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Data-driven urban building energy models for the platform of Toronto 

 

ABSTRACT 

Increasing building efficiency is a key topic in territorial policies at different scales, for which new pathways and 

actions are progressively introduced. However, the evaluation of building consumptions according to energy 

features, urban and socio-economic variables is crucial to better assess building efficiency measures. This study 

presents a place-based statistical model for the evaluation of energy demand at the building scale, starting from 

disaggregating consumption values at the block level. The case study is the central district of Toronto (Ontario, 

Canada), part of the 2030 Toronto Platform. The existing interactive tool shows energy data only at the block 

scale, limiting specific evaluations and benchmarking. Therefore, the analysis presents a set of statistical models 

for assessing residential building consumption by archetypes. The aim to extend the application and visualization 

of the energy demand of the whole city by GIS software. The statistical models underline more reliable results for 

electricity use, distinguished by appliances and space cooling. Low-rise apartments are the most challenging 

category to be assessed for appliances use. The variability of natural gas consumption does not allow to build only 

one model and values for apartments buildings are more variable for different construction ages.  

 

Keywords: Data-driven energy model, Statistical model, Top-down model, Buildings, Archetypes, GIS. 

 

 

1. INTRODUCTION 

Climate change is increasingly affecting life in urban areas, where population and building design are 

generally denser. For instance, in Canada, the 80% of inhabitants is concentrated in cities, while a two-

fold temperature increase (+1.7°C) compared to global values has been registered from 1981 to 2016 

[1]. For addressing climate challenges and urban sustainability, multi-level policies have been 

introduced. The Canadian government structured a 2030 Emissions Reduction Plan to reach Net-Zero 

Emissions by 2050 [2] in line with the 2016 Pan-Canadian Framework on Clean Growth and Climate 

Change [3]. To implement these goals, assessing housing demand is crucial because Canada’s homes 

cover the 18% of national greenhouse gases (GHG) emissions, using mainly fossil fuels for heating and 

electricity [2].  

For evaluating building performance, energy models estimate resource consumption and emissions 

[4]. The scale and character of energy challenges in regions and cities depend on their context, which 

calls for place-based dimensions for evaluation of demand [5]. The classification of energy models 

followed by several studies has mainly distinguished top-down or bottom-up approaches [6] [7]. Top-

down models use historic aggregate energy and energy-related data at municipal, regional, national scale 

to estimate average consumption for building stock at city level [8]. To provide long-term projections, 

top-down models generally rely on past trends, demographic, and macro-economic features rather than 
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on the physical aspects of the single buildings [9]. Any specific data are not required because they 

estimate building energy consumption from long-term link between energy and some drivers. These 

drivers are mainly socio-econometric, technical, and physical [10]. They reflect interactions at a large 

territorial scale, as city or regions: indeed, top-down models are suitable to study spatial variations of 

energy uses [11] and if the level of detail can be limited. Its related strength is the need for aggregated 

data for an area only which are mostly available and the simplicity to be developed [12]. However, the 

dependence on past relations between energy and other aspects might not suit when analysing future 

trends as climate change issues [9]. According to [6] and [12], top-down approaches favour large-scale 

preliminary analyses of building consumption, which can reflect long-term changes. Potential 

improvements by new technologies or integrated energy-supply scenarios can be quantified with 

bottom-up approaches [13]. Bottom-up models often identify the most cost-effective options to achieve 

energy or carbon reduction targets, according to the best available technologies and processes. Bottom-

up models simulate the energy demand for individual households, single or groups of buildings and then 

derive the consumption distribution at wider scale, as for a region [8]. Bottom-up models contribute to 

optimize urban energy systems because their results have higher spatial and temporal resolution 

compared to top-down techniques [13]. The higher accuracy requires extensive detailed data, as for 

building components and occupancy schedules, and imply longer elaboration time compared to top-

down models [6]. In this study, a top-down model is selected due to the availability of aggregated energy 

data and the focus on interactions at the larger urban scale [14]. Despite the limited level of detail, a top-

down approach manages larger sample of data to build applicable energy models. The large-scale 

assessment of energy consumption and preliminary evaluation contribute to the suitability of a top-down 

rather than a more accurate bottom-up approach. In both methods, geo-localising results by Geographic 

Information System (GIS) allows identification of critical areas and multi-scale decision-making [15]. 

Starting from an energy platform for a city district, few studies have used a GIS support to disaggregate 

energy consumption from block or neighbourhood scale and reach the single-dwelling level.   

Therefore, this study will focus on the assessment of energy consumption for residential buildings in 

the city of Toronto, starting from the modelled data at the block level in the Toronto 2030 Platform [16]. 

This represents one of the most recent tools to report the energy and energy-related features for the city 

urban core. The Toronto 2030 Platform adopts a bottom-up engineering model, based on the ASHRAE 

template. However, its assessment stops at the aggregated scale of building blocks due to the limited 

availability of data. The main challenge faced in this study is the estimation of building demand, having 

only aggregated modelled data. A top-down statistical model at the building level is based on the 

Toronto 2030 Platform and the energy model is integrated in GIS environment, subdividing the energy 

demand for single dwellings. Only the residential stock with energy uses is considered, distinguishing 

the main housing types. The assessed model aims at its extension to the whole City of Toronto, using 

building shapefiles in GIS environment. Despite data constraints, results are useful for more specific 

evaluations on the building stock and can represent a further level of detail of the Toronto 2030 Platform.  
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2. LITERATURE REVIEW 

2.1 Energy platforms: potentials and limits 

Energy platforms are interactive dashboards and maps online which can display energy consumption, 

production, and emissions of the building stock. Energy platforms provide a baseline support for the 

evaluation and planning of energy policies or interventions. Stakeholders as policy makers, researchers, 

and citizens can be interested in understanding energy demand-consumption and GHG emissions. They 

can display mainly two types of information at the city level [7]:  

• energy-use data, which can evaluate the distribution of energy-related aspects (as consumption, 

energy performance certificates, retrofit interventions) or the renewable energy production potential; 

• urban features, as morphology, land uses (generally from zoning codes) and socio-economic 

indicators, which can be complementary to the local energy-use characterisation.  

Using GIS, assessments of renewable potentials is spatialised on platforms with a high level of detail 

due to the easily accessible input requirements [17], as in the case of the Solar Portal for the Metropolitan 

City of Turin [18]. On the other hand, energy consumption values can be more challenging to obtain.  

One of the main constraints for energy urban platforms is the availability, quality, and resolution of 

data, which can easily result dated and/or not detailed in the scale of definition. Displayed energy results 

on a platform can be from real acquisitions or estimations derived from models. Temporal resolution 

characterises non-steady (dynamic simulation), quasi-steady (monthly or daily) and steady models that 

avoid temporal matters [19] [14]. Annual data are often feasible for mapping and planning purposes due 

to the focus on energy localisation. High-resolution temporal data estimates the fluctuating nature of 

demand and renewable resources [17]. However, energy assessments are often based on top-down 

aggregated estimations on annual basis rather than real acquisition data [17]. As discussed in a recent 

study for district heating [20], models referred to a city portion tend to cluster buildings for a manageable 

scale: the more the structures are aggregated and simplified, the less the building heterogeneity will be, 

as for heating and electricity profiles, and the quality of the final output is likely to decrease. Indeed, 

energy demand is rarely homogeneous within an urban environment [21].  

The GIS visualisation contributes to identify priorities for future interventions in more critical areas 

[17]. A GIS spatialisation by energy mapping relies mainly on availability of geographic data and 

suitable energy datasets. Different challenges can limit the elaboration and accuracy: the constrained 

spatial and temporal resolution for suitable projections as well as socio-economic problems for 

acquisition and transfer of data (privacy, data ownership, costs) [17]. Some relevant examples for online 

urban energy platforms are here reported, with main aspects and limits:  

• the Southern California and Bay Area Energy Atlases [22], which displays results from counties to 

neighbourhoods based on disaggregated data, but the temporal frame is only from 2006 to 2016. It 

combines electricity and natural gas demand with GHG emissions, building age and functions 

divided by macro areas;  
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• the New York City Energy and Water Performance Map, which is developed by lots [23] due to 

privacy and disclosure issues of providers. The platform distinguishes age, floor area, property types 

for energy use, and GHG emission intensity. The tool does not completely characterise the city 

(especially in the case of emissions) and data goes from 2011 to 2017;  

• the Wien City Map [24], developed at the building level, according to cadastre maps. It localises 

power generation plants and renewable energy potentials (wind, geothermal, waste, solar), 

overlapped with natural and historical constraints. Despite the availability of other urban layers 

(green areas, mobility, climate, etc.), the platform lacks spatialisation of city energy consumption.  

In conclusion, main challenge to develop an effective platform is to balance the level of accuracy with 

rapidity of simulations, according to available data. Mostly aggregated data from platforms can represent 

a starting point for more detailed evaluations at building scale. As for the following study, top-down 

energy models begin from energy data at neighbourhood scale to disaggregate and obtain the spatial 

distribution of energy consumption at building scale.  

 

2.2 Urban energy modelling: from aggregated values to building-scale results  

Disaggregation of energy data has been frequently applied in previous studies at different scales. 

Recent studies applied methodologies to evaluate building consumptions from aggregated datasets, 

assuming distinct methodologies and levels of simplification. Disaggregation of energy consumption 

can be by energy sources [25] [26], by fuel, end-uses services and technologies [27] or by multiple 

geographical levels [28]. Gonzales et al. [28] analysed the energy consumption of Europe by three 

decomposition levels, or rather by subgroup, by member state and by regions. The energy intensity was 

the criteria to aggregate and disaggregate countries to test the factors changing energy consumption. 

Results suggested that when reducing the fineness of the decomposition scale, the influence of the 

considered variables is reduced than by single country. Moving to the district scale, in the case of Gran 

Mendoza (Argentina) [29], a top-down model for space heating was performed starting from the 

measured energy consumptions. From the obtained average consumptions of the census sections, 

simplified models for the seven typologies of residential buildings were applied at the urban scale. These 

archetypes are identified according to typological and socio-economic characteristics. Thanks to a GIS 

support, an iterative calculation identified the energy demand for each group of buildings until the 

consumption of all districts matched the measured data. This process started from districts with only one 

group of buildings, then with mixed ones. With a different approach, Lorimer [30] developed a model 

for evaluating non-heating energy end uses (appliances and lighting) in England, which can be verified 

using aggregated data of meters in small zones and housing census data. A bottom-up housing stock was 

based on number of occupants and of rooms to predict the uses with multilinear regressions and then 

validated against total electricity demand data. The total modelled and actual energy use resulted close, 

despite variations for different areas and the model can quickly adapt to new available data. Working 
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on the urban scale, Roth et al. [31] realised a two-step urban building energy model for the city of New 

York. They estimated the annual energy use for all buildings with supervised machine learning. Values 

were then extended with physic-based simulations to minimise the difference between the publicly 

available building data at the borough scale and the calculated hourly electricity demand. A more 

detailed mathematical method [32] is applied by algorithm to disaggregate energy demand into end-uses 

and minimising the error with the total measured energy consumption. In this case, a fraction of energy 

loads was already known, while the remaining part was assessed by algorithm at the household level. 

Zhuravchak et al. [11] downscaled the analysis from the city-level to 1*1 km2 grid to create an urban 

energy map for Trondheim, Norway. A top-down probabilistic approach was applied, with a 

disaggregation by exogenous factors (mainly, by construction year). The approach contributed to convey 

the aleatory uncertainties, accommodate the heterogeneity of building features with flexible spatial 

resolution. Top-down energy models for urban environments implies spatial downscaling from 

agglomerated energy data for an area to progressively subdivide values into smaller sections, as city, 

district, or building. This is the opposite to bottom-up reasoning, in which information at finer levels 

can be aggregated energy consumption. Differently from previous cases, this study downscales energy 

consumption from block level to the building scale starting from an energy platform, distinguishing the 

main dwelling archetypes. The procedure is easily applicable to other contexts with a GIS support and 

with low computational efforts. Disaggregated data are the base to build a statistical model based on 

regressions, with independent building-related variables. Finer results are meant to be displayed in an 

energy mapping tool integrating energy and building aspects.  

 

3. METHODOLOGY 

This study proposes top-down statistical models to assess the residential building demand. Results 

distinguish main dwelling types, based on the Canadian context. The methodology workflow is 

illustrated in Figure 1. To perform regressions, the statistical models require data at the building scale 

which are not available. Therefore, the methodology disaggregates energy data of the 2030 Toronto 

Platform from the block scale to the building level for electricity and natural gas uses. Two methods are 

applied to distinguish values by housing category: the method by subtraction and the method by 

equation. Results of electricity and natural gas are then compared with provincial data, from which the 

most satisfying disaggregation method is selected (Table 6).  

From the downscaled building consumption, energy uses are estimated for appliances (App) and space 

cooling (SC) included in electricity and space heating (SH) and domestic hot water (DHW) included in 

natural gas. From the assessed energy uses by dwelling types, regression analyses (linear and 

multilinear) are performed to identify which independent variables impact more on building energy 

demand. Independent variables build equations to calculate energy uses’ consumption by housing types 

and can be extended for the other residential zones of the City of Toronto. Figure 1 shows the territorial 
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levels of input data, steps to downscale data from block to building level on which perform regression 

analyses, the top-down statistical models to be applied to estimate energy consumption by dwelling 

types. Regression analyses are applied because they do not require detailed values, relying on census 

information or consumption bills, and they are able to manage a wide sample of data. In this way, 

regressions can identify the relations between energy demand and relevant drivers, which affect building 

energy consumption [12]. 

 

3.1 Input data 

At territorial and urban scale, the control of GIS data is essential for the development of analyses and 

models. In this work, the GIS shapefile with building outlines [33] is corrected from non-habitable 

structures because not relevant in the energy consumption assessment. Specifically, buildings which 

cannot be identified as heated buildings.  

The block data of energy consumption from the Platform is then overlapped with single building 

shapes to obtain an overview of consumption distribution and neighbourhood profiles [34]. The 

available data are (Figure 1, Section 3.1):  

a. From the 2017 building shapefile [33], height and ground floor area. Using GIS, other geometrical 

data can be calculated: number of floors, heat loss surfaces, useful floor heated surface (UHS), 

surface to volume ratio (S/V, m2/m3), air volume and gross heated volume; 

b. At the block level retrieved from the 2030 Toronto Platform [16], energy consumption for electricity 

and natural gas based on 2017 (kWh/y), category mix (use and period of construction in percentage 

of gross floor area, GFA), energy-use intensity (EUI, kWh/m2/y). The block energy modelling 

followed the ASHRAE 90.1 (2004) framework for residential buildings, using values in Table 1. 

Evaluations by single building were then grouped by block: indeed, consumption by single building 

is not available nor displayed by the Platform due to restrictions;  

c. From the 2016 neighbourhood profiles [34] for the City of Toronto, socio-economic variables for 

each neighbourhood, among which number of inhabitants.  

The study focuses on residential blocks, with at least 95% residential GFA displayed by the Platform 

[16]. The residential function relies on the category mix at the block scale and further validated with the 

Toronto zoning by-law 569-2013 [35].  
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Figure 1. Methodology flowchart with the main steps, from disaggregating energy-use data to top-down 

statistical model. 
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3.2 Residential consumptions at building block scale 

For each residential block, the dwelling type is identified for each building according to their S/V 

ratio (i.e., the compactness of buildings’ form). The S/V (m2/m3) is calculated from the 2017 building 

shapefile [33] as the ratio between heat loss surfaces and gross heated volume. From previous 

elaborations for Canada [36] [37], the four considered archetypes are: detached and semi-detached 

houses, low-rise and high-rise apartments.  

Two approaches are applied to disaggregate data from block to building scale. In case of 95% 

residential GFA for the block, the remaining 5% consumption is derived from homogeneous blocks of 

that function by the Platform [16] and then subtracted from the total energy-use. The results from the 

two methods are then compared with measured data from provincial surveys [37] [38], to identify the 

most reliable ones on which statistical analyses are based. 

3.2.1 Method by subtraction 

Based on the category mix at the block level and the distribution of housing types within it, blocks 

can be: residentially homogeneous, with 80% of GFA covered by that category and 100% same block 

vintage mix; housing mix, with more than one dwelling archetype. From homogeneous residential 

blocks, electricity and natural gas consumption are calculated in kWh/m2/y, dividing the total block 

consumption by the UHS from the building shapefile on GIS. The averages of the energy intensities by 

dwelling type are then applied to the blocks with housing mix. The share (kWh/m2/y*UHS) from known 

archetypes is subtracted by the whole block consumption. The remaining consumption is divided by 

UHS of the investigated housing type. In this way, an energy characterisation can be obtained for 

residential areas, divided by housing category.  

Main typological and geometrical features are required by archetype to be calculated on GIS. The 

Toronto Platform and the building shapefile provide data to perform calculations. The method by 

subtraction is easily applicable to disaggregate consumption data from the block scale, for which it can 

be applied in case of scarce data.  

3.2.2 Method by equation 

This method applies the relations of energy consumption among dwellings, based on data by the 

Survey of Household Energy Use (SHEU) [38] for Canada. The SHEU distinguishes values by the 

previous four dwelling types and construction age. According to the block of buildings and building 

data, the energy consumptions are: 

Block consumption = UHSDTC  
.
 x + UHSSMDTC 

.
 (x 

.
 a) + UHSLR 

.
 (x 

.
 b) + UHSHR 

.
 (x 

.
 c) (1) 

where:  

• UHSDTC, UHSSMDTC, UHSLR, UHSHR are the useful heated surfaces respectively of detached 

houses/semi-detached houses/low-rise apartments/high-rise apartments for the selected block, 

distinguished by S/V ratio on GIS;  
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• x is the consumption of detached houses before 1980 given by [38] calibrated to the modelled block 

energy-use;  

• a/b/c are the multiplicative coefficients respectively given by the different share between the 

calibrated consumption of detached houses before 1980 and of semi-detached houses/ low-rise 

apartments/ high-rise apartments for the considered age [38]. 

The multiplicative coefficients are calculated as: 

a = 1 – (CDTC – C’)/CDTC (2) 

where:  

• CDTC is the consumption of detached houses before 1980 by the survey [38];  

• C’ is the consumption to assess. 

The equation (1) firstly needs to identify the detached house consumption x of the block, for electricity 

and natural gas.  

In case some blocks do not count any detached dwelling, semi-detached houses will represent the 

demand x in the equation (1). Then, the multiplication between the consumption value x and the 

considered coefficient will identify the kWh/m2/year for the selected dwelling type by energy source. 

The reference year for each block is selected by the higher share of GFA in the vintage mix of the 

Platform [16] because data for single building are not available.  

The equation may be more complex than the subtraction method. However, once the equation is step 

up, results are faster to obtain on an Excel spreadsheet, having the UHS of each dwelling type for each 

block. The potential of the equation for Toronto relies on the availability of data for single dwelling 

types, distinguished by age, at the provincial level. In case a residential survey is unavailable for the 

case study, the method by equation is not suggested because relations of energy consumption among 

dwelling types cannot be performed. 

 

3.3 Energy uses by dwelling types  

The steps followed so far are:  

• overlap of input data at the three scales; 

• identification of main residential archetypes for each block; 

• based on residential composition of each block, disaggregation of energy consumption from block 

to single dwelling scale with the two methods.   

The identified electricity and natural gas consumptions for the single residential building include 

energy uses in the residential profile. Each energy use is assumed to be satisfied by electricity or natural 

gas based on data from the provincial survey [37]. The database provides a characterisation of fuels and 

energy end-uses from 2000 to 2018, distinguished by detached, semidetached and apartments for 

Ontario. Domestic hot water (DHW) and space heating (SH) are mainly covered by natural gas, while 

space cooling (SC) and appliances (App) by electricity. Considering the Canadian climate, SC is not a 
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major component even if it is likely to increase with rising temperature trends. According to Ontario 

data for 2017 [37], SC is assessed as 14% of electricity demand for detached houses, 9.4% for semi-

detached and 5.1% for apartments. Appliances cover the remaining part of electrical consumption for 

the residential sector.  

The mean daily DHW per person is 75 l for washing, cleaning, showering, bathing [39]. Downscaling 

the number of inhabitants per buildings from neighbourhood data, the DHW consumption per building 

and per m2 have been calculated. Then, the share of natural gas used is identified from the block values, 

through the following equation:  

𝑄𝑢,𝑑 = 𝑉 ∙ 𝜌 ∙ 𝑐𝑝 ∙ ∆T / ηDHW (3) 

where:  

• 𝑄𝑢,𝑑 is the daily natural gas consumption for DHW;  

• 𝑉 is the daily volume of water per person, as 75 l/d;  

• ρ is the water density (about 1 kg/l);  

• 𝑐𝑝 is the water specific heat (1.163 Wh/Kg/K);  

• ∆T is the temperature difference between the outlet (assumed as 49°C)  and the inlet (water supplied 

to the heater, assumed as 11°C) temperature, according to [40]; 

• ηDHW is the efficiency of heat exchanger, considering 0.9 for DHW systems with natural gas boiler. 

The result (kWh) from (3) is multiplied by number of days in a year, then inhabitants in one building 

and divided by the UHS (m2) to obtain the DHW consumption by m2. The remaining share of natural 

gas consumptions is assumed to cover SH for each building. 

 

3.4 Statistical model to assess residential consumption 

Starting from the energy use data, a statistical analysis builds models to estimate building energy 

demand of the TOcore area and then applicable to the whole Toronto. As reported in literature [15] [41], 

the main aspect is the identification of independent variables which influence energy consumption: in 

case of satisfying correlations, linear or multiple linear regressions can be performed to obtain energy 

profiles for single buildings.  

Variables influencing the four energy uses and their relationships are identified by:  

• the Pearson’s correlation that is used to measures how a variable is linearly correlated to the energy-

use; 

• the coefficient of determination (R2), which shows that the variation of the dependent variable can 

be explained by changes of independent variables;  

• the significance F, which confirms that the regression is statistically significant, and the p-value <5%, 

which means how each variable is statistically significant. 

The independent variables are obtained from the building shapefile, block characterisation by the 

Platform, and neighbourhood profiles. Correlations are performed for the disaggregated energy data of 
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the four housing types. To be consistent, the R2 must be higher or equal to 0.6, even if it could be higher 

in other cases. The lack of functions and age by single buildings has limited the development of more 

specific evaluations and higher correlations. The regressions performed for the TOcore area by energy 

uses can be then extended to other areas to assess residential consumption. The building shapefile 

identifies typological data, while the 147 Neighbourhood Profiles [34] distinguish the share of housing 

by age of construction (before 1960, 1961-1980, 1981-2000, 2001-2005, after 2005). The statistical 

model can be applied only on residential zones by zoning [35]. 

 

4. THE CASE STUDY OF TORONTO, CANADA  

The starting point of the analysis is the area of the 2030 Toronto Platform, which is structured at the 

block scale for the city central core. This is an online tool developed by the Canadian Urban Institute to 

report building performance and improvements. For the existing buildings, the aim is to reduce GHG 

emissions in line with Canadian perspectives [42], while for new constructions pursuing net-zero 

structures by 2030. Along with the Platform, the 2030 District is developing research and engagement 

activities to define pathways for a zero-carbon district by 2050 [43].  

The considered area (called Toronto Core – TOcore) covers the city centre, extends for 16.44 km2, 

with 7,216 structures and more than 31 million m2 ground floor area. TOcore involves eleven 

neighbourhoods, further subdivided in sixteen by the TOcore profile [44], with a population of around 

200,000 in 2011 (7.6% of the City of Toronto) an increase by 19% from 2005. Mostly residential zones 

within the area of the Toronto 2030 Platform date back to 1980 or earlier. Expansions along the 

waterfront and financial blocks are more recent (1981-2000 or 2001-2010) where buildings with more 

than 30 floors are concentrated. These neighbourhoods are identified as most affected by estimations of 

population growth along pipelines [44]. 

The online platform displays information only at the block scale, based on energy data for 2017:  

• Block profile: function and vintage mix (by GFA %).  

Building functions are distinguished in: Office (small, street-level office units up to large multi-

storey office towers), Retail & Hospitality (all retail, restaurants, hotel, and entertainment 

establishments), Multi-Unit Residential (MUR, all buildings with seven or more residential units), 

Residential (RES, all buildings with six or fewer residential units), Institutional (schools, post-

secondary campuses, long-term care facilities, and hospitals) and Industrial (warehouses and 

manufacturing). The vintage mix has three ranges: pre-1980 (which is the prevalent category, 

especially for residential), 1980-2004 and post 2004.  

• Energy performance, with minimum and maximum values: GHG from buildings and from 

transportation (tCO2eq/y), energy use intensity (EUI, kWh/m2/y), electricity (E, MWh/y), natural gas 

(NG, eMWh/y) and water (eMWh/y) and, if used, steam and deep lake cooling (eMWh/y).  
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Due to licensing restrictions, measured consumption data were available only for the whole district. 

Having measured values at the district level, building energy simulations were modelled for single 

blocks and using information on building size, age, occupancy. Consequently, they are not directly 

measured at block and building scales. The ASHRAE 90.1 (2004) Standard for climate zone 5A was 

used for low-rise and high-rise apartments (Table 1). The prototypes are pre-1980, 1980-2004, and post 

2004. ASHRAE has only a more recent version of template (IECC 2015) for single family dwellings 

(detached and attached) for new residential constructions: therefore, distinctions by construction period 

were not available by ASHRAE and are not performed in the Platform. A set of four heating systems 

and four foundation types were matched to create the single-family prototypes.   

 

Table 1. ASHRAE Standards and main requirements, assumed in this study. 

 Single-family 
Mid-rise 

apartment 

High-rise 

apartment 

ASHRAE version 2015 IECC 

DOE pre-1980; 

DOE 1980-2004; 

90.1 2004  

Wall type Wood frame Steel frame  

Wall R-value  2.75 m2K/W 

Pre 1980: 1.13 m2K/W 

1980-2004: 2.15 m2K/W 

Post 2004: 3.23 m2K/W 

Roof type Gable roof 
Built-up flat roof, insulation entirely 

above deck 

Roof R-value  
2.4 m2K/W 

 

Pre 1980: 2.50 m2K/W 

1980-2004: 3.38 m2K/W 

Post 2004: 5.56 m2K/W 

Floor-to-ceiling height (m) 2.5 3.05 

Window  

U-value  
0.32 W/m2/K 

Pre-1980: 3.53 W/m2/K 

1980-2004: 3.35 W/m2/K 

Post 2004: 2.33 W/m2/K 

Window SHGC  0.34 

Pre-1980: 0.41 

1980-2004: 0.39 

Post-2004: 0.39 

Window-to-wall ratio 0.13 

Pre-1980: 0.15 

1980-2004: 0.15 

Post-2004: 0.30 

Foundation U-value  

Slab: U = 0.15 W/m2/K, crawlspace: U 

= 0.31, heated space: U= 0.37, 

unheated space: U=0.53 

Pre-1980 and 1980-2004: 0.54 

Post 2004: R-2.6 ci  

HVAC system 
Electric resistance, gas furnace, oil 

boiler or heat pump 

Gas furnace, split AC system DX, 

gas water heater (ƞ = 80% pre-1980, 

ƞ = 78% 1980-2004) 

Electricity plugs and process 

(W/ m2) 
14.05 

Pre-1980: 5.38 

1980-2004: 5.38 

Post-2004: 6.67 

Infiltration (ACH) 0.11 

Pre-1980: 0.7 

1980-2004: 0.7 

Post-2004: 0.14 

* ci = continuous insulation, defined by ASHRAE standard 90.1. 

 

The full characterisation of the 2030 Platform distinguished for functions is reported in Table 2, 

distinguished by function. Data by energy end-uses are not available for the TOcore area. 
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Table 2. Characterisation of building stock by use and energy-service according to the Toronto 2030 Platform, 

data taken and elaborated from [16]. 

 
RES MUR Office Industrial Institutional 

Retail & 

Hospitality 

Energy use intensity (ekWh/m2/y*) 179 234 268 N.A. 440 491 

Number of structures N.A. 3,034 2,603 26 561 4,690 

Gross floor area (1,000 m2) 2,848 10,711 8,671 61 3,495 5,544 

Gross floor area (%) 9 34.1 27.6 0.1 11.1 17.6 

Electricity demand (GWh/y) 140 950 1,010 20 810 740 

Electricity intensity (kWh/m2/y) 49.2 88.7 116.5 327.9 231.8 133.5 

Natural Gas demand (eGWh/y) 360 1,300 730 410 400 1,630 

Natural gas intensity (kWh/m2/y) 126.4 121.4 84.2 6,721.3 114.5 294 

Total energy intensity (kWh/m2/y) 175.6 210.1 200.7 7,049.2 346.3 427.5 

Steam (eGWh/y*) 0 140 300 0 270 180 

Deep lake water cooling (eGWh/y*) 0 90 260 0 40 160 

Water (eGWh/y*) 6 22.5 18.2 0 7.3 11.6 

* data not available for some building functions. 

 

Natural gas is the main fuel source used in Toronto due to its lower costs compared to electricity. It 

significantly contributes to greenhouse gas (GHG) emissions, while a lower share is from electricity. 

District heating and deep lake cooling interest only some areas of the district (i.e., the closest to the 

waterfront) and, therefore, count for a minimum share in the overall energy panel. Energy demanding 

and emitting sectors are offices and commercial: they cover a remarkable GFA share and number of 

structures, mostly distributed along the main streets (designated as financial-commercial areas by 

zoning). MUR prevails on the residential one due to the diffused presence of apartments in the central 

area, while dwelling with less than seven units are more limited and spread around the outer suburbs. 

MURs have also higher energy intensity, impacting more on the energy balance of the district. Industrial 

sector represents a minor contribution due to its limited presence in the downtown area, leaving room 

for more-tertiary oriented function as offices. 

 

5. RESULTS  

5.1 Elaboration of input data 

The shapefile of the whole building stock contains the main typological data for buildings (height, 

footprint area), from which other variables (heated gross volume, number of floors, heat loss surfaces, 

S/V ratio) are derived [33]. On the other hand, building functions from Open Street Maps are not 

sufficiently complete and accurate (6,129 out of 12,211, equal to 50.2%). As mentioned in paragraph 
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3.1, prior to the analyses, the shapefile is cleaned from polygons representing not habitable structures 

(garages, canopies, etc.), following these rules (Table 3). 

 

Table 3. Criteria and results from the cleaning of shapefile polygons for the TOcore area [33]. 

Type of geometry 
Number of 

deleted elements 

Number of deleted elements out of 

overall buildings (out of 14,279) 

Area less than 50 m2 2,397 16.7% 

Height less than 4 m 369 2.6% 

Overlapped polygons 976 6.8% 

 

Having building and block outlines in GIS, the housing demand is calculated for 75 residential blocks 

(21% of total blocks). Residential blocks have at least 95% GFA covered by RES and/or MUR 

(according to the Platform), due to the highly variable demand of other functions. In case of blocks with 

95% GFA residential, the remaining 5% consumption is derived from homogeneous blocks of that 

category (mainly retail or office) and then subtracted from the overall block demand. Assuming 95% 

GFA as threshold, all the eleven neighbourhoods of the TOcore area are represented, expect for the 

financial district of Bay Street Corridor. The functions of residential blocks have been further checked 

with the zoning by-law 569-2013 [35], completed in 2022. 

 

5.2 Disaggregated residential consumption by dwelling archetypes and energy end-uses 

For these residential blocks, the housing configuration are distinguished in four archetypes (Table 4), 

according to their S/V ratio, and following previous Canadian classifications [38] [37]: detached (S/V ≥ 

0.6 m2/m3), semi-detached houses (0.6 > S/V ≥ 0.4 m2/m3), low-rise (less than 5 storeys, 0.4 > S/V ≥ 0.3 

m2/m3), and high-rise apartments (S/V < 0.3 m2/m3). Then, the two methods (ref. paragraphs 3.2.1 and 

3.2.2) are applied to identify the electricity and natural gas consumption distinguished by dwelling types. 

The method by subtraction considers the following division between homogenous and housing mix 

blocks (  
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Table 5), based on to the share of housing types by the Platform.  

 

Table 4. Classification of residential building stock by main characteristics and S/V ratio (m2/m3) ranges [33]. 

Classification of 

dwelling types 
S/Vavg S/Vmedian 

Number of residential 

buildings (TOcore) 

Detached houses 0.71 0.67 780 

Semi-detached houses 0.53 0.55 1,204 

Low-rise apartments 0.34 0.35 91 

High-rise apartments 0.26 0.25 374 
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Table 5. Classification of residential blocks (RES+MUR ≥ 95% GFA) by main dwelling type and age [16] [33]. 

Classification by types Number of blocks Classification by age Number of blocks 

Mainly detached 18 pre-1980 66 

Mainly semi-detached 20 1980-2004 2 

Mainly low-rise 2 post-2004 6 

Mainly high-rise 9 mixed 2 

Housing mix 26   

 

Table 6. Comparison between calculated data from the two models and data from for electricity (E) and natural 

gas (NG) energy intensity [37,38]. 

 E/m2 detached E/m2 semi-detached E/m2 low-rise E/m2 high-rise 

Method by subtraction 

(I), not normalised 
83.68 68.07 181.07 44.73 

Method by equation 

(II), not normalised 
68.11 74.42 87.88 43.35 

Method I, normalised1 87.98 70.37 184.39 45.55 

Method II, normalised1 71.61 76.94 89.49 44.15 

SHEU, 20152 39.74 41.89 88.33 49.69 

NRCan, 20173 56.06 51.43 N. A. 47.96 
 

 
NG/m2 

detached 

NG/m2 semi-

detached 

NG/m2 low-

rise 

NG/m2 high-

rise 

Method by subtraction 

(I), not normalised 
76.21 38.71 122.04 97.40 

Method by equation 

(II), not normalised 
52.62 43.29 107.96 88.58 

Method I, normalised1 76.06 38.71 122.04 97.40 

Method II, normalised1 52.51 40.92 107.96 88.58 

SHEU, 20152 101.79 105.04 166.78 185.31 

NRCan, 20173 114 104.23 N. A. 96.41 

1Results are normalised by share of consumption from [37] for 2017 for Ontario by energy source and applying CDDs (26.3) 

and HDDs (3518) values for 2017 on a 30-year range with CDDs = 35.8 and HDDs = 3498. 

2The SHEU provides data measured for 2015 [38], distinguished by Canada provinces and by typology of buildings.  

3The Comprehensive Energy Use Database [37] provides data from 2000 to 2018, distinguished by Canada provinces; in this 

case, the 2017 values have been considered. It classifies detached, semi-detached, apartments (without dividing high rise and 

low rise) and mobile homes (not considered).  

The comparison between the two models for disaggregated block data confirms that the lack of 

function and age at the building scale limits accuracy and completeness. Indeed, values for post-1980 

housing are scarcer for detached and semi-detached: more recent high-rise developments prevail in 

downtown, whereas low-density ones are more common in the suburbs.  
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Compared to Ontario data (Table 6), electricity consumption is higher, while lower natural gas for 

detached and semi-detached. The most aligned results appear for high-rise, while a difficult demand to 

assess is from low-rise, both from the models and from the datasets. Overall, it must be underlined that 

Ontario data were assessed on a wide region (with different climate zones) and this significantly 

influences variations on energy-use compared to the results on Toronto. 

Except for low rise consumptions, the two methods show similar results while discrepancies with 

Ontario data are recurrent. The most effective is the method by subtraction rather than by equation. In 

the former, values depend only on Toronto characterisation (based on the block data from the 2030 

Platform) rather than on external datasets. However, block with housing mix can have a more limited 

accuracy because a part of consumption derives from an average of other blocks. On the other hand, the 

approach by equation follows the relation among dwelling types of another survey, being dependent 

from it, even if it is still quicker with available block demand and reliable surveys.  

From the values of natural gas and electricity, energy end-uses are derived for each building, following 

the steps of Paragraph 3.3.  

Table 7 shows results for each dwelling type. SC is assumed as part of electricity-use, while the 

remaining share for App. According to Ontario data [37] for 2017, SC is assessed as 14% of electricity 

demand for detached houses, 9.4% for semi-detached and 5.1% for apartments. DHW is calculated with 

Eq. 3 as included in natural gas, while the remaining part is covered by SH.  

 

Table 7. Assessed energy-end uses for each dwelling type, using natural gas (NG) and electricity (E) values 

obtained from the method by subtraction. 

 SH 

(kWh/m2) 

DHW 

(kWh/m2) 

App 

(kWh/m2) 

SC 

(kWh/m2) 

Detached 76.2 8.1 71.7 9.3 

Semidetached 38.7 7.9 61.7 7.2 

Low-rise 122 7.3 116 3.5 

High-rise 97.4 7.5 42.4 1.8 

 

 

5.3 Statistical model to assess the residential consumption  

As following step, regression analyses are performed between independent and dependent variables (  
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Table 8). Dependent variables are the energy uses previously assessed. Independent variables are 

calculated from the building, block and neighbourhood scales.   
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Table 8. Pearson’s correlations of energy-related variables with energy-use intensities. 

 
Vol 

(m3) 

S/V 

(m2/m3) 

UHS 

(m2) 

Number 

of floors 

Inh/ 

m2 

% pre- 

1980 

DHW

/m2 

SC/ 

m2 

App/

m2 

SHNG/m2 0.06 0.04 0.06 0.14 0.04 0.12 0.06 0.18 0.11 

DHWNG/m2 0.003 0.01 0.02 0.01 0.80 0.11 1 0.06 0.05 

(SH+DHW)NG/m2 0.09 0.31 0.07 0.14 0.18 0.07 0.23 0.03 0.03 

SCE/m2 0.15 0.40 0.15 0.25 0.02 0.15 0.04 1 0.35 

AppE/m2 0.15 0.30 0.14 0.23 0.15 0.41 0.05 0.36 1 

*NG=natural gas; E=electricity 

Correlations for SC and App energy intensities can build MLR models, both having quite high 

correlations with S/V ratio. DHW intensity shows higher values with residential density (inh/m2) 

because it is calculated from it, whereas the remaining natural gas share for SH is not unsatisfying. 

Therefore, DWH and SH intensities are summed to have only one natural gas consumption model. 

Considering the low results obtained by linear correlations (  
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Table 8), multiple linear regressions (MLR) are applied for the different uses to obtain more satisfying 

values. 

Regression results may also reflect the different materials of construction of each class and their 

impacts on energy demand: for instance, more recent high-rise can be realised in glass/steel with high 

glazing ratio, while older ones mainly in concrete/bricks [45]. However, the heterogeneity of 

consumptions of each housing type by age will not be fully represented because of assumptions made 

for modelling the Platform (ref. Paragraph 4). The statistical models attempt to distinguish by age only 

natural gas, while SC and App will include pre-1980 as a variable in MLR. Low- and high-rise 

apartments are the most likely to vary demand due to the different values of building components for 

the ASHRAE models. 

 

5.3.1 Electricity: SC and App consumption  

Considering the low values for a linear regression, MLRs are applied for housing consumption.  

The MLR model for App shows a quite good coefficient of determination and low significance p-

value respectively equal to R2 = 0.596 and F = 1.36E-199, while for space cooling R2 = 0.631 and F = 

2.6E-223. As it is possible to observe (Table 9 and  
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Figure 2), less satisfying results are for low-rise apartments which is the most variable category. For 

the others, the average values are in line with the consumption assessed from the aggregated values 

(Paragraph 5.2). As seen before (Table 6), electricity confirms a decreasing trend with lower S/V ratio, 

having minimum results for high-rise buildings. Additional analyses with material properties and 

operating systems may underline further differences, especially in the SC outputs. For instance, 

apartments can have central cooling or larger fenestration area and/or higher glazing thermal 

transmittance (U-value) can increase SC and SH loads due to higher solar gains and heat losses by 

transmission (mainly for high-rise buildings) [46].  

 

Table 9. Variables selected to build MLR models for appliances (App) and space cooling (SC). 

 App EUI SC energy intensity 

Variables Coefficients P values Coefficients P-values 

Intercept 26.6283 3.741E-68 -3.1531 2.4E-28 

Number of floors -0.6543 1.212E-20 - - 

S/V ratio 22.7825 7.198E-35 8.6972 1E-101 

% Pre-1980 27.8844 1.77E-103 1.7955 4.2E-11 

App/m2 - - 0.065 3.6E-92 
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Figure 2. EUI data (dark) and calculated values (light) for appliances (up) and space cooling (down) by 

dwelling types, with error bars. 

 

5.3.2 Natural gas: SH and DHW consumption 

The analysis of natural gas consumption was more complicated because correlations with independent 

variables are lower and disaggregated data by dwelling types have significant variations for multi-family 

dwellings. The DHW energy intensity has higher correlation (R2=0.803) with inhabitant density (inh/m2) 

because it is directly assumed from the number of inhabitants. On the other hand, SH (remaining share 

of NG) shows unsatisfying correlations. Therefore, DHW and SH are joined as total amount of natural 

gas consumption (ref.   
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Table 8). The analysis was then performed considering S/V ratio and period of construction, 

distinguishing low-density and multi-family buildings.  

The correlation used for EUI for detached and semi-detached houses depend only by S/V ratio and 

not by the period of construction. Similar mean values (assessed) are for natural gas EUI before and 

after 1980 for detached and semi-detached houses, respectively 76.22 and 75.95 (4% difference) 

kWh/m2/y and 38.70 and 39.10 (8% difference) kWh/m2/y. Limits emerge in the model due to few 

blocks of these categories built after 1980. Only 3 blocks present detached or semi-detached buildings 

after 1980, while 40 in before 1980: in the downtown, high-rise construction prevailed in the last 40 

years. Consequently, the scarcity of post-1980 contributes to have similar values for different 

construction periods. The linear regression for detached and semidetached can be applied for dwellings 

realised after 1980, while cautions is needed for more recent stock.  

 

Figure 3. Natural gas EUI for low- and high-rise buildings. 

 

Table 10. Average NG energy-use intensity (kWh/m2/y) for low-rise and high-rise apartments by period of 

construction. 

Period of 

construction 

Low-rise NG 

intensity (kWh/m2/y) 

Number of blocks 

considered 

High-rise NG 

intensity (kWh/m2/y) 

Number of blocks 

considered 

Pre 1980 184.54 6 134.23 10 

1980 - 2004 106.45 2 92.11 5 

Post 2004 n. a. 0 78.46 6 

 

As already highlighted by [45], EUI data for low-rises and high-rises are highly variable, especially 

for SH and DHW, and this implies lower correlations than expected. Construction materials (e.g., 

reinforced concrete-bricks, glass, and steel buildings), technological systems, maintenance level, type 

of use can characterise the EUI. An additional factor could be the mix of systems especially in more 

recent buildings, with both electricity and gas-based system. For low- and high-rise buildings, natural 

gas EUI shows typical trends (in Figure 3 and Table 10):  
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• Higher EUI for older buildings, lower EUI for 1980-2004 and lowest EUI for after-2004 blocks with 

more insulated envelope and more efficient technological systems.  

• Low-rise apartments present higher EUIs and S/Vavg (0.35 m2/m3) compared to high-rise with 

S/Vavg=0.25 m2/m3; only a limited number of buildings have much higher EUIs. 

For low- and high-rise apartments, the average EUI values reported in Table 10 are used considering 

the three main periods of construction and S/V ratios. The variability of natural gas consumption did not 

allow to build more solid models.  

 

5.3.3 Place-based assessment  

The EUI models are then applied to the residential buildings stock of the Platform area using GIS. 

This approach allows to evaluate and calculate all typological and geometric information of dwellings 

and population that can influence energy consumptions. The analysis can be extended to the whole city 

of Toronto using the buildings’ shapefile and the 147 Neighbourhood Profile data for the construction 

period on residential zones reported by zoning.  

 

 

Figure 4. Buildings’ S/V classes (left) and App + SC electrical consumption based on linear regressions (right) 

for the southern part of Humewood-Cedarvale neighbourhood. 
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The most demanding areas are easily visualised in GIS [35]. An example is provided in Fig. 4 for the 

Humewood-Cedarvale neighbourhood (North from downtown Toronto), mainly low-density residential 

zone and with 91% houses built before 1980.  

The GIS-based mapping distinguishes and spatialises energy consumption variations for the different 

building types (Figure 4). In the example, higher intensity values (kWh/m2/y) characterise buildings 

with higher S/V ratio, which cover most of dwellings. On the other hand, the overall annual consumption 

is concentrated for high rise apartments along the main neighbourhood roads. The residential stock 

covers most of the areas around Toronto downtown, alternating more sprawl-based zones with denser 

centres with high-rise prevalence. 

 

6. DISCUSSION  

The assessment of residential energy consumption by dwelling shows potentials and limits. The 

identification of single-building energy-use from block data can lead to inaccuracies, especially for 

housing mix blocks. Between the two approaches, the method by subtraction is more coherent and 

specific for the case study. It is also easily flexible and adaptable to other contexts if aggregated energy 

data and typological features are available. On the other hand, the approach by equation must be based 

on reliable and comprehensive energy data for housing types, which might not be accessible. A further 

simplification in this study is the use of ASHRAE templates for building models of different structures, 

materials, and ages of construction. The most simplified housing archetypes are detached and 

semidetached house, for which the IECC 2015 assumption had been homogeneously applied.  

Based on the disaggregated values, the MLRs for electricity uses highlight decreasing intensities with 

lower S/V ratio, or rather for high-rise dwellings. The natural gas assessment is distinguished for 

detached and apartments buildings. Regression models are built considering the S/V ratio and the period 

of construction. Detached and semi-detached count only few blocks built after 1980 and the evaluation 

is predominantly based on older building stock. A sufficiently reliable model is not found for high- and 

low-rise apartments due to the high variability of measured results for the same age ranges. The 

demanding character of older high-rise MURBs (multi-unit residential buildings) in Canada and for 

Toronto emerged already in other studies, especially if constructed between 1945 and 1980 and if gas 

heated [46] [47]. The diffused poor maintenance contributes to their low performance and high energy 

losses, while tenants and owners are reluctant to invest in retrofit measures. To address similar issues, 

the City of Toronto launched the Tower Renewal Program in 2004 to improve energy savings [46] [47]. 

According to GIS mapping, high-rise consumption is mainly concentrated in the city centre and in 

infrastructural nodes (i.e., subway and railway stops), while single-family houses are in more 

decentralised zones. The GIS support can support and spatialise further evaluations, as the solar potential 

on building rooftops and the coverable share of electricity demand. Despite providing an initial 
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characterisation of residential consumption, the statistical models are affected by not specific 

assumptions in modelling and lack of measured data at the building scale, mainly for function and age. 

The natural gas assessment requires further data for more structured results. Instead of relying on blocks 

and buildings categories retrieved from the 2030 Platform, a dataset on single buildings would have 

supported stronger statistical regressions. Privacy limitations, constraints on data accessibility and 

spatial resolution are obstacles to, as discussed by [17].  

 

7. CONCLUSIONS 

The top-down statistical models attempt to assess the energy demand for residential buildings, starting 

from aggregated block energy consumption. The case study was the central area of Toronto, on which 

the 2030 Platform is based on, focusing on residential areas. The energy demand at the block level from 

the Platform was disaggregated at the dwelling scale for electricity and natural gas. Two methods were 

applied, and more satisfying results were obtained with the techniques by subtraction. The statistical 

analysis then highlighted relationships between energy uses and independent building variables. The 

MLRs allow to realise a model for housing electricity demand for space cooling and appliances. The 

electricity consumption for low-rise resulted more variable for appliances and not returned from the 

equation. Due to linear regressions below R2=0.6, DHW and SH were joint in one model for natural gas 

and distinguished for low-density and multi-family housing. The presence of only three blocks of 

detached and semidetached houses built after 1980 contributes to have similar values before and after 

1980. Low-rise and high-rise showed variable natural gas consumption by construction age. Rather than 

regressions, average intensities can be considered by apartment archetypes and period.  

However, the scarcity of accurate data and variability have significantly impacted on results, 

especially for natural gas consumption. Future studies require a detailed validation with measured data 

mainly for SH or process-driven approach to provide a more accurate energy model and understand 

limitations of the 2030 Platform. In this way, the model could be extended with more accuracy to the 

city and provide more accurate evaluation for policy framing. In future studies, an extended PV 

assessment could identify potential residential consumption satisfied by solar technologies to extend 

decentralised energy systems and to improve the self-sufficiency for the entire City of Toronto. 
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