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Abstract

The present work aims at exploring the capabilities of Convolutional Neural Networks (CNN) to identify

the most influential generalized variables in 2D formulations for plates and shells. The outcome of CNN is

the Best Theory Diagram (BTD), a graphical representation of the dependency between the model’s accu-

racy and nodal degrees of freedom (DOF). The networks are trained with data derived from Finite Element

(FE) computations and samples of reduced theories obtained as combinations of a given set of generalized

displacement variables. Such samples are obtained through the Carrera Unified Formulation (CUF), a

generalized approach to generating the governing equations for any structural model. Furthermore, the

Node-Dependent Kinematics (NDK) included local refinements to lead to Best Theory Distributions of

structural theories over an FE mesh, that is, identifying areas of a shell in which higher-order models are

most necessary. The training data can refer to different analyses, e.g., static or free-vibration, whereas the

network’s input can include multiple structural parameters together with a sequence of expansion terms

or theory distributions. The numerical results highlight a significant computational efficiency of CNN and

its ability to identify the best models even for problem configurations not included in the training set.

Keywords: CUF, Shells, Finite Elements, Neural Networks, NDK
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1 Introduction

The development of multilayered composites and their increasing adoption in many fields require new

modeling strategies to adequately describe their complex mechanical behaviors. However, a model’s accu-

racy can also significantly impact the computational costs, and an adequate compromise between accuracy

and computational overhead must be found. Concerning plate and shell structures, many 2D theories

were developed to provide a solution with accuracy comparable to 3D formulations but at lower costs.

The first and most known example is the Classical Lamination Theory (CLT), built as an extension of

2D theories for single-layer structures of isotropic materials to multilayered ones [1, 2]. CLT adopted

the Kirchhoff hypotheses [3] and was later modified to include transverse shear strains, thus arriving at

the definition of the First-order Shear Deformation Theory (FSDT) [4–6]. However, the FSDT assumes

a linear variation of the in-plane displacement components along with the thickness and cannot satisfy

the condition of null transverse shear stresses on the top and bottom faces of the structure, therefore,

requiring the introduction of shear correction factors [7, 8]. Further developments on the FSDT [9–11]

introduced higher-order terms to describe the in-plane displacement field, and, afterward, transverse dis-

placement through higher-order expansions [12]. Other models followed in which the order of expansion

adopted for each displacement component varied [13–21], including non-polynomial terms [22–25].

The abovementioned theories are called Equivalent Single Layer (ESL). To obtain a better description of

the stress distributions, particularly the transverse ones, a selection process for the expansion terms is

required [26]. The adoption of an infinite expansion would provide 3D solutions [27], but this approach is

not practically feasible, and the use of the smallest number of variables to achieve adequate precision also

contributes to reducing the computational costs. These difficulties in the description of the mechanical

behavior of composite plates and shells led to new methodologies such as zig-zag models [28], and the

layer-wise (LW) approach [29–32]. This paper focuses on ESL and the selection process for the expansion

terms. This task can be performed in various ways. The two procedures historically adopted are the

axiomatic and the asymptotic methods. In the first one, also referred to as the method of hypotheses,

expansion terms are chosen according to mechanical behavior assumptions, as in the case of classical

structural theories. The asymptotic method [33, 34], instead considers the 3D formulation as the starting

point to derive a simplified model based on the influence of one or more characteristic parameters included

in the governing equations, and whose associated terms are selectively suppressed, depending on their
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influence on the accuracy of the solution.

A third approach has emerged in recent years to evaluate the effectiveness of higher-order theories; namely,

the Axiomatic/Asymptotic Method (AAM) [35–39], and allowing the analysis of the influence of gener-

alized displacement variables. The AAM can be used to obtain the Best Theory Diagram (BTD), where

the best accuracy for a given number of nodal degrees of freedom can be read. AAM requires the nu-

merical evaluation of arbitrary structural theories and uses the Carrera Unified Formulation [40], CUF,

for this purpose. The introduction of CUF provided a hierarchical and generalized approach to obtaining

the governing equations for structural models of any order and complexity. This methodology was also

enriched by the development and successful implementation of the Node-Dependent Kinematics (NDK)

[41, 42] in which each node of an FE model can have a different structural theory.

The combinations of available generalized variables are generally high, and the computational overhead

to obtain a BTD can be high. A possible solution can be found in the adoption of Machine Learning

(ML) techniques such as Neural Networks (NN) [43, 44]. The use and capabilities of these mathematical

tools have been growing in the last years in many different fields, including structural mechanics [45–53].

In this work, Convolutional Neural Networks (CNN) [54–56] are used to evaluate structural models for

plates and shells. This approach stems from the methodology and results described in [26, 57, 58], where

NN was successfully employed to obtain BTD for different problem configurations and analyses. In this

paper, CNN is employed for the first time to include more features in the training process and improve

computational efficiency. The paper is structured as follows: Section 2 provides the description of the

FE formulation methodology, Section 3 describes the evaluation procedure, the accuracy parameters em-

ployed, and the CNN adopted for this study, results are presented in Section 4 and the conclusions drawn

in Section 5.

2 Carrera Unified Formulation and Finite Elements

In the present work, the FE results stemmed from the use of the CUF [59] applied to a bi-dimensional

model. In this framework, considering the reference system employed in Fig. 1, the displacement field

can be expressed as

u(α, β, z) = Fτ (z)uτ (α, β) τ = 1, . . . ,M (1)
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Figure 1: Reference geometry for shell models

The Einstein notation acts on τ and Fτ are the thickness expansion functions. uτ is the vector of the

generalized unknown displacements and M is the number of expansion terms. For instance, a fourth-order

model, referred to as N=4, is

uα = uα1 + z uα2 + z2 uα3 + z3 uα4 + z4 uα5

uβ = uβ1 + z uβ2 + z2 uβ3 + z3 uβ4 + z4 uβ5

uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(2)

and has fifteen nodal DOF. The order and type of expansion is a free parameter. The metric coefficients

Hk
α, H

k
β and Hk

z of the kth layer are

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), Hk

z = 1 (3)

As shown in Fig. 1, Rk
α and Rk

β are the principal radii of the middle surface of the kth layer, Ak and Bk

the coefficients of the first fundamental form of Ωk. In this paper, only constant radii of curvature were

considered, Ak = Bk = 1. The geometrical strains can be written as

ϵkp =

{
ϵkαα, ϵ

k
ββ , ϵ

k
αβ

}T

= (Dk
p +Ak

p)u
k

ϵkn =

{
ϵkαz, ϵ

k
βz, ϵ

k
zz

}T

= (Dk
nΩ +Dk

nz −Ak
n)u

k

(4)
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where

Dk
p =


∂α
Hk

α
0 0

0
∂β
Hk

β

0

∂β
Hk

β

∂α
Hk

α
0

 Dk
nΩ =


0 0 ∂α

Hk
α

0 0
∂β
Hk

β

0 0 0

 Dk
nz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 (5)

Ak
p =


0 0 1

Hk
αR

k
α

0 0 1
Hk

βR
k
β

0 0 0

 Ak
n =


1

Hk
αR

k
α

0 0

0 1
Hk

βR
k
β

0

0 0 0

 (6)

For the stress-strain relations, it follows that

σk
p =

{
σk
αα, σ

k
ββ , σ

k
αβ

}T

= Ck
ppϵ

k
p +Ck

pnϵ
k
pn

σk
n =

{
σk
αz, σ

k
βz, σ

k
zz

}T

= Ck
npϵ

k
np +Ck

nnϵ
k
n

(7)

where

Ck
pp =


Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66

 Ck
pn =


0 0 Ck

13

0 0 Ck
23

0 0 Ck
36



Ck
np =


0 0 0

0 0 0

Ck
13 Ck

23 Ck
36

 Ck
nn =


Ck
55 Ck

45 0

Ck
45 Ck

44 0

0 0 Ck
33


(8)

The FE formulation uses a nine-node shell element based on the Mixed Interpolation of Tensorial Com-

ponent (MITC) method [60]. The displacement vector becomes

δus = Njδusj , uτ = Niuτi i, j = 1, · · · , 9 (9)

uτi and δusj are the nodal displacement vector and its virtual variation, respectively. The strain expres-

sion becomes

ϵp = Fτ (Dp +Ap)Niuτi

ϵn = Fτ (DnΩ −An)Niuτi + Fτ,zNiuτi

(10)
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MITC contrasts the membrane and shear locking via a specific interpolation strategy for the strain

components on the nine-node shell element, as follows:

ϵp =


ϵαα

ϵββ

ϵαβ

 =


Nm1 0 0

0 Nm2 0

0 0 Nm3



ϵααm1

ϵββm2

ϵαβm3



ϵn =


ϵαz

ϵβz

ϵzz

 =


Nm1 0 0

0 Nm2 0

0 0 1



ϵαzm1

ϵβzm2

ϵzzm3


(11)

Strains ϵααm1 , ϵββm2 , ϵαβm3 , ϵαzm1 , and ϵβzm2 stem from 10 and

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(12)

Subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1), (A2,B2,C2,D2,E2,F2), and

(P,Q,R,S), respectively, see Fig. 2. Via the Principle of Virtual Displacements (PVD) for the static

analysis, the equilibrium equation reads

kk
τsiju

k
τi = pk

sj (13)

The 3×3 matrix kk
τsij is the fundamental mechanical nucleus whose expression is independent of the order

of the expansion. pk
sj is the load vector. In a similar way, for the dynamic case,

mk
τsijü

k
τi + kk

τsiju
k
τi = 0 (14)

where mk
τsij is the fundamental nucleus of of the mass matrix. The assembly over all nodes and elements

and the introduction of the harmonic solution lead to the eigenvalue problem,

(−ω2
nM +K)Un = 0 (15)
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Figure 2: MITC9 tying points

In the CUF, through the NDK approach [42, 61], each node can have a different shell theory, and, in the

present work, the same one is adopted for every node on a single element. A more detailed description of

the procedures deployed by the CUF can be found in [62].

3 Best Theory Diagrams and Convolutional Neural Networks

The starting point of the evaluation procedure known as AAM is the axiomatic choice of the maximum

order of the expansion. From there, all the possible combinations of active terms up to said order are

compared to a reference model. Depending on the complexity of the theory, i. e. the number of expansion

terms, different levels of accuracy can be achieved. One of the outcomes is the Best Theory Diagram

(BTD). For each number of active terms, also referred to as nodal degrees of freedom (DOF), the BTD

reports best accuracy obtainable, as in Fig. 3a. As the reference solution, a full fourth-order expansion

(N=4) was considered, similarly to what was presented in previous works [57, 58]. An N=4 model has

fifteen generalized displacement variables; therefore, 215 reduced models stem by combining all terms. In

this work, 212 combinations were considered as the three zeroth-order terms were kept active due to their

high importance for the accuracy of the solution. To evaluate the accuracy of each model, two different

control parameters were used. For the static case,

Error = 100× |uz − uN=4
z |

|uN=4
z |

(16)
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uz is the maximum displacement, and uN=4
z is the reference value. The average relative errors for each of

the ten computed natural frequencies for free-vibration analyses.

Error =
10∑
i=1

fi/f
N=4
i

10
(17)

ux=ux1+zux2+z
2ux3+z

3ux4+z
4ux5

uy=uy1+zuy2+z
2uy3+z

3uy4+z
4uy5

uz=uz1+zuz2+z
2uz3+z

3uz4+z
4uz5

ux=ux1+zux2+z
3ux4+z

4ux5
uy=uy1+z

2uy3+z
3uy4+z

4uy5
uz=uz1+zuz2+z

2uz3+z
4uz5

ux=ux1+zux2+z
4ux5

uy=uy1+z
2uy3+z

3uy4
uz=uz1+zuz2

Error

D
O
F

(a) Best Theory Diagram

Error

D
O
F

FSDT

N=4

(b) Best Theory Distribution

Figure 3: Best Theory Diagrams.

These parameters were also used to build Best Theory Distributions via NDK. As detailed in the result

section, a 4X4 mesh was used in this case. Two structural models, FSDT and N=4, were considered,

leading to 216 combinations of mesh distributions. In this case, BTD can be seen as the Best Theory

Distribution, i.e., the curve composed of all meshes with a given number of N=4 and FSDT elements

providing the minimum error, see Fig. 3b. In the case of sixteen elements, the BTD will have sixteen

models, the first one with all N=4 and the last one with all FSDT.

Results from FEM served as training sets for the CNN employed. Developed from the basic multi-layer

perceptron (MLP), CNN can handle tensorial inputs of multiple orders and detect interactions among

input features. In the case of a convolutional layer, the equivalent of a single neuron of a common NN

is represented by a convolutional kernel, often referred to as a filter, which is a tensor of the same order

as the input containing the model weights. The convolutional operation can be interpreted as the sum of

the products between corresponding elements of inputs and filters, with the latter sliding over the input

matrix with a specific step, or stride, in each direction, starting from the upper-left corner. Depending
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on the choice of the stride, the dimensions of the output may vary, passing through a convolutional layer.

One way to preserve the original size of the input is by adding rows and columns, typically of zeros,

around the perimeter of each of the input tensor components. This technique, called padding, is used

when loss of information must be avoided, whereas increasing strides can be compared to a down-sampling

procedure. The training of the network is performed through the minimization of a loss function; in the

case of this paper, the mean squared error between predictions and expected output. The outcome of

this procedure is represented by the network parameters, weights, and biases, which are updated through

backpropagation. The optimization algorithm used is Adam [63], a stochastic gradient descent method

vastly employed in the ML field, given its computational efficiency and robustness. For further details on

the mathematical background for CNNs, the reader may refer to [64].

The CNN architecture used in this paper is summarized in Table 1 and chosen after multiple tests

on various configurations to minimize computational costs and maximize accuracy. The CNN adopted

combines convolutional and dense layers, in both cases of dimension 128, and a Rectified Linear Unit

(ReLU) was used as the activation function. In the output layer, a Sigmoid function was employed. Using

CNN allowed multi-dimensional inputs and involved different structural features in the training phase.

The input was built by encoding the sequence of active terms representing a specific structural model into

a sequence of 0 and 1 and corresponding to deactivated and active terms of the expansion, respectively.

Additional information such as thickness ratio, stacking sequence, and boundary conditions was conveyed

by appending them to the same array in an adequately coded format. The final input form required

re-shaping the assembled array in a matrix format. In the case of mesh distributions over a 4X4 mesh,

the first part of the inputs consisted of 16 terms, in which 0 and 1 corresponded to FSDT and N=4,

respectively. Two examples of inputs, one for each case, are provided in Fig. 4. The training of the

network used some 10% of all possible models evaluated for each structural case, randomly selected.

Table 1: Parameters and architecture of adopted CNN

Layer Filters (Size) /Nodes Activation Function

Convolutional 128 (3x3) ReLU
Convolutional 128 (3x3) ReLU
Convolutional 128 (3x3) ReLU
Dense 128 ReLU
Dense 128 ReLU
Ouput 1 Sigmoid
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1 1 1 0

0 1 0 1

0 1 0 0

30 1 100 5

Sequence of active

terms

From left to right:

• Lam. angle

• BC (0=C-F, 1=S-S)

• a/h

• R/a

(a) Single theory - Input for a simply-supported shell with θ =
30, a/h=100, R/a=5.

1 1 0 0

1 1 0 0

1 1 0 0

1 1 1 1

45 0 75 10

Theory adopted for the 

corresponding element

(0=FSDT, 1=full 4th order)

From left to right:

• Lam. angle

• BC (0=C-F, 1=S-S)

• a/h

• R/a

(b) Mesh distribution - Input for a clamped-free shell with θ =
45, a/h=75, R/a=10.

Figure 4: Input format

4 Numerical Results

The numerical results presented in this section were all obtained considering the same base geometry of a

square shell, with a=b=1 m and the same curvatures. Different thickness ratios, a/h, stacking sequences

and curvature radii, R/a, were used. Two boundary condition sets were considered: two opposite edges

clamped and two free (C-F), and all simply-supported (S-S). The following material properties were

adopted: E1/E2=25, G12/E2=G13/E2=0.5, G23/E2=0.2, ν=0.25. Static and free-vibration analyses were

carried out using FEM. The former considered a bi-sinusoidal load applied on the upper surface of the

shell, and the output consisted of the maximum vertical displacement uz. The latter gave the first ten

natural frequencies. A 2D model was used throughout this work, and, to lower the global computational

cost, a quarter of the shell with two symmetry boundary conditions was considered; thus, only symmetric

modes were computed. A 4X4 nine-node (Q9) mesh was employed.
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4.1 Verification of the CNN, static analysis

The first set of results aims at verifying the accuracy of the CNN concerning the static analysis. Numerical

cases were retrieved from [57] with R/a=5, and in which a different neural network was used, namely, a

Fully Connected Neural Network (FCNN), multilayer feed-forward, with Levenberg–Marquardt training

functions.

Figures 5 and 6 show BTD as obtained with FE and CNN. For the sake of clarity, in all the following

sections, BTD do not report the error associated with the reference model, i.e., the 15 DOF model with

null error, and the corresponding value from CNN. The FE results were obtained by considering all

combinations of structural theories and selecting those with the minimum error per given nodal DOF.

CNN, instead, used 10% of FE results for training and, then, was employed to evaluate the error of all

combinations. Some of the best models are indicated. Tables 2 and 3 compare the error provided by FE,

CNN and FCNN for best models. Each row refers to different nodal DOF. For instance, the second row

refers to the best model with fourteen DOF per node. The results show that

� In all cases, there is a perfect match between FE and CNN. Moreover, the CNN is, at least, as

accurate as FCNN.

� Five to seven expansion terms are required to achieve an error lower than 1%. As well-known,

first-order terms are essential to have a good accuracy with in-plane cubic and transverse parabolic

terms following.
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Figure 5: BTD for shells with 0/90/0, a/h=100 and R/a=5, static analysis.
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Figure 6: BTD for S-S shells, a/h=10 and R/a=5, static analysis.

Table 2: Comparisons of FE, CNN and FCNN for S-S shell, 0/90/0, a/h=25, R/a=5, static analysis.

DOF % Err. (FE) % Err. (CNN) % Err. [57]

15 0 0.2785 0.5690
14 0.0003 0.2512 0.6008
13 0.0022 0.2558 0.6424
12 0.0250 0.3195 0.7215
11 0.2787 0.3705 0.8150
10 0.4637 0.5079 0.9235
9 0.7149 0.7318 0.9752
8 1.0095 1.1749 1.0393
7 1.3902 1.3060 1.4889
6 1.8457 1.7049 2.0527
5 2.8213 2.8911 2.6410
4 89.8768 90.26311 85.1964

Table 3: Comparisons of FE, CNN and FCNN for S-S shell, 0/90/0, a/h=75, R/a=5, static analysis.

DOF % Err. (FE) % Err. (CNN) % Err. [57]

15 0 0.1320 0.0176
14 0.0055 0.0116 0.0215
13 0.0163 0.0139 0.0313
12 0.0235 0.0230 0.0447
11 0.0343 0.0335 0.0597
10 0.0556 0.0514 0.0836
9 0.0689 0.0746 0.1058
8 0.0931 0.0895 0.1321
7 0.1433 0.1433 0.1758
6 0.1971 0.1991 0.2394
5 0.5232 0.5321 0.6154
4 96.8974 96.3548 96.9259
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4.2 Verification of the CNN, free-vibration analysis

This section concerns the verification of the CNN for free-vibration analyses using cases from [26, 58].

Figures 7 and 8 show BTD from FE and CNN. Concerning the use of NDK to build best theory
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Figure 7: BTD for C-F shells, 0/90/0, a/h=20, R/a=10, free-vibration analysis.
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(b) R/a=5

Figure 8: BTD for S-S shells, a/h=10, 0/90/0, R/a=2 and 5, free-vibration analysis.

distributions, Figs. 9 and 10 show the BTD and the best distributions over the mesh of FSDT and

N=4 structural theories. The vertical axis of Fig. 9 reports the number of elements with N=4, whereas

the horizontal axis shows the error. Three distributions are presented in Fig. 10. The results suggest

that

� As in the static case, there is a perfect match between FE and CNN results. The CNN can identify

the BTD for structural theories and distributions.
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Figure 9: BTD for C-F shell, 90/0, a/h=10, R/a=5, NDK, free-vibration analysis.
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Figure 10: Comparison between FE and CNN mesh distributions and errors for the C-F shell, 90/0,
a/h=10, R/a=5, free-vibration analysis.

� To have errors lower than 1%, some nine terms are required for the considered cases. First and

third-order terms are the most influential.

� Concerning the distributions of theories over the FE mesh, the position of constraints play a fun-

damental role as pointed out in [58].
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4.3 Multi-channel CNN with structural features as inputs

This section presents assessments concerning the use of CNN to include structural parameters in the

training process. The network was trained considering the thickness, boundary conditions, the lamination

angle. For each combination of thickness, lamination angle, and boundary condition, the network was

trained using data from four different configurations referring to shell models with various thickness ratios

and lamination angles. For the first case, the simply-supported one with a lamination angle of 30, the

reference model used are listed in Table 4. The results relative to the second case, the clamped-free with

lamination angle of 45, were obtained using data relative to the structural configurations of Table 5.

Finally, for the simply-supported with lamination angle of 60, the employed data were relative to those

described in Table 6.

Table 4: Case 1 - Features of training data.

Configuration BC a/h R/a Lam. angle (°)

1 Clamped-Free 50 5 15
2 Simply-supported 50 5 45
3 Clamped-free 100 5 15
4 Simply-supported 100 5 45

Table 5: Case 2 - Features of training data.

Configuration BC a/h R/a Lam. angle (°)

1 Clamped-Free 50 5 30
2 Simply-supported 50 5 60
3 Clamped-free 100 5 30
4 Simply-supported 100 5 60

Table 6: Case 3 - Features of training data.

Configuration BC a/h R/a Lam. angle (°)

1 Clamped-Free 50 5 45
2 Simply-supported 50 5 75
3 Clamped-free 100 5 45
4 Simply-supported 100 5 75

For each input, only the 10% of the reference data was used during the training of the network. The

BTDs obtained are represented in Figures 11, 12, and 13, with their respective errors detailed in Tables

7, 9, and 11. The best theories are also presented, being described in Tables 8, 10, and 12.

The results suggest that

� The CNN was able to accurately reproduce the BTD, demonstrating that a more generalized use
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Table 7: Multi-channel CNN, accuracy of BTD for S-S shell, 0/30/0, a/h=75, R/a=5, free-vibrations.

DOF % Err. (FE) % Err. (CNN)

15 0 0.1301
14 0.0004 0.1099
13 0.0011 0.1035
12 0.0025 0.0986
11 0.0048 0.0932
10 0.0182 0.1070
9 0.0333 0.1156
8 0.6419 0.3579
7 1.1381 1.1874
6 2.273 2.3549
5 4.8530 4.5359
4 61.7168 61.4835
3 90.7338 90.8009
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Figure 11: Multi-channel CNN, BTD for S-S shell, 0/30/0, a/h=75, R/a=5, free-vibrations.

Table 8: Multi-channel CNN, best theories for S-S shell, 0/30/0, a/h=75, R/a=5, free-vibrations.

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5

15 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
14 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △
13 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ △
12 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ ▲ ▲ △ ▲
11 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ ▲ ▲ △ △
10 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ ▲ △ △ △
9 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ △ △ △ △
8 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ ▲ ▲ △ △ △ △
7 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ ▲ △ △ △ △ △
6 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ △ △ △ △ △ △
5 ▲ ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △
4 ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △
3 ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △ △

of this technique for the definition of the structural best theories is possible. The use of 10% of all

combinations of FE analyses is enough for the CNN training.
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Table 9: Multi-channel CNN, accuracy of BTD for C-F shell, 0/45/0, a/h=75, R/a=5, free-vibrations.

DOF % Err. (FE) % Err. (CNN)

15 0 0.1555
14 0.0006 0.1546
13 0.0015 0.1322
12 0.0034 0.1422
11 0.0061 0.1451
10 0.0332 0.2071
9 0.0659 0.2606
8 0.4919 0.8625
7 1.0434 1.6808
6 3.1792 2.4268
5 5.4155 4.0571
4 68.4405 71.7408
3 89.7576 90.5725
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Figure 12: Multi-channel CNN, BTD for C-F shell, 0/45/0, a/h=75, R/a=5, , free-vibrations.

Table 10: Multi-channel CNN, best theories for C-F shell, 0/45/0, a/h=75, R/a=5, , free-vibrations.

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5

15 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
14 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲
13 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ △
12 ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ ▲ ▲ ▲ △ ▲ △
11 ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ ▲ ▲ ▲ △ △ △
10 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ △ △ ▲ △
9 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ △ △ △ △
8 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ ▲ ▲ △ △ △ △
7 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ ▲ △ △ △ △ △
6 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ △ △ △ △ △ △
5 ▲ ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △
4 ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △
3 ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △ △

� Lamination, boundary conditions and thickness can be used in the training process to build networks

able to receive, as inputs, various values of these features and, thus, avoiding new FE analysis.

18



Table 11: Multi-channel CNN, accuracy of BTD for S-S shell, 0/60/0, a/h=75, R/a=5, , free-vibrations.

DOF % Err. (FE) % Err. (CNN)

15 0 0.0399
14 0.0007 0.0350
13 0.0018 0.0243
12 0.0041 0.0196
11 0.0067 0.0258
10 0.0431 0.0317
9 0.0952 0.0383
8 0.3641 0.1637
7 0.9189 0.5715
6 2.5535 2.4340
5 5.9604 5.4471
4 73.0429 75.9666
3 89.3867 92.3111
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Figure 13: Multi-channel CNN, BTD for S-S shell, 0/60/0, a/h=75, R/a=5, , free-vibrations.

Table 12: Multi-channel CNN, best theories for S-S shell, 0/60/0, a/h=75, R/a=5, free-vibrations.

DOF uα1 uβ1 uz1 uα2 uβ2 uz2 uα3 uβ3 uz3 uα4 uβ4 uz4 uα5 uβ5 uz5

15 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
14 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲
13 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲
12 ▲ ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ ▲ ▲ ▲ △ △ ▲
11 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ △ △ △
10 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ ▲ △ △ △
9 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ ▲ △ △ △ △
8 ▲ ▲ ▲ ▲ ▲ ▲ △ △ ▲ ▲ △ △ △ △ △
7 ▲ ▲ ▲ ▲ ▲ △ △ △ ▲ ▲ △ △ △ △ △
6 ▲ ▲ ▲ ▲ ▲ △ △ △ △ ▲ △ △ △ △ △
5 ▲ ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △
4 ▲ ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △
3 ▲ ▲ ▲ △ △ △ △ △ △ △ △ △ △ △ △

� Overall, the results confirm that the proper refinement of shell models should prioritize the inclusion

of in-plane third-order terms and transverse parabolic ones.
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5 Conclusions

This paper has presented a new application of Convolutional Neural Networks (CNN) as surrogate models

to evaluate the accuracy of structural theories and determine the best models. The focus was on shell

structures made of composite materials. Through the Carrera Unified Formulation (CUF), the equations

for static and free-vibration analyses were obtained, and the maximum order of the theories considered was

four. The Node-Dependent Kinematics (NDK) approach was used to assign different structural theories to

each node. The network’s input consists of a combination of active expansion terms or theories distribution

and configuration parameters such as thickness ratio, stacking sequence, and boundary conditions. The

outputs were maximum displacements or natural frequencies. The results presented in this paper show

that

� CNN performed better than fully-connected networks employed in previous works. CNN can handle

more input features and has superior computational efficiency.

� CNN provided results for cases with features laying outside the ranges used in the training phase.

� The efficiency and versatility of CNN open to more generalized use of this technique. With further

developments, the selection process of the best theory could completely avoid the necessity of FE

computations for entire groups of structural configurations.
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