
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Multi-Maximum and Quasi-Maximum Common Subgraph Problem / Cardone, Lorenzo; Quer, Stefano. - In:
COMPUTATION. - ISSN 2079-3197. - ELETTRONICO. - 11:4(2023). [10.3390/computation11040069]

Original

The Multi-Maximum and Quasi-Maximum Common Subgraph Problem

Publisher:

Published
DOI:10.3390/computation11040069

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977847 since: 2023-06-15T12:48:30Z

MDPI

Citation: Cardone, L.; Quer, S. The

Multi-Maximum and

Quasi-Maximum Common Subgraph

Problem. Computation 2023, 11, 69.

https://doi.org/10.3390/

computation11040069

Academic Editors: Akbar Ali, Guojun

Li, Mingchu Li, Rao Li, Colton

Magnant and Madhumangal Pal

Received: 25 January 2023

Revised: 15 March 2023

Accepted: 20 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

The Multi-Maximum and Quasi-Maximum Common
Subgraph Problem
Lorenzo Cardone * and Stefano Quer *

Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy
* Correspondence: lorenzo.cardone@polito.it (L.C.); stefano.quer@polito.it (S.Q.)

Abstract: The Maximum Common Subgraph problem has been long proven NP-hard. Nevertheless,
it has countless practical applications, and researchers are still searching for exact solutions and
scalable heuristic approaches. Driven by applications in molecular science and cyber-security, we
concentrate on the Maximum Common Subgraph among an indefinite number of graphs. We first
extend a state-of-the-art branch-and-bound procedure working on two graphs to N graphs. Then,
given the high computational cost of this approach, we trade off complexity for accuracy, and we
propose a set of heuristics to approximate the exact solution for N graphs. We analyze sequential,
parallel multi-core, and parallel-many core (GPU-based) approaches, exploiting several leveraging
techniques to decrease the contention among threads, improve the workload balance of the different
tasks, reduce the computation time, and increase the final result size. We also present several sorting
heuristics to order the vertices of the graphs and the graphs themselves. We compare our algorithms
with a state-of-the-art method on publicly available benchmark sets. On graph pairs, we are able
to speed up the exact computation by a 2× factor, pruning the search space by more than 60%. On
sets of more than two graphs, all exact solutions are extremely time-consuming and of a complex
application in many real cases. On the contrary, our heuristics are far less expensive (as they show
a lower-bound for the speed up of 10×), have a far better asymptotic complexity (with speed ups
up to several orders of magnitude in our experiments), and obtain excellent approximations of the
maximal solution with 98.5% of the nodes on average.

Keywords: algorithms; algorithm design and analysis; graph theory; parallel computing

1. Introduction

Graphs are incredibly flexible data structures that can represent information through
vertices and relations through edges, allowing them to model various phenomena with
easily machine-readable structures. We can adopt graphs to represent the relationship
between functions in programs, electronic logic devices in synthesis, connections between
atoms, and molecules in biology, etc.

Understanding whether two graphs represent the very same object, that is, deter-
mining if the two graphs are isomorphic, belongs to the class of NP-complete problems.
Scholars are still not sure whether it can be improved, but existing algorithms for solving
this problem have exponential complexity [1]. Given two graphs, i.e., G1 and G2, finding
the largest graph simultaneously isomorphic to two subgraphs of the given graphs, i.e.,
G = MCS(G1, G2), is even more challenging; it is usually known as the Maximum Common
Subgraph (MCS) problem. Nevertheless, this problem is the key step in many applications,
such as studying “small worlds” in social networks [2,3], searching the web [4], analyzing
biological data [5], classifying large-scale chemical elements [6], and discovering software
malwares [7]. Algorithms to find the MCS have been presented in the literature since the
70s [8,9]. Among the most significant approaches, we would like to mention the conversion
to the Maximum Common Clique problem [10], the use of constraint programming [11,12]

Computation 2023, 11, 69. https://doi.org/10.3390/computation11040069 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11040069
https://doi.org/10.3390/computation11040069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0009-0008-7553-4839
https://orcid.org/0000-0001-6835-8277
https://doi.org/10.3390/computation11040069
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11040069?type=check_update&version=1

Computation 2023, 11, 69 2 of 25

and integer linear programming [13], the extraction of subgraphs guided by a neural net-
work model [14,15], the adoption of reinforcement learning [16], and even multi-engines
and GPU-based many-core implementations [17].

This paper proposes a set of algorithms and related heuristics to assess the similarity
of a set of graphs and determine how akin each of these graphs is to the whole group. More
specifically, we approach the so-called Multi-MCS problem [6,18], i.e., we focus on finding
the MCS or a quasi-MCS (one good approximation of the MCS) among N (usually more than
two) graphs. Notice that a possible solution to this problem consists of the iterated applica-
tion of a standard MCS procedure to find the MCS between two graphs, i.e., MCS(G1, G2),
to a set of N graphs {G1, G2, . . . , GN}. Unfortunately, to apply this strategy, we need to fully
parenthesize the set of graphs, and the number of possible parenthesizations is exponential
in N, i.e., Ω(2n) [19]. Moreover, as each computation MCS(G1, G2) potentially has several
equivalent solutions, not all parenthesizations deliver the same results. For example, given
three graphs {G1, G2, G3}, computing MCS(MCS(G1, G2), G3} may give optimal results,
whereas computing MCS(G1, MCS(G2, G3)) may even deliver an empty solution.

To analyze this problem, we examine the work by McCreesh et al. [20]. This work
introduces McSplit, i.e., an efficient branch-and-bound recursive procedure that, given two
graphs, G1 and G2, finds one of their MCSs, i.e., MCS(G1, G2). The process is based on an
intelligent invariant that, given a partial mapping between the vertices of the two graphs,
considers a new vertex pair only if the vertices within the pair share the same label. Labels
are defined based on the interconnections between vertices. Two vertices only share the
same label if they are connected in the same way to all previously mapped nodes. The
algorithm also adopts an effective bound prediction that, given the current mapping and
the labels of yet-to-map vertices, computes the best MCS size the current recursion path can
achieve. In practice, the algorithm prunes all paths of the tree search that are not promising
enough; thus, it drastically reduces the search space once a good-enough solution has
been found. Unfortunately, even if the constraining effect may be fairly effective, pruning
depends on the vertex selection order, which is statically computed at the beginning of the
process and is one of the most impairing elements of McSplit. Indeed, the static node-degree
heuristic may be sub-optimal, generate many ties on large graphs, and include no strategy
to break those ties.

We extend this algorithm in different directions. We first generalize the original
approach to handle N graphs simultaneously, i.e., {G1, G2, . . . , GN}, and find their MCS,
i.e., MCS(G1, G2, . . . , GN). This algorithm finds maximal common subgraphs, is purely
sequential, and extends the recursive process of the original function to generate (and
couple) the simple permutations of (n − 1) sets of vertices. To maintain the original
compactness and efficiency considering N graphs, we revisit the algorithmic invariant,
the original bound computation, and the data structure used to store partial information.
This algorithm also introduces a domain-sorting heuristic that speeds up the original
McSplit procedure on a pair of graphs by more than a 2× factor and delivers even better
improvements (up to 10×) when it is applied to more than two graphs.

This work is then extended to a parallel multi-core CPU-based procedure to improve
its efficiency following the work by Quer et al. [17]. We divide the work into independent
tasks and assign these tasks to a thread pool, minimizing the contention among threads, and
trying to balance the workload as much as possible, even though the problem remains an
intrinsically unbalanced one. Although it is well known that the order in which nodes are
processed greatly influences the execution time, we discovered that the order of the graphs
also significantly impacts the speed of our procedure (up to over an order of magnitude)
without any apparent drawback. As a consequence, we run experiments with different
graph sorting heuristics, and we compare these heuristics in terms of computation time
and memory used.

Unfortunately, even if the two previous strategies find maximal solutions and sorting
heuristics can considerably improve running times, they can only manage a tiny num-
ber of medium-size graphs when faced with a timeout of 1000 s. As computation time

Computation 2023, 11, 69 3 of 25

is the main constraining factor as memory usage is usually not critical in this computa-
tion, several applications that produce non-exact solutions requiring only a fraction of
the computation time can benefit from algorithms. By trading off computational costs
and accuracy, we propose three heuristics to find the closest-possible maximal solution
(a quasi-MCS). Moreover, we compare them in complexity, efficiency, and result size.
The first strategy, which we call the “waterfall approach”, manipulates the N graphs
linearly, such that the MCS of any two graphs, e.g., MCS(G1, G2), is compared with the
following graph in the list, e.g., MCS

(
MCS(G1, G2), G3

)
. The second strategy, which we

call the “tree approach”, manipulates the N graphs pair-by-pair in a tree-like fashion,
e.g., MCS

(
MCS(G1, G2), MCS(G3, G4)

)
. It is potentially far more parallelizable than the

waterfall scheme and can be managed by a distributed approach in case of a high enough
number of graphs. At the same time, the quality of its solutions is often limited by the
choices performed in the higher nodes of the tree.

Finally, to show the scalability of the tree approach, we call a GPU unit and distribute
the branches of the tree-like approach between the two devices leveraging a multi-threading
CPU and a many-threading GPU unit. Although the GPU implementation cannot out-
perform the CPU version in speed, since the implementation deals with an inherently
unbalanced problem, the presence of a second device allows us to reduce the execution
time when applied to the tree approach.

Our experimental results show the advantages and disadvantages of our procedures
and heuristics. We take into consideration the asymptotic complexity and the elapsed time
of our tools, and, as some of our strategies sacrifice optimality in favor of applicability, we
also consider the result size as an essential metric to compare them. We prove that the
heuristic approaches are orders of magnitude faster than the exact original implementations.
Even if they cannot guarantee the maximality of their solution, we prove that their precision
loss is shallow once the proper countermeasures are implemented.

To sum up, this paper presents the following contributions:

1. An extension of a state-of-the-art MCS algorithm to solve the Multi-MCS problem
adopting both a sequential and a parallel multi-threaded approach. These solutions
manipulate the N-graphs within a single branch-and-bound procedure.

2. A revisitation of the previous multi-threaded approach to solving the Multi-quasi-
MCS problem, trading-off computation time and accuracy. In these cases, our solutions
deal with the N-graphs on a graph-pair basis with different logic schemes.

3. A mixed parallel multi-core (CPU-based) and many-core (GPU-based) extension of the
previous algorithms for a non-exhaustive search to further reduce the computational
time distributing the effort on different computational units.

4. An analysis of sorting heuristics applicable to vertex bidomains, graph pairs, and set
of graphs able to significantly improve the solution time with a minimal increase in
the algorithmic complexity.

As far as we know, this is the first work facing the Multi-MCS (and the Multi-quasi-
MCS) problem consistently, presenting both exact (maximal) and approximated (quasi-
maximal) algorithms to solve it.

The paper is organized as follows. Section 2 reports some background on multi-
graph isomorphism and introduces McSplit. Section 3 describes our sequential and parallel
multi-core McSplit extensions to handle the Multi-MCS problem. Section 4 shows our imple-
mentations of the Multi-quasi-MCS problem tackled as a linear (sequential) or tree (parallel)
series of MCS searches. Section 5 introduces the proposed sorting heuristics. Section 6
reports our findings in terms of result size, computation time, and memory used. Section 7
draws some conclusions and provides some hints on possible further developments.

2. Background and Related Works
2.1. Graphs and Notation

In our work, we consider unweighted, directed, or undirected graphs G = (V, E),
where V is a finite set of vertices and E is a binary relation on V representing a finite set of

Computation 2023, 11, 69 4 of 25

edges. We indicate the number of vertices v ∈ V with n, or |V|, and the number of edges
e ∈ E with m, or |E|. For undirected graphs, E consists of unordered pairs of vertices rather
than ordered pairs. We consider graphs as unlabeled even if labels are reported in our
examples to describe the logic of our algorithms.

The Maximum Common Subgraph (MCS) problem has received multiple definitions,
depending on what we try to maximize. The two main versions of this problem aim
to find the “maximum number of nodes” or the “maximum number of edges” that the
subgraph must preserve. We mainly refer to the former case in this paper, i.e., given a
pair of graphs G1 and G2, the MCS(G1, G2) is a graph containing the maximum number of
vertices while still being isomorphic to an induced subgraph of both G1 and G2. Figure 1
shows a graphical example of two graphs and some possible MCSs. Notice again that
node labels, i.e., {1, 2, 3, 4, 5} and {a, b, c, d, f }, are reported to identify all vertices and their
pairing uniquely but are of no use to match vertices.

4

5

1

2

3

(a) G1

c

ba

f

e d

(b) G2

2f

1a 5b

3c

4d

1a

2f

5e 3d

4c

(c) Two different MCS(G1, G2)

Figure 1. Given the graphs G1 and G2 represented in (a,b), (c) reports two different admissible MCSs.
Labels are shown only to help identify the vertices.

In this paper, we often consider a set of graphs {G1, G2, . . . , GN}. In this case, we
indicate the number of vertices and edges of Gi with ni and mi, respectively. N indicates
the number of graphs in the set. The previous definition of the MCS can be easily extended
to a set of N graphs.

2.2. The McSplit Procedure

McSplit [20] is a branch-and-bound procedure that finds the MCS of a pair of graphs
using a depth-first search. To illustrate its main ideas, we apply McSplit to the two graphs,
G1 and G2, represented in Figure 2a,b.

4

1 2

3

(a) G1

a

d

b

c

(b) G2

1a 2b

3c

(c) MCS(G1, G2)

Figure 2. Two undirected and unlabeled graphs G1, G2, and one possible common subgraph
computed by McSplit. Node labels, i.e., {1, 2, 3, 4} and {a, b, c, d}, are reported to uniquely identify
all vertices.

Starting from an empty mapping M between the vertices of G1 and G2, McSplit adds
a vertex pair to M at each recursion level. During the first recursion step, let us suppose
the procedure selects vertex 1 in G1 and vertex b in G2; that is, M = {1, a}. After that,
the function labels each unmatched vertex in G1 according to whether it is adjacent to
vertex 1, and it labels each unmatched vertex in G2 according to whether it is adjacent to
vertex a. Adjacent vertices have a label of 1, and non-adjacent vertices have a label of 0.
Table 1a shows these labels just before the second recursion level.

Computation 2023, 11, 69 5 of 25

Table 1. Labels (L) on the non-mapped vertices (v) of G1 and G2.

a M = {1, a }

G1 G2

v L v L

2 1 b 1
3 1 c 1
4 1 d 1

b M = {13, ab}

G1 G2

v L v L

2 11 c 11
4 11 d 11

c M = {132, abc}

G1 G2

v L v L

4 110 d 111

At this point, the procedure recurs to extend M with a new pair in which each vertex
shares the same label. If during the second recursion step, McSplit extends M with pair
2 and c, it obtains the new mapping M = {12, ab} and the new label set is represented
in Table 1b. The third step consists of extending M with 3 and a, which is, at this point,
the only remaining possibility. The process obtains M = {123, abc} and the label set of
Table 1c. The last two vertices 4 and d cannot be inserted in M because they have different
labels. Then, the recursive procedure backtracks, searching for another (possibly longer)
match M.

Notice that within a class of vertices sharing the same label, i.e., belonging to the
same domain, McSplit heuristically gives the highest priority to the nodes with the highest
degree. Moreover, to reduce the computation effort, McSplit computes a bound to prune
the space search and avoid exhaustive searches effectively. In practice, while parsing a
branch, McSplit evaluates the following bound:

bound = |M|+ ∑
l∈L

min(|{v ∈ G1\M : label(v) = l}| , |{v ∈ G2\M : label(v) = l}|) (1)

where |M| is the cardinality of the greatest mapping found so far and L is the actual set of
labels. If the bound is smaller than the size of the current mapping, there is no reason to
follow that path, as it is not possible to find a matching set longer than the current one along
it. In this case, the algorithm prunes the branch of the decision tree, drastically reducing
the computation effort, and it moves to the next tree path.

2.3. Related Works

MCS problems are common in many fields and have been widely studied [11,12,21–27].
For that reason, we discuss only the works closest to ours and dealing with branch and
bound, constraint programming methods, and the Multi-MCS problem.

McGregor [21] proposes a branch and bound approach in which each node of a
searching tree is paired with two graph nodes. To make the visit efficient, when he visits the
tree, he prunes branches that cannot improve the current best solution. Vismara et al. [11]
associate each vertex of the first graph with each viable vertex of the second graph using a
constraint programming approach. This approach was later improved upon by Ndiaye and
Solnon [24]. McCreesh et al., in a series of publications [12,20,28], propose to run a similar
constraint programming approach in parallel on multiple cores, significantly reducing the
time needed to reach a solution.

The Multi-MCS problem has been left largely unexplored because of its overwhelming
complexity. However, a few researchers have proposed methods to approach it, even if
none compare the approach with an exact solution. Hariharan et al. [18] discuss how the
approaches that try to solve the Multi-MCS problem by finding the MCS between pairs of
graphs struggle to find large MCS between multiple graphs in a timely manner. Moreover,
they show that many of the heuristics that produce good results on pair of graphs are either
non-applicable or ineffective when extended to multiple graphs. As a consequence, they
propose an approach based on computing the correspondence graphs between the main
graph, referred to as pivot, and all other graphs. Then, they compute the maximum cliques

Computation 2023, 11, 69 6 of 25

on each of the correspondence to find all connected substructures shared by graph pairs.
Finally, they compute the intersection among all substructures and return this intersec-
tion as the MCS between the N graphs. Following this work, Dalke et al. [6] proposed
FMCS, a heuristic approach based on subgraph enumeration and isomorphism. While
exact strategies use algorithms that are computationally very expensive, their approach,
although heuristic, produces results competitive with exact methods.

Larsen et al. [29] focused on the maximum common edge subgraph variant. They
proposed a heuristic method to optimize the conservation of the maximum number of edges
in a set of graphs. Their method relies on repeated local searches for an MCS interleaved
with a perturbation step to leave possible local maxima and cover a greater variety of
pairings. Their local search is based on a fitness function that identifies the sets of nodes
with a good similarity and quickly converges to the final solution. Although the code for this
study is freely available, we do not report any direct comparison with it since it maximizes
the number of edges in the solution and not the number of nodes. As a consequence, their
algorithm prefers smaller but denser solutions to larger but sparser subgraphs.

3. The Multi-MCS Approach

While the MCS problem has multiple applications in different scenarios, Multi-MCS
has been mainly studied in molecular science and cyber-security due to its extremely
high costs. Surely, more efficient algorithms would push forward its applicability in other
research sectors. For this reason, in this section, we present two algorithms extending
McSplit [20] to directly consider a set of N graphs {G1, G2, . . . , GN}. The first version is
purely sequential, whereas the second one is its multi-core CPU-based parallel variation.
The efficiency of both versions strongly depends on the graph order. As a consequence, we
dedicate the last subsection of this part to describing our sorting heuristics.

3.1. The Sequential Approach

Our first contribution is to rewrite the McSplit algorithm in a sequential form and in
such a way that it can handle any number of graphs. A single call to our branch-and-bound
procedure MULTI-MCS (G1, G2, . . . , GN) computes the MCS of N graphs {G1, G2, . . . , GN}.
Figure 3 illustrates the inputs and outputs of the function, and Algorithm 1 reports its
pseudo-code.

G
G

G
G1 3

2

1 2

...

Multi−MCS

N

NMCS (G , G , ..., G)

Figure 3. Computing the MCS of N graphs {G1, G2, . . . , GN} using a single branch-and-bound
recursive function MULTI-MCS (G1, G2, . . . , GN).

To obtain an efficient implementation, we modify a few core steps of the original
algorithms, maintaining the main perks of the logic flow together with its overall memory
and time efficiency.

Computation 2023, 11, 69 7 of 25

Algorithm 1 The sequential Multi-MCS function: A unique recursive branch-and-bound
procedure that given N graphs {G1, G2, . . . , GN} and computes MCS{G1, G2, . . . , GN}

1: MULTI-MCS ({G1, G2, . . . , GN})
2: C = S = ∅
3: level = 0
4: domains = initial domains
5: SELECTFIRSTNODE ({G1, G2, . . . , GN}, C, S, level, domains)
6: return S

7: SELECTFIRSTNODE ({G1, G2, . . . , GN}, C, S, level, domains)
8: if (|C| > |S|) then
9: S = C

10: end if
11: while domains 6= ∅ do
12: bound = COMPUTEBOUND ({G1, G2, . . . , GN}, C)
13: if (bound ≤ |S|) then
14: return
15: end if
16: domain = SELECTLABELCLASS ({G1, G2, . . . , GN}, domains)
17: v = SELECTVERTEX (domain)
18: G1 = G1\v
19: C = C ∪ v
20: SELECTNEXTNODE ({G1, G2, . . . , GN}, C, S, level + 1, domains, domain)
21: C = C\v
22: end while

23: SELECTNEXTNODE ({G1, G2, . . . , GN}, C, S, level, domains, domain)
24: H = G(level%N)
25: for all u ∈ domain[H] do
26: H = H\u
27: C = C ∪ u
28: if ((level % N) == N−1) then
29: new_domains = FILTERDOMAINS ({G1, G2, . . . , GN}, C, domains)
30: // Select new domain on first graph
31: SELECTFIRSTNODE ({G1, G2, . . . , GN}, C, S, level + 1, new_domains)
32: else
33: // Select node from another graph
34: SELECTNEXTNODE ({G1, G2, . . . , GN}, C, S, level + 1, domains, domain)
35: end if
36: H = H ∪ u
37: C = C\u
38: end for

The algorithm selects a node of the first graph and a node of the second graph so that
each edge and non-edge toward nodes belonging to the current solution is preserved. After
selecting each new node pair, the algorithm divides the “remaining” nodes into sub-sets.
These sub-sets are called “domains” in the original formulation, are created by function
FILTERDOMAINS, and group nodes sharing the same set of adjacency and non-adjacency
toward the nodes in the current solution. Two domains belonging to different graphs that
share the same adjacency rules to nodes in their respective graphs are then paired in what is
called a “bidomain”. The nodes within a bidomain are thus compatible and can be matched.
For each bidomain, the size of the smallest domain is used by function COMPUTEBOUND

to compute how many nodes can still be added to the solution along that specific path,
pruning the search whenever possible.

In our implementation, to handle more than two graphs and maintain the original
algorithmic efficiency, we revise both the logic and the data structure of the algorithm.

Computation 2023, 11, 69 8 of 25

Our MULTI-MCS procedure begins by initializing its variables C (representing the current
solution), S (the best solution found) with an empty solution, and the variable level (repre-
senting the number of nodes already selected) to zero. Finally, it assigns an initial value
to the variable domains, which depends on the nature of the graph: when the graph has
no label, all nodes in the graph belong to a single domain; otherwise, the initial number
of domains is equal to the number of different labels. Then, the algorithm performs the
selection of a node from the first and a node from the second graph in two steps. Function
SELECTFIRSTNODE, called in line 4, selects the multi-domain (a bidomain extended to
multiple graphs) from which the nodes is chosen to be added to our solution, and it selects
the node of the first graph. Function SELECTNEXTNODE, called in line 20, works on the
same multi-domain until it has selected a node from each of the other graphs.

The function SELECTFIRSTNODE first updates the current best solution (lines 8–10).
Then, it computes the current bound using the function COMPUTEBOUND (line 12). If the
bound proves that we will not be able to improve the current best solution, we return
(line 14) and try to select a different set of nodes in order to reach a better solution. If we
can still improve the current best solution, we then choose the multi-domain from which
to select the vertices. This step is performed by function SELECTLABELCLASS (line 16).
While different node sorting heuristics can improve the performance of the algorithm, we
followed the same logic used in the McSplit algorithm, preferring a fail-first approach.
This method entails that the function always selects the smallest multi-domain to quickly
check all possible matchings, and therefore, it allows us to definitely remove them from the
current branch of execution. From the selected multi-domain, we select the node with the
highest number of neighboring nodes (another heuristic borrowed from McSplit), we add
it to our current solution, and we remove it from the list of non-selected nodes. In line 20,
we call SELECTNEXTNODE to proceed to the other graphs. When all possible matchings
have been checked, we remove the selected node from the solution and try to improve on
the current one by avoiding the selection of the node just discarded. The standard C-like
implementation proceeds with dynamically allocated data structures for the domains and
bidomains. Nevertheless, in some cases, dynamic allocation may drastically influence
performance. As a consequence, in Section 3.2, we also discuss the possibility of adopting
pre-allocated (static) memory to reduce overheads, even if this solution somehow limits the
flexibility of the algorithm.

The function, SELECTNEXTNODE, is a much simpler function. It works on the al-
ready chosen multi-domain and selects a vertex from each of the remaining graphs (i.e.,
{G2, . . . , GN})—more specifically, from the domains belonging to the same multi-domain.
In this function, we refer to the set of all graphs {G1, . . . , GN} with G. Since, as we have
already discussed, the vertices belonging to the same multi-domain can be paired without
producing conflicts, this is a pretty straightforward task. Once again, the order of selection
is unsophisticated, as we chose the vertices by sorting them by the number of respective
adjacency. Once we have selected a node from each graph, we call the function FILTERDO-
MAINS (line 29) to update the domains previously computed, and we recur on the next
multi-domain (line 31).

To better describe our procedure, following Figure 2 and Table 1, we illustrate a
possible sequence of node selection and node labeling with three graphs in Figure 4 and
Table 2. For the sake of simplicity, Table 2 does not represent the actual execution steps
performed by the algorithm since a correct execution of the procedure finds multiple
non-maximal solutions from which it has to backtrack before gathering the MCS. As a
consequence, we select a sequence of three steps that lead to one of the admissible MCS,
showing the node selection process and the evolution of the labels. The example starts
by selecting the nodes 1, a, and A from graphs G1, G2, and G3, respectively. Starting from
this partial solution, the function separates the other nodes into two domains, depending
on their adjacency with the selected nodes. During the second step, the procedure selects
the nodes 3, c, and B from the adjacent domain, creating three new domains. Finally,
during the third step, function MULTI-MCS selects the nodes 4, d, and C. None of the

Computation 2023, 11, 69 9 of 25

resulting domains appears in all three graphs; thus, the algorithm backtracks to look for a
better solution.

4

5

1

2

3

(a) G1

c

ba

f

e d

(b) G2

B

CD

A

(c) G3

4dC

1aA

3cB

(d) MCS(G1, G2, G3)

Figure 4. Three undirected and unlabeled graphs, G1, G2, G3, and one possible common subgraph
computed by McSplit. Node labels, i.e., {1, 2, 3, 4, 5}, {a, b, c, d, e, f }, and {A, B, C, D} are reported to
uniquely identify all vertices.

Table 2. Labels on the non-mapped vertices of G1, G2 and G3.

a M = {1, a, A}

G1 G2 G3

v L v L v L

2 0 b 1 B 1
3 1 c 1 C 1
4 1 d 1 D 0
5 1 e 1

f 0

b M = {13, ac, AB}

G1 G2 G3

v L v L v L

2 00 b 10 C 11
4 11 d 11 D 00
5 10 e 10

f 00

c M = {134, acd, ABC}

G1 G2 G3

v L v L v L

2 000 b 100 D 001
5 100 e 100

f 000

3.2. The Parallel Approach

To improve the efficiency of Algorithm 1 and following Quer et al. [17], we modified
the previous procedure to handle tasks in parallel. Algorithm 2 reports the new pseudo-
code. Functions SELECTFIRSTNODE and SELECTNEXTNODE are not reported as they are
identical to the ones illustrated in Algorithm 1.

Algorithm 2 The parallel many-core CPU-based Multi-MCS Function: A unique recursive
function that, given N graphs {G1, G2, . . . , GN}, computes MCS{G1, G2, . . . , GN} running
several tasks

1: MULTI-MCS ({G1, G2, . . . , GN}, C, S, level, domain)
2: if (level % N) == 0 then
3: if (level ≤ PART_LEVEL) then
4: task = { {G1, G2, . . . , GN}, C, S, level }
5: ENQUEUE (SELECTFIRSTNODE, task)
6: else
7: SELECTFIRSTNODE ({G1, G2, . . . , GN}, C, S, level)
8: end if
9: else

10: SELECTNEXTNODE ({G1, G2, . . . , GN}, C, S, level, domain)
11: end if

The parallelization of the algorithm is achieved by dividing the workload among a
pool of threads. Each thread waits on a synchronized queue which is filled with new tasks
as represented in line 5 of the pseudo-code. Two objects are loaded into the queue: the
pointer to the function to be executed, i.e., function SELECTFIRSTNODE; and the data block
needed for the execution, i.e., the variable task. Once an item has been placed in the queue,
the first available (free) thread will start working independently from the others, thus
allowing a high level of parallelism. Since synchronization among threads often requires a
significant amount of time, we only divide the work between various threads if the variable
level is less than a threshold (PART_LEVEL) whose value can be selected experimentally.

Computation 2023, 11, 69 10 of 25

After this level, the rest of the execution takes place similarly to Algorithm 2, so that all
threads are independent from each other.

The main problem of this function is due to the use of variable-sized arrays. A detailed
code implementation showed that the compiler could not optimize the memory allocation
of the new data structures, and this inefficiency resulted in a significant slowdown of
the program when compared to the original implementation on graph pairs. To address
this issue, we then implemented a second version of the algorithm where the main data
structures were allocated statically of an oversize dimension. This second version showed
significant speed ups compared to the original one both in the MCS (where it has achieved
the performances of the original function) and in the multi-MCS problem.

3.3. Conclusions on Exact Multi-MCS Approaches

To understand the complexity of the Multi-MCS problem, we borrow some definitions
from the world of combinatorics. When we consider two graphs, G1 and G2, excluding any
possible optimization, the number of possible matches between the nodes of G1 (with n1
nodes) and the nodes of G2 (with n2 nodes) equals the number of injective functions from
the set of vertices V1 and the set of vertices V2. If we call i the number of elements of the
smaller set that we will not pair with one of the second set, it is sufficient to compute the
following to obtain the number of these functions:

(n2 ≥ n1) → ∑n1−1
i=0

{
n2!

[n2 − (n1 − i)]!
·

n1!
(n1 − i)! i!

}
(2)

To understand the previous equation, let us start by focusing separately on the two
fractions. The first element of the equation represents the number of permutations of
(n1 − i) elements of the n2 elements of the second set, whereas the second fraction repre-
sents the number of combinations of the (n1 − i) elements of the n1 elements of the first
set. The permutations represent, given a set of (n1 − i) elements of the first graph, all
possible distinct pairings one can achieve using the n2 elements of the second graph. The
combinations represent all possible distinct sets of (n1− i) elements that we can select from
the first graph. To conclude, we need to compute the summation that goes from zero (when
we take all the elements of the first graph) to n1, when we do not take any elements. We
consider only the empty set.

When we add a third graph, or a third set, the equation remains largely unchanged,
even if we need to add a new factor:

(n3 ≥ n1, n2 ≥ n1) → ∑n1−1
i=0

{
n3!

[n3 − (n1 − i)]!
·

n2!
[n2 − (n1 − i)]!

·
n1!

(n1 − i)! i!

}
(3)

Although the algorithm is extremely efficient, it cannot deal with the complexity
of the Multi-MCS problem in a timely manner when comparing even small graphs in
a large enough number. For this reason, in the following section, we discuss the Multi-
quasi-MCS problem, introducing non-exact methodologies able to solve the problem by
visiting only a fraction of the search tree. Since the MCS problem is difficult to approximate
with algorithms with lower complexity than those able to compute an exact solution, our
approach inevitably fails to find the MCS, but we discuss features added to the code to
lower the probability of such a problem presenting itself.

4. the Multi-quasi-MCS Approach

Due to the extremely long time required to solve the multi-MCS problem, we decided
to trade off time and maximality. Section 4.1 illustrates a first approach considering the
sequence of all graphs in pairs. Section 4.2 shows an attempt to improve the maximality
of the previous approach without increasing the complexity of the algorithm too much.
Section 4.3 illustrates an alternative approach that allows a greater degree of parallelization.

Computation 2023, 11, 69 11 of 25

4.1. The Waterfall Approach

Our first Multi-quasi-MCS approach follows the logic illustrated in Figure 5, and
Algorithm 3 reports its pseudo-code. Due to the order in which the graphs are considered,
we refer to this method as the “waterfall” approach.

MCS

MCS

MCS

...

G
G

G G
1

2

1 2quasi−MCS (G , G , ..., G)

3 N

N

Figure 5. The waterfall approach: computing MULTI-QUASI-MCS ({G1, G2, . . . , GN}) as
MCS(. . . , MCS(MCS(G1, G2), G3), . . . , GN).

Algorithm 3 The trivial multi-graph, i.e., MULTI-QUASI-MCS ({G1, G2, G3, . . . , GN}),
branch-and-bound procedure

1: MULTI-QUASI-MCS ({G1, G2, G3, . . . , GN})
2: sol = SOLVE (G1, G2)
3: for all g in {G3, G4, . . . , GN} do
4: sol = SOLVE (sol, g)
5: end for
6: return sol

The waterfall approach consists of finding the MCS between two graphs through the
original McSplit algorithm. Then, the computed subgraph is used as a new input to solve
the MCS problem with the next graph.

In our implementation (Algorithm 3, lines 2 and 4), we adopt a parallel version of
McSplit (for pairs of graphs) to implement the function SOLVE. However, from a high-level
point of view, the approach is structurally sequential as it manipulates a graph pair at
each stage, and parallelism is restricted to every single call to the SOLVE function. Indeed,
we present an approach that increases the level of parallelism in Section 4.3. As a final
observation, please notice that it is possible to implement several minor variations of
Algorithm 3 by changing the order in which the graphs are considered. For example, we
can easily insert graphs in a priority queue (i.e., a maximum or minimum heap) using
the size of the graphs as the priority. In this case, we can extract two graphs from the
queue just before calling the function SOLVE in line 4 and insert the result, sol, in the same
queue after this call. The main difference with the original algorithm is the design of the
data structure necessary to store intermediate solutions and the logic used to store in it all
intermediate results.

Albeit being very simple, Hariharan et al. [18] prove that a similar approach may not
be able to guarantee the quality of the solution and could even return a zero-sized solution
where better ones exist. Furthermore, the size of the final solution is strictly dependent on
the order in which the graphs are considered, making some ordering strictly better than
others. For example, Figure 6 illustrates an example with three graphs on which, using
the order {G1, G2, G3}, the waterfall approach returns an empty solution. The algorithm
correctly identifies the MCS between graph G1 and G2, selecting the nodes a, d, and e on
both of them. Unfortunately, the MCS between this solution and G3 is an empty graph
as all nodes of G2 have self-loops, while none of the nodes of the intermediate solution

Computation 2023, 11, 69 12 of 25

share this characteristic. On the contrary, the exact approach, by analyzing all the graphs
simultaneously, can select the nodes b and c as a Multi-MCS of the graphs {G1, G2, G3}.

b

cd

a

e

(a) G1

b

cd

a

e

(b) G2

b

cd

a

e

(c) G3

Figure 6. An example of three graphs {G1, G2, G3} for which the Multi-quasi-MCS waterfall approach
finds an empty solution even if MULTI-MCS ({G1, G2, G3}) has two nodes.

As previously mentioned, considering the graphs in different orders would allow us
to obtain different and possibly better solutions. If we solved the triplet of graphs in reverse
order {G3, G2, G1}, the solution between G3 and G2 would return nodes b and c, which
possess both the self-loop and a double edge. Then, calculating the MCS between this
solution and G1, both nodes b and c would be preserved, leading us to the exact solution.

Despite the above problems, the complexity of this solution is orders of magnitude
smaller than the one of Section 3. Let us designate the number of nodes of G1, G2 and G3 to
be n1, n2 and n3, respectively; let us call α the size of the MCS of the first two graphs. Then,
the complexity of solving three graphs can be evaluated as

(n3 ≥ n2 ≥ n1) → ∑n1−1
i=0

{
n2!

[n2 − (n1 − i)]!
·

n1!
(n1 − i)! i!

}
+ ∑α−1

i=0

{
n3!

[n3 − (α− i)]!
·

α!
(α− i)! i!

}
(4)

Which amounts to a significant improvement over Equation (3), where the two sum-
mations were multiplied by each other.

4.2. The Multi-Way Waterfall Approach

To improve the quality of the solutions delivered by the waterfall approach, we
modified it using the logic illustrated in Figure 7.

MCS

MCS MCS MCS

MCS MCS MCS

...

...

G
G

1
2 G

3
G

4

1 2quasi−MCS (G , G , ..., G)N

Figure 7. The improved waterfall approach: Each call to the MCS function computes multiple
intermediate solutions. For each solution, we run a new sequence of MCS problems. A threshold
heuristically limits the expansion tree.

To reduce the impact of selecting an “unfortunate” MCS solution, which means that
using it as input for future MCS searches would inevitably lead to a “small” final common
subgraph, we have opted to store an arbitrary number of solutions at each intermediate
step. To avoid an exponential tree-like explosion in the number of considered solutions, we
heuristically set this number to a constant value N̂. As a consequence, in each phase of the
search, we consider the N̂ most promising solutions collected in the previous step, and we
generate N̂ new best solutions for the next stage. The process is repeated until no graphs
are left, as illustrated in Figure 7.

Computation 2023, 11, 69 13 of 25

One of the problems with the multi-way waterfall approach is that several intermediate
solutions are isomorphic, making the entire process somehow redundant. To rectify this
problem, for each MCS call, we insert a post-processing step checking for each new solution
whether the selected nodes differ with respect to the ones chosen for the previous solution.
This process flow avoids the simplest case of isomorphism. Although verifying the node
selection is a very unreliable and approximate way of checking whether two solutions are
isomorphic, it is extremely fast, does not slow down the execution, and improves the final
result’s size in many cases. Indeed, in Section 6, we prove that over hundreds of executions,
the size difference between the MCS and our solution is really small, usually consisting of
only one vertex and occasionally two on MCS of the order of 10–25 vertices. Considering
all experiments, the average error is under one vertex.

If we increase the number of intermediate solutions considered, the average error
decreases, even if the reduction is limited if we consider more than five intermediate
solutions. Overall, the multi-way waterfall approach is not only orders of magnitude faster
than the exact approach, but the complexity of solving harder problems is slow-growing.
For example, there are cases in which the exact approach cannot find a solution after 1000 s,
and it returns only a partial solution, whereas this approach finds a larger solution within
hundredths of a second.

4.3. The Tree Approach

To further increase the parallelism of the approach, it is possible to consider pairs of
graphs in a tree-like fashion until the final solution is discovered, as shown in Figure 8.

MCS MCS MCS MCS

MCS MCS

MCS

... ...

...

...G
G

G
G

1
2

3
4

G
G

1 2
quasi−MCS (G , G , ..., G)N

N
N−1

Figure 8. The parallelizable tree approach: we compute MULTI-QUASI-MCS ({G1, G2, . . . , GN}) as
MCS(. . . MCS(MCS(G1, G2), MCS(G3, G4)), . . .).

Algorithm 4 shows a simple implementation of this approach. Due to the order in
which the process is structured, we will refer to this implementation as the “tree” approach.

Algorithm 4 The tree approach: increasing the parallelism of the waterfall strategy

1: MULTI-QUASI-MCS ({G1, G2, G3, . . . , GN})
2: for counter ← 0 to ceil(log2(N)) do
3: for i← 0 to N/2 do
4: G1 = G[i]
5: G2 = G[N − 1− i]
6: sol.push_back (SOLVE (G1, G2))
7: end for
8: if N%2 == 1 then
9: sol.push_back(G[N/2])

10: end if
11: G = sol
12: sol.clear
13: end for
14: return G

Computation 2023, 11, 69 14 of 25

Algorithm 4 contains two main cycles. The loop in line 3 selects the pairs of graphs to
be solved. Experimentally, we discovered that running the graphs by pairing the smallest
and largest available graph at each iteration is more efficient. If the number of graphs
present at a given loop is odd, the instruction at line 8 is meant to carry the graph over to
the next iteration of the for cycle. Finally, the main loop (the one beginning at line 2) is in
charge of repeating the main body of the function until only one graph remains.

Compared to the two waterfall strategies previously analyzed, the tree approach has
the advantage of allowing separate computing units to work on different graph pairs. In
the waterfall approach, due to the inherently unbalanced nature of the problem, doubling
the number of threads does not always imply halving the solution time. On the contrary,
solving graph pairs in parallel, as in the tree approach, reduces contention and provides
better speed ups compared to the case in which the effort of all threads focuses on the
same graph pair. In other words, instead of adding more computational power to a single
pair of graphs as the waterfall approach, the tree strategy solves multiple graph pairs in
parallel, improving the scalability of the method thanks to the presence of unrelated tasks.
This also allows us to include a GPU (or multiple computers) in the computation without
the necessity of introducing any sort of advanced synchronization. The disadvantage of
the tree strategy is that we only consider one solution for each MCS problem, discarding
a larger portion of the search space and potentially reducing the size of the final result.
Furthermore, although the approach allows for better scaling, it does not guarantee that,
given the same number of threads, it will outperform the previous method. We observed
multiple times that the previous approach was both faster and produced a larger common
subgraph. This behavior is caused by the fact that we wait for all graph pairs to be solved
before generating the pairs from their solutions. This choice means that the time to be spent
on a group of graphs is bound by the time spent to solve the pair of graphs that takes the
longest. To mitigate this problem, we introduced a unified thread pool that allowed for any
single threads to move from one pair of graphs to another; while this feature reduced the
independence of the different MCSs, it allowed for a quicker run time on a single machine.

4.4. A Mixed CPU-GPU Tree Approach

To improve the performances of our algorithms, we ran some experiments adding a
GPU to the standard power computation of the CPU. We explored two main approaches:

1. Using the GPU as an additional computational unit in the thread pool of the waterfall
approach.

2. Using the GPU as a separate computing unit to offload some of the graph pairs in the
tree method.

The first approach consists in dedicating a portion of the CPU computation power
to produce partial problems to transfer to the GPU. The GPU, having at its disposal
thousands of threads, can then solve each problem independently. While the GPU is
busy with this work, the CPU can work on other instances following the original McSplit
logic. Unfortunately, this approach does not bring relevant advantages to the overall
computation time; on the fastest run, it usually marginally slows down the process. More
specifically, this algorithm only shows significant speed ups when the workload is evenly
distributed between threads, but cannot improve under a significant workload unbalance.
Unfortunately, a medium-to-strong unbalanced workloads is present in the vast majority
of the cases.

The second approach shows the ability of splitting the process among different com-
putational units along the tree approach. Instead of letting the CPU solve all of the graph
pairs, we move one pair to the GPU to reduce the workload on the CPU and improve the
overall performance. However, the setup (and data loading phase) required to run the
GPU take quite a long time, and as such, the process is unfit for the solution of small graph
pairs. Nonetheless, this approach shows significant improvements in the more challenging
instances, decreasing the solution time up to a factor of two.

Computation 2023, 11, 69 15 of 25

The GPU version mentioned in this section is an extension of the one discussed by
Quer et al. [17]. The original version received two main extensions to improve its efficiency:

• Since the original version had a tendency to take a significant amount of time to
resolve stand-alone instances of graph pairs, we created a buffer of problems to pass to
the GPU. In this way, the GPU kernel can process several high-complex sub-problems
before needing new data or instructions from the CPU.

• To increase the collaboration among GPU threads, we use the global memory to share
some information, such as the size of the MCS found up to that moment. This value
tends to change with a quite low frequency. It can therefore be easily maintained and
updated in the device cache.

5. Sorting Heuristics

This section is divided into two parts. Section 5.1 describes a heuristic, suited for any
number of graphs, to sort multi-domains, domains, and vertices. Section 5.2 reports some
techniques to sort graphs when multiple graphs are involved.

5.1. Domains Sorting Heuristics

In this section, we propose a sorting heuristic taking into considerations bidomains
(or multi-domains), domains, and vertices (please, see Section 3.1 for the definition of
these objects). Our heuristic can be applied to all our approaches and implies only minor
modification to the original procedure written by McCreesh et al. [28]. However, for the
sake of simplicity, we mainly focus on graph pairs and describe how to extend the heuristics
to multiple graphs.

To quickly prune the solution space, function SELECTFIRSTNODE (please, see
Algorithm 1) selects a new vertex pair in two steps. It first chooses the bidomain in which
the largest domain includes the smallest number of nodes. Then, it selects the vertex with
the smaller degree in the first graph and tries to pair it with each node in the second graph
belonging to the same bidomain. Since the target is to prune the search as soon as possible,
discarding a node from the solution reduces the bound only if the node belongs to the
smallest domain of the bidomain. Consequently, once we have selected a bidomain, we
rearrange its domains to proceed on the graph with the smallest domain. This heuristic can
be trivially extended to multiple graphs, as its reasoning remains unchanged. Instead of se-
lecting a bidomain, the algorithm chooses a multi-domain from which to select subsequent
vertices. As in the example with two graphs, we still want to rearrange the domains in
such a way that the first one to be solved is the smallest of the group since it will be the one
to have the more significant impact on the bound computation. The more prominent the
difference between the sizes of the two domains, the more significant effect this variation
has. We perform several experiments using this strategy with different heuristics to select
the bidomain. We experimented with both the original strategy and some variations; thus,
we select the bidomain with the largest domain, the one with the smallest domain, the one
with the minimum product between domain sizes, and the minimum sum of domain sizes.
In almost all the tests carried out, the original strategy proved to be the most effective.
Therefore, all the tests in the following sections are carried out using it.

Table 3 shows how selecting the right domain from a bidomain can change the bound
computation. Table 3a illustrates the initial bidomain configuration for graphs G1 and G2.
Table 3b shows the case in which we select the domain of G1. We try to pair all vertices
of G1 with all vertices of G2. In this way, we remove one vertex from the first domain
every two recursive calls, one for each node contained in the second domain. Consequently,
the bound only changes after nine recursive calls since the smallest of the two domains still
includes two nodes. In Table 3c, we select the domain on the second graph, which is the
smallest of the two. At first sight, this is a worse sequence of tests since it takes five steps
instead of two to remove a vertex from the domain. Nonetheless, as soon as the vertex a is
discarded, at step six, the smallest of the two domains counts only one vertex; therefore,
the bound is decreased by one after six recursive calls.

Computation 2023, 11, 69 16 of 25

Table 3. An example to illustrate the pruning effect of a smart bidomain sorting heuristic.

a Bidomain

G1 G2

v L v L

1 x a x
2 x b x
3 x
4 x
5 x

b Matchings without sorting domains

Step Nodes Match Bound

1 G1 = {1, 2, 3, 4, 5}
G2 = {a, b} 1 - a 2

2 G1 = {1, 2, 3, 4, 5}
G2 = {a, b} 1 - b 2

3 G1 = {2, 3, 4, 5}
G2 = {a, b} 2 - a 2

4 G1 = {2, 3, 4, 5}
G2 = {a, b} 3 - b 2

5 G1 = {3, 4, 5}
G2 = {a, b} 3 - a 2

6 G1 = {3, 4, 5}
G2 = {a, b} 3 - b 2

7 G1 = {4, 5}
G2 = {a, b} 4 - a 2

8 G1 = {4, 5}
G2 = {a, b} 4 - b 2

9 G1 = {5}
G2 = {a, b} ... 1

c Matchings on sorted domains

Step Nodes Match Bound

1 G2 = {a, b}
G1 = {1, 2, 3, 4, 5} a - 1 2

2 G2 = {a, b}
G1 = {1, 2, 3, 4, 5} a - 2 2

3 G2 = {a, b}
G1 = {1, 2, 3, 4, 5} a - 3 2

4 G2 = {a, b}
G1 = {1, 2, 3, 4, 5} a - 4 2

5 G2 = {a, b}
G1 = {1, 2, 3, 4, 5} a - 5 2

6 G2 = {b}
G1 = {1, 2, 3, 4, 5} ... 1

In general, our heuristic works at its best when the domains with the same label have a
different size. As a consequence, it generates better results when applied to larger instances,
where less homogeneous domain sizes could be found, and to graph sets where the graphs
have different numbers of nodes.

5.2. Graph Sorting Heuristics

The efficiency of the sequential and the parallel approaches directly depends on the
structure of the graphs. At the same time, the pruning effect is proportional to the ability of
the procedure to find large common subgraphs quickly. As a consequence, the execution
time of all strategies is strongly influenced by the order in which the graphs are considered.
With graphs of different sizes, their relative order can significantly impact the solution time.

Given the set of graphs {G1, G2, . . . , GN}, we conducted experiments using various
heuristics:

• We consider them in random order.
• We sort them based on the number of vertices in ascending and descending order.
• We sort them based on the number of vertices. Then, we select one graph at each

extreme of the list, i.e., we start with the smallest graph, followed by the biggest, then
by the second smallest, the second biggest, etc.

These sorting techniques perform differently on the different strategies (i.e., Multi-
MCS, waterfall, multi-way waterfall, tree, etc.), and we analyze each of them in the follow-
ing subsections.

5.2.1. Heuristics for the Exact Approaches

For the exact approaches (either the sequential or the parallel one) and pairs of graphs,
it is sufficient to use the graph with the smallest number of nodes as the first element of the
algorithm to see a substantial increase in performance. To handle more graphs, the number
of possible permutations increases very rapidly. As for pairs of graphs, it is essential to
ensure that the first graph is the one of minimum size, as this strategy alone may reduce
the execution time to more than an order of magnitude. Changing the order of subsequent
graphs has a minor effect until it becomes negligible after the first four to five graphs.
Our first attempt was to sort graphs considering their size in ascending order. A closer
analysis showed that this assumption was incorrect and that selecting one graph at each
extreme of the list (i.e., starting with the smallest graph, followed by the biggest, then by
the second smallest, the second biggest, etc.) delivers the best results. It is essential to

Computation 2023, 11, 69 17 of 25

notice that the graph order is important even when dealing with graphs of the same size,
even if we were unable to find any heuristic able to produce consistently better results than
a random sorting.

5.2.2. Heuristics for the Waterfall Approach

The waterfall approach is the methodology for which an optimal sorting can bring
the most significant benefits regarding execution time and solution size. Unlike the exact
approaches, with the waterfall strategy, there is no advantage in sorting the graphs in an
oscillating order (minimum size, maximum, second minimum, etc.) and a simple sorting
by increasing size is the best option. From our results, the earlier the most extensive graphs
are used along the computation, the smaller the final solution. Consequently, considering
the largest graphs before the others not only slows down the process but also degrades
the quality of the final solution. We theorized that this behavior is due to the fact that the
largest graphs are also the ones that have the highest probability of preserving the size of
the solution returned by the previous steps. Therefore, using one of these graphs in the
first steps of the solution is equivalent to a rapid loss of information that will, on average,
lead to a deterioration of the final solution. At the same time, finding a solution between
two small graphs (or between a small and a large graph) takes exponentially less time than
considering two large graphs; thus, following an increasing ordering combines both of
these advantages.

5.2.3. Heuristics for the Tree Approach

Since the tree approach is based on finding solutions for pairs of graphs, many of
the considerations reported in the previous subsection can be repeated for this algorithm.
Nonetheless, some key considerations must be made concerning the order in which the
solutions must be considered. Since all graphs, including the largest ones, must be examined
at each step, we cannot keep any graph aside to preserve the solution quality. Therefore,
we tested two possibilities, pairing:

• The smallest graph with the largest graph, the second smallest with the second largest, etc.
• The smallest graph with the second smallest, the third smallest with the fourth smallest,

etc.

Although the second approach generates larger solutions on average, improvements
are marginal. However, at the same time, it is also drastically worse in terms of execution
time as it considers the largest graphs together. As a consequence, we test the tree approach
with the first order, favoring a much shorter solution time over the occasional improvement
in the size of the reported solution.

6. Experimental Results

In this section, we first present our experimental setting in terms of hardware, software,
and benchmarks used (Section 6.1). Then, we evaluate our sorting (bidomain and graph-
oriented) heuristics (Section 6.2). Finally, we present our results on the Multi-MCS and
Multi-quasi-MCS problem (Section 6.3).

6.1. Setting

We ran all tests on a workstation equipped with a CPU Intel Core i9-10900KF (with
10 cores and 20 threads), 64 GB DDR4 of RAM, and a GPU NVidia GeForce RTX 3070. We
wrote all our code in C++ (compiled with gcc 9.4.0), and we used CUDA (version 11.6) for
the GPU implementation.

We tested our code using the ARG benchmark graphs generated by Foggia et al. [30]
and De Santo et al. [31]. This database is composed of several classes of graphs, randomly
generated according to six different strategies with various characteristics, such as size,
density, topology, similarity, etc. The result is a huge data set [32] of 168 different types of
graphs and a total of 166,000 different graphs. In our experimental setup, we only consider

Computation 2023, 11, 69 18 of 25

a subset of this data set, limited to about 500 graph sets, and we select it randomly from the
original set.

In all experiments involving graph pairs, we adopt a timeout of 100 s. On sets of
graphs of increasing size, we extend our timeout to 1000 s or 3600 s (i.e., one hour). As the
scheduling (and context switching) of the operating system may vary the way in which
threads are executed, we run each test ten times, and we present the average result and its
standard deviation in each case.

In all tests, the memory used is always limited to 10 MBytes, posing no issue on
modern hardware architectures. Since this value does not change significantly, not even in
the multi-threaded versions, we will not further report considerations on the memory used
by our applications.

All our functions (in the C and C++ languages), all benchmarks, experimental settings,
and results are available on GitHub [33].

6.2. Sorting Results

In this section, we compare the sorting heuristic of Section 5.1 with the original strategy
adopted by McSplit. Moreover, to evaluate an upper-bound for the speed up the heuristic
can generate, we compare it with a version of McSplit adopting a reverse order, i.e., the one
in which we select bidomains (or multi-domains) starting from the largest (not the smallest)
number of nodes.

In Figure 9, we present experiments on 500 graph pairs in which the 2 graphs have the
same size. We extract the graphs from the whole data set, sampling each class of graphs as
uniformly as possible. Figure 9 reports two histograms. On the left-hand side, we compare
the average solution time against the original algorithm and the one using the reverse
order. On the right-hand side, we compare the number of vertex pairs considered by the
same three heuristics. Both histograms are normalized with respect to the original time
and the number of vertices considered, respectively. The left-hand plot shows that our
heuristic outperforms the state-of-the-art approach by around 10% on average. On the
contrary, by sorting the domains in reverse order, the figure shows a slowdown by about
20%. The right-hand plot shows that our heuristic also prunes the state space visited (i.e.,
it reduces the number of pairs checked) of about 15% when compared to the state-of-the-
art approach and 25% when compared with the reverse order. In all cases, the standard
deviation indicated on the top of each bar shows that data are clustered around the mean
value. We found very similar results for sets of three, four, and five graphs; however,
we do not report the plots for the sake of space. The reason to explain why our sorting
heuristic prunes the solution space more efficiently lies in the bound computation strategy.
McSplit is a “fail-first” algorithm that checks the vertex pairs that most likely will quickly
prune the solution space before the others. As shown in Section 2, the bound is computed
as the sum of the dimensions of the smallest domain belonging to each bidomain. After
attempting every possible match with a certain node, the original algorithm tries to proceed
without selecting it as part of the solution, thus, reducing the size of the respective domain.
However, as all nodes of the first of the two graphs are considered, only the domains of
the first graph decrease in size as the execution proceeds. Our heuristic ensures that the
first of the domains is always the smallest and, consequently, the one that affects the bound
calculation more effectively. Thus, our strategy improves the bound computation and
discards superfluous portions of the search space more efficiently.

Although Figure 9 focuses on graphs of the same size, our sorting heuristic may have a
larger impact on graph pairs of different sizes. For that reason, Figure 10 presents the same
set of experiments of Figure 9 on 500 graph pairs randomly selected, i.e., without ensuring
that the graphs have the same size. In this situation, the average execution time is reduced
by more than 50%, and the state space is pruned by more than 60%. The reverse sorting
slows down the average execution time by almost 50%. Moreover, the heuristic works
better when the difference between the graph size is larger and the graphs are larger. As
in the previous experiment, notice that the standard deviation is close to zero in all cases,

Computation 2023, 11, 69 19 of 25

proving that data are clustered around the mean value and that multi-threading returns
consistent results. As for Figure 9, we found very similar results for sets of three, four,
and five graphs; however, we do not report the plots for the sake of space. These results
prove that our heuristic is quite general and beneficial in all conditions.

Figure 9. Our sorting heuristic against the state-of-the-art order and the reverse one on graph pairs
of the same size. We report the mean resolution time (on the left-hand side) and the average number
of vertex pairs checked (on the right-hand side) normalized with respect to the original method. The
standard deviation of the ten runs is reported on top of each bar.

Figure 10. Our sorting heuristic against the state-of-the-art order and the reverse one on graph pairs
of random size. We report the mean resolution time (on the left-hand side) and the average number
of vertex pairs checked (on the right-hand side) normalized with respect to the original method. The
standard deviation of the ten runs is reported on top of each bar.

6.3. Results on the Multi-MCS Problem

In this section, we first analyze how parallelization can improve the performance
of our algorithms when we use an increasing number of threads (Figure 11). Then, we
show how the three main approaches scale on graph sets formed by more than two graphs
(Figures 12–14). Finally, considering the waterfall approach the most meritorious, we show
how varying the number of intermediate solutions retained affects both the execution time
and the quality of the final solution (Figures 15 and 16).

Figure 11 shows the speed ups we can obtain by increasing the parallelism level of our
procedures. Similarly to the previous section, we run our experiments on 500 graph pairs of
different sizes. For each pair, we present average results over ten runs. Figure 11 shows that
all the approaches scale similarly. However, we notice that even if they converge to similar
results, solving harder graphs brings a larger degree of variability, since a single thread
could be stuck on an extremely hard and lengthy branch of the exploration, defeating the
advantages of having a large number of threads. Notice that the parallel implementations
are far from their ideal behavior, and the computation time does not linearly scale with
the number of threads. We can obtain an average speed up slightly higher than 6 with
24 threads. This behavior is mainly due to the fact that the MCS problem is innately
unbalanced. The original McSplit algorithm also suffers from the same problem when
dealing with graph pairs. As a final consideration, we point out that even if the tree
approaches should scale better than the other methods, Figure 11 seems to show that this is

Computation 2023, 11, 69 20 of 25

not true. This behavior is due to the fact that we divide multiple problems over the cores of
a single workstation, whereas we could distribute the same workload over a significantly
larger number of machines. Moreover, the same methodology would be inapplicable to the
other approaches since they run a single MCS at a time. In all the following experiments,
we adopt 12 threads, as this looks like the configuration with the better trade off between
the number of threads and performances.

Figure 11. Speed up of our algorithms using an increasing number of threads, varying from 1 (purely
sequential) to 24. The plot compares the Multi-MCS strategy of Section 3.2, with the Multi-quasi-MCS
strategies of Section 4.1, the waterfall strategy, and Section 4.3, the tree approach. We report average
resolution times over 10 runs. The standard deviation of the ten runs is reported on top of each bar.

Figure 12. A comparison among the Multi-MCS, the waterfall, and the tree approaches. The plot
reports the number of sets composed of three graphs solved as a function of the elapsed time. The
fluctuations on the y-axis are due to the representation of the standard deviation over ten runs. The
time limit is fixed at 100 s.

Figure 12 compares the same three strategies, i.e., the Multi-MCS strategy (of Section 3.2)
and the Multi-quasi-MCS strategies of waterfall and tree (of Sections 4.1 and 4.3, respec-
tively), reporting the number of instances solved. We focus on 390 triples of graphs and,
as in the previous sections, we run each experiment ten times. The y-axis indicates the
number of instances solved as a function of the time passed. Small fluctuations on this axis
are due to the representation of the standard deviation, that, as in the previous experiments,
is always very low and indicates that all runs are close to the mean one. For these tests, we
set the time limit to 100 s, since most of the instances required a limited solution time. As far
as the elapsed time is concerned, the graphic clearly shows that the two Multi-quasi-MCS
approaches are orders of magnitude faster than the Multi-MCS algorithm. As depicted in
Figure 12, the performance gap actually increases with the larger graph triplets, as already
assumed in Sections 4.1 and 4.3, where we discussed the complexity of those approaches.
As mentioned in Section 4.3, the tree approach is faster than the waterfall procedure. How-
ever, the tree approach is also the one finding the smaller solutions. On 390 graph triplets,
the tree approach returns results with approximately 0.37 fewer nodes than the waterfall
procedure on average. Similarly, the waterfall approach returns results with approximately

Computation 2023, 11, 69 21 of 25

0.24 fewer nodes than the exact Multi-MCS procedure on average. Since the exact MCS has
an average size of 15.56 nodes, we can estimate that the waterfall approach can approximate
the exact solution with 98.5% accuracy, while the tree approach can reach 96.3% accuracy.

Figure 13 extends the previous analysis to sets of six graphs. To show the flexibility of
the tree approach, we test it by adding a GPU as a secondary computing unit, offloading a
portion of the work from the CPU. As already explained in Section 4.4, our GPU algorithm
is not yet ready to substitute the CPU implementation on all instances. For example,
the GPU exhibits a moderate initial latency and overhead, especially for smaller instances,
as well as a significant increase in the amount of RAM used. These characteristics are
also shown by the higher standard deviation of the data obtained and represented by the
larger fluctuations of the plot on the y-axis. The communication protocol between the CPU
and the GPU causes some latency that can vary significantly between runs. Nonetheless,
after the initial delay, the coordinated effort of more computational units, thanks to its
optimized workload distribution, managed to catch up to the CPU-only version. Moreover,
we managed to run all tests in less than 500 MBytes. Figure 13 clearly shows that an exact
approach is an extremely challenging computational problem in the more problematic
instances. As far as the accuracy of our approaches is concerned, if we compare the size of
the solution for those cases in which all procedures managed to finish before the timeout
of 1000 s, we see that the waterfall approach reaches a 98.5% accuracy, whereas the tree
approach plummeted to only 65.4%.

Figure 13. A comparison among the Multi-MCS, the waterfall, and the tree approaches. The plot
reports the number of sets composed of six graphs solved as a function of the elapsed time. The
fluctuations on the y-axis are due to the representation of the standard deviation over ten runs. The
time limit is fixed at 1000 s.

To further deepen our analysis, Figure 14 extends Figures 12 and 13, considering an
increasing number of graphs, varying from two to twelve. The x-axis reports the number
of graphs. The y-axis indicates the average solution time of each set of graphs of the exact,
the waterfall, and the tree approach. We compute the mean value over 50 sets of graphs,
and we normalize all data with respect to the resolution time for sets of two graphs. For the
y-axis, we also use a logarithmic scale and we extend the timeout to 3600 s (i.e., one hour).
The graph shows that the exact approach is definitely unable to manage an increasing
number of graphs as, even adopting the pruning of the original McSplit procedure, it
must manage huge search spaces. Thus, the exact approach is 108 times slower than the
approximate approaches for sets with more than eight graphs, and it essentially run out of
time. On the contrary, the approximate approaches hardly require a larger average time as
the number of graphs increases. This behavior is motivated by the fact that intermediate
solutions are smaller than the original graphs and, consequently, extremely fast to compute.
As a consequence, our strategies preemptively discard a large portion of the search space;
thus, even if we do not wish to ignore the importance of an exact approach, we believe that
the only viable option to manage large set of graphs is to exploit approximate algorithms.

Computation 2023, 11, 69 22 of 25

Figure 14. A comparison among the Multi-MCS, the waterfall, and the tree approaches on sets
of graphs with an increasing number of graphs, varying from two to twelve. The plot reports the
average solution time over 50 sets of graphs. The resolution time is normalized with respect to the
solution time of pair of graphs. The y-axis adopts a logarithmic scale.

As described in Section 4.2, one of the relevant features of the waterfall approach is
that it allows us to store multiple intermediate solutions to improve the size of the result.
Figure 15 shows how the number of intermediate solutions taken into consideration improves
the size of the final result. However, we proved that the higher the number of intermediate
solutions considered, the lower the improvement in the final solution. In conclusion, there is
no significant benefit to maintaining a huge number of intermediate solutions.

Figure 15. The tree approach: Quality loss (on the y-axis) as a function of the number of intermediate
solutions considered (on the x-axis), varying from 1 to 100.

Although the buffer size has a significant impact on the accuracy of the approach, it
also has a limited effect on the computation time. Figure 16 plots the number of solved
instances as a function of the elapsed time for several different buffer sizes (ranging from
1 to 100). These plots allow us to find the best-desired trade off between accuracy and
computation efficiency. Intermediate solutions are saved as adjacency matrices, and only
vectors containing partial and temporary information are needed to trace the nodes of the
graphs from which the current one was generated. This compact representation hardly
significantly affects the limited memory usage. As a consequence, in all cases, the quantity
of memory used is limited to 25 MBytes.

Computation 2023, 11, 69 23 of 25

Figure 16. The tree approach: Computation efficiency, i.e., normalized time taken to solve a given set
of experiments as a function of the number of intermediate solutions stored (varying from 1 to 100).

7. Conclusions and Future Works

The MCS problem is an intrinsically unbalanced task. This feature is more pronounced
with more complex graphs where the exhaustive exploration of a branch can require
exceptionally long running times. Although incredibly memory efficient, our proposed
exact approaches struggle to solve even minimal graphs when large enough numbers exist.
As a consequence, we discuss a set of heuristics to trade off accuracy and computation
time. Our waterfall and tree approaches have comparable running times, but, on average,
the first finds more extensive final solutions. The tree approach can have some edge over
the other methods in more powerful machines or multiple devices. We use a previous GPU
implementation working on pairs of graphs to increase parallelization.

Among the future works, both the exact and the waterfall approaches can be further
improved by developing the existing GPU implementation to autonomously work on sets
of N graphs. In this case, the intrinsic disadvantages of the GPU (i.e., its initial latency and
workload unbalance), can be leveraged by the effort on larger tasks. We would also like to
work on an implementation able to solve the unbalanced nature of the current algorithm,
thus significantly boosting its efficiency. This approach would also allow us to produce,
later on, a version of the GPU algorithm that can fully exploit all the cores in the device,
reducing its idle time. Moreover, as with an increasing number of graphs, the sorting
strategies become more valuable, we would like to study alternative ordering heuristics. In
this area, we mention the possibility of investigating the use of different graph properties
with their related distributions and similar metrics used in other domains, such as the one
of multiple sequence alignment [34].

Author Contributions: L.C. developed the tools and ran the experiments. S.Q. conceptualize the
work and wrote the manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding

Data Availability Statement: The software tools presented in this study are openly available online:
https://github.com/stefanoquer/Multi-Maximum-Common-Subgraph.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty Years of Graph Matching in Pattern Recognition. Int. J. Pattern Recognit. Artif.

Intell. 2004, 18, 265–298. [CrossRef]
2. Milgram, S. The Small World Problem. Psychol. Today 1967, 2, 60–67.
3. Watts, D.J. Networks, Dynamics, and the Small-world Phenomenon. Am. J. Sociol. 1999, 105, 493–527. [CrossRef]
4. Kleinberg, J.M. Authoritative Sources in a Hyperlinked Environment. J. ACM (JACM) 1999, 46, 604–632. [CrossRef]
5. Heymans, M.; Singh, A.K. Deriving Phylogenetic Trees from the Similarity Analysis of Metabolic Pathways. Bioinformatics 2003,

19, i138–i146. [CrossRef] [PubMed]
6. Dalke, A.; Hastings, J. FMCS: A Novel Algorithm for the Multiple MCS Problem. J. Cheminformatics 2013, 5, O6. [CrossRef]

https://github.com/stefanoquer/Multi-Maximum-Common-Subgraph
http://doi.org/10.1142/S0218001404003228
http://dx.doi.org/10.1086/210318
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1093/bioinformatics/btg1018
http://www.ncbi.nlm.nih.gov/pubmed/12855450
http://dx.doi.org/10.1186/1758-2946-5-S1-O6

Computation 2023, 11, 69 24 of 25

7. Park, Y.; Reeves, D. Deriving Common Malware Behavior through Graph Clustering. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security (ASIACCS ’11), Hong Kong, China, 22–24 March 2011; pp. 497–502.
[CrossRef]

8. Bron, C.; Kerbosch, J. Finding All Cliques of an Undirected Graph (algorithm 457). Commun. ACM 1973, 16, 575–576. [CrossRef]
9. Barrow, H.G.; Burstall, R.M. Subgraph Isomorphism, Matching Relational Structures and Maximal Cliques. Inf. Process. Lett.

1976, 4, 83–84. [CrossRef]
10. Levi, G. A Note on the Derivation of Maximal Common Subgraphs of two Directed or Undirected Graphs. Calcolo 1973, 9,

341–352. [CrossRef]
11. Vismara, P.; Valery, B. Finding Maximum Common Connected Subgraphs Using Clique Detection or Constraint Satisfaction

Algorithms. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2008; pp. 358–368.
[CrossRef]

12. McCreesh, C.; Ndiaye, S.N.; Prosser, P.; Solnon, C. Clique and Constraint Models for Maximum Common (Connected) Subgraph
Problems. In Principles and Practice of Constraint Programming, Proceedings of the 22nd International Conference, CP 2016, Toulouse,
France, 5–9 September 2016; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; pp. 350–368. [CrossRef]

13. Bahiense, L.; Manić, G.; Piva, B.; de Souza, C.C. The Maximum Common Edge Subgraph Problem: A Polyhedral Investigation.
Discret. Appl. Math. 2012, 160, 2523–2541. [CrossRef]

14. Bai, Y.; Xu, D.; Gu, K.; Wu, X.; Marinovic, A.; Ro, C.; Sun, Y.; Wang, W. Neural Maximum Common Subgraph Detection with
Guided Subgraph Extraction. In Proceedings of the International Conference on Learning Representations (ICLR 2020), Addis
Ababa, Ethiopia, 30 April 2020.

15. Bai, Y.; Xu, D.; Sun, Y.; Wang, W. GLSearch: Maximum Common Subgraph Detection via Learning to Search. In Proceedings of
the Machine Learning Research, 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Meila, M.,
Zhang, T., Eds.; Volume 139, pp. 588–598.

16. Liu, Y.; Li, C.M.; Jiang, H.; He, K. A Learning Based Branch and Bound for Maximum Common Subgraph Related Problems.
Proc. AAAI Conf. Artif. Intell. 2020, 34, 2392–2399. [CrossRef]

17. Quer, S.; Marcelli, A.; Squillero, G. The Maximum Common Subgraph Problem: A Parallel and Multi-Engine Approach.
Computation 2020, 8, 48. [CrossRef]

18. Hariharan, R.; Janakiraman, A.; Nilakantan, R.; Singh, B.; Varghese, S.; Landrum, G.; Schuffenhauer, A. MultiMCS: A Fast
Algorithm for the Maximum Common Substructure Problem on Multiple Molecules. J. Chem. Inf. Model. 2011, 51, 788–806.
[CrossRef]

19. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 4th ed.; The MIT Press: Cambridge, MA, USA,
2022.

20. McCreesh, C.; Prosser, P.; Trimble, J. A Partitioning Algorithm for Maximum Common Subgraph Problems. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017;
pp. 712–719. [CrossRef]

21. McGregor, J.J. Backtrack Search Algorithms and the Maximal Common Subgraph Problem. Softw. Pract. Exper. 1982, 12, 23–34.
[CrossRef]

22. Balas, E.; Yu, C. Finding a Maximum Clique in an Arbitrary Graph. SIAM J. Comput. 1986, 15, 1054–1068. [CrossRef]
23. Raymond, J.W.; Willett, P. Maximum Common Subgraph Isomorphism Algorithms for the Matching of Chemical Structures. J.

Comput.-Aided Mol. Des. 2002, 16, 521–533. [CrossRef]
24. Ndiaye, S.M.; Solnon, C. CP Models for Maximum Common Subgraph Problems. In Principles and Practice of Constraint

Programming (CP 2011); Springer: Berlin/Heidelberg, Germany, 2011; pp. 637–644. [CrossRef]
25. Piva, B.; de Souza, C.C. Polyhedral Study of the Maximum Common Induced Subgraph Problem. Ann. Oper. Res. 2012, 199,

77–102. [CrossRef]
26. Englert, P.; Kovács, P. Efficient Heuristics for Maximum Common Substructure Search. J. Chem. Inf. Model. 2015, 55, 941–955.

[CrossRef]
27. Hoffmann, R.; McCreesh, C.; Reilly, C. Between Subgraph Isomorphism and Maximum Common Subgraph. In Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 3907–3914.
28. McCreesh, C. Solving Hard Subgraph Problems in Parallel. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2017.
29. Simon, J.; Larsen, J.B. CytoMCS: A Multiple Maximum Common Subgraph Detection Tool for Cytoscape. J. Integr. Bioinform.

2017, 14, 20170014. [CrossRef]
30. Foggia, P.; Sansone, C.; Vento, M. A Database of Graphs for Isomorphism and Sub-Graph Isomorphism Benchmarking. In

Proceedings of the 3rd IAPR TC-15 International Workshop on Graph-Based Representations, Ischia, Italy, 23–25 May 2001;
pp. 176–187.

31. De Santo, M.; Foggia, P.; Sansone, C.; Vento, M. A Large Database of Graphs and its Use for Benchmarking Graph Isomorphism
Algorithms. Pattern Recogn. Lett. 2003, 24, 1067–1079. [CrossRef]

32. Available online: https://mivia.unisa.it/datasets/graph-database/arg-database/ (accessed on 23 March 2023).

http://dx.doi.org/10.1145/1966913.1966986
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1016/0020-0190(76)90049-1
http://dx.doi.org/10.1007/BF02575586
http://dx.doi.org/10.1007/978-3-540-87477-5_39
http://dx.doi.org/10.1007/978-3-319-44953-1_23
http://dx.doi.org/10.1016/j.dam.2012.01.026
http://dx.doi.org/10.1609/aaai.v34i03.5619
http://dx.doi.org/10.3390/computation8020048
http://dx.doi.org/10.1021/ci100297y
http://dx.doi.org/10.24963/ijcai.2017/99
http://dx.doi.org/10.1002/spe.4380120103
http://dx.doi.org/10.1137/0215075
http://dx.doi.org/10.1023/A:1021271615909
http://dx.doi.org/10.1007/978-3-642-23786-7_48
http://dx.doi.org/10.1007/s10479-011-1019-8
http://dx.doi.org/10.1021/acs.jcim.5b00036
http://dx.doi.org/10.1515/jib-2017-0014
http://dx.doi.org/10.1016/S0167-8655(02)00253-2
https://mivia.unisa.it/datasets/graph-database/arg-database/

Computation 2023, 11, 69 25 of 25

33. Available online: https://github.com/stefanoquer/Multi-Maximum-Common-Subgraph (accessed on 23 March 2023).
34. Feng, D.; Doolittle, R. Progressive Sequence Alignment as a Prerequisitetto Correct Phylogenetic Trees. J. Mol. Evol. 1987, 25,

351–360. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/stefanoquer/Multi-Maximum-Common-Subgraph
http://dx.doi.org/10.1007/BF02603120
http://www.ncbi.nlm.nih.gov/pubmed/3118049

	Introduction
	Background and Related Works
	Graphs and Notation
	The McSplit Procedure
	Related Works

	The Multi-MCS Approach
	The Sequential Approach
	The Parallel Approach
	Conclusions on Exact Multi-MCS Approaches

	the Multi-quasi-MCS Approach
	The Waterfall Approach
	The Multi-Way Waterfall Approach
	The Tree Approach
	A Mixed CPU-GPU Tree Approach

	Sorting Heuristics
	Domains Sorting Heuristics
	Graph Sorting Heuristics
	Heuristics for the Exact Approaches
	Heuristics for the Waterfall Approach
	Heuristics for the Tree Approach

	Experimental Results
	Setting
	Sorting Results
	Results on the Multi-MCS Problem

	Conclusions and Future Works
	References

