
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic ConvNets on Tiny Devices via Nested Sparsity / Grimaldi, Matteo; Mocerino, Luca; Cipolletta, Antonio;
Calimera, Andrea. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - 10:6(2023), pp. 5073-5082.
[10.1109/JIOT.2022.3222014]

Original

Dynamic ConvNets on Tiny Devices via Nested Sparsity

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JIOT.2022.3222014

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977752 since: 2023-04-04T08:32:36Z

IEEE

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 1

Dynamic ConvNets on Tiny Devices
via Nested Sparsity

Matteo Grimaldi, Member, IEEE, Luca Mocerino, Member, IEEE, Antonio Cipolletta, Member, IEEE, and
Andrea Calimera, Member, IEEE

Abstract—This work introduces a new training and compres-
sion pipeline to build Nested Sparse ConvNets, a class of dynamic
Convolutional Neural Networks (ConvNets) suited for inference
tasks deployed on resource-constrained devices at the edge of
the Internet-of-Things. A Nested Sparse ConvNet consists of a
single ConvNet architecture containing N sparse sub-networks
with nested weights subsets, like a Matryoshka doll, and can
trade accuracy for latency at run time, using the model sparsity
as a dynamic knob. To attain high accuracy at training time, we
propose a gradient masking technique that optimally routes the
learning signals across the nested weights subsets. To minimize
the storage footprint and efficiently process the obtained models
at inference time, we introduce a new sparse matrix compression
format with dedicated compute kernels that fruitfully exploit
the characteristic of the nested weights subsets. Tested on image
classification and object detection tasks on an off-the-shelf ARM-
M7 Micro Controller Unit (MCU), Nested Sparse ConvNets
outperform variable-latency solutions naively built assembling
single sparse models trained as stand-alone instances, achieving
(i) comparable accuracy, (ii) remarkable storage savings, and
(iii) high performance. Moreover, when compared to state-of-
the-art dynamic strategies, like dynamic pruning and layer width
scaling, Nested Sparse ConvNets turn out to be Pareto optimal
in the accuracy vs. latency space.

Index Terms—Neural Network Compression, Internet of
Things, Latency-Quality Scaling, Micro Controller Units

I. INTRODUCTION

THE ability to deploy fast Convolutional Neural Networks
(ConvNets) at the edge of the Internet-of-Things (IoT)

reflects the possibility of building ubiquitous intelligent ser-
vices with high efficiency and privacy standards. In many IoT
applications, the end-nodes are lightweight devices powered by
tiny Micro Controller Units (MCUs), characterized by small
form factor, minimal storage, and memory resources, i.e., few
MBs of FLASH (1-2MB) and hundreds of KBs of RAM
(≤512kB), and single-core CPUs clocked at few hundreds of
MHz (100-400 MHz). To bridge the gap between such strin-
gent hardware constraints and the computational and storage
requirements of modern ConvNets, a considerable research
effort has been lately spent seeking optimization strategies,

Manuscript received XX, 20XX; revised XX, 20XX; accepted XX, 20XX.
Date of publication XXXX XX, 20XX; date of current version XXXX XX,
20XX. (Corresponding author: Andrea Calimera)
Matteo Grimaldi, Luca Mocerino, Antonio Cipolletta and Andrea
Calimera are with the Department of Control and Computer
Engineering, Politecnico di Torino, 10129, Italy (e-mail: mat-
teo.grimaldi@polito.it, luca.mocerino@polito.it, antonio.cipolletta@polito.it,
andrea.calimera@polito.it).

like pruning [1]–[3], precision scaling [4], compact neural
architectures [5]–[7], computational graph rewritings [8]–[10],
and computational kernel tuning [9], [11], [12]. Despite the re-
markable results achieved, those solutions follow a worst-case,
accuracy-driven design and optimization strategy generating
static ConvNets tailored for a specific setting. Static ConvNets
show one main limitation, that is, they spend the same max-
imal effort in all situations, neglecting run-time changes that
might appear due to variations in the external environmental
conditions, the quality-of-service required by the user and the
surrounding context, and the resources consumed by other
software routines running in parallel on the same device. A
speculative and perhaps more efficient approach would exploit
contextual optimizations to minimize the average resource
usage improving the information-processing capability. This
is a relevant topic for IoT developers as small form factor,
limited cost budgets, and severe power constraints limit the
available resources on an IoT device. The adoption of dynamic
optimization strategies allows the run-time environment to
improve latency or save energy when the application can
tolerate lower quality, achieving better performance on av-
erage [13]–[15]. For instance, a video surveillance system
can reduce the classification effort when the scene is empty,
lowering the energy consumption, then can switch into a more
accurate but expensive mode only if something suspicious is
detected. Alternatively, the latency of the inference task might
change to meet different throughput requirements when the
resource budget at the system or the application level gets
reallocated [16]. These practical examples suggest that the
availability of dynamic ConvNets capable of trading accuracy
and computational costs at run time represents a valuable tool
to raise the bar of efficiency for intelligent IoT applications.

Building a dynamic ConvNet encompasses the choice
of a proper control mechanism to implement the latency-
quality scaling at run time. Recent works proposed several
architectural-level knobs, like the network depth [17] or the
layers width [18], but although the relative ease of imple-
mentation, operating on the architecture of the model may
be a too coarse option limiting the latency and accuracy
trade-off. Moreover, it does not alleviate the pressure on the
storage memory as the full model configuration, i.e., the one
at the maximum width or maximum depth, might still be too
large to fit into the FLASH memory. The availability of more
fine-grain control knobs to modulate latency while keeping
model footprint minimal is highly desirable indeed, and model

©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 2

Speed

Accuracy

s1
s2

sn

…

Fig. 1: A pictorial representation of a Nested Sparse ConvNet,
a super-network containing N sub-networks with increasing
value of sparsity (s1<s2<...<sN): a low sparsity value corre-
sponds to high accuracy, whereas a high sparsity value results
in a faster inference process at the cost of lower accuracy.

sparsity is a good knob candidate. Sparse training is less prone
to accuracy losses, and sparse models can be compressed via
sparse encoding formats [19]. However, how to leverage the
weight sparsity as the dynamic knob on compact ConvNets,
e.g., the MobileNets [5], and how to deploy dynamic sparse
ConvNets efficiently on tiny general-purpose cores are open
issues.

To this end, we introduce a new class of dynamic ConvNets
named Nested Sparse ConvNets. A Nested Sparse ConvNet is
a convolutional deep neural network with a single weight-set
that can be operated at N different configurations of increasing
sparsity, resulting in a super-network containing N sparse sub-
networks with nested weight-sets, like Matryoshka dolls as
illustrated in Fig. 1. A low sparsity value corresponds to high
accuracy, whereas a high sparsity value results in a fast yet
less accurate inference. To let any ConvNet be transformed
into a Nested Sparse ConvNet, this work proposes an end-to-
end pipeline that comprises three main tools integrated over
the full development stack:

• at training time, a gradient masking technique that prop-
erly routes the learning signals between the nested sparse
networks guaranteeing convergence and high accuracy;

• at compile time, a sparse matrix compression format to
fruitfully exploit the nested structure of the weights set
and avoid computationally expensive decoding stages;

• at run time, dedicated compute kernels ensure efficient
processing and fast switching among different sparse
configurations with no additional latency cost.

To validate our proposal, we collected an extensive set of
results using as benchmarks ResNet9 [20] and two instances of
MobileNet (V1 and V2) [5], [6] for two vision tasks, namely,
image classification and object detection, deployed on an
embedded system powered by an ARM Cortex-M7 MCU with
2MB of FLASH and 512KB of RAM. As it will be discussed
in the experimental section, Nested Sparse ConvNets achieve
an accuracy comparable to that of independently trained sparse
models and outperform other scalable ConvNets obtained

through existing dynamic methods, like dynamic pruning [21]
and layer width scaling [18], thereby proving to be Pareto
optimal in the accuracy vs. latency space.

The remainder of the paper is organized as follows. Sec-
tion II reviews existing approaches to implement latency-
quality scaling in ConvNets. Section III describes the proposed
end-to-end pipeline consisting of the training methodology, the
compression schema, and the sparse computational kernels.
Section IV presents the collected experimental results through
an extensive assessment of functional and extra-functional
metrics. Section V discusses limitations and future works.
Section VI concludes the work.

II. RELATED WORKS

This section offers a brief review of recent works on
pruning strategies and compressed sparse storage formats
for static ConvNets, as the proposed pipeline extends such
techniques in a dynamic context. Then it describes state-of-
the-art solutions for dynamic ConvNets and the limitations
that our proposal aims to overcome.

Pruning. The existing methods differ in terms of the prun-
ing policy they implement and the level of granularity at which
they are applied [22]. In terms of policy, even if complex
and rather elegant methods have been recently proposed, e.g.,
gradient- or Hebbian-based methods [19], those magnitude-
based [23] are the preferred option in many modern training
pipelines because of their reliability and ease of use. For
what concerns the granularity, there exist three main classes.
The unstructured pruning plays at the lower level, namely,
on the individual weights of the model [23], offering a high
degree of flexibility in reaching high accuracy targets. Such
flexibility is paid at inference time when the potential savings
brought by zeroed weights contrast with the regular code
organization and memory access pattern preferred by general-
purpose architectures. This issue is often solved with the aid
of specialized hardware units that can accelerate the irregular
flow, e.g., [24]. At a coarser granularity, block pruning tech-
niques [25] group neighboring weights in specific patterns to
decrease the indexing overhead and to ease the adoption of
sparse compute kernels on general-purpose cores [26], [27].
At the coarsest level, filter pruning schemes drop entire convo-
lutional filters [2] or cluster of convolutional filters [28], [29],
achieving aggressive storage savings and speed-up at the cost
of substantial accuracy loss due to fast information removal.
Pruning can be combined with other optimization methods
like neural architectural search [30], quantization [31], and
computational graph rewriting [32] to enable different trade-
offs between network accuracy and complexity.

Compressed Sparse Storage Format. Dealing with sparse
arrays obtained by pruning irrelevant weights enables substan-
tial memory savings by only storing the value and the position
of the remaining non-zero entries. Many different sparse
storage formats exist in literature [33] and their optimality is
a function of the sparsity itself and the access pattern needed,
e.g., random, streaming, or transposed access. For instance,
to maximize the compression efficiency, a simple bitmap is
preferable for low sparsity regimes, whereas coordinate-offset

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 3

Weight-SetWeight-SetWeight-Set Weight-Set

g(D)

Gradient

L

Dense Gradient

L

Gradient

L

Gradient

L

g(D)

g(s1)

g(s2)

g(s3)

s1 s2 s3

g(D)

g(s1)

g(D)

g(s1)

g(s2)

Fig. 2: Evolution of the training loop, from left to right. The full weight-set (θ) and the sub-nets (θsi) get sorted and processed
with an increasing order of sparsity value (i.e., s1 < s2 < s3).

schemes (COO) are more suitable in high-sparse regimes [19].
Sparse storage formats like Compressed Sparse Row (CSR) or
Columns (CSC) [26] allow fast row access, and so can be used
to implement efficient sparse-matrix-vector and sparse-matrix-
matrix operations.

Dynamic Topology. One way of building scalable ConvNets
is to play with the architectural structure of the model, e.g.,
the width of the layers or the depth of the network. The width
multiplier [5] was initially proposed as a static design option to
scale the number of channels within each convolutional layer
by a predefined ratio. Then, the authors of Slimmable Neural
Networks [18] implemented a dynamic width scaling thanks
to a switchable batch-norm introduced in the training proce-
dure. Alternatively, the number of layers traversed during the
forward pass can be modulated by attention modules or gating
blocks [17] enabling a dynamic routing of the inner features,
eventually with the addition of early-exit branches [34]. Notice
that the total storage space is dictated by the underlying full-
width model or the full-depth model plus the extra modules
needed for controlling the topology at run time.

Dynamic Sparsity. Relying on the intuitive principle the
higher the sparsity, the lower the latency, the authors of [21]
proposed a training flow for deep neural models learned under
concurrent sparsity levels. Despite the preliminary results con-
ducted on Recurrent Neural Networks (RNNs) for Automatic
Speech Recognition (ASR), known to be redundant and hence
more reliable to pruning [35], we observed a substantial
accuracy degradation on compact ConvNets for image classi-
fication tasks. Moreover, the training loop proposed in [21] is
unaware of the resource usage and the achievable performance,
leaving the minimization of the storage footprint and the
deployment on real processing cores unsolved. Our proposal
addresses both issues, offering Nested Sparse ConvNets as an
effective solution for ConvNet architectures deployed on actual
compute nodes for the IoT.

III. BUILDING NESTED SPARSE CONVNETS

A. Training

Training a Nested Sparse ConvNet is like concurrently
learning N sub-networks with increasing sparsity encapsulated

within a single set of weights θ. Collecting and composing the
learning contributions coming from (and directed to) the many
sparse sub-networks is a challenging problem as the learning
of the weights shared among multiple sub-networks must be
properly balanced to avoid sudden accuracy drops. For a better
understanding, let’s recall how pruning techniques for static
ConvNets actually work. Early methods, e.g., [23], suggested
that pruned weights must be bypassed during the gradient
updates, but most recent works [22] introduced an improved
pruning-while-training strategy that regrow lost connections
achieving higher accuracy results. This is the starting point for
our proposal. Managing the regrowth mechanism for a Nested
Sparse ConvNet is not straightforward as the current “state” of
a single weight (i.e., pruned or not-pruned) might differ among
the N sub-networks, generating conflicts that may prevent
convergence. To handle these constraints that may bubble up
during training, we developed a novel method, referred to as
gradient masking, precisely conceived to route the learning
signals among the sub-networks.

An abstract and pictorial view of the dynamics governing
the training steps of a Nested Sparse ConvNet using gradient
masking is reported in Fig. 2. The example is for N=3 sub-
networks of increasing sparsity s1 < s2 < s3 and illustrates
the run of a single training step. The three sub-networks are
evaluated in sequence, following an increasing order of spar-
sity, from low (s1) to high (s3), as depicted within the three
frames labeled as s1, s2, s3. The first frame on the left (labeled
as Dense) is for the full weight-set θ (i.e., sparsity s0=0%).
The dense training ensures stability, but the dense network
is not included in the final model deployed for inference at
run time. Within each frame, the corresponding sub-network
undergoes a pruning-while-training procedure consisting of
a forward (solid line) and a backward (dashed line) pass,
with L as the training loss driving the learning procedure,
and si as the sparsity constraint. Referring to the example
in the picture, the four frames processed in sequence are
iterated for a fixed number of training steps. The weights
pruned within each frame to reach the desired sparsity si no
longer contribute in the following stages, neither to the forward
nor to the backward propagation; this is illustrated in Fig. 2
with the shadowed gray regions. For instance, the gradient
computation from the sub-network with sparsity s2, i.e., g(s2),
does not interfere with the previously computed gradients, i.e.,

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 4

Algorithm 1: Nested Sparse Training

1 Function main(steps, S, block shape, optimizer):
2 for t in steps do
3 optimizer.zero grad() // Ĝ = 0
4 soft labels = forward (θ)
5 Ĝ += backward (θ)
6 if pruneStep (t) then
7 for s in S do
8 Ms = getMask (θ, s, block shape)
9 θs = θ ◦Ms

10 forward(θs, soft labels)
11 ĝs = backward (θs)
12 Ĝ += Ms ◦ ĝs // Gradient Masking
13 end
14 optimizer.step() // θ update
15 end
16 M = { getMask (θ, s, block shape) for s in S }
17 return θ, M

18 Function getMask(θ, s, block shape):
19 blocks = groupBlocks (θ, block shape)
20 ŝ = bs · |θ|c · |θ|−1 // Sparsity Approximation
21 idx = rankBlocks (blocks, ŝ)
22 mask = ones_like (θ)
23 mask[idx] = 0
24 return mask

g(s1). This allows the entire weight-set θ to evolve during
the pruning-while-training process, while ensuring that each
sparse sub-network is learned considering its own gradient
contribution. The effect of the gradient masking is twofold:
first, it allows less sparse (and possibly more accurate) sub-
networks to influence the weights of the more sparse and
weaker ones; second, it shields the more sparse (and hence
less accurate) sub-networks, preventing abrupt changes in the
learning curve.

The three nested weight-sets {θ(s1), θ(s2), θ(s3)}, which
are all contained in the whole weight-set θ, are identified,
processed, and represented in the form of a set of binary
masks M = {M (s1),M (s2),M (s3)}, with θ(si) = θ ◦M (si)1.
This formulation can be generalized to any generic number
of sub-networks N of increasing sparsity si, resulting into a
set of N binary masks M = {M (s1), ...,M (sN)}, and thus N
weights subsets θ(si). Each mask Msi is obtained through a
magnitude-based rank and prune procedure over the weight-
set θ. Weights with lower magnitude are pruned first, until
reaching the desired sparsity si while enforcing the nesting of
all weight-sets θi:

s1 < s2 < ... < sN ⇒ θ(s1) ⊃ θ(s2) ⊃ ... ⊃ θ(sN). (1)

The pseudo-code of the training loop is reported in Al-
gorithm 1. It takes as inputs the set of sparsity levels
S = {s1, ..., sN} and the block shape (m×n), returning the
weight-set θ and the set of masks M = {M (s1), ...,M (sN)}.
The training loop alternates dense and sparse training epochs,

1◦ indicates the Hadamard product between two matrices.

according to a fixed scheduler (line 6). At the beginning
of each epoch, the gradient is zeroed (line 3), then the
forward and backward passes are performed on the weight-set
θ (lines 3-5) as a whole (the dense training frame in Fig.2).
The set of weights is directly updated using the gradient value
(line 14) during the dense steps. During the sparse training
steps (the si frames in Fig.2), for each sparsity level s (line 7),
the getMask function generates a mask Ms (line 8). This
mask is multiplied point-wise with θ to extract the sparse sub-
network θs (line 9) and then used to complete the forward and
backward passes (lines 10-11). For the sparse sub-networks,
the predictions of the dense model (line 4) are used as soft
labels (line 10) as a form of in-place distillation [36]. At last,
the local gradient ĝs relative to the sub-network θs is masked
and merged with the previous gradient contributions (line 12).
Once the contributions of each sub-network are accumulated
in the global gradient Ĝ, the weight-set θ is updated (line 14).
At the end of the training, both the weight-set θ and the set
of nested masks M are returned (lines 16-17).

The getMask function used to obtain the binary mask
M (si) under a given sparsity value si works as follows. First,
weights are grouped into blocks of shape m×n (line 19),
where m is in the output-channels axis. Second, the value
of the target sparsity is approximated to the closest value that
guarantees an integer number of blocks to prune (line 20).
Third, blocks are ranked according to their magnitude (L2-
norm) through the rankBlocks function that returns the
position (idx) of the sorted weights in descending order
(line 21). Fourth, the least important ŝi · |θ| weights are pruned
by setting to zero their values and the corresponding items in
the binary mask M (si) (lines 22-23).

B. Compression
Fig. 3 illustrates an example of the proposed sparse matrix

compression format, named NestedCSR, for a nested model
trained for three generic sparsity levels s1 < s2 < s3 and
using a 1×2 block shape. It is worth emphasizing that the
compression format is general and can be used for any number
of sparsity levels or block sizes. At the lower sparsity level
(s1), the matrix comprises the red, green, and blue non-
zero blocks; at the medium sparsity level (s2), the red and
green blocks; at the high sparsity level (s3), the red blocks
only. As shown in the picture, the three configurations are
a composition of three disjoint sparse matrices, and this is
precisely the property exploited by NestedCSR. Each sparse
sub-set is compressed using a block CSR format [26]: the nz-
values array stores the values of the non-zero blocks in row-
major order, the nz-iidx array stores the number of non-zero
blocks on each row, and the nz-jidx the column position of each
non-zero blocks. The three arrays of each sparse sub-set are
concatenated row-wise, from the most sparse to the least sparse
(from red to blue in Fig. 3). We designed our compression
format on top of block CSR, as this perfectly suits our case
scenario: a wide range of medium-to-high sparse matrices [19].
Conversely, other sparse formats, like COO, work better for
matrices with high sparse regimes (≥ 95%).

The footprint of a block-sparse matrix W with dimensions
R×C encoded through NestedCSR depends on the block shape

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 5

M N
O P

A B

C D I J

E F K L M N

G H O P
nz-values

NestedCSR

N

s3

s2

s1

A

E F
C D

G H

B

K L
I J

A B

K L E
I J

F
C D
M N

O P G H

0
1
2
3

0 1 2 3 4 5 6 7

1 0 0

1 1 0

1 1 1

1 0 1
nz-iidx

0

6 4

2 0 6

6 0
nz-jidx

Fig. 3: Example of the proposed NestedCSR format applied to
a 1×2 block sparse matrix W that can work in three sparsity
levels {s1, s2, s3}.

m×n and the number of sparsity levels (N). The following
equation describes the size of the array:

|nz-values| = (1−smin) ·R·C
|nz-iidx| = N ·R

|nz-jidx| = (1−smin) · R·C
n·m

(2)

As can be inferred from the equations, the amount of storage
memory is weakly affected by the number of nested configura-
tions. The number of sparse sub-networks (N) affects the size
of nz-iidx, which is usually negligible compared to that of the
other two arrays. Therefore, the overall memory footprint gets
defined by the smallest adopted sparsity value (smin), which
is crucial for effective and efficient deployment.

To accelerate the processing of a nested and compressed
sparse layer on a general-purpose core, we implemented a
custom compute kernel that performs a matrix multiplication
C = A · B between a sparse matrix (A) encoded using the
NestedCSR format and a dense matrix (B), as shown in fig. 4a.
The kernel handles both fully connected and convolutional
layers, adopting a convolution-as-GEMM implementation for
the latter [26], [37].

Like in classical CSR-based sparse matrix multiplication,
the whole operation is a sequence of small matrix operations
between M columns of the dense matrix and 1 row of the
sparse matrix as shown in Fig. 4b. Such implementation
reduces the cost of the indirection process needed to access
one element of the sparse matrix across multiple multiply-and-
accumulate (MAC) operations. Specifically, it was experimen-
tally found out that M=4 represents a good trade-off between
data-reuse and register pressure on small MCUs. Following the
NestedCSR format, since a single row of the sparse matrix
is encoded as N sparse components, the multiplication is
decomposed as N sparse operations at most, as shown in
fig 4c. Depending on the sparsity value si selected at run
time, only a fraction of such operations is processed, exploiting
the model sparsity as a practical knob to reduce the overall
compute workload. In the proposed implementation, there is
no additional cost from switching the sparsity level, as the
kernel can be specialized at compile time and then called at
run time based on the input si of the procedure.

IV. RESULTS

A. Experimental Set-up

1) Tasks, Datasets, and ConvNets: The proposed pipeline
was tested and evaluated on image classification (IC) and
object detection (OD) tasks using the following datasets.

a) CIFAR-10/100 (IC) [38]: 60k 32 × 32 RGB images
annotated with 10/100 labels and split into 45k samples for
training, 5k for validation, and 10k for testing.

b) PASCAL VOC (OD) [39]: 15870 RGB images picked
from the 2007 and 2012 PASCAL Visual Object Classes Chal-
lenge, counting of 37813 objects annotated with 20 different
labels. As suggested in [40], VOC07 and VOC12 trainval
data were used for training, using VOC07 for testing. We
reduced the number of classes to the top-10 labels recognized
by the full-scale model. The image resolution was re-scaled to
160×160 with a bi-linear interpolation; this is mandatory due
to the strict memory constraints of the target MCU (512KB
of RAM, 2MB of FLASH).

The ConvNets used as benchmarks are lightweight models
suitable for the IoT segment and hence portable onto tiny
cores. Specifically, we operated ResNet (ResNet9) [20] for
IC on CIFAR-100, MobileNetV1 [5] for IC on CIFAR-10,
MobileNetV2 [6] as backbone of the Single Shot Detector
(SSD) [40].

2) Training: The training procedure for the IC tasks was
driven by the SGD optimizer (momentum 0.9, weight decay
0.0005) for 300 epochs with batch size 128. The learning
rate followed a cosine annealing schedule starting from 0.05.
The same procedure applied for training the SSD, except for
the batch size which was set to 32. Images were flipped and
rotated for data augmentation on the IC tasks, whereas we
replicated the strategy presented in [40] for OD. All net-
works were trained from scratch and initialized with random
weights. Each training experiment was repeated three times
using different seeds, and the collected results were averaged.
For what concerns the sparse networks, we used S={70%,
80%,90%} as the sparsity set and a constant block shape
1 × 2 for each sparsity. Finding the optimal set S to achieve
the best accuracy, latency, and storage trade-off is out of the
scope of this work. As suggested by previous works on sparse
networks [27], the first layer of each ConvNet under test is
kept dense. The training algorithm was implemented within
the PyTorch framework (v1.5.1) and accelerated with a single
consumer graphic card by NVIDIA (Titan Xp).

In the remaining sections we refer to Dense as the dense
baseline network, Single Sparse as the model optimized for
a single sparsity level [23], Nested Sparse ConvNets for our
proposal, Slimmable as the dense dynamic model obtained by
layers width scaling [18], and DSNN as the dynamic sparse
model [21]. For Slimmable we adopted the official repository2,
whereas for DSNN we used an in-house implementation as no
open-source code was available at the time of this writing.

3) Deployment: The collected performances refer to
an off-the-shelf NUCLEO-F767ZI board powered by an
ARMCortex-M7 MCU operating at 216MHz. The board
hosts 512KB of on-chip SRAM and 2MB of FLASH. An
in-house extension of the CMSIS-NN library v.5.6.0 [37]

2https://github.com/JiahuiYu/slimmable networks

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 6

nz-values

A - NestedCSR

1 0 0

1 1 0

1 1 1

1 0 1
nz-iidx

0

6 4

2 0 6

6 0
nz-jidx

≤ K

B - Dense

C - Dense

M

K

K

M

M

1 1

≤ K

M

1

N

s3
s2

s1

c)

a) b)

Fig. 4: Example of the proposed compute kernel performing a sparse matrix-matrix multiplication (a) between a 1×2 block
sparse matrix A encoded using the NestedCSR format and a dense matrix B with K rows. The entire matrix multiplication
is decomposed as a sequence of smaller operations (b) between 1 row of A and M columns of B. Such inner operation is
carried out as at most N operations (c) depending on the selected sparsity value si ∈ {s1, s2, s3}.

TABLE I: Accuracy results for MobileNetV1 on CIFAR-10.
Best results for each sparsity level are highlighted in bold.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 90.08 89.35 88.32 85.31

Single Sparse
70 89.70 88.56 87.27 83.32
80 89.02 88.13 87.04 73.22
90 88.81 86.02 75.20 57.88

DSNN [21]
70 86.30 86.21 84.09 78.84
80 86.42 85.96 83.69 76.10
90 85.49 84.62 81.78 72.22

Ours
70 89.90 88.48 87.55 83.29
80 89.20 88.24 86.95 82.12
90 88.50 87.03 85.86 78.20

was integrated with the sparse matrix multiplication kernels
described in the previous section, with a 1× 2 block-shape to
exploit the Single Instruction Multiple Data media accelerator
of the M7 core [26]. In compliance with the arithmetic require-
ments of the CMSIS-NN library, the ConvNets were quantized
to 8-bit using a layer-wise symmetric binary scaling [4]. We
adopted the GNU Arm Embedded Toolchain (version 6.3.1)
for cross-compilation.

B. Training Evaluation

To assess the quality and generalization properties of the
proposed nested training, we analyzed the accuracy achieved
over the IC tasks by ConvNet architectures of decreasing
information capacity, that is, rescaled by means of the width
multiplier factor w ∈ {1.00, 0.75, 0.50, 0.25}. Such a scaling
operation must not be confused with the dynamic width scaling

of [18], which is discussed later in Section IV-D. The results
are collected in Tab. I and Tab. II.

Nested Sparse vs. Single Sparse Training. Intuitively,
training a network for a single sparsity level should be a
best-case scenario because the parameters get optimized for
one specific sparsity level only. On the other hand, train-
ing a Nested Sparse ConvNet encompasses the concurrent
optimization of multiple sub-networks with shared weights.
Nonetheless, Nested Sparse ConvNets outperform individually
trained sparse models in many cases, and when they achieve a
lower accuracy, the gap is rather low: the worst-case accuracy
drop is 0.31% for MobileNetV1 and 0.96% for ResNet9. The
gradient masking technique attains high accuracy indeed, even
when classical single sparsity pruning does not. For instance,
the single sparse MobileNetV1@w=0.25 with s=90% suffers
from a drastic accuracy drop (57.88%), whereas the Nested
Sparse model is 20.32% more accurate (78.20%), closing
the gap with the least sparse configurations (83.29% with
s=70%). The gradient masking technique also improves the
least sparse instances due to the proper involvement of the
dense model in the training loop. This can be inferred from
the results collected on the Nested Sparse ResNet9@w=0.75
with s=70%, which shows ≈ 1% more accurate than its single
sparse model counterpart, hence closer to the dense model.

Nested Sparse vs. Dynamic Sparse NN (DSNN) Even
though training DSNNs has proven effective on RNNs for
ASR [21], our results reveal quality drops on tiny ConvNets
for IC tasks. The DSNN training on MobileNetV1 is 3.40%
less accurate than the single sparse configuration and 13.65%
less on the ResNet9. Except for ResNet9@w=1.00 with
s=90%, Nested Sparse ConvNets outperform DSNNs, with
an increasing gap for smaller networks with lower width and
higher sparsity (the highest gap is for ResNet9@w=0.25 with
s=90%).

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 7

1.00 0.75 0.50 0.25

Width

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
N
o
rm

a
li
ze
d
L
a
te
n
cy

204 ms 126 ms 65 ms 24 ms

-

Dense s=70% s=80% s=90% CSR NestedCSR

(a) MobileNetV1- CIFAR10

1.00 0.75 0.50 0.25

Width

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
li
ze
d
L
a
te
n
cy

1093 ms 630 ms 292 ms 84 ms

-

Dense s=70% s=80% s=90% CSR NestedCSR

(b) ResNet9 - CIFAR100

Fig. 5: Latency values normalized for each width to the NestedCSR@s=70%. The latency of the dense model at w=1.00 is
not shown as it exceeds the FLASH memory of the adopted device (2MB).

TABLE II: Accuracy results for ResNet9 on CIFAR-100. Best
results for each sparsity level are highlighted in bold.

Training Sparsity Accuracy Top-1 [%]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 73.78 72.24 69.66 63.05

Single Sparse
70 72.93 71.09 68.29 58.90
80 72.61 70.90 67.72 57.40
90 72.15 69.98 65.04 52.15

DSNN [21]
70 72.9 70.48 63.38 45.25
80 72.83 69.70 62.48 44.69
90 71.62 67.56 60.15 40.92

Ours
70 73.56 72.04 68.82 58.70
80 72.94 71.05 68.38 57.30
90 71.19 69.59 65.92 52.93

C. Encoding Format Evaluation

Tab. III reports the storage profiles for ResNet9 and Mo-
bileNetV1, showing that Nested Sparse ConvNets achieve
remarkable savings. Three nested sparse configurations re-
quire as low as 1016kB (54% smaller than the dense base-
line) for ResNet9@w=1.00, and 1464kB (53% smaller) for
MobileNetV1@w1.00. Interestingly, a Nested Sparse Con-
vNet takes almost the same storage of its least sparse con-
figuration. For instance, encoding a single instance with
sparsity 70% using block CSR [26] takes 1014KB for
ResNet9@w=1.00 (a mere 2kB less than NestedCSR) and
1458kB for MobileNetV1@w=1.00 (6kB less than Nested-
CSR). The models rescaled to the other widths follow the same
trend, confirming the effectiveness of the NestedCSR format
across a wide set of model configurations.

The performance attainable with the NestedCSR format
further improved with the aid of the custom-designed compute
kernels. Fig. 5 reports a comparative analysis for ResNet9
and MobileNetV1, both dense and sparse versions, using a
classical CSR [26] and the proposed NestedCSR. The sparse
kernels introduce a substantial speed-up compared to the dense
versions as expected, but even more remarkable, they make
Nested Sparse ConvNets reach comparable performance to

TABLE III: Storage footprint of ResNet9 trained on Cifar100
and MobileNetV1 trained on CIFAR10. Single sparse models
encoded with a block CSR [26]. Nested sparse models encoded
with the proposed block NestedCSR format.

Model Method Sparsity Storage [KB]
[%] w=1.00 w=0.75 w=0.50 w=0.25

Dense 0 3132 1774 800 208
MobileNetV1 Single 70 1458 834 384 106

Nested {70, 80, 90} 1464 839 387 108

Dense 0 2232 1259 562 143
ResNet9 Single 70 1014 575 260 68

Nested {70, 80, 90} 1016 576 260 68

single sparse ConvNets. Referring to ResNet9, nested kernels
perform slightly better than single sparse kernels (1.83% on
average) for high widths (w=1.00 and w=0.75), and show
some overhead for low width (4.04% in the worst case). For
MobileNetV1, the nested kernels perform moderately worse
(10.91% slower on average) and the overhead increases more
notably for more sparse and smaller networks (up to 14.08%
in the worst case). The different internal structure of ResNet9
and MobileNetV1 is the source of such gap. In MobileNetV1,
there are many convolutional layers, but only the 1× 1 point-
wise layers are sparsified, whereas in ResNet9, there are fewer
convolutional layers, but they are all sparse and also show
more channels with larger kernels (3 × 3). Despite those
penalties, nested kernels still preserve the latency gain brought
by sparsity. Moreover, a naive implementation of multiple
sparse networks stored as separate instances would not fit
on the device due to the memory constraints, an issue we
overcome by means of our nested solution.

D. Latency-Quality Scaling

Fig. 6 depicts the latency vs. accuracy trade-off achievable
by Nested Sparse ConvNets. The best dynamic behavior is for
larger widths. Looking at MobileNetV1@w=1.00, an increase
of sparsity from 70% to 90% has minimal effect on accuracy
(1.4%), but the speed-up is substantial: up to 51% of latency
reduction. ResNet9@w=1.00 follows the same trend (Fig. 6b),
where a higher sparsity level improves latency by 62% with a

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 8

20 50 100 150 200 250

Latency [ms]

78

81

84

87

90

T
op

1
[%

]

Slimmable

Nested s70%

Nested s80%

Nested s90%

Width

1.00

0.75

0.50

0.25

(a) MobileNetV1- CIFAR10

50 200 400 600 800 1000 1200

Latency [ms]

52

58

64

70

76

T
op

1
[%

]

Slimmable

Nested s70%

Nested s80%

Nested s90%

Width

1.00

0.75

0.50

0.25

(b) ResNet9 - CIFAR100

Fig. 6: Latency-accuracy scaling for Slimmable ConvNets and Nested Sparse ConvNets. Grey area shows the unfeasible solution
space for the adopted MCU, i.e., FLASH footprint > 2MB.

moderate effect on accuracy (2.37% loss). Rescaling the model
width makes the trade-off slightly worse as smaller ConvNets
are less resilient to sparsity. As a result, the accuracy gap
increases and the latency speed-up reduces when the ConvNets
architecture shrinks down. Nonetheless, for the smaller nets
(w=0.25), the accuracy drop of 5.09% for ResNet9 and 5.77%
for MobileNetV1 come with a large speed-up, 52% and 31%
respectively.

Fig. 6 also shows the dynamic behavior of ConvNets opti-
mized with the Slimmable approach [18] offering a direct com-
parison with our approach. Slimmable networks at maximum
width w=1.00 get too large to fit into the FLASH memory
(2MB), and only three configurations out of four can be
deployed on-device. Thanks to the proposed training and com-
pression pipeline instead, Nested Sparse ConvNets meet the
memory constraint even at full scale (w=1.00). Except for the
smallest width (w=0.25), Nested Sparse ConvNets at s=70%
and s=80% turn out to be more accurate and faster than the
slimmable models. The Pareto analysis reveals that the three
rescaled Nested Sparse ConvNets (w={0.75, 0.50, 0.25}) out-
perform the slimmable counterparts, originating eight Pareto
optimal implementations that, if stored together, consume less
storage than a slimmable model. Precisely, 904kB for ResNet9
and 1334kB for MobileNetV1, that is, 28% and 25% less
than the deployable configurations of the slimmable models
(w ≤ 0.75). The downside is that a single Nested Sparse
ConvNet presents a moderate scaling capacity compared to
a slimmable model, which is intuitive as the sparsity acts as a
fine-grain control knob both on accuracy and latency. However,
the low storage footprint paves the way to an attractive hybrid
solution, where the width multiplier serves as a static knob
complementary to the dynamic sparsity.

It is worth emphasizing that other scalable training methods,
e.g., EfficientNet [41], TinyNet [42], and OFA [43], play
statically, i.e., at design time, on the input resolution and on
the topology of the model architecture, i.e., on the width,
depth, and kernel sizes, with the aim to achieve a higher
accuracy with the same resource budget. Such scaling methods
are of utter importance to the design of efficient ConvNets,
but their purpose differs from ours. We demonstrated that
tweaking at run time the accuracy-latency trade-off via sparsity
is feasible even with a reduced storage footprint, as only one

TABLE IV: SSD-MobileNetV2. Best results for each sparsity
level are highlighted in bold.

Training
w=0.50 w=0.35

Sparsity mAP Storage Latency mAP Storage Latency
[%] [%] [kB] [ms] [%] [kB] [ms]

Dense 0 68.32 869 1549 63.42 523 998

Single Sparse
70 66.01 508 1080 60.58 329 752
80 62.72 407 972 55.20 274 689
90 29.40 306 862 23.06 219 625

Ours
70 68.30

514
1225 63.12

334
883

80 66.37 1103 61.03 807
90 60.33 951 55.84 712

compressed weight-set must be stored on-device for a Nested
Sparse ConvNet. Therefore, our solution can be used on top
of existing neural architectural design methods.

E. Object Detection

This last subsection aims to show the generalization ca-
pability of our approach on tasks different from image clas-
sification. Specifically, we evaluated a Nested MobileNetV2
on a bounding-box detection task. The results reported in
Tab. IV refer to configurations at w={0.50, 0.35}, which are
those meeting the FLASH memory constraint for our target
MCU. The Nested Sparse object-detector gets more accurate
than the sparse models trained as separate instances. For the
most sparse configurations (i.e., s=90%), it is 31.85% more
accurate (average over the two widths), confirming the stability
of the proposed training loop. With regard to the latency,
the conclusions brought by the image classification tasks do
hold also here: the sparse models are faster than the dense
models and the nested configurations are slightly slower than
single sparse instances. Also in this case, a hybrid solution
build through a superimposition of width scaling and nested
sparsity enables a wider latency-accuracy working space (from
configuration w=0.50 and s=70% to w=0.35 and s=90%)
∆Top-1/∆L = 12.46(%)/368(ms) while cumulatively occu-
pying 848kB, which is less than the single dense model at
w=0.50.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 9

V. CURRENT LIMITATIONS AND FUTURE WORKS

The proposed training and compression pipeline enables the
use of model sparsity as a dynamic knob on tiny off-the-shelf
devices. Although the experimental assessment revealed that
Nested Sparse ConvNets outperform other dynamic strategies
while occupying a smaller storage footprint, some issues have
not been addressed in the current version of the work. First, the
choice of the sparsity levels is fixed manually prior to training.
However, as the trade-off accuracy vs. latency enabled by spar-
sity depends on the model architecture and the task, designing
the optimal set of sparsity values is not trivial and should
be automated. Second, although using the same sparsity ratio
for all layers of the network was proven effective in previous
works [27], exploiting the effects that different layers have
on both accuracy [44], [45] and latency [46] may lead to new
Pareto solutions. Thus, a possible future development aimed at
overcoming such limitations can integrate an automatic search
engine (like those presented in [47], [48], [49]) in the proposed
pipeline such that multiple sparse configurations are sampled
and tested at training time to optimize storage, latency, and
accuracy simultaneously.

VI. CONCLUSIONS

Nested Sparse ConvNets represent a novel class of dynamic
models conceived to trade-off latency with accuracy at run
time leveraging sparsity as the scaling knob. We introduced a
novel training procedure capable of reaching highly accurate
predictions, and, in conjunction with a new storage format and
a library of custom compute kernels, it enables the deployment
of elastic ConvNets on tiny off-the-shelf devices. An extensive
experimental assessment on tiny visual computing tasks de-
ployed on a low-end IoT node powered by an ARM M7 MCU
reveals that Nested Sparse ConvNets are processed efficiently,
outperform state-of-the-art dynamic strategies achieving op-
timality in the accuracy-latency objective space, and can
therefore represent a new alternative for widening the adoption
of energy-efficient adaptable computer vision tasks at the edge
of the IoT.

REFERENCES

[1] E. Russo, M. Palesi, S. Monteleone, D. Patti, A. Mineo, G. Ascia, and
V. Catania, “Dnn model compression for iot domain-specific hardware
accelerators,” IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6650–
6662, 2022.

[2] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[3] M. Grimaldi, V. Peluso, and A. Calimera, “East: Encoding-aware sparse
training for deep memory compression of convnets,” in 2020 2nd IEEE
International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 2020, pp. 233–237.

[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[7] J. Lin, W.-M. Chen, Y. Lin, j. cohn, C. Gan, and S. Han, “Mcunet:
Tiny deep learning on iot devices,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11 711–
11 722.

[8] A. Cipolletta and A. Calimera, “Dataflow restructuring for active mem-
ory reduction in deep neural networks,” in 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), 2021, pp. 114–119.

[9] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient
patch-based inference for tiny deep learning,” in Advances in Neural In-
formation Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc.,
2021, pp. 2346–2358.

[10] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh,
“Ordering chaos: Memory-aware scheduling of irregularly wired neural
networks for edge devices,” in Proceedings of Machine Learning and
Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020,
pp. 44–57.

[11] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed
low-precision cnn library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[12] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “Fann-on-mcu: An
open-source toolkit for energy-efficient neural network inference at the
edge of the internet of things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4403–4417, 2020.

[13] T. Yang, H. Feng, S. Gao, Z. Jiang, M. Qin, N. Cheng, and L. Bai, “Two-
stage offloading optimization for energy–latency tradeoff with mobile
edge computing in maritime internet of things,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 5954–5963, 2020.

[14] M. Alioto, V. De, and A. Marongiu, “Energy-quality scalable integrated
circuits and systems: Continuing energy scaling in the twilight of
moore’s law,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 8, no. 4, pp. 653–678, 2018.

[15] M. Alioto, “Energy-quality scalable adaptive vlsi circuits and systems
beyond approximate computing,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 127–132.

[16] L. Mocerino and A. Calimera, “Fast and accurate inference on micro-
controllers with boosted cooperative convolutional neural networks (bc-
net),” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 1, pp. 77–88, 2021.

[17] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:
Learning dynamic routing in convolutional networks,” in Proceedings
of the European Conference on Computer Vision (ECCV), September
2018.

[18] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural
networks,” in International Conference on Learning Representations,
2018.

[19] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in Deep Learning: Pruning and growth for efficient inference and training
in neural networks,” Journal of Machine Learning Research, vol. 22, no.
241, pp. 1–124, Sep. 2021.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society,
jun 2016, pp. 770–778.

[21] Z. Wu, D. Zhao, Q. Liang, J. Yu, A. Gulati, and R. Pang, “Dynamic
sparsity neural networks for automatic speech recognition,” in ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2021, pp. 6014–6018.

[22] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” arXiv e-prints, vol. arXiv:1902.09574, 2019.

[23] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015.

[24] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 27–40.

[25] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. van den Oord, S. Dieleman, and

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. X, MONTH X 10

K. Kavukcuoglu, “Efficient neural audio synthesis,” in Proceedings of
the 35th International Conference on Machine Learning, ser. Proceed-
ings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 10–15 Jul 2018, pp. 2410–2419.

[26] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p. 548–560,
jun 2017.

[27] E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast sparse convnets,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[28] C. Gamanayake, L. Jayasinghe, B. K. K. Ng, and C. Yuen, “Cluster
pruning: An efficient filter pruning method for edge ai vision applica-
tions,” IEEE Journal of Selected Topics in Signal Processing, vol. 14,
no. 4, pp. 802–816, 2020.

[29] V. Radu, K. Kaszyk, Y. Wen, J. Turner, J. Cano, E. J. Crowley, B. Franke,
A. Storkey, and M. O’Boyle, “Performance aware convolutional neural
network channel pruning for embedded gpus,” in 2019 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2019, pp. 24–
34.

[30] I. Fedorov, R. M. Navarro, H. Tann, C. Zhou, M. Mattina, and P. N.
Whatmough, “UDC: unified DNAS for compressible tinyml models,”
CoRR, vol. abs/2201.05842, 2022.

[31] M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang,
T. Blankevoort, and M. Welling, “Bayesian bits: Unifying quantization
and pruning,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 5741–5752.

[32] G. Li, X. Ma, X. Wang, L. Liu, J. Xue, and X. Feng, “Fusion-catalyzed
pruning for optimizing deep learning on intelligent edge devices,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 3614–3626, 2020.

[33] U. W. Pooch and A. Nieder, “A survey of indexing techniques for sparse
matrices,” ACM Comput. Surv., vol. 5, no. 2, p. 109–133, jun 1973.

[34] X. Zhu and M. Bain, “B-cnn: branch convolutional neural network for
hierarchical classification,” arXiv preprint arXiv:1709.09890, 2017.

[35] S. Narang, E. Elsen, G. Diamos, and S. Sengupta, “Exploring sparsity
in recurrent neural networks,” arXiv preprint arXiv:1704.05119, 2017.

[36] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[37] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[38] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

[39] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision –
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham:
Springer International Publishing, 2016, pp. 21–37.

[41] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
09–15 Jun 2019, pp. 6105–6114.

[42] K. Han, Y. Wang, Q. Zhang, W. Zhang, C. Xu, and T. Zhang, “Model ru-
bik’s cube: Twisting resolution, depth and width for tinynets,” Advances
in Neural Information Processing Systems, vol. 33, pp. 19 353–19 364,
2020.

[43] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations, 2020.

[44] C. Zhang, S. Bengio, and Y. Singer, “Are all layers created equal?” in
ICML 2019 Workshop on Identifying and Understanding Deep Learning
Phenomena, 2019.

[45] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug
2017, pp. 2498–2507.

[46] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and
E. Choi, “Morphnet: Fast & simple resource-constrained structure learn-
ing of deep networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[47] J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search
for channel numbers,” arXiv preprint arXiv:1903.11728, 2019.

[48] T.-W. Chin, A. S. Morcos, and D. Marculescu, “Joslim: Joint widths
and weights optimization for slimmable neural networks,” in Machine
Learning and Knowledge Discovery in Databases. Research Track,
N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, and J. A. Lozano, Eds.
Cham: Springer International Publishing, 2021, pp. 119–134.

[49] G. Li, X. Ma, X. Wang, H. Yue, J. Li, L. Liu, X. Feng, and J. Xue,
“Optimizing deep neural networks on intelligent edge accelerators via
flexible-rate filter pruning,” Journal of Systems Architecture, vol. 124,
p. 102431, 2022.

Matteo Grimaldi received Ph.D. in Computer Engineering from the Politec-
nico di Torino in 2021, where he is currently working as a postdoctoral
researcher. His research interests include efficient algorithms and design
strategies for resource-driven compression and optimization of deep learning
models.

Luca Mocerino received M.Sc. in Computer Science at Politecnico di Torino
(2017). There, since 2018, he has been a research assistant and Ph.D.
Candidate in Computer and Control Engineering with the EDA group. His
research interests mainly focus on hardware and software optimizations for
deep learning algorithms.

Antonio Cipolletta received the M.Sc. and the Ph.D. in Computer Engineer-
ing from Politecnico di Torino in 2018 and 2022, respectively. He also received
the M.Sc. in Electrical and Computer Engineering from the University of
Illinois at Chicago (2019). His main research interests focus on hardware-
software co-design for deep learning acceleration and parallel computing
systems.

Andrea Calimera received the M.Sc. degree in Electronic Engineering and
the Ph.D. degree in Computer Engineering both from Politecnico di Torino. He
is currently an Associate Professor of Computer Engineering at Politecnico di
Torino. His research interests cover the areas of design automation of digital
circuits and embedded systems with emphasis on optimization techniques
for low-power and reliable ICs, dynamic energy/quality management, logic
synthesis, design flows and methodologies for emerging computing paradigms.

