
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Reconfigurable Multiplier/Dot-Product Unit for Precision-Scalable Deep Learning Applications / Urbinati, Luca; Casu,
Mario R.. - ELETTRONICO. - 1005:(2023), pp. 9-14. (Intervento presentato al convegno 53rd Annual Meeting of the
Italian Electronics Society tenutosi a Pizzo (VV), Italia nel September 7-9, 2022) [10.1007/978-3-031-26066-7_2].

Original

A Reconfigurable Multiplier/Dot-Product Unit for Precision-Scalable Deep Learning Applications

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-031-26066-7_2

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Proceedings of SIE 2022. The final
authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-26066-7_2

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977769 since: 2023-04-05T09:16:35Z

Springer

A Reconfigurable Multiplier/Dot-Product Unit
for Precision-Scalable Deep Learning

Applications

Luca Urbinati[0000−0001−5317−1960] and Mario R. Casu[0000−0002−1026−0178]

Dept. of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
{luca.urbinati,mario.casu}@polito.it

Abstract. Across different Deep Learning (DL) applications or within
the same application but in different phases, bitwidth precision of activa-
tions and weights may vary. Moreover, energy and latency of MAC units
have to be minimized, especially at the edge. Hence, various precision-
scalable MAC units optimized for DL have recently emerged. Our contri-
bution is a new precision-configurable multiplier/dot-product unit based
on a modified Radix-4 Booth signed multiplier with Sum-Together (ST)
mode. Besides 16-bit full precision multiplications, it can be reconfigured
to perform dot products among two 8-bit or four 4-bit sub words of the
input operands without requiring an external adder, thus reducing the
number of cycles of MAC operations. The results of the synthesis in per-
formance, power and area on a 28-nm technology show that our unit (1)
is superior to other state of the art ST multipliers in area (≈35% less)
in the clock frequency range between 100 and 1000MHz and (2) reduces
latency up to 4x when used to compute a convolutional layer, at the cost
of limited overheads in area (+10%) and power (+13%) compared to a
conventional 16-bit Booth multiplier. This unit can play an important
role in designing variable-precision MAC units or DL accelerators for
edge devices.

Keywords: Variable-precision Multiplier · Precision-Scalable MAC Unit
· Deep Learning.

1 Introduction

At the basis of Deep Learning (DL) algorithms are convolutions and matrix
multiplications, which require the computation of many dot products and sim-
ple scalar multiplications between features and weights. These operations are
typically executed by multiply-and-accumulate (MAC) units. In particular, when
running DL applications on edge devices, energy and latency of these MAC units
have to be minimized. This requires reducing the data bit-width to the mini-
mum, while keeping a satisfying level of accuracy. Such minimum data precision
may vary across different applications, but also within the same application in
different phases (e.g. mixed-precision quantization for convolutional layers).

This preprint has not undergone any post-submission improvements or corrections. The Version of Record of this contribution is published in Proceedings of SIE 2022, and is available online at https://doi.org/10.1007/978-3-031-26066-7_2.

2 Luca Urbinati and Mario R. Casu

(a) (b)

Fig. 1: Outside view of a Multiplier/dot-product unit (a) and its precision con-
figurations (b).

Multipliers with Sum-Together (ST) mode [1] are good candidates to realize
precision-scalable MAC units [2–5]. They are special sub-word parallel multipli-
ers that can perform either a multiplication at full precision or a dot-product at
lower precision. In particular, they can compute N =1, 2, 4 multiplications/dot-
products in parallel among input operands with precision inversely proportional
to N (e.g., 16/N bits). When used inside MAC units, they reduce the overall
latency up to 1/N because they save N -1 MAC additions.

In the literature we find different proposals for the implementation of ST
multipliers. The design of [2] uses four 16-bit Booth multipliers with a config-
urable partial products compression array and three configurable 33-bit adders,
instead of the usual final adder. The two sub-word parallel dot-product units
of [3] comprise of two 17-bit multipliers or four 9-bit multipliers, respectively,
followed by a 32-bit adder. The reconfigurable parallel inner product of [4], the
ancestor of [5], dynamically composes and decomposes 4 or 8-bit multipliers with
a network of combinational logic.

In this context, we propose a new precision-scalable modified Radix-4 Booth
signed multiplier with ST mode. Its configuration options are reported in Fig. 1.
The main difference with respect to other state of the art (SoA) ST multipliers
is that our design does not require a dedicated adder to sum the low-precision
products together, but it exploits the normal alignment of partial products as
in a standard multiplier (Fig. 2).

The comparison between the SoA ST multipliers and our design in perfor-
mance, power and area (PPA) on a 28-nm technology shows that, at the cost of
limited overhead in area and power compared to a conventional non-ST Booth
design, our multiplier/dot-product unit (1) is superior to the other SoA units
in the clock frequency range between 100 and 1000MHz and (2) could reduce
latency and energy of convolutional layers when used in MAC units or in variable-
precision DL accelerators.

A Reconfigurable Multiplier/Dot-Product Unit 3

2 Hardware Design

We propose a new precision-configurable Radix-4 Booth signed multiplier with
ST mode. The supported configurations are those of Fig. 1(b). The key feature
of our multiplier/dot-product unit is the lack of a dedicated external adder to
sum together the low-precision products during dot-product operations. Instead,
such addition comes for free in our design. In fact, our unit exploits the normal
alignment of partial products in a standard multiplier, enabling the computation
of dot products when two or four scalar inputs are packed in each operand, as
shown in Fig. 2. The bits of output P (yellow circles) are obtained by vertically
summing the full-colored circles representing the bits of the eight partial products
(PP0-PP7). These full-colored bits are the result of the products of operands with
the same color, while the half-colored bits are zeroed as explained below.

In the multiplier architecture shown in Fig. 3, the yellow blocks are the stan-
dard components of a Radix-4 Booth multiplier, while the green ones are for
precision reconfiguration, for zeroing the half-colored bits of Fig. 2, and for sign
extending the inputs in asymmetric configurations, like 16×8 and 8×4, in order
to treat them as 16×16 and 8×8. We implement the reduction tree as a Wallace
tree with 4:2 compressors, while the final adder is a Carry Propagate Adder with
Prefix Network. Regarding the additional logic for reconfigurability, the config-
uration signal CONFIG controls: 1) how the bits of operand A are properly
composed to form X0-X7 input triplets for the encoder; 2) how the sub-words
of operand B are arranged and presented to the Y0-Y7 inputs of the selector; 3)
the number of positions to right-shift the output to the LSB position (Fig. 2).

3 Experimental Results

For a fair comparison, we re-implemented the ideas of the SoA multipliers intro-
duced in Sec. 1, making these minimal adjustments:

– we standardized their configurations to match those presented in Figs. 1 and
we removed all the unnecessary logic that was not necessary to implement the
ST multiplier’s behavior;

– since the authors of [3] implemented their ST multiplier with a behavioral
RTL description, we made the same, but we forced the synthesizer to use a
16-bit Booth multiplier for 16×16/16×8 configurations;

– we right shifted the output of [4] to align it to the LSB because it produces
the sum-of-products on higher bit positions, as it happens in our design;

– we added input and output registers to all the ST multipliers, ours included.

We synthesized the designs with Synopsys Design Compiler on a 28-nm technol-
ogy, varying the clock frequency from 100 to 1000MHz. The PPA results in the
area vs clock period space and power vs clock period space are in Fig. 4(a)-(b),
respectively. Our unit is Pareto optimal in area at all frequencies with ≈35% less
area than other SoA competitors, while in power all the designs almost overlap
each other. A close examination at 1000MHz is reported in Tab. 1(a), where ST

4 Luca Urbinati and Mario R. Casu

P = A[15:0] x B[15:0]

PP7

PP6

PP5

PP4

PP0

PP1

PP2

PP3

234567891113 1 010121415

A

B

P

(a)

PP3

234567891113 1 010121415

B

PP0

P

A

P = A[15:8] x B[7:0] + A[7:0] x B[15:8]

PP1

PP2

PP7

PP6

PP5

PP4

(b)

PP1

234567891113 1 010121415

P

B

A

P = A[15:12] x B[3:0] + A[11:8] x B[7:4] + A [7:4] x B[11:8] + A[3:0] x B[15:12]

PP0

PP7

PP6

PP5

PP4

PP3

PP2

(c)

Fig. 2: Alignment of PPi partial products for CONFIG 16×16/16×8 (a),
8×8/8×4 (b) and 4×4 (c).

multipliers are also compared with a conventional non-ST 16-bit Booth multi-
plier. From this table we find that our Booth multiplier with ST mode consumes
+10% of area and +13% of power compared to the baseline version.

In Tab. 1(b) we show how an ST multiplier could reduce the number of MAC
operations and the latency of a convolutional layer, in this case the first of
MobileNetV1 and EfficientNet-B0. The theoretical reduction that is possible to
achieve is 1/N and depends on the precision of activations and weights at which
the layer is computed. Finally, it is important to note that we also expect a
significant energy saving at lower precisions (N = 2 or 4) because energy scales
like latency, while power overhead is constant.

A Reconfigurable Multiplier/Dot-Product Unit 5

A[15:0]

B[15:0]

X6[2:0] X7[2:0]

RADIX−4

ENCODER
BOOTH

<<1

PP0[16:0]

PP7[16:0]

PP6[16:0]

PP5[16:0]

PP4[16:0]

PP3[16:0]

PP2[16:0]

PP1[16:0]

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

P[31:0]

COMPRESSOR

TREE

&

FINAL

ADDER

X0[2:0] X1[2:0] X2[2:0] X3[2:0] X4[2:0] X5[2:0]

00

{4’bE, B[11:8], 8’b0}

{[B15:8], 8’b0}

{4’bE, B[11:8], 8’b0}

B[15:0]

{8’bE, B[7:0]}

B[15:0]

{8’bE, B[7:0]}

00

Y7[15:0]

Y6[15:0]

Y5[15:0]

Y4[15:0]

Y3[15:0]

Y2[15:0]

Y1[15:0]

Y0[15:0]

P[31:0]

[4:2]

888 8

S[7:0]

SELECTOR
BOOTH

3 3

16x16

4x4_bar

3 3 3 33 3

0

A[3]

A[2]

A[1]

A[4]

A[5] A[7]

A[6] A[8]

A[9] A[11]

A[10]

A[13]

A[12]

A[15]

A[14]A[0]

NEG[i]

DOUBLE[i]

SINGLE[i]

PPi[16:0]

{1’bE, Yi[15:0]}

1

0

Xi[1]

Xi[2]

SINGLE[i]

DOUBLE[i]

NEG[i]

Xi[0]

NEG[7:0]DOUBLE[7:0]SINGLE[7:0]

CONFIG[2]

CONFIG[1]

CONFIG[0]

11

10

01

00

11

10

01

00

{12’bE, B[3:0]}

{8’bE, B[7:0]}

{12’bE, B[3:0]}

B[15:0]

{8’bE, B[7:0]}

B[15:0]

{8’bE, B[7:0]}

{12’bE, B[3:0]}

{8’bE, B[7:0]}

{8’bE, B[7:4], 4’b0}

11

10

01{B[15:12], 12’b0}

{B[15:8], 8’b0}

{4’bE, B[11:8], 8’b0}

11

10

01

1

0

0

0

1

0

1

1

Fig. 3: The design of our Booth ST multiplier.

Reconfig.[3]
Reconfig.[4]

Reconfig.[2]
Reconfig.-Ours

 1

 2

 4

 8

 10

 1000 1250 1500 1750

C
lo
c
k

 P
e
ri
o
d

 (
n
s
)

Area (μm2)

ST Multipliers Area

 0 0.2 0.4 0.6 0.8 1

Clock
frequency
(MHz)

Power (mW)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

ST Multipliers Power

Fig. 4: PPA analysis of the analyzed ST multipliers.

6 Luca Urbinati and Mario R. Casu

(a)

Multiplier Area [µm2] Power [mW]

Non-reconfig. 1133 0.791

Reconfig.-ours 1248 (+10%) 0.893 (+13%)

Reconfig.[2] 1747 (+54%) 0.903 (+14%)

Reconfig.[3] 1718 (+52%) 0.896 (+13%)

Reconfig.[4] 1629 (+44%) 0.885 (+12%)

(b)

Multiplier MAC Ops. Latency

Non-reconfig. 10.8 M 1x

Reconfig.
16×16/16×8

10.8 M 1x

Reconfig.
8×8/8×4

5.4 M 0.5x

Reconfig.
4×4

2.7 M 0.25x

Table 1: ST multipliers vs baseline (non-ST 16-bit Booth multiplier) at 1000MHz
(a); theoretical reduction in MAC operations and latency for the first layer of
MobileNetV1 and EfficientNet-B0 computed with an ST-multiplier (b).

4 Conclusion

This Booth multiplier with ST mode can play an important role inside precision-
scalable MAC units or in variable-precision DL accelerators for edge devices [6]
because it supports low-precision configurations which can reduce latency and
energy. It also outperforms the SoA alternatives in area with limited reconfig-
urability overheads against a conventional non-configurable Booth multiplier.

References

1. Camus, V. et al: Review and Benchmarking of Precision-Scalable Multiply-
Accumulate Unit Architectures for Embedded Neural-Network Processing. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems (JESTCS) 9(4),
697–711 (2019)

2. Zhang, Z. Li, Zheng, Q.: Design of a configurable fixed-point multiplier for digital
signal processor. In: Proceedings Asia Pacific Conference on Postgraduate Research
in Microelectronics & Electronics (PrimeAsia), pp. 217–220. IEEE, Shanghai China
(2009).

3. Gautschi, M. et al: Near-threshold RISC-V core with DSP extensions for scalable
IoT endpoint devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25(10), 2700–2713 (2017)

4. Lin, R.: Reconfigurable parallel inner product processor architectures. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 9(2), 261–272 (2001).

5. Sharma, H. et al.: Bit Fusion: Bit-Level Dynamically Composable Architecture for
Accelerating Deep Neural Network. In: Proceedings 45th Annual International Sym-
posium on Computer Architecture (ISCA), pp. 764–775, ACM/IEEE, (2018).

6. Urbinati, L., Casu, M. R.: A Reconfigurable Depth-Wise Convolution Module for
Heterogeneously Quantized DNNs. In: Proceedings International Symposium on
Circuits and Systems (ISCAS), pp. 128–132. IEEE, Austin Texas (2022).

