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Multi-Criteria Coordinated Electric Vehicle-Drone
Hybrid Delivery Service Planning

Young Hoo Cho, Member, IEEE, Donkyu Baek*, Member, IEEE, Yukai Chen*, Member, IEEE,
Min Jae Jung, Member, IEEE, Sara Vinco, Senior Member, IEEE, Enrico Macii, Fellow, IEEE,

Massimo Poncino, Fellow, IEEE

Abstract—According to recent works, a coordinated delivery
strategy in which terrestrial and aerial electric vehicles work
together effectively improves delivery throughput and energy
efficiency. However, most research on logistics and transportation
focuses on delivery performance and does not care about energy
efficiency, with three main limitations: 1. Most of these works
ignore geographic information along the delivery route, while
road slope is one of the most critical energy consumption
components. 2. Vehicle and drone power consumption models
are simplified as driving mileage, while the delivery time is
a significant concern. 3. The battery model is simplified as a
linear model even though practical batteries have non-linearity
properties. This work proposes a framework to provide energy-
and time-efficient delivery schedules with a hybrid delivery
service with terrestrial and aerial electric vehicles. We first
implement accurate electric van and drone power models and
a battery model based on manufacturers’ system specifications
and experimental data. Then, we propose a heuristic delivery
scheduling algorithm to determine the electric van and drone
delivery schedule. We also introduce various cost functions to
evaluate the delivery scheduling results regarding time, energy,
the weighted sum of time and energy, and the economic model.
The proposed framework is validated on randomly implemented
delivery missions and delivery scenarios in existing cities. Results
indicate that the coordinated delivery saves delivery costs up
to 27.25% in terms of the economic model compared with the
electric van-only delivery schedule.

Index Terms—Electric Vehicle Delivery, Drone Delivery, Vehicle
Power Modeling and Simulation, Vehicle Routing, Drone Routing,
Hybrid Vehicle-Drone Routing, Battery Algorithm, Heuristic
Algorithm, SystemC.

I. INTRODUCTION

Terrestrial electric vehicles (we call EVs shortly in this pa-
per) are expected to progressively replace traditional Inter-
nal Combustion Engine (ICE) vehicles thanks to the high-
efficiency characteristics of electric motors, high torque at low
Rotations Per Minute (RPM), relatively low operating noise
and vibration, and simple maintenance. The operation of the
regenerative braking system, which transfers kinetic energy
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from the wheels to electric energy, also improves the efficiency
of EVs. Due to the advantages in terms of efficiency, new
vehicle manufacturers [1], [2] as well as traditional vehicle
manufacturers [3], [4], [5] start to build electric vehicles for
delivery, and delivery companies have gradually started to use
electric vans for their delivery services [2], [5].
In the context of a package delivery business on a small-to-
medium geographic scale, delivery efficiency can be signifi-
cantly improved by assistance from aerial electric vehicles (we
call drones shortly) in terms of both delivery time and energy
efficiency [6]. While EVs cover long distances and heavy
parcels, their energy efficiency is strongly affected by road
traffic and geographical condition, like road slopes, narrow
lanes, and rough road conditions. On the other hand, drones
are unrestricted by traffic and terrain, ignoring geographical
conditions. Coordinated delivery with the two types of vehicles
can thus achieve a complementary “virtual vehicle” that can
efficiently reduce the total delivery time and energy.
The advantages of a coordinated EV-drone delivery in the
literature have been mainly focused on the benefits derived
by shifting part of the packages to drones. Therefore, the
emphasis has on the delivery problem’s “last-mile” aspect.
Drone’s higher energy efficiency and small weight allowance
are exploited for delivering packages to a single destination
entirely off the main vehicle driving route, or several light
packages to geographically close locations.
Several variables should be considered when considering the
topographic details of the delivery area. Figure 1 describes
one delivery instance to illustrate the motivation of this work,
where five locations along a delivery planning route are shown
together with their altitude location. It is evident (Figure 1(a))
that because of altitude differences, the roads consist of
bends and possibly steep uphill roads, which will significantly
deplete more battery charge from the EV than the EV driving
on a flat and straight road.
The non-straight-line distance between locations can quickly
be taken into account in 2D planar scenarios: it would suffice
to replace road information and label distances with the actual
length. For instance, two locations on a 2D map may have a
Euclidean distance of 1 mile, but the road connecting them is
1.5 miles due to the natural terrain. Concerning the traditional
planar analysis, they do not consider altitude as its effect on
the distance; distance is not just the geometric distance but also
considers the impact of altitude. Therefore, it is intuitive that
offloading deliveries to locations with relatively high altitude
differences to drones would be more energy efficient.
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Figure 1. EV-only planning path (a) and EV-drone planning paths (b) (solid
lines for EVs, dashed lines for drones).

The case of Figure 1 shows one such (somewhat extreme)
example; in an EV-only delivery (Figure 1(a)), the EV will
have to go up and down (see the profile in the bottom part
of the Figure 1) to serve the destinations in sequence. In
Figure 1(b), destinations 2 and 4 are served by a drone, which
will return to the EV while it is moving. In this way, the
EV can follow a much flatter route than the previous route
to serve destinations 1, 3, and 5, approximately at the same
altitude. In addition, less battery usage reduces battery stress.
With the reduced battery stress and several stops, the EV can
either use a smaller vehicle for the same set of deliveries or
add more destinations within a planned delivery route for the
given battery size.
A typical situation adopting the coordinated delivery scenario
considers customers who are grouped in a densely populated
area (districts with high-density housing) and just a few
customers scattered outside of the area. In this case, deliveries
for the densely populated areas are covered by an EV, and
a drone covers the outliers. Previous work shows that the
coordinated delivery can yield 30% faster deliveries in the case
of favorable distribution of the locations [7]. When existing
works address coordinated delivery, they mainly focus on
improving delivery time as the sole cost metric [8], [9], [10].
There is an orthogonal dimension in the delivery scenario
when we also consider the altitude of customers or road condi-
tions. The last-mile delivery by a drone becomes more efficient
for customers with significant altitude differences than the
customers in the same altitude plain because the delivery by
a drone saves energy consumed by the EV on an uphill road.
However, the three-dimensional (3D) topographic information
is ignored in previous work even though the information
significantly affects delivery efficiency; problems are solved
as all customers are at the same altitude. In addition, since the
battery is a typical non-ideal energy storage device, and it has
multiple non-linear characteristics during the discharge [11],

steep uphills drain the EV battery considerably more than the
drone battery. Some work considers the energy consumption
perspective as a metric with a simplified battery discharge
model and vehicle-drone powertrain models [9], [12], [13].
However, the model accuracy of the vehicles and battery is
one of the most critical factors in evaluating efficient delivery
paths under the 3D topographic information. Accurate models
are not required for the typical two-dimensional (2D) delivery
problem without altitude information because the total delivery
distance is mainly straightforwardly proportional to the total
energy consumption or delivery time.
Another paramount concern of the coordinated delivery is
the cost function definition for delivery schedule evaluation,
given that delivery time and energy are both important factors.
Time and energy consumption are inversely proportional and
directly related, and should thus be considered simultaneously.
As an example, in the coordinated delivery scenario, the use
of the drone as the last-mile delivery may slow down the
overall delivery time due to the waiting time for the drone’s
return, even though it saves significant energy consumption.
Therefore, we should carefully evaluate which delivery plan
is better regarding energy and time.
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Figure 2. Coordinated delivery result with consideration of energy only (a)
and of energy and delivery time (b).

The cost function of the delivery is another delivery issue.
Generally, a drone delivery at the last mile may increase
the delivery time because the drone speed is typically slower
than the EV, and the EV should wait for the returning drone.
Figure 2(a) shows a motivational example of this, showing that
an energy-efficient coordinated delivery may increase delivery
time because the drone speed is slower than the EV in typical;
thus, the EV sometimes should wait for the drone to return.
Therefore, we should consider both energy and delivery time
for the coordinated delivery that, as shown in Figure 2(b),
might identify a better energy-time trade-off.
This work proposes a framework to provide energy- and time-
efficient delivery schedules with heuristic algorithms for the
coordinated delivery service. The proposed framework consid-
ers 3D topographic information. Figure 3 shows the proposed
overall coordinated delivery service planning framework, con-
sidering all aforementioned considerations. We first develop
accurate models of a target EV powertrain, a target drone
powertrain, and two vehicles’ battery packs, respectively. An
accurate battery model for the drone is mandatory to estimate
an available flight time and utilization of the drone. So, we
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Figure 3. Framework of the coordinated delivery service planning.

implement a nonlinear dynamic battery model that can account
for the battery capacity dependence on load variations. New
cost functions are developed for the evaluation of coordinated
delivery service plans are proposed. Coordinated delivery
service planning outputs delivery schedules for the EV and
the drone according to the specified cost function.
Technical contributions of this paper are:

1) Development and integration of accurate electric van and
quad-copter drone powertrain models with an advanced
battery model that accounts for multiple non-linear dis-
charge characteristics; all these models are derived based
on manufacturers’ system specifications and experimental
data.

2) Cost functions with a weighted sum of energy and time
to analyze the trade-off relationship between the two
objectives, energy and time.

3) A total cost function considering an economic model in
which time and energy are converted to the exact expense
based on typical delivery and electricity fee.

4) Evaluation of the proposed delivery scheduling results
under various delivery scenarios with the accurate pow-
ertrain and non-linear battery models.

5) Validation of our van-drone delivery service planning
framework in existing real cities.

The rest of this paper is as follows: Section II explains this
research’s motivation and related work. Section III describes
how powertrain models, battery models, and cost functions
are developed. Problem formulation and algorithm of our
proposed scheduling framework are described in section IV.
We introduce the simulation setup and present the framework
validation with simulation results in section V. Section VI
draws the conclusion of this work.

II. RELATED WORK

Although research on EV-drone coordinated delivery in lo-
gistics is still in its infancy, the results have been promising.
According to the optimization target, the previous works can
be classified into two main categories: reducing delivery time
or improving energy efficiency.
The work [8] proposed a continuous approximation model
for a disaster-affected region where drones can be considered

potential transportation except trucks to transport emergency
supplies. Although the work sets the delivery time as the
critical point, it ignores the combined truck-drone delivery
system’s energy efficiency. In [9], the authors proposed a
multi-trip vehicle routing problem that considers battery and
payload weight when calculating energy consumption. How-
ever, the battery model used in this work is vague, and the
work concentrates on extending drone flight time by increasing
the battery size and reducing available payload capacity, which
does not consider the integrated truck-drone system’s energy
efficiency. [10] has the same limitation as the previous two;
it simulates truck-drone delivery analysis only considering
delivery time. In addition to the simulation-based method, [14]
combines a theoretical analysis in the Euclidean plane with
real-time numerical simulations on a road network. Still, they
only provide data on delivery time. Recent work [15] starts
to focus on the drone coordinated with the existing public
transportation system for delivery; the authors propose a new
service model to characterize the delivery time for customers,
then the authors formulate and propose an algorithm to solve
an optimal deployment problem to minimize the average
delivery time for the customers.
Besides the works focusing on delivery time optimization,
another type of research focuses on the truck-drone system’s
energy savings compared to the truck-only system. However,
most of them use a simplified battery discharge model to
run the simulation, such as [9], or use the simplified truck
and drone power models. One example is provided in [12],
which proposes an optimization algorithm that determines the
optimal number of launch sites and locations, and the number
of drones per truck to increase the total energy efficiency.
This work focuses on implementing an optimization algorithm
without using accurate models. Most of the existing works
under this category have the same issue [13]; they focus on
improving the algorithm to achieve better energy efficiency
performance while neglecting the fundamental characteristics
of power consumption in the whole system. Another example
is [13]; it models truck-drone delivery as a TSP problem and
develops several heuristics based on local search and dynamic
programming. It improves performance by saving delivery
time and energy compared with truck-only delivery. Still, the
work does not adopt any drone and truck power models and
ignores the battery’s actual discharge characteristics.
Besides the inaccurate models adopted, the existing works
usually assume the delivery locations in a two-dimension
plane with uniform or non-uniform distributions and ignore
the geographic information. However, the road slope strongly
affects the vehicle’s power consumption, and the location’s
altitude is crucial for deciding how to partition the delivery
tasks between trucks and drones.

III. SYSTEM MODELING

A. Electric Vehicle Powertrain Model

Four resistances act on a vehicle when the vehicle drives on
the road: rolling resistance FR, gradient resistance FG, inertia
resistance FI , and aerodynamic resistance FA. Figure 4 shows
the four resistances acting on a delivery van climbing a hill
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with δ degree. All resistances except FA are linearly propor-
tional to vehicle mass m. Power consumption to overcome the
resistances Pres is a function of torque T and angular speed
ω as shown below equation:
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Figure 4. Forces acting on an electric van.

Pres = Tω = Fds/dt = (FR + FG + FI + FA)v (1)

FR ∝ Crrmg, FG ∝ mgsinθ, FI ∝ ma, FA ∝ 1

2
ρCdAv2

where v is the vehicle speed, Crr is rolling resistance coeffi-
cient, m is the total mass of an electric vehicle, g is gravity, θ
is road slope, a is vehicle acceleration, Cd is drag coefficient,
and A is the front side area.
Practical power consumption by electric motors PEV is the
sum of the power to overcome the resistances Pres and the
power lost by the motor rotation mechanism Ploss [11]. PEV

thus depends on m, θ, v, and a:

PEV = Pres + Ploss = f(m, θ, v, a) (2)

B. Electric Drone Powertrain Model
A typical drone power model [16] consists of three resistances
that act on a quad-copter as shown in Figure 5. When the drone
takes off and increases its altitude, as shown in Figure 5(a),
there are two resistances: gradient resistance FG pulling down
the drone and dragging resistance in vertical direction FDV .
Thrust FT generated by the rotor opposes these resistances
to keep the drone flight constant. When the drone flies in the
horizontal direction, as shown in Figure 5(b), the sum of two
resistances FG and FDH (dragging resistance in the horizontal
direction) act on the drone.
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Figure 5. Forces acting on a drone when it takes off (a) and flies in the
horizontal direction (b).

The required thrust to oppose the above resistances is thus:

FT = FG + FDV and FT =
√
F 2
G + F 2

DH . (3)

where FG, FDH and FDV are modeled as functions of drone
mass wd, payload wp, and horizontal and vertical drone flight
speeds vh and vv:

FG = (wd + wp)g, FDV =
1

2
ρAtCdv

2
v ,

FDH =
1

2
ρAfCdv

2
h

(4)

where g is gravity; Af and At are cross sectional areas in
horizontal and vertical directions; Cd is drag coefficient; ρ is
air density. Thrust is modeled as a function of motor angular
speed:

FT =
1

2
ρApCt(ωr)

2 (5)

where Ap is the disk area of propellers; Ct is a thrust coeffi-
cient; ω is angular speed of motors; r is radius of propellers.
Therefore, the required power for the drone delivery PD

becomes a function of angular speed with experiment-based
linear modeling.

PD = f(ω(wp, vv, vh)) (6)

where ω is dependent to payload wp, drone flight speed vh
and vv .
We can derive the required angular speed ω during take-off,
horizontal flight, and landing with a payload described in [11].
We assume a simple drone flight model, which consists of
(i) take-off from a place with constant vertical speed to a given
height, (ii) flight horizontally until it reaches the destination
with a constant speed, and (iii) landing with the same vertical
speed on the destination. The drone takes off from the EV
with one or multiple packages as a sidekick and returns to the
EV after finishing the delivery.

C. Non-linear Dynamic Battery Model

The battery pack model must be able to account for the non-
ideal discharge characteristics of the battery. We model a
single battery cell using a circuit equivalent model that con-
siders the capacity dependencies on the current magnitude and
dynamics [17]. As shown in Figure 6, the circuit equivalent
model consists of a battery state of charge (SOC) model on the
left-hand side and a battery voltage model on the right-hand
side, respectively.

Figure 6. Adopted circuit-equivalent model for battery cell.

In the battery SOC model, a current generator Ibatt represents
the discharge current, and a capacitor C represents battery
capacity, which is obtained by converting the nominal battery
capacity Cnom (in Ah) using (7), where 1V is the initial
voltage across the capacitor that defines a fully charged
battery [18], represented by the 100% SOC of battery:
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C =
Cnom × 3600

1V
(7)

The voltage generator Voc(SOC) of the model describes the
relation between SOC and voltage. R(SOC) represents the
battery’s internal resistance. The methodology to extract these
two quantities is described in [19]. The two pairs of RC groups
in the series of the battery model account for the battery’s
sensitivity to the load dynamics. The first RC group (parallel
between RS(SOC) and CS(SOC)) defines the short-time
constant τS = RS × CS of the battery voltage response due
to the double layer capacity effects; the second RC group
(parallel between RL(SOC) and CL(SOC)) defines the long-
time constant τL = RL × CL of the battery voltage response
due to the characteristic diffusion effects in the electrolyte.
The work in [19] provides the detailed steps to extract these
RC groups’ quantities from the battery datasheet, given that
it provides the voltage trace of a pulse current. There are
existing works that compute these parameters by conducting
pulse current tests. However, since it is too difficult to obtain
the parameters of these two RC groups and they do not affect
the long-term simulation results, this circuit equivalent model
is frequently used with only the R(SOC) in the right part
for the simulation as it does not focus on the instantaneous
simulation results.
Two voltage generators Vlost(fload) and Vlost(Iload) are used
to express dependencies on the amplitude and frequency
of the load current. Both the higher magnitude and higher
frequency of the load current decrease SOC. These two voltage
generators bring a voltage drop at the SOC node, thus affecting
the battery SOC. Vlost(Ibatt) is derived by computing, at each
simulation time step ∆t, the following equation:

∆SOC(IBatt) =
IBatt ×∆t

C(IBatt)
− IBatt ×∆t

Cnom
(8)

where C(IBatt) is the relationship between capacity and
battery current that can be derived from the datasheet as
described in [20] and Cnom is the nominal capacity. The effect
of the discharge variation is not an instantaneous quantity;
therefore, the model uses the Short Time Fourier Transform
(STFT) to compute load frequency components in each time
interval window. Vlost(fload) is obtained by evaluating (9) at
each ∆t.

∆SOC(fload) =

NFFT∑
i=1

(
IBatt(i)×∆t

C(fload)
− IBatt(i)×∆t

Cnom
) (9)

where NFFT is length of timing window in STFT;
IBatt(i), i = 1, . . . , NFFT is a string of current values within
a timing window; C(fload) is the relation between capacity
and load frequency. The method proposed in [20] shows
that using the information in the datasheet can derive the
relation between discharge energy and current and the relation
between discharge time and current. Then the relation between
discharge power and current is computed based on the previous
two relations. The power and current relation and the energy
and current relation are used to draw a Ragone plot. The

diagonals in the Ragone plane indicate the discharge time; the
inverse of each discharge time represents a frequency. Thus
the relation between energy and frequency is extracted; after
converting energy to capacity, C(fload) is computed.
We assume that all the cells behave identically within the
battery pack. Therefore, we built the pack model for the
electric van and drone by ideally scaling all electrical pa-
rameters according to the serial and parallel connectivity of
the battery cells within the pack. This accelerates simulation,
and as it is not necessary to simulate individual cells, the
fast simulation speed can effectively support the delivery
scheduling exploration.

D. Cost Function
1) Weighted-sum between energy and time: The weighted-
sum cost function is used to find energy- and time-efficient
delivery routes. A weight parameter, Wα, reflects the individ-
ual’s preference or priority of the delivery between the energy
and the time as follows:

Csum(n1, n2) = WαT (n1, n2) + (1−Wα)E(n1, n2) (10)

where a function T () outputs time for the delivery from
node n1 to n2; a function E() outputs the sum of energy
consumption of the EV and drone from n1 to n2. The functions
T () and E() are described as follows:

tEV (nEV − 1, n(EV,D)) =
dEV

vEV
,

tD(nD − 1, n(EV,D)) =
dD
vD

+ 2
hver.

vver.
,

T (n1, n2) = max(tEV (n1, n2), tD(n1, n2)),

E(n1, n2) = PEV tEV + PDtD
(11)

dEV , vEV , and tEV are the distance, velocity, and travel
time of the EV and dD and vD, hver. and vver., and tD are
the straight distance and the velocity from n1 to n2, vertical
distance and vertical drone speed for take-off and landing,
and travel time of the drone. PEV and PD are related power
consumption of the EV and drone, which are described in
eqs. (2) and (6). When estimating T(n1,n2), it takes a longer
delivery time between EV and drone, which applies a waiting
time for the slower vehicle to arrive.
2) Economic Model: The weighted sum as a cost function is a
reasonable metric for individuals. However, in the delivery in-
dustry, the most important preference is the economic income
of the delivery. It is not easy to find the optimal Wα maxi-
mizing the economic delivery income. The delivery company
may lose a chance to earn more economic benefits by delaying
packages to save energy consumption. The delivery company
should know i) how much economic benefit we can make in
a given delivery time and ii) how much economic benefit we
may lose with a given amount of energy consumption.
We convert energy and time for the delivery from n1 to n2

into a single cost parameter Ceconomic as follow:

Ceconomic(n1, n2) = Ctime(n1, n2) + Cenergy(n1, n2)

Ctime(n1, n2) = Itime × T (n1, n2)

Cenergy(n1, n2) = Celec × E(n1, n2)

(12)
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where Ctime() and Cenergy() mean costs of delivery time
spent from n1 to n2 and the consumed electricity for this
delivery. Cenergy() is simply obtained from the product of
electricity fee Celec and E(). Estimation of Ctime(), on the
other hand, is based on the expected delivery income per hour
Itime. If we waste more time on the delivery, we lose expected
future income obtained through the next delivery under the
fixed daily operating hour. Equation (13) shows the derivation
of expected income per time unit.

Itime =
Idel ×Ddriver

Twork
(13)

Idel =
Inet

365×Dcom
(14)

where Idel is an expected average income by a delivery;
Ddriver is the amount of daily deliveries handled by one
driver; Twork presents a daily working hours of a delivery
driver; Inet is an annual net income of a company; Dcom is
the average amount of daily deliveries in a company.

IV. ENERGY AND TIME EFFICIENT COORDINATED
SCHEDULING

x

y

Depot

Customers

Road of the truck

(a) (b)

x

z

y

Altitude 

difference
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Figure 7. Problem definition for coordinated EV-drone delivery.

Figure 7(a) shows an instance of the problem with three
locations on the plane, and Figure 7(b) in its 3D view rep-
resents a proposed delivery task, including the corresponding
topographic information. This example has one depot node,
three customer nodes, and an EV. All nodes are fully connected
with vehicle roads, including Euclidean distance on the plane.
Each node has a different altitude and a coordinate location
on the plane. Each road of the vehicle has an actual length,
including bends, and the slope of the road is derived from
the length and altitude difference between the two nodes as
indicated in Figure 7(b).

A. Scenario Definition

We adopt the following delivery scenario: an EV is equipped
with one drone and supposed to deliver n of packages to a set
of n destinations. The EV starts from a depot node; it visits
all customers once and returns to the depot node when the
delivery is complete. The overall delivery task is denoted by
Q = {q1, . . . , qn} and is defined upfront. Each delivery task
qi to destination i is a 4-tuple (wi, xi, yi, zi), where wi is the
package weight, and xi, yi, zi are the Cartesian coordinates

of the location. We assume that the graph describing the
locations is fully connected, i.e., a route exists between any
two locations, including the depot. The distance between each
node pair corresponds to the actual driving distance.
Concerning the EV and drone movements and considering
the drone’s payload capacity, the drone carries one or more
packages on each flight. Moreover, there is no drone battery
replacement, and the drone is used until it is totally depleted.
The EV must follow a given speed on each road and can
not make temporary stops on the road; it can only stop at
the depot or customer locations for delivery. Our objective is
to maximize drone delivery utilization and deplete its battery
pack capacity as much as possible.

B. Algorithm

The problem under analysis is challenging to solve optimally
because it is a generalization of the TSP that requires consid-
ering the locations where the vehicle and the drone can meet.
For this reason, we propose a greedy heuristic algorithm that
meets the above-described constraints of our scenario.
Algorithm 1 sketches our coordinated EV-drone delivery algo-
rithm. Its objective is to find the optimal sequence of delivery
tasks for the EV and drone, minimizing both time and energy
consumption of the EV under a given drone battery size. It
takes as inputs the set Q of n delivery tasks, the distance
matrix D between any of the n + 1 vertices (including the
depot), including slope information, and the drone battery
capacity ED; it outputs the list of deliveries carried out by
each vehicle (SV for the EV and SD for the drone).

Algorithm 1 Proposed coordinated EV-drone delivery
1: Input: Q = {q1,...,qn}, D = {dij}, ED

2: Output: Delivery task sequences by SV and SD

3: P = (p0 → ...→ pn+1) = TSP (D)
4: SD = {}; SV = Q
5: while ED > 0 do
6: Extract ∆EV = [∆EV,1, ...,∆EV,n+1],

∆TV = [∆TV,1, ...,∆TV,n+1] and
∆ED = [∆ED,1, ...,∆ED,n+1] based on the schedule P

7: Calculate ∆CV = [∆C1, ...,∆Cn+1] from ∆EV and ∆TV

8: pm ← pick the edge with the largest ∆CV that is compatible
with drone constraints

9: if (no edge is compatible) break
10: ED = ED −∆ED,m

11: add qk to SD and remove qk from SV

12: update P removing the edges corresponding pm
13: endwhile

As the proposed method is based on the selective replacement
of some vehicle deliveries using the drone, we need to start
from an initial P schedule. The initial P is obtained by running
a conventional TSP algorithm (Line 3). We use one of the
state-of-the-art TSP heuristics for directed graphs, which relies
on calculating the Minimum Spanning Tree (MST) algorithm
as a pre-processing step [21]. This step yields a path P =
(p0 → · · · → pn+1) in the distance graph D, where p0 ≡ pn+1

is the depot. We then initialize (Line 4) the two delivery lists
by assuming the EV serves all deliveries.
Given the initial schedule, we calculate (Line 6) the required
time and energy consumption for each delivery according to
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the order defined by P for both the EV (∆TV and ∆EV ) and
the drone (∆ED). ∆TV and ∆EV are used to calculate (Line
7) cost function ∆CV , which is the cost for each delivery with
the EV described in Section III-D. ∆ED is used to estimate
the SOC of the drone battery when the delivery is done by
the drone. More precisely, for edges pi → pi+1 → pi+2, the
required time and energy to visit pi+1 by the EV are compared
with the travel without visiting pi+1 (pi → pi+2 directly), and
the differences (∆EV and ∆TV ) are extracted.

It is essential to observe it for the EV, and this calculation
must account for its current weight: at step i, the EV delivers
the remaining packages, so the energy consumption depends
on the “state” of the delivery sequence. Conversely, the drone
only carries packages supposed to be delivered. So only the
energy for single delivery (flight) is considered.

This generates two lists of delivery cost and drone battery
energy ∆CV , ∆ED with one entry for each of the n + 1
edges. We then pick from ∆CV the edge pm that incurs the
most massive cost demand for the EV, and that is compatible
with a drone delivery (Line 8). This represents a delivery that a
drone carries out, and that relieves the EV maximally in terms
of energy and time consumption. Compatibility with the drone
delivery consists of two conditions: (1) the corresponding
package should not exceed the drone’s maximum payload
capacity, and (2) The current remaining capacity of the drone
battery meets the requested energy for delivery.

If one such edge exists, the corresponding drone energy ∆ED

is subtracted from the drone battery capacity. Let the two nodes
connected by pm be i and j, with j followed by node k in
the schedule P . Thus, node j is selected to be served by the
drone. As the latter needs to fly back to the EV, the actual
energy drawn to serve j implies flying back and forth. As the
exact take-off/landing time and location of the drone depend
on the remaining route, we approximate this by assuming that
the drone departs when the EV leaves i and returns before
the EV reaches k. As a conservative estimate, we subtract the
energy from the drone required to fly from i to j and j to k
(Line 10). We then add the corresponding delivery task qk to
the set SD and subtract it from EV delivery set SV .

The assignment of one delivery to the drone results in the
removal of two edges ((i, j) and (j, k)) from the original
sequence; the route now includes a new edge (i, k) that was
not initially there. Therefore we need to update the route (Line
12). It implies removing the two edges (i, j) and (j, k) from P
and replacing them with the corresponding bypass edge (i, k).

In the next iteration, the values of ∆EV , ∆TV and ∆ED

are recomputed for all the edges of the new P . Clearly, as a
drone serves the removed edges, the newly added edge (i, k)
also can be served by the drone. In this case, the drone carries
two packages for j and k at once when it leaves i. Then, the
drone visits j and k sequentially. After the deliveries ((i, j)
and (j, k)) by the drone, the drone returns to the EV located
in l, the node after k. The process is repeated until there is
residual energy in the drone.

V. SIMULATION RESULTS

A. Simulation Setup

1) Vehicle Powertrain Model: Major delivery service compa-
nies have been using electric vans for environmental reasons
such as zero-emission. We chose the Nissan e-NV200 (here-
after ‘electric van’) as the EV, as FedEx adopts it, and it is
one of the electric vans launched for the small-medium size
parcel delivery purpose [22]. We implement powertrain and
battery pack models based on the released information [23]:
a powertrain system consists of an 80 kW AC synchronous
motor and a 40 kWh lithium-ion battery pack with 360 V
of nominal voltage. The curb weight of e-NV200 is 1,515
kg, and its maximum payload is 705 kg. The modeling result
shows driving range errors within ±5% in the new European
driving cycle and world harmonized light-duty vehicles test
procedure. The coefficients for the Nissan e-NV200 electric
van powertrain model are obtained as Table I.

Table I
POWER MODEL COEFFICIENTS OF NISSAN E-NV200.

α 0.0686 β 10.3969 γ 1.0465
δ 0.000374 C0 500 C1 24.8904
C2 5 C3 0.000106 ϵ 0.6341
ζ 2875.7

2) Drone Powertrain Model: We selected a quad-copter DJI
Matrice 100 [24] as a delivery drone. The maximum weight
to take off is 3.4 kg and the longest flight time is 16 minutes
with a 1 kg payload. The maximum speed is 79 km/h without
a payload. We obtained measurement data from [25], which
includes the required angular speed of the rotors by thrust
and related battery voltage and current consumption. Figure 8
shows the relation between battery power versus angular
speed. We implement the drone powertrain model as a function
of drone speed and weight [16].

Table 1

RPM W

4202 20

6162 49

8175 114

9596 216

440.03241051 20

645.28313031 49

856.083997125 114

1004.89076898 216

440.03241051 20.3135252761096

645.28313031 48.1027792980991

856.083997125 116.594674278376

1004.89076898 217.825011197149

Table 2

input output
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Figure 8. Drone battery power versus motor angular speed [25].

3) Battery Pack Model: An accurate battery pack model of the
drone is mandatory to estimate a drone flight time and manage
the utilization of the drone delivery. We chose a DJI TB48D
LiPO battery pack, in which six battery cells are connected
in series. The nominal battery capacity is 5,700 mAh, and the
nominal voltage is 22.8 V. We use the physical parameters of a
5,700 mAh LiPO single-cell from [26], then build the battery
pack model described in section III-C.
4) Delivery Task Model: In this work, we evaluate the delivery
cost saving with respect to battery size for a set of explorative
parameters in Table II. Sets of 30 to 150 locations are
uniformly distributed within a 10 km by 10 km area where
the altitude of each location is from -200 m to +200 m.
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Table II
VARIOUS SIMULATION CONDITIONS.

Weight Wα 1 to 0
Area (km×km) 10×10
Altitude (m) -200 to +200
Payload (kg) Random from 0.1 to 0.3
The number of locations 30, 60, 90, 120, 150
Drone battery capacity (Wh) 42.18, 84.36, 168.72

Most delivery vans spend about 70% of their driving time
at velocities less than 35 mph (nearly 56 km/h), including
slowing down for parking, and average driving velocity is 20
km/h to 35 km/h [27] [28]. We choose 50 km/h as the velocity
of the electric van for the travel. We assume that the drone
flight speed is 40 km/h, half of the maximum speed of the
DJI Matrice 100. Alternatively, we can adapt energy-optimal
speed as done in [11]. We choose the drone’s height during
horizontal flight at 40 m above the ground level, which is
the 33% of the maximum allowable height to fly the drone in
Europe by the European Aviation Safety Agency (EASA) [29].
5) Cost Function: For the weighted-sum cost function, the
required information is energy and time consumption for each
delivery provided by the EV and drone powertrain models. For
the economic model, equation 12 in Section III-D is populated
with the coefficients in Table III.

Table III
PARAMETERS FOR THE CONVERSION TO THE ECONOMIC MODEL.

Electricity Celec ($/kWh) [30] 0.36

Time

Ddriver (pacakages/day) [31] [32] 150
Twork (hours)a [33] 10
Inet ($) [34] 1.34 B
Dcom (packages/day) [35] 21.1 M
Itime ($/hours) 2.61

a A delivery driver works six days a week.

B. Simulation Result

1) Weighted Sum of Energy and Time as a Cost Function: As
mentioned in Section III-D, the time and energy priority, and
preference are different for each individual. Figure 9 shows
the results of baseline and coordinated delivery planning for
30 locations. Squares mean target locations for the delivery,
and black lines mean a baseline route that delivers with only
an electric van. Red lines and blue lines present, respectively,
a route for the electric vehicle and the drone in the coordinated
delivery method. The X-axis is the distance following the road,
and Y-axis is the altitude of locations. The slope of each black
and red lines means the road slope of the electric van if it
drives along the road.
Figure 9(b) presents a route with only red lines when it cares
only time, meaning that all the locations are visited by only
the electric van only and no drone, to deliver as fast as
it can. Figure 9(c) shows a coordinated delivery plan when
considering both time and energy. Figure 9(d) shows properly
distributed delivery plans for the electric van and drone to save
only energy consumption. If the slope to the next delivery is
high, the delivery is assigned to the drone. So, the slope of the
red line, the average road slope of the electric van, becomes
smooth. Also, Figure 9 shows that, as the drone delivers more
locations, the total distance of the EV decreases.
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Figure 9. EV-drone coordinated delivery route according to Wα.

As Wa becomes higher (Figure 9(d) to 9(b)), the electric van
visits more locations to save time, which means that delivery
with the electric van is faster than the drone. This is true
under two assumptions: 1) the drone’s velocity is slower than
the electric van, 2) the number of drones is only one, and the
electric van should wait for the drone at the following location.
Of course, delivery with multiple drones can save the overall
delivery time. This is out of scope with respect to the paper,
and we will work on it in future work.

Figure 10 shows energy and time consumption of the coor-
dinated delivery by Wα. Blue circles mean simulation results
by the given Wα. Blue circles show a Pareto curve between
energy and time. The coordinated delivery with bigger Wα

means that the delivery time is more concerned than energy
consumption.
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Figure 10. Energy and time consumption by the EV-drone coordinated
delivery with various Wα.

2) Economic Model as Cost Function: Figure 11 shows Ctime

and Cenergy in different velocity of the electric van. The
x-axis is the velocity of the electric van, and the y-axis is
the cost breakdown by the coordinated delivery. The total
cost decreases with the velocity of the electric van becoming
faster. Specifically, Cenergy increases slightly while Ctime

significantly decreases, which decreases the total cost. This
figure shows that focusing only on energy saving and reducing
vehicle velocity causes an overall cost increase. In the future,
the energy cost will increase more and more because many
countries are moving toward eco-friendly power generation,
so delivery considering energy will become more important.
For example, electricity price in Germany increases every
year [36]. Therefore, the proposed coordinated delivery with
the economic model will give more weight to energy con-
sumption than time.

Cost vs. EV speed for 30 delivery nodes

Velocity (km/h) Total Time Energy

10 16.5437615286441 11.5312681445275 5.01249338411655

20 9.73454681717256 5.93454681717256 3.8

30 8.27612495438198 4.62082973950744 3.65529521487454

40 7.31289204753934 3.66436731069443 3.64852473684491

50 6.78594045207361 3.07902393442854 3.70691651764506

60 6.54998719042227 2.68879501691795 3.86119217350432

70 6.46688325904912 2.41006007583896 4.05682318321016

Cost vs. EV speed for 90 delivery nodes

Velocity (km/h) Total Energy

10 27.7284199086930 9.57458262223443

20 17.6226805885150 7.89483276179255

30 14.3827080628593 7.70176404113748

40 13.0962485994178 7.72677082944718

50 12.4100004355029 7.88943377161324

60 11.8625587710753 7.84907780818222

70 11.7033617950338 8.11046232443975
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Figure 11. The overall delivery cost of various electric van velocities.

Figure 12 shows cost improvement compared with the baseline
method (electric-van-only delivery) according to different elec-
tric van velocities. The y-axis ‘improvement’ means how much
total cost is reduced compared with the baseline result. The
improvement has decreased to the increase in the electric van
velocity. In this example, the maximum cost improvement is
15.5% at 20 km/h van velocity, while the minimum percentage
is 5.7%. The average improvement percentage is 9.1%. As
the velocity increases, coordinated delivery cannot save Ctime

enough compared with the baseline because the electric van
should wait for the returning drone after delivery. However,

suppose Cenergy increases with the rise of electricity cost
in the future. In that case, the saving of Cenergy by the
coordinated delivery will increase more and, therefore, overall
improvement will be better.
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Figure 12. Delivery cost ($) and improvement (%) of the proposed method
compared with the baseline.

C. Case Study for the Real Road

Coordinated delivery planning on real road cases has two
different issues from the simulation above: One is that the
drone and EV have different delivery distances for the same
delivery from one node to another node. A drone flies a straight
path, the shortest distance between two nodes, while an EV
should follow a given road, mostly winding on hills. The other
is that sometimes there is no direct connection between two
locations due to geographical obstacles, such as a river or
a mountain. The EV should detour the obstacles to reach
the location. For the real-world application, we choose two
different cases: one with a small altitude difference and the
other with a relatively large altitude difference among delivery
locations. Information on road distance, altitude, latitude,
longitude, and navigation are obtained from Google Map and
Google Earth Pro. Table IV shows environmental information
for two test cases.

Table IV
ENVIRONMENTAL INFORMATION FOR THE CASE STUDIES.

Description Case 1 Case 2

City
Twin Falls,
ID, USA

San Diego,
CA, USA

Max. altitude difference (m) 51 376
Average slope (Up/Down) (%) 1.2 / -1.2 6.7 / -8.9
Maximum slope (Up/Down) (%) 7.7 / -9.3 24.2 / -33.9
The number of locations 30 13

1) Case 1: Real Road with Small Altitude Difference: We
choose a city named Twin Falls, ID, USA, for a real road
example with a small altitude difference and pick 30 random
delivery locations shown in Figure 13(a). Some delivery
locations are densely close to each other in a small area
to reflect the real-world environment. Figure 13 shows the
results of the EV-drone coordinated delivery plan on the actual
road example. ‘H’ in a red box in the figures means the hub
where the electric van starts and comes back, and the numbers
present the delivery sequence. We first obtain the shortest
paths of the electric van among delivery locations under the
given road environment. Then, we extract the delivery task
sequences for the electric van SV using the algorithm 1. When
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Figure 13. Delivery routes of the baseline method and the coordinated delivery method for Case 1.
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Figure 14. Altitude vs. distance for Case 1 delivery.

delivering with only an electric van called ‘baseline’, the paths
for the electric van are shown as black lines in Figure 13(b).
The delivery task sequences for the drone and electric van
are obtained based on cost function as the economic model.
The red line presents the electric van delivery route in the
coordinated delivery with the drone. The blue line means
the drone flight path, which is straight, and the blue circles

C
os

t (
$)

0

1

2

3

4

Electric van speed (km/h)

20 30 40 50 60 70

Time Energy

(a) Delivery cost by various electric van velocity.

Im
pr

ov
em

en
t (

%
)

0

5

10

15

20

C
os

t (
$)

0

1

2

3

4

Electric van speed (km/h)

20 30 40 50 60 70

Baseline ($) Coordinated ($) Improvement (%)

(b) Delivery cost ($) and cost improvement (%) comparison between the
proposed coordinated delivery and baseline delivery.

Figure 15. Result of the proposed coordinated delivery on Twin Falls city.

mean the delivery locations served by the drone delivery in
Figure 13(c). Saved routes due to the drone delivery are the
routes that don’t exist in Figure 13(c), but exist in Figure 13(b).
These routes can be found by checking the deleted black lines
that are originally connected to drone delivery locations.
Figure 14 represents altitudes of delivery locations for the
travel distance of the electric van of the baseline and the co-
ordinated delivery methods. The saved distance of the electric
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H

7

6

4

2

13

12

11

10

9

3

5

8

(c) Coordinated: delivery route of the EV and the
drone.

Figure 16. Delivery routes of the baseline method and the coordinated delivery method for Case 2.

van is 5.25 km, which can be seen by comparing the travel
distance of Figure 14(a) with Figure 14(b). The coordinated
delivery method reduces the travel distance between nodes, re-
sulting in decreasing the total distance referring to the figures.
The drone delivers to 4th, 19th, 25th, and 28th destinations.
Especially delivering to the 19th with the drone can save
energy significantly because the altitude differences of the 19th
location are relatively large. The drone doesn’t deliver to some
delivery locations because the proposed method calculates
the best combination of drone delivery locations that can be
delivered with the given battery capacity to save costs.
Figure 15(a) shows the cost breakdown into time and energy
by the velocity of the electric van. Energy becomes more
important as the electric van velocity increases. Higher than
70 km/h of electric van velocity, Cenergy becomes higher than
Ctime. Unlike the scenario described in Section V-B where,
in Figure 9(d), the electric van drives on a flat road from 14th
location to 16th location under the drone goes to 15th location.
Nevertheless, in the real case, the roads connecting the 14th
and 16th locations are not always at the same altitude due
to the terrain. Therefore, the electric van is still necessary to
drive uphill and downhill roads even in coordinated delivery.
Figure 15(b) shows the cost improvement up to 19.4% with an
average percentage of 8.6%. As mentioned in Section V-B1,
the average velocity of a typical delivery van is from 20 km/h
to 35 km/h [27] [28], the average cost improvement percentage
is 14.36%.
2) Case 2: Real Road with Large Altitude Difference: We
choose a city named San Diego, CA, USA, for a real road
example with a significant altitude difference and pick 12
random delivery locations, as in Figure 16(a). Figure 16 shows
the EV-drone coordinated delivery plan results. Figure 16(b)
shows the baseline paths with only an electric vehicle with
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Figure 17. Altitude vs. distance for Case 2 delivery.

a black line. The same cost function as case 1 is applied.
The result of the coordinated delivery method is shown in
Figure 16(c).
Figure 17 represents the altitudes of delivery locations for
the travel distance of the electric van of the baseline and
the coordinated delivery methods. The saved distance of the
electric van is 4.5 km in comparison to the travel distance of
Figure 17(a) with Figure 17(b). Also, coordinated delivery re-
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Figure 18. Result of the proposed coordinated delivery on Case 2.

duces travel distances of the electric van. The drone delivers to
the 3rd, 7th, 10th, and 12th destinations. Especially delivering
to 7th and 12th with the drone can save energy significantly
because of the large altitude differences and the travel distance
compared to other locations.
Figure 18(a) shows the cost breakdown into time and energy
by the velocity of the electric van. Energy in case 2 takes
much more portion than that in case 1 because much more
dynamic altitude difference among delivery locations cause
the electric vehicle to spend much more energy in case 2.
Figure 18(b) shows the cost improvement up to 27.25% with
an average percentage of 22.3%. The average cost improve-
ment percentage when the electric van speed is from 20 km/h
to 40 km/h is 25.38%. Comparison improvement according to
all the electric van speeds in case 2 to those in case 1 shows
that the coordinated delivery method has a stronger advantage
on delivery in an area with a large altitude difference in such
as case 2 than case 1.

VI. CONCLUSIONS

The delivery industry grows fast every year, and companies in
this industry have started to use electric vans. Some delivery
service destinations are much out of town and cause a long
round trip just for one or a few deliveries resulting in sub-
stantial inefficient energy and time consumption. This paper
proposes a scheduling framework using a heuristic algorithm
for energy-efficient, time-efficient, and cost-saving delivery
sequences with an electric van and a drone. The scheduling
framework considers altitude, which causes significant energy
draw from the van, and road conditions, such as the presence
of many curves instead of just a straight road. Time and energy
consumption are considered as a cost, and we convert time
and energy to the economic model. It shows up to 15.5%

achievement in fully connected delivery problems as straight
roads. The achievement becomes better as up to 27.25% in the
real-world application where locations are not fully connected
and roads are winding. The multiple drones with one van
scenarios will be considered in future work. Coordinated
delivery with multiple drones can save overall delivery time
because others can share the flying and waiting time for
drones.
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