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A B S T R A C T

For the system with non-holonomic constraints, the principle of least action does not seem to lead to the
equations describing the motion, which are consistent with the physical behaviour. Here, some considerations
are developed on this fundamental topic in Mathematical Physics. Moreover, a thermodynamic approach is
introduced based on the first and second laws of thermodynamics.
Introduction

The Principle of Least Action represents one of the most studied
bases of Physics, and some controversies emerged during its historical
development.

In two papers, dated 1741 and 1744, submitted to the French
Academy of Sciences, Pierre-Louis Moreau de Maupertuis (1698–1759)
[1] mentioned a Principe de la moindre quantite d’action (principle of
least action), that he defined universally. In particular, he highlighted
that when a change occurs in Nature, the Action required for that
change is as small as possible. Then, Leonhard Euler (1707–1783)
improved this result by pointing out that the real trajectory of any
moving mass particle is the one, from among all possible trajectories
connecting the same endpoint, that minimises the action, which he
realised to be the time integral of the twice kinetic energy [2].

In the development of Mechanics, the method of least squares,
introduced by Carl Friedrich Gauss (1777–1855), appeared first in the
analysis of the elliptical orbit of the asteroid Ceres [3], strictly related
to Legendre’s approach. The improvement of this approach led to the
formulation that, from all possible motions, the actual one leads under
given conditions to the least constraint, a principle strictly related to
d’Alembert’s Principle (Jean d’Alembert, 1717–1783). In this context,
a statistical mechanical analysis of Gauss’ Principle has been developed
concerning its application for holonomic (constraints depend only on
co-ordinates) and non-holonomic (non-integrable constraints on veloc-
ity) constraints, pointing out that Gauss’ principle is limited to arbitrary
holonomic constraints and apparently, to non-holonomic constraint
functions which are homogeneous functions of the momenta [4].

Nowadays, the principle of least action is used in Physics, even
if it is often known as Hamilton’s principle more than Maupertuis’s
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principle, while it does not find interest in engineering, where some
variational principles are used for applications [5], even if an interest
for the use of least action principle is growing in biomechanics and
robotics [6]. The variational methods are fundamental in the develop-
ment of modern analytical mechanics [7]. But, Flannery [7–10] pointed
out:

‘‘The least action principle can be applied only to holo-
nomic and linear non-holonomic constraints, while it is not
useful to obtain the correct equations of motion for general
non-holonomic constraints’’.

The problem pointed out by this statement can be summarised as the
following question: Is it possible to prove that the principle of least
action cannot be applied to general non-holonomic constraints?

In this paper, the problem of the validity of the least action principle
is discussed to propose proof for answering the question pointed out by
Flannery. To do so, in Materials and Methods section the holonomic and
non-holonomic constraints are discussed, in the Results section a proof
in relation to the Flannery question is proposed, and in the last section
some considerations are developed from a Thermodynamic viewpoint.

Materials and methods

Preliminary considerations

The mechanical systems’ movements are restricted by constraints
due to material achievements which can be geometrically represented
vailable online 5 April 2023
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by lines, curves, planes, and surfaces [11]. The constraints are de-
scribed by their mathematical equations and by the forces related to
the binding reaction (physical description) [11].

In order to determine the spatial position of a system of 𝑁 material
oints, the values of 𝑁 position vectors 𝐫 are required, i.e. [12]:

• 3𝑁 coordinates 𝑟𝑖, 𝑖 ∈ [1, 3], if the system is free, i.e., the points
representing the system are all possible;

• 𝑛 ≤ 3𝑁 coordinates, if some of the points representing the system
are subjected to restriction, and 𝑛 is the number of the system’s
freedom degrees.

onsequently, for a general approach, it is convenient to introduce a
ystem of 𝑛 ≤ 3𝑁 (with 𝑛 = 3𝑁 , if the system is free) generalised
oordinates 𝑞 appropriate to the problem considered [12]. The values of
he generalised velocities are also required to determine the mechanical
ondition of a system at a given time: (𝐪, 𝐪̇), where 𝐪 = (𝑞1,… , 𝑞𝑛) and
̇ = (𝑞̇1,… , 𝑞̇𝑛), at the same time [12].

In this context, the definition of constraint must be introduced as
ollows:

efinition 1 ([11]). A constraint is said:

1. Holonomic, if any restriction on the possible configurations of
the system follows the condition:

𝑓 (𝐪, 𝑡) = 0 (1)

which is an integrable relation;
2. Non-holonomic, if any restriction on the movements possible

[11] of the system follows the condition:

𝑔(𝐪; 𝐪̇, 𝑡) = 0 (2)

which is not an integrable relation.

f the non-holonomic constraints represent a holonomic constraint, it is
ntegrable.

olonomic and Lagrangian systems

The concept of a map is fundamental to represent the domain of a
eal open set. Thus its definition must be introduced.

efinition 2 ([11]). Let 𝑄 be a set of points. It is said a map of size
on 𝑄 an application injective 𝜑 ∶ 𝑈 ⊆ 𝑄 → R𝑛, with the image the

pen set 𝜑(𝑈 ) in R𝑛. The 𝑛 functions 𝑄𝑖 ∶ 𝑈 → R, 𝑖 𝑖𝑛[1, 𝑛], such that
𝑥 ∈ 𝑈 ∶ 𝜑(𝑥) =

(

𝑄1(𝑥),… , 𝑄𝑛(𝑥)
)

, are the coordinates associated with
the fold 𝜑. The 𝐪 = {𝑄𝑖}𝑖∈[1,𝑛] form a local coordinate system on all 𝑄.
It denotes the fold with the pair (𝑈,𝜑) or (𝑈,𝐪).

In this context, the transition functions can be defined. They are ap-
plications between the two open systems R𝑛, represented by functions
as 𝑞1𝑖 = 𝜑12𝑖(𝑞1ℎ) and 𝑞2𝑖 = 𝜑21𝑖(𝑞2ℎ), useful to describe a change in
coordinates between one map to another one.

Definition 3 ([11]). Two maps of dimension 𝑛, 𝜑1 ∶ 𝑈1 → R𝑛 and
𝜑2 ∶ 𝑈2 → R𝑛, are said 𝐶𝑘−compatible if 𝑈1 ∩ 𝑈2 = ∅ or if, when
𝑈1 ∩ 𝑈2 ≠ ∅, the two following conditions occur:

1. The sets 𝑂1 = 𝜑1(𝑈1 ∩ 𝑈2) and 𝑂2 = 𝜑2(𝑈1 ∩ 𝑈2), imagine of the
intersection of the two domain on the two maps, are open;

2. The transition function 𝜑12 ∶ 𝑂1 → 𝑂2 and 𝜑21 ∶ 𝑂2 → 𝑂1,
defined as 𝜑12 = 𝜑2 ◦ 𝜑−1

1 and 𝜑21 = 𝜑1 ◦ 𝜑−1
2 , with 𝜑1 and 𝜑2

of class 𝐶𝑘, are restricted to the intersection 𝑈1 ∩ 𝑈2.

Definition 4 ([11]). On the set 𝑄, a set of compatible maps is defined
as  = {𝜑𝛼 ∶ 𝑈𝛼 → 𝑛; 𝛼 ∈ }, with  set of indices with domains
𝑈𝛼 , which are an overlap of 𝑄. A set 𝑄 with atlas is said a differential
variety of dimension 𝑛.
2

Comment 1. If the atlas has all the possible maps, it is said full or filled
or maximum. A differential variety is a set with a maximum atlas.

Comment 2 ([11]). An atlas allows a topology, so a differential variety is
also a topological space.

Definition 5 ([11]). A set of points {𝑃𝜈 , 𝜈 ∈ } is said holonomic if
its space of configurations 𝑄 has the structure of differentiable variety.
Then, 𝑄 is said a variety of configurations. The dimension 𝑁 of 𝑄 is
said the number of freedom degrees of the system. The coordinates 𝑞𝑖
related to every map of 𝑄 are said Lagrangian coordinates.

Comment 3 ([11]). ∀𝜈 ∈ ,∃𝐫𝜈 ∶ 𝑄 → 𝐸3, i.e. there exists an application
which assigns the position vector 𝐫𝜈 of the point 𝑃𝜈 to ay configuration od
teh system: known the coordinates 𝑞𝑖 on 𝑄 the applications 𝐫𝜈 are vectorial
functions 𝐫𝜈 (𝑞𝑖). Consequently, the velocity is

𝐫̇𝜈 =
∑

𝑖

𝜕𝐫𝜈
𝜕𝑞𝑖

𝑞̇𝑖.

efinition 6 ([11]). The motion act of a holonomic system is a set of
vectors (𝐫𝜈 , 𝐫̇𝜈 ), 𝜈 ∈  such that:

𝐫𝜈 = 𝐫𝜈 (𝑞𝑖)

𝐫̇𝜈 =
∑

𝑖

𝜕𝐫𝜈
𝜕𝑞𝑖

𝑞̇𝑖
(3)

Comment 4 ([11]). If 𝑄 is the configuration variety, then the set of the
action acts is the tangent variety 𝑇𝑄; indeed, the 𝑞̇𝑖 of the motion acts are
the components of a vector tangent to 𝑄 on the coordinates 𝑞𝑖.

Definition 7 ([11]). A holonomic system is a system of points whose
possible configurations in all times are a differentiable variety 𝑄̄ of
dimension 𝑛 + 1, said space–time of the configurations, such that:

1. There exists a differentiable function 𝑡 ∶ 𝑄̄ → R, which assigns
to any configuration its time;

2. This application is such that ∀𝑡 ∈ R the set 𝑄𝑡 of all the possible
configurations at the time 𝑡 is a sub-variety of dimension 𝑛;

3. There exists a differentiable variety 𝑄 of dimension 𝑛 and a
diffeomorfism 𝜑 ∶ R × 𝑄 → 𝑄̄, such that in any 𝑖 ∈ R it generates
a diffeomorfism 𝜑𝑡 ∶ 𝑄 → 𝑄𝑡 ∶ 𝑞 ↦ 𝜑(𝑡, 𝑞) between the variety 𝑄
and the variety 𝑄𝑡.

The integer 𝑛 is the number of degrees of freedom, and the variety 𝑄
is the reference configuration variety.

A holonomic system is made of constrained or free points. In dy-
namics, the action of the constraint is a force of reaction, called the
constraint reaction, on which constitutive conditions must be imposed.

The smooth constraint is represented by the orthogonality between
the constraint reaction and the constraint itself. For a holonomic sys-
tem, for a forces configuration and system 𝐅𝜈 , applied to every motion
act related to an assigned configuration, it corresponds to a power
𝑊 =

∑

𝜈 𝐅𝜈 ⋅ 𝐫̇𝜈 of the forces; if the forces system is:

1. An active force system 𝐅𝑎𝜈 , then force laws related to positions
and velocities are imposed, obtaining the consequent virtual
power of the active forces 𝑊 (𝑣)

𝑎
2. A virtual motion acts with the constraint reaction system 𝐅𝑟𝜈 ,

then a virtual power of the reactive forces 𝑊𝑟 is considered.

Thus, it follows the definition:

Definition 8 ([11]). A holonomic system is perfect, or with perfect
constraint, if the virtual power of the reactive forces is zero, for all

virtual motion acts.
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The virtual power of the active forces is a linear form of the
components 𝛿𝑞𝑖, whose coefficients are defined as Lagrangian forces or
agrangian components of the active forces:

(𝑣)
𝑎 =

∑

𝜈
𝐅𝑎𝜈 ⋅ 𝛿𝐫𝜈 =

∑

𝜈
𝐅𝑎𝜈 ⋅

∑

𝑖

𝜕𝐫𝜈
𝜕𝑞𝑖

𝛿𝑞𝑖 =
∑

𝑖
𝜑𝑖𝛿𝑞𝑖 (4)

rom which

𝑖 =
∑

𝜈
𝐅𝑎𝜈 ⋅

𝜕𝐫𝜈
𝜕𝑞𝑖

(5)

f the active forces are functions of the positions and of the velocities,
hen the Lagrangian forces are 𝜑 = 𝜑(𝐪, 𝐪̇, 𝑡).

efinition 9 ([11]). The dynamic state of a mechanical system is the
ime distribution of the positions, velocities, and accelerations of the
oints of the system.

A virtual power 𝑊 (𝑣)
𝑚 of the mass forces, named inertial forces, too,

s associated with each dynamic state. The inertial forces are defined
y the Newton Law

𝑚𝜈 = −𝑚𝜈𝐚𝜈

he virtual power of the inertial forces is a linear form of the compo-
ents 𝛿𝑞𝑖 of the virtual motion act, too:

(𝑣)
𝑚 =

∑

𝜈
𝐅𝑚𝜈 ⋅ 𝛿𝐫𝜈 = −

∑

𝜈
𝑚𝜈𝐚𝜈 ⋅

∑

𝑖

𝜕𝐫𝜈
𝜕𝑞𝑖

𝛿𝑞𝑖 =
∑

𝑖
𝜏𝑖𝛿𝑞𝑖 (6)

rom which it follows:

𝑖 = −
∑

𝜈
𝑚𝜈𝐚𝜈 ⋅

𝜕𝐫𝜈
𝜕𝑞𝑖

(7)

Statement 1 ([11] - Lagrange–D’Alembert Principle). In any dynamic
state of a system with perfect constraints, for all virtual motion acts, the sum
of the virtual powers of the active forces and the inertial forces equals zero:

𝑊 (𝑣)
𝑎 +𝑊 (𝑣)

𝑚 = 0 (8)

A system (𝑄,) is said Lagrangian, if it is a differential variety
𝑄 of dimension 𝑛, said configuration variety, with an associated real
function  ∶ 𝑇𝑄 × R → R. If the system is time-independent the
Lagrangian is a function

 ∶ 𝑇𝑄 → R

The Lagrangian dynamics is the set of curves expressed by the first
order system of 2𝑛 differentiable equations [11]:

⎧

⎪

⎨

⎪

⎩

𝑞̇𝑖 =
𝑑𝑞𝑖
𝑑𝑡

𝑑
𝑑𝑡

(

𝜕
𝜕𝑞̇𝑖

)

− 𝜕
𝜕𝑞𝑖

(9)

where the (9)2 equations are the Euler–Lagrange ones.
For the holonomic systems, the intrinsic properties of the Euler–

Lagrange equations, i.e., the independence of the Lagrangian coordi-
nates chosen, is the consequence of the application of the Lagrange–
D’Alembert principle to a Lagrangian equation system.

A functional is an application 𝜙 ∶ 𝛺 → R such that it corresponds to
a real number for all 𝑛−tupla of functions. A functional is differentiable
in a point 𝑞𝑖(𝑡) ∈ 𝛺 if for all the chooses of the growth, said variations,
𝛿𝑞𝑖(𝑡) ∈ 𝛺 there exists the following relation [11]:

𝜙(𝑞𝑖 + 𝛿𝑞𝑖) = 𝜙(𝑞𝑖) + 𝛿𝜙(𝑞𝑖, 𝛿𝑞𝑖) + (10)

where 𝛿𝜙 is a linear functional of 𝛿𝑞𝑖 and  is a functional of upper
order in the same increases.

Definition 10 ([11]). A variation 𝛿𝑞𝑖(𝑡) is said end fixed if:

𝛿𝑞 (𝑡 ) = 𝛿𝑞 (𝑡 ) = 0 (11)
3

𝑖 1 𝑖 2
Definition 11 ([11]). The action is defined as:

 = ∫

𝑡2

𝑡1

(

𝑡, 𝑞𝑖(𝑡), 𝑞̇𝑖
)

𝑑𝑡 (12)

Theorem 1 ([12] - Least Action Principle). The function 𝑞𝑖(𝑡), for which
𝛿 = 0 for all end fixed variations, are only the solutions of the
differential system (9), where the Lagrangian is defined up to a function
of the coordinates and time.

A general approach to mechanical systems can be developed by us-
ing the least action principle, also named Hamilton principle, for which the
mechanical system is described using a Lagrangian function (𝐪; 𝐪̇, 𝑡)
from which the action can be obtained [12]:

 = ∫

𝑡2

𝑡1
(𝐪; 𝐪̇, 𝑡) (13)

The Hamilton principle states that the motion of a system follows the
path 𝐪(𝑡) for which the action is minimum:

𝛿 = 𝛿 ∫

𝑡2

𝑡1
(𝐪; 𝐪̇, 𝑡) = 0 (14)

The proof of this relation can be obtained starting from the hypoth-
esis that the least value of the action is 𝐪(𝑡), and a small variation 𝛿𝐪
around it, is considered. Then for

𝐪(𝑡) + 𝛿𝐪(𝑡) (15)

the action 𝑆 increases [12], but for 𝑡 = 𝑡1 and 𝑡 = 𝑡2 the relation (15)
ust have the fixed values 𝐪(𝑡1) = 𝐪1 and 𝐪(𝑡2) = 𝐪2; this statement

epresent fundamental condition for the Hamilton principle [12]:

𝐪(𝑡1) = 𝛿𝐪(𝑡2) = 0 (16)

A consequence of the least action principle is the Lagrange differ-
ntial equations:
𝑑
𝑑𝑡

𝜕
𝜕𝑞̇𝑖

− 𝜕
𝜕𝑞𝑖

= 0 𝑖 ∈ [1, 𝑛] (17)

Non-holonomic constraints

A free point, from any initial position 𝑃0, at the initial time 𝑡0,
can move of an elementary displacement 𝑑𝑃 = 𝐯𝑑𝑡; for a constrained
point, these displacements are confined due to the constraint [13]. A
holonomic system in an initial configuration at the time 𝑡0, can have a
transition to another configuration at the time 𝑡0 +𝑑𝑡, infinitely near to
the initial one [13].

Definition 12 ([13]). A possible displacement at the time 𝑡, start-
ing from a configuration 𝐶, is any infinitesimal displacement of a
holonomic system, which allows it to have a transition from the con-
figuration 𝐶 at the time 𝑡 to a new configuration 𝐶 ′ at the time
+ 𝑑𝑡:

𝑖 = 𝑃𝑖(𝐪; 𝑡) ↦ 𝑃𝑖 + 𝑑𝑃𝑖 = 𝑃𝑖(𝐪 + 𝑑𝐪; 𝑡 + 𝑑𝑡)

rom which the possible displacement are the 𝑛 equations:

𝑃𝑖 =
∑

𝑘

𝜕𝑃𝑖
𝜕𝑞𝑘

𝑑𝑞𝑘 +
𝜕𝑃𝑖
𝜕𝑡

𝑑𝑡 = ∇𝐪𝑃𝑖 ⋅ 𝑑𝐪 +
𝜕𝑃𝑖
𝜕𝑡

𝑑𝑡 (18)

If the virtual displacement is coupled with the holonomic con-
straints Eqs. (1), related to the displacements themselves, represented
by the 𝑙 equations, it follows:

𝑑𝑓𝑗 =
∑

𝑘

𝜕𝑓𝑗
𝜕𝑞𝑘

𝑑𝑞𝑘 +
𝜕𝑓𝑗
𝜕𝑡

𝑑𝑡 = ∇𝐪𝑓𝑗 ⋅ 𝑑𝐪 +
𝜕𝑓𝑗
𝜕𝑡

𝑑𝑡 = 0 (19)

and only 𝑛 − 𝑙 free Lagrangian coordinates can be obtained. Dividing
for 𝑑𝑡 the non-holonomic constraint relation can be obtained (2):

𝑑𝑓𝑗 =
∑ 𝜕𝑓𝑗 𝑞̇𝑘 +

𝜕𝑓𝑗 = ∇𝐪𝑓𝑗 ⋅ 𝐪̇+
𝜕𝑓𝑗 =

∑

𝑎𝑗𝑘𝑞̇𝑘 + 𝑏𝑗 = (𝐚 ⋅ 𝐪̇+ 𝑏)𝑗 = 0

𝑑𝑡 𝑘 𝜕𝑞𝑘 𝜕𝑡 𝜕𝑡 𝑘
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It is a restrain in the motion.
So, the displacement are limited, and virtual displacements must be

introduced:

Definition 13 ([13]). A virtual displacement is any hypothetical dis-
placement that allows the system to have a transition from a configura-
tion 𝐶 to another infinitesimal near one 𝐶 ′, allowed by the constraints
at the same time.

Consequently, for the non-holonomic constraints 𝑑𝑡 = 0, and the
relation (20) becomes:

∇𝐪𝑓𝑗 ⋅ 𝑑𝐪 +
𝜕𝑓𝑗
𝜕𝑡

𝑑𝑡 = 0 ⇒ 𝐚 ⋅ 𝛿𝐪 = 0 (21)

The live force is the value of the kinetic energy, and the following
theorem can be introduced:

Theorem 2 ([14] - Theorem of Live Forces or of König). The live force
of any system in motion is the sum of the live force of the centre of mass,
and the one of the motion in relation to the centre of mass.

Volterra pointed out that the Lagrangian is an explicit function of
𝐪̇ [14].

Results

Non-holonomic systems, a term coined by Heinrich Rudolf Hertz
(1857–1894) in 1894, are mechanical systems with constraints on
their velocity that are not derivable from position constraints [9]. The
non-holonomic constraint is non-integrable systems.

There are some differences between non-holonomic and Hamilto-
nian or Lagrangian systems, e.g. [9]:

• Non-holonomic systems arise from the Lagrange–d’Alembert prin-
ciple and not from Hamilton’s principle;

• Energy is always preserved, while momentum is not always pre-
served;

• Their volume in the phase space may not be preserved.

The equations of motion of a non-holonomic system in the form of
the Euler–Lagrange equations, with the correction obtained by intro-
ducing some additional terms related to the constraints, but without
Lagrange multipliers, when some of the configuration variables are
cyclic, was obtained in 1895 by Sergej Alekseevic̆ C̆aplygin (1869–
1942), who also realised the importance of an invariant measure in
non-holonomic dynamics [9].

A fundamental question on the non-validity of the principle of least
action for non-holonomic constraints, highlighted by Flannery [7], is
suggested based on the previous definitions and theorems. In this paper,
a possible response [15,16] to this question is proposed.

The basis of the least action principle is the evaluation of the
variations under the hypothesis of the fix ends (Eq. (11)) [17].

For non-holonomic constraints (20) and (21), at least one of the
virtual displacements can be written as a linear combination of the
others; i.e.,

𝛿𝑞𝑖(𝑡) = 𝑎−1𝑖
∑

𝑗
𝑎𝑖𝑗𝛿𝑞𝑗 (22)

o the relations (20) e (21), fundamental for the validity of the least
ction principle, are not satisfied.

Consequently, for non-holonomic constraints, the fundamental con-
itions for using the least action principle are not verified, proving that
or a general non-holonomic constraint, the principle of least action
annot be used. An alternative approach from thermodynamics is also
4

uggested. n
iscussion and conclusions

The proposed proof limits the use of the principle of least action
o the holonomic and linear non-holonomic constraints [7]. But, it is
mportant to find an alternative approach for generic non-holonomic
ystems. To do so, some considerations can be introduced from ther-
odynamics, particularly regarding the second law.

A thermodynamic system is a physical system which interacts with
ts environment by exchanging heat and work [18]. For such a system,
t is possible to write the kinetic energy theorem in the following
orm [19–22]:

𝑊𝑒𝑠 + 𝛿𝑊𝑓𝑒 + 𝛿𝑊𝑖 = 𝑑𝐸𝑘 (23)

here 𝛿 represents the pathway-dependent differential, 𝑊𝑒𝑠 is the work
one by external forces on the border of the system, 𝑊𝑓𝑒 is the work lost
ue to external irreversibility, 𝐸𝑘 is the kinetic energy of the system,
nd 𝑊𝑖 is the internal work, such that:

𝑊𝑖 = 𝛿𝑊 𝑟𝑒𝑣
𝑖 − 𝛿𝑊𝑓𝑖 (24)

here 𝑟𝑒𝑣 indicates the reversible (ideal) internal work and 𝑊𝑓𝑖 de-
icts the work lost due to internal irreversibility. Considering the
elation [19,20,22]:

𝑊𝑠𝑒 + 𝛿𝑊𝑒𝑠 + 𝛿𝑊𝑓𝑒 = 0 (25)

here 𝑊𝑠𝑒 is the work by the internal forces on the system’s border
owards the outside of the system. As a consequence of this approach,
he first law of thermodynamics appears in the following form:

𝑄 − 𝛿𝑊𝑠𝑒 = 𝑑𝑈 + 𝑑𝐸𝑘 (26)

Now, defining the Lagrangian as [11,12]:

= 𝐸𝑘 − 𝐸𝑝 (27)

where 𝐸𝑝 = 𝑊𝑖 +𝑊𝑒𝑠 is the potential energy, it follows:

 = 𝐸𝑘 − (𝑊𝑖 +𝑊𝑒𝑠) = 𝑊𝑓𝑒 (28)

Now, we consider the Gouy–Stodola theorem [23,24]:

𝑓𝑒 = −𝑇0 ∫

𝜏

0
𝛴 ⋅ 𝑑𝑡 (29)

here 𝑇0 is the environmental temperature, 𝛴 is the entropy generation
ate, and 𝑡 is the time. Considering the duration of a process 𝜏, i.e., the
ime in which a process occurs, and the mean value of the entropy
eneration rate 𝛴̄, it is possible to obtain the entropy generation, 𝑆𝑔 ,

for any real process by using an engineering thermodynamic approach,
as follows [25,26]:

𝑆𝑔 = 𝛴̄ ⋅ 𝜏 (30)

Consequently, the Lagrangian results [23,26]:

 = −𝑇0 𝑆𝑔 (31)

and the action  results [23,26]:

= −𝑇0 ∫ 𝑆𝑔𝑑𝑡 (32)

his last relation is very interesting because the entropy generation
esults always integrable for a real process, as usually done in engi-
eering thermodynamics, independently on the formal expression of
he displacements, obtaining [23,26]:

= −𝑇0 𝑆̄𝑔 𝜏 (33)

onsequently, the least action can be used by evaluating the maximum
ntropy generation, which is related only to dissipation. In this way, the
nalysis of the motion for non-holonomic systems becomes the analysis
f the dissipation during the motion.

These considerations represent a starting point in the analysis of

on-holonomic constraints, proposing a thermodynamic viewpoint,
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which analytically confirms, on the bases of the first and second law of
thermodynamics, the considerations highlighted in Ref. [27].

In this context, in 2019, Mahulikar et al. [28] developed a non-
equilibrium thermodynamic study analysing the Fluctuation Theorem
and Principle of Least Action implication for dissipative systems. They
pointed out that the Principle of Maximum Entropy Production acts like
the Principle of Least Action for dissipative systems. Moreover, they in-
troduced the Thermodynamic Fusion Theorem for addressing the role of
fluctuations in entropy production, identifying the entropy fluctuation
as the least action path, which maximises the time-averaged entropy
production in a dissipative system. The validation of their results was
proven for the analysis of the entropy fluctuations in Rayleigh–Taylor
flow instability [29].

In conclusion, in this paper, we have combined our previous re-
sults [15,16,25,26,30,31] with the results of Mahulikar et al. [28]
obtaining a general approach to the use of least action principle to non-
holonomic constraints, pointing out that Principle of Maximum Entropy
Production is a generalisation of the Principle of Least Action for real
systems.
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