(f). Here we used N = 6 and repeated the calculation
for 20 choices of the basis (different colors). The resulting
spectrum approximates the expected solution (blue line). The
quality of the fit of y(t ) [Fig. 11(c)] is the same as that ob-
tained using the two SVD approaches, but the solution for Ĝ is
not good, even though the main features are captured: Position
and presence of a single peak, width of the distribution and
asymmetry.

0 500 1000 1500 2000 2500

Time [s]

0

10

20

 v
 / 

v

10-5

SVD + AIC fit
SVD + best fit
Weibull distribution fit

0.01 1 100

 [s]

0

0.5

1

F
(

)

SVD + AIC

SVD + best fit

Weibull distribution

(a) (b)

FIG. 12. Inversion of experimental data. (a) Experimental data
and fitting functions; (b) distribution of relaxation times.

APPENDIX B: INVERSION OF EXPERIMENTAL DATA

We have applied our approach to experimental data, mea-
sured for a specific physical system: elastic slow dynamics
(and in particular its relaxation phase), which is a typical
long-time process observed in consolidated granular media
which manifest hysteresis in their elastic response [20,46,47].
Experimental observations consist in measuring the temporal
evolution of the elastic wave velocity, using a low-amplitude
perturbation wave (probe). At a certain time, the sample is
perturbed with a large-amplitude excitation and conditioning
is observed: Velocity drops and a new equilibrium is reached.
As soon as the perturbing strain is removed, velocity increases
and slowly in time recovers its original value, i.e., the phe-
nomenon is fully reversible. The latter part of the experiment
is called relaxation and it is of interest here.

In Fig. 12 we show the temporal evolution of the relative
variation of velocity in Berea sandstone after conditioning the
sample for three minutes. Details of the experimental proce-
dure used to measure velocity and to condition the sample can
be found in Ref. [20]. The fitting solution approximates well
the experimental data, as shown in Fig. 12(a). The obtained
distribution of relaxation times is reported as a red solid line in
Fig. 12(b). The solution without introducing the AIC criterion
for the determination of the threshold is also shown (magenta).
This solution fits well experimental data, but the negative
values in Ĝ makes the solution not physical.

The distribution obtained with our approach [red line in
Fig. 12(b)] can be compared with that obtained using the ap-
proach discussed in Refs. [20,21] (blue line), where a function
describing the distribution of relaxation times is postulated
and the parameters of the function are derived fitting data
using the integral expression of Eq. (1). The distribution
obtained with the SVD+AIC approach and that obtained
postulating a functional form for the distribution (Weibull)
are different, but the agreement between the two results is
satisfactory: In both approaches we obtain an asymmetric
distribution with one peak and comparable widths, while the
most relevant relaxation time (related here to the grain size of
Berea [20]) is found to be of the same order of magnitude.

APPENDIX C: ROBUSTNESS

The SVD approach combined with the AIC criterion for the
determination of the threshold was shown in the main text to
provide solutions which always approximates well the optimal
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FIG. 13. Robustness of the approach. Left column: Rank of the
solution as a function of noise for the three choices of the thresh-
old. Right column: Correlation between predicted and theoretical
distributions defined by p = 1 − r vs. noise. [(a) and (b)] Results
are obtained averaging solutions obtained inverting the same set of
data but changing the range of τ values over which the solution
is searched. [(c) and (d)] Results are obtained averaging solutions
obtained inverting the same set of data with different noise realiza-
tions. [(e) and (f)] Results are obtained averaging solutions obtained
inverting the same set of data with different multiplicative noise
realizations (dynamic noise).

one. Here we further discuss the “empirical” robustness of the
approach, i.e., we analyze its performances with respect to the
choice of the parameters of the SVD inversion (dimension of
matrix T and range of τ values) and to the presence and type
of noise.

The SVD approach is based on defining a basis of exponen-
tial functions in the form of a matrix M. In doing so, implicitly
a basis (dimension and range) for the relaxation times is
chosen: τmin < τ < τmax. We have analyzed the influence on
the solution of this arbitrary choice of the range of the bases
(varying τmin and τmax but maintaining a fixed dimension).
The rank of the solution (i.e., number of zero elements of
the matrix W ) and the indicator p have been calculated for
each solution. The average values are shown in Figs. 13(a)
and 13(b). Independently on noise level, results are highly
repeatable (small error bars), thus confirming the procedure
to be independent from the parameters used for the inversion.

In real-world experiments, when repeating the experi-
ment the underlying distribution of relaxation times G(τ )
remains the same but the noise realization is different. Results
to verify the “empirical” robustness of the approach vs. noise
are shown in Figs. 13(c) and 13(d). The inversion was repeated
120 times using data generated by the same deterministic
component and different noise functions. The obtained rank
and p values are averaged independently for each noise level.
The small error bars indicate that a consistent quality of inver-
sion is obtained independently from noise details (provided it
has a given amplitude).

Finally, other noise types might be affecting the quality
of experimental data. Among them, dynamical noise might
be present. A simple way to simulate dynamical noise is
replacing additive noise in Eq. (9) with a multiplicative noise:

y(t ) =
∫ ∞

0
F (τ )e−t/τ dτ × [1 + n0ξ (t )]. (C1)

Results for rank and p (averaging over 120 noise realiza-
tions) are reported in Figs. 13(e) and 13(f). Conclusions are
similar to the previous case (with only minor variations in
the correlation p), confirming robustness with respect to noise
type.
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