
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Rescheduling rehabilitation sessions with answer set programming / Cardellini, Matteo; Dodaro, Carmine; Galatà,
Giuseppe; Giardini, Anna; Maratea, Marco; Nisopoli, Nicholas; Porro, Ivan. - In: JOURNAL OF LOGIC AND
COMPUTATION. - ISSN 0955-792X. - (2023). [10.1093/logcom/exad014]

Original

Rescheduling rehabilitation sessions with answer set programming

Oxford University Press preprint/submitted version

Publisher:

Published
DOI:10.1093/logcom/exad014

Terms of use:

Publisher copyright

This article has been accepted for publication in JOURNAL OF LOGIC AND COMPUTATION Published by Oxford
University Press

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977729 since: 2023-04-03T12:25:43Z

Oxford University Press

Rescheduling Rehabilitation Sessions with
Answer Set Programming ⋆

Matteo Cardellini1,2[0000−0003−3788−9475], Carmine
Dodaro3[0000−0002−5617−5286], Giuseppe Galatà4[0000−0002−1948−4469], Anna
Giardini5, Marco Maratea2,3[0000−0002−9034−2527]⋆⋆, Nicholas Nisopoli4, and

Ivan Porro4[0000−0002−0601−8071]

1 Polytechnic of Torino, Italy; matteo.cardellini@polito.it
2 DIBRIS, University of Genova, Genova, Italy; marco.maratea@unige.it

3 DeMaCS, University of Calabria, Rende, Italy; {maratea,dodaro}@mat.unical.it
4 SurgiQ srl, Italy; {name.surname}@surgiq.com

5 IT, ICS Maugeri, Italy; anna.giardini@icsmaugeri.it

Abstract. The rehabilitation scheduling process consists of planning
rehabilitation physiotherapy sessions for patients, by assigning proper
operators to them in a certain time slot of a given day, taking into account
several requirements and optimizations, e.g., patient’s preferences and
operator’s work balancing. Being able to efficiently solve such problem is
of upmost importance, in particular as a consequence of the COVID-19
pandemic that significantly increased rehabilitation’s needs. The problem
has been recently successfully solved via a two-phase solution based on
Answer Set Programming (ASP).
In this paper, we focus on the problem of rescheduling the rehabilitation
sessions, that comes into play when the original schedule cannot be im-
plemented, for reasons that involve the unavailability of operators and/or
the absence of patients. We provide rescheduling solutions based on ASP
for both phases, considering different scenarios. Results of experiments
performed on real benchmarks, provided by ICS Maugeri, show that also
the rescheduling problem can be solved in a satisfactory way. Finally, we
present a web application that supports the usage of our solution.

1 Introduction

The rehabilitation scheduling process [32, 33, 35, 42] (RSP) consists of planning
patients’ physiotherapy sessions inside a rehabilitation institute. Hospitals that
may profitably make a practical use of such scheduling, including those managed
by ICS Maugeri6 that will provide benchmarks and problem specifications in
this paper, deal with up to hundreds of patients with a team of just few tens of
physiotherapists; so, it is of paramount importance to be able to assign patients

⋆ This is an extended and revised version of a paper presented at the 36th Italian
Conference on Computational Logic (CILC 2021).

⋆⋆ Corresponding author.
6 https://www.icsmaugeri.it/.

2 Cardellini et al.

to operators efficiently. A recent article [15] found that 2.41 billion people could
benefit from rehabilitation services. This finding means that almost one third of
the people in the world needs rehabilitation at some point during the course of
their lives for disease or injury; further, this number is predicted to trend upward
given the current demographic and health shifts. In addition, there is emerging
evidence that many of the people affected by the COVID-19 pandemic have long-
term consequences regardless of the disease severity or length of hospitalisation,
thus further increasing the demand for rehabilitation services globally. The RSP
is subject to several constraints, i.e., legal, medical and ethical, that need to
be taken into consideration in order to find a viable schedule. For example,
the main constraints that have to be dealt with are the maximum capacity of
rehabilitation gyms, the legal working time and rest periods for operators, and
the minimum durations of physiotherapy sessions. Moreover, several preferences
shall be considered, e.g., due to clinical and organizational reasons it is often
best for the patient to be treated as often as possible by the same operator and
defined slots for the rehabilitation sessions are to be preferred; also, rehabilitation
professionals’ work balancing needs to be taken into proper account.

In this paper, we build on a solution to the RSP based on Answer Set Pro-
gramming (ASP) [8, 10, 31, 38], designed as a two-phase encoding, presented in
a previous version of this paper [13]. In particular, the first phase is called board
and deals with the problem of assigning a physiotherapist to every patient, while
in the second phase, called agenda, a start and end time of every rehabilitation
session is defined given the assignment between patients and physiotherapists
found in the first phase. As already noticed in [13], our two-phase solution is
not guaranteed to find the best possible overall solution, but has been designed
in this way mainly because it mimics how schedules have been computed so far
(in a non-automatic way) by ICS Maugeri, and gives freedom to physiothera-
pists’ coordinators to perform any desired manual change to the board, before
planning the agenda. Then, we focus on the problem of rescheduling the reha-
bilitation sessions, that comes into play when the original schedule cannot be
implemented due to, e.g., unavailability of operators and/or absence of patients.
The presented Rescheduling RSP (RRSP) encodings receive as input the previ-
ous scheduling and the unavailability of operators and/or patients, and provide
as output novel solutions taking into account such unavailability. Rescheduling
solutions consider a wide spectrum of scenarios involving total or partial un-
availability of operators and/or patients.

Then, we tested our encoding on real benchmarks supplied by ICS Maugeri,
who provided also the problem specifications, on the aforementioned scenarios,
and related to the daily scheduling of neurological patients from two of their
rehabilitation institutes in the North of Italy, namely Genova Nervi and Cas-
tel Goffredo. Results using the ASP solver clingo [27] are satisfying for the
institutes considered at the moment: for the board phase, we are able to find
an optimal solution in short time in the majority of the cases, while for the
agenda phase, whose problem and encoding are more elaborated, by increasing
the number of operators and/or patients unavailable the quality of the solution

Rescheduling Rehabilitation Sessions with Answer Set Programming 3

decreases and the time increases, but still obtaining satisfying results even for
our largest benchmarks. Additionally, we have also designed and implemented
a web framework for managing rehabilitation problems via ASP that allows a
user to insert the main parameters of the problem, solve a specific instance, and
that shows results graphically in real-time.

The paper is structured as follows. Section 2 describes the problem we solve
together with its main elements, while Section 3 introduces preliminaries about
ASP. Then, Section 4 reviews the scheduling encodings, while Section 5 illus-
trates encodings for the rescheduling problem, whose results are presented in
Section 6. Finally, the web application for usability of our solution is described
in Section 7. The paper ends with related work discussion and conclusions in
Section 8 and 9, respectively.

2 Problem description

The delivery of rehabilitation services is a complex task that involves many
healthcare professions such as physicians, physiotherapists, speech therapists,
psychologists, and so on. In particular, physiotherapists spend most of their
time with the patients and their sessions constitute the core of the daily agenda
of the patient, around which all other commitments revolve. We thus focus on
scheduling and rescheduling the physiotherapy sessions in the most efficient way,
optimising the overall time spent with the patients.

The agenda for the physiotherapy sessions is computed by the coordinator
of the physiotherapists. This process is repeated on a daily basis in order to
take into account any change in the number and type of patients to be treated,
and the number of operators available; until recently, this operation has been
performed manually in ICS Maugeri, without any automation.

In the following subsections, we describe in more details the main elements
of the problem, namely patients, operators and sessions; the constraints and
preferences entailed by the board and agenda phases; and, finally, the scheduling
and rescheduling problems we deal with in this paper. These specifications have
been provided by ICS Maugeri.

2.1 Main elements of the problem

In the following paragraphs we discuss patients, operators, and sessions.

Patients. Patients are characterized by their:

– type (Neurological, Orthopaedic, Alcoholic, COVID-19 Positive, COVID-19
Negative, Outpatient),

– aid needs, i.e., if they need specific care or not,
– payment status (full payer or in charge of the National Healthcare Service),
– forbidden times, i.e., the time intervals when the patient cannot be scheduled,
– ideal time, i.e., the preferred scheduled time expressed by the coordinator,

4 Cardellini et al.

– preferred operators, i.e., the list of physiotherapists, ordered by priority, the
patient can be assigned to,

– overall minimum length, i.e., the minimum amount of care time that the
patient is guaranteed to be scheduled,

– sessions, i.e., the list of sessions to be scheduled.

Operators. Physiotherapists, that will be called operators from now on, are
characterized by their:

– qualifications, i.e., patient’s types the operator can treat,
– operating times, i.e., the part of the operator’s working times devoted to the

direct care of patients. The operating times are usually split in morning and
afternoon shifts.

Sessions. The coordinator, in accordance with the rehabilitation program set by
the physician, determines the daily activities of the patient. These activities can
be performed in one or two therapy sessions, in the latter case one session will
be scheduled in the morning and the other in the afternoon shift.

Each session can be delivered to patients either by individualized (”one-to-
one” sessions) or supervised (one therapist supervising more patients at the same
time, each patient carrying out their personal activity independently). It must
be noted that, while operators are delivering one-to-one therapy to patients, they
can supervise other patients but cannot deliver one-to-one therapy to another
patient. When the operators are particularly overbooked, their one-to-one ses-
sions can be partially converted to supervised ones. These mixed sessions can
either start with a supervised part and then continue with the one-to-one part,
or vice-versa, or even start and end with a supervised part with a middle one-to-
one session. Obviously, an operator can supervise different patients only if their
sessions are located at the same place. The characteristics of sessions are:

– delivery mode (one-to-one, supervised),
– minimum one-to-one length, i.e., the minimum length of the session guaran-

teed to be delivered in one-to-one mode,
– ideal overall length, i.e., the overall length of the session including the one-

to-one and supervised parts,
– optional status, i.e., if the session can be left out of the schedule in case of

overbooked operators,
– forced time, i.e., the time when the session must be scheduled; if empty, the

session is placed as close as possible to the patient’s preferred time,
– location, i.e., the place where the session must be delivered.

2.2 Specifications of the two phases

In this subsection we describe, in two different paragraphs, the constraints and
preferences considered in the two phases of our approach.

Rescheduling Rehabilitation Sessions with Answer Set Programming 5

Board. In the board phase all patients are assigned to an available operator,
according to the following criteria:

– compatibility between patient and operator, depending on the patient’s type
and operator qualifications, the patient’s forced time, if any, and the operator
working times, by also checking if the operator has enough time to provide
the guaranteed overall minimum length and minimum one-to-one length to
each patient and session,

– forced assignments of a patient to an operator: in special cases, the coor-
dinator can override the preferred operators list and force an assignment
regardless of all other considerations,

– the patients should be fairly distributed among all available operators, taking
into account their type, aid needs and payment status,

– the patients should be assigned to the operators respecting as much as pos-
sible their preferred operators list, which considers primarily the choices of
the coordinator and secondarily the history of the past assignments.

Agenda. The results of the board phase can be revised and, if necessary, manually
modified by the coordinator. Once the coordinator is satisfied with the board,
it is possible to proceed to the agenda scheduling, using the approved board as
input data. The criteria for the agenda phase are:

– compliance with the forced time of the session, if specified,
– two sessions of the same patient must be assigned in different shifts,
– compliance with the minimum one-to-one length of the session,
– no overlap between two one-to-one sessions (or their one-to-one sections if

the sessions are mixed) assigned to the same operator,
– observance of the maximum capacity of the locations (1 for each room, vary-

ing for the gyms),
– respect of the overall minimum length of the patient,
– respect of the one-to-one minimum session length,
– compliance with the forbidden times of the patient,
– sessions can only be scheduled within the working times of the operator,
– the start time of each session should be as close as possible to the preferred

time, either specified by the coordinator or inferred from previous schedules,
– for mixed sessions, the one-to-one part should be maximized,
– the largest possible number of optional sessions should be included,
– the overall length, including the one-to-one and supervised parts in case of

mixed sessions, should be as close as possible to the ideal overall length
specified by the coordinator.

2.3 RSP

In this subsection, we describe the Rehabilitation Scheduling Problem (RSP) we
solve via the two phases.

The board phase deals with the problem of assigning a physiotherapist to
every patient, keeping track of the total working time of the operator and the

6 Cardellini et al.

minimum mandatory time of rehabilitation sessions. Then, in the consequential
agenda phase, a start and end time of every rehabilitation session is searched
given the assignments between patients and operators found in the first phase.
Going more in details, in the board phase the working hours of operators are
simplified by counting their total working time, in minutes, and assigning pa-
tients to each operator in order to keep the cumulative time of all the sessions
in which the operators are involved underneath their total working time. In this
phase, patient-operator assignment preferences, expressed by the coordinator be-
fore the start of the scheduling procedure, are taken into account and respected
as far as possible. In the agenda phase, given an assignment found by the board,
every patient-operator session is assigned a starting and ending time, respecting
the more granular working hours of the operators and the times in which the
patients are unavailable. At this stage, the location in which the rehabilitation
session is performed is also considered: a location (either a gym or the room of
the patient) is assigned to every session, keeping into consideration the maximum
number of simultaneous sessions allowed inside the location. A macro-location is
a container of equivalent locations. For example, two gyms on the same floor in
Castel Goffredo are considered equivalent, and thus in the same macro-location,
because any patient having a room on the same floor can be assigned to any of
them indifferently but not to gyms on other floors. The choice of the gym has to
be made among a subset of gyms that are located in the same macro-location in
order to avoid elevators and stairs that can result in discomfort to patients and
can quickly congest the hospital. In this phase, time preferences for each patient
are also considered: in fact, solutions in which the sessions are performed nearer
the desired time of the patients are preferred to the others.

Note that our two-phase solution is not guaranteed to find the best possible
overall solution, but has been designed in this way mainly because it mimics
how schedules have been computed so far (in a non-automatic way) by ICS
Maugeri, and gives freedom to physiotherapists’ coordinators to perform any
desired manual change to the board, before planning the agenda.

2.4 Rescheduling RSP

In this subsection, we informally present the Rescheduling Rehabilitation Ses-
sions Problem (RRSP).

Rescheduling is a procedure that may be applied to correct a previously
approved schedule whenever an accident, or any unexpected event that makes
the previous schedule not applicable, happens. The types of unexpected events
that we have dealt with in the present work are:

– full or partial unavailability of one or more operators,
– full or partial absence of one or more patients,
– a combination of both absences.

Note that in our model the absence of an operator does not determine nor
influence the absence of a patient and vice-versa, thus even when occurring in
the same rescheduling problem they can be treated as independent events.

Rescheduling Rehabilitation Sessions with Answer Set Programming 7

The guiding principle of rescheduling is to adjust the schedule for the unex-
pected events in a way that minimizes the differences with the original sched-
ule. Like the scheduling problem, the rescheduling problem is subdivided in two
phases: board and agenda.

When an operator is unavailable for a full day, their patient must be reas-
signed to other operators. This reassignment procedure should respect all the
criteria followed in the original scheduling, such as suitable qualifications, pref-
erences, and so on. Moreover, a new criterion is necessary: in order to not over-
burden the operators, the patients are reassigned preferentially to the operators
with less occupied time. After the board, also the agenda has to be rescheduled.
In this case, the guiding criteria are:

– the sessions of the patients who were not reassigned should keep their original
times,

– the sessions of the reassigned patients should be placed in a time as close as
possible to their previously scheduled ones,

– it should be possible to convert, fully or partially, an individual session be-
longing to a reassigned patient to a supervised one if necessary (e.g., the
operator, to whom the patient was reassigned to, has no free time at all).

In case of partial unavailability of operators, their patients should preferably
remain with the operator and moved in time. However, it should be possible to
reassign some of them to other operators if the operating time of the partially
unavailable operator is not sufficient.

In the case of full absence of patients, the rescheduling of the board is easy,
since it only involves the elimination of the sessions of the missing patients. When
the absence is only partial, e.g., a patient previously scheduled in the morning is
now available only in the afternoon, the board should be affected only when the
operator assigned to the patient is not working at the new time slot of patient
availability, e.g., a part-timer who only works in the mornings. In this case, the
patient should be moved to a different operator. The agenda of operators of
fully absent patients should be rescheduled so that the sessions of the remaining
patients are moved as close as possible to their preferred times. If a partially
absent patient has to be moved to another operator, then the procedure applied
is analogous to the one described below for the operator unavailability cases.

2.5 Examples of (re)scheduling

In this section, we present some examples of the scheduling of scenarios coming
from real data in the hospitals of Genova Nervi, and the consequent rescheduling
caused by absence of patients and/or unavailability of operators. These results
will be presented for both the board and the agenda phases.

Board example. Figure 1 (top) shows a bar plot representing the distribution
of patients among operators found in the board phase of a real case scenario
coming from the hospital of Genova Nervi. In the scenario, 65 patients have to

8 Cardellini et al.

Scheduling

1 2 3 4 5 6 7 8 9 10 11 12 13

Operators

0

5

10

15

20

25

30

35

T
im

e
Available Time

Occupied Time

Rescheduling

1 2 3 4 5 6 7 8 9 10 11 12 13

Operators

0

5

10

15

20

25

30

35

T
im

e

Available Time

Occupied Time

Fig. 1: Bar plots represent the distribution of patients among 13 operators in the
Genova Nervi hospital (top) and the consequent rescheduling (bottom) caused
by the total unavailability of operators 2 and 12, and the partial unavailability
of 10 time slots for operator 11. Blue bars represent the amount of time slots
in which the operators are available, while red bars represent the sum of the
minimum individual time of all the sessions assigned to the operator.

be distributed among 13 operators. Blue bars represent the amount of time slots
in which the operators are available, red bars represent the sum of the minimum
individual time of all the sessions assigned to the operator. Figure 1 (bottom)
shows the rescheduling caused by the total unavailability of operators 2 and 12,
and the partial unavailability for 10 time slots of operator 11. As it can be seen,
the patients have been redistributed among the remaining operators and the
partial unavailability of operator 11 has been respected by removing some pa-
tients which were previously assigned to it. It can be noted that, unfortunately,
now operator 9 has a number of sessions assigned in which the sum of the mini-
mum individual time (red bar) is greater than the available time of the operator
(blue bar). Nevertheless, this result is still valid because, by Maugeri’s policy, if
not enough time is available for operators to perform rescheduled sessions indi-
vidually, then these sessions will be performed in a supervised fashion, which,
although not optimal, can still be beneficial to the patient.

Agenda example. Figure 2 shows the scheduling of the agenda in a real case sce-
nario in the hospital of Genova Nervi. Light blue squares represent time units in
which the sessions will be performed in an individual fashion, and yellow squares

Rescheduling Rehabilitation Sessions with Answer Set Programming 9

represent time units of sessions (or extensions of a session) in which the patient
will be dealt in a supervised mode. Some sessions (e.g., session 17 of patient 13
performed in the morning by operator 4) are performed in a complete supervised
fashion since they are additional secondary sessions which are medically benefi-
cial to the patient but not mandatory (e.g., patient 13 already performs session
16 in an individual fashion with operator 4 in the afternoon). Figure 3 shows
the rescheduling caused by (i) the total absence of patient 61, (ii) the partial
unavailability of operator 10 in the morning, and (iii) the total unavailability of
patient 12 (actually, the unavailability is set only in the afternoon, but it coin-
cides exactly with the operator working time which works only part-time). Gray
boxes delimit the slots in which operators are not available. As it can be noted
by comparing Figure 2 and 3, the sessions which were, in the scheduling, inside
the gray boxes are now assigned to other operators trying to keep the sched-
ule as close as possible to the original one. Moreover, it can be seen how some
reassigned sessions have a large amount of extended supervised time w.r.t. the
original schedule, given the impossibility, as stated in the previous paragraph,
to fit all the rescheduled sessions without reducing the sessions untouched by
the unavailability of operators. Regarding the absence of patient 61, it can be
noted how session 80 – which was assigned in the schedule to operator 14 in the
morning – is now not present anymore in the final reschedule, and this has given
the possibility to the other sessions of the operator to fill the empty space and
obtaining more individual session time.

Fig. 2: Result of the scheduling of the agenda in a real case scenario in the
hospital of Genova Nervi. Light blue (yellow) squares represent time units in
which the sessions will be performed in an individual (supervised) fashion. The
ticks on the left keep track of the period and time slot in which the session will
start or end.

10 Cardellini et al.

Fig. 3: Result of the rescheduling of the agenda caused by a partial unavailability
of operator 10, the total unavailability of operator 11, and the total absence
of patient 61. Gray boxes signal the timeslots in which the operators are not
available.

3 Background on ASP

Answer Set Programming (ASP) [10, 8, 31, 38] is a programming paradigm de-
veloped in the field of non-monotonic reasoning and logic programming. In this
section, we overview the language of ASP. More detailed descriptions and a more
formal account of ASP, including the features of the language employed in this
paper, can be found in [12]. Hereafter, we assume the reader is familiar with
logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with an uppercase letter, and constants are non-negative integers or
strings starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
A ground set is a set of pairs of the form ⟨consts :conj⟩, where consts is a list of
constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
k > 0, and each Conji is a conjunction of standard atoms. A set term is either a
symbolic set or a ground set. Intuitively, a set term {X :a(X, c), p(X);Y :b(Y,m)}
stands for the union of two sets: the first one contains the X-values making the
conjunction a(X, c), p(X) true, and the second one contains the Y -values making

Rescheduling Rehabilitation Sessions with Answer Set Programming 11

the atom b(Y,m) true. An aggregate function is of the form f(S), where S is a set
term, and f is an aggregate function symbol. Basically, aggregate functions map
multisets of constants to a constant. The most common functions implemented
in ASP systems are the following:

– #count , number of terms;
– #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<,≤, >,≥, ̸=,=} is a comparison operator, and T is a term called guard.
An aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom. A rule r has the
following form:

a1 | . . . | an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 | . . . | an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules, where a rule r is safe if the
following conditions hold: (i) for each global variable X of r there is a positive
standard atom ℓ in the body of r such that X appears in ℓ; and (ii) each lo-
cal variable of r appearing in a symbolic set {Terms :Conj} also appears in a
positive atom in Conj .

A weak constraint [11] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l, t1, . . . , tz]

where t1, . . . , tz are terms, w and l are the weight and level of ω, respectively.
(Intuitively, [w@l] is read “as weight w at level l”, where weight is the “cost”
of violating the condition in the body of w, whereas levels can be specified for
defining a priority among preference criteria). Intuitively, t1, . . . , tz are used to
distinguish ground weak constraints between each other. An ASP program with
weak constraints is Π = ⟨P,W ⟩, where P is a program and W is a set of weak
constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the
Herbrand base BP of P are defined as usual. The ground instantiation GP of
P is the set of all the ground instances of rules of P that can be obtained by
substituting variables with constants from UP .

An interpretation I for P is a subset I of BP . A ground literal ℓ (resp.,
not ℓ) is true w.r.t. I if ℓ ∈ I (resp., ℓ ̸∈ I), and false (resp., true) otherwise. An

12 Cardellini et al.

aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) w.r.t. I satisfies the guard;
otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a
ground program GP and an interpretation I, the reduct [23] of GP w.r.t. I is the
subset GI

P of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model) for
P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a minimal
model for GI

P) [23].
Given a program with weak constraints Π = ⟨P,W ⟩ and an interpretation

I, the semantics of Π extends from the basic case defined above. Thus, let
GP and GW be the instantiation of P and W , respectively. Then, let G′

W be
the set {(w@l, t1, . . . , tz) | :∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l, t1, . . . , tz] ∈
GW and b1, . . . , bm ∈ I}. Moreover, for an integer l, P I

l =
∑

(w@l,t1,...,tz)∈G′
W
w

if there is at least one tuple in G′
W whose level is equal to l, and 0 otherwise.

Given a program with weak constraints Π = ⟨P,W ⟩, an answer set M for P
is said to be dominated by an answer set M ′ for P , if there exists an integer l
such that PM ′

l < PM
l and PM ′

l′ = PM
l′ for all integers l′ > l. An answer set M

for P is said to be optimal or optimum for Π if there is no other answer set M ′

that dominates M .

Syntactic shortcuts. In the following, we also use choice rules of the form {p},
where p is an atom. Choice rules can be viewed as a syntactic shortcut for the
rule p | p′, where p′ is a fresh new atom not appearing elsewhere in the program,
meaning that the atom p can be chosen as true.

4 A Two-Phase ASP Encoding for the RSP

In this section, starting from the specifications in Section 2, we present the
ASP encoding of the scheduling for both phases, based on the input language of
clingo [25], that will be the starting point for the rescheduling solutions in the
next section. A subsection is devoted to each phase.

4.1 Board encoding

Data Model. The input data is specified by means of the following atoms:

– Instances of patient(P), operators(O) and type(T) represent the identi-
fiers of patients, operators, and the different types of patients that can be vis-
ited, respectively, where P and O are numbers, whereas T can be: neurologic,
neurologic-lifter, orthopaedic, orthopaedic-lifter, covid-19-positive, covid-19-
negative, or outpatient. Moreover, a fictitious operator with ID equals to -1
is included in the list of all the operators, and is needed to intercept the
patients that cannot be assigned to other operators.

Rescheduling Rehabilitation Sessions with Answer Set Programming 13

1 {assignment(OP, PAT) : operator(OP)} = 1 :- patient(PAT).
2 uniqueLocationLength(OP,PAT,DUR) :- assignment(OP,PAT), patient_session(PAT,_,LOC),

patient_data(PAT,_,DUR), #count{ID:patient_session(ID,_,LOC), assignment(OP,ID)} < 2.
3 sameLocationLength(OP,PAT,DUR) :- assignment(OP,PAT), patient_session(PAT,DUR,LOC),

#count{ID:patient_session(ID,_,LOC), assignment(OP,ID)} > 1.
4 :- operator_contract(OP,TIME,_), #sum{U,PAT:uniqueLocationLength(OP,PAT,U); S,

PAT:sameLocationLength(OP,PAT,S)} > TIME.
5 :- operator_contract(OP,_,N), #count{PAT:assignment(OP,PAT)} > N.
6 :- operator_limit(OP,T,N), #count{PAT:assignment(OP,PAT), patient_data(PAT,T,_} > N.
7 :∼ #sum{W, PAT:assignment(OP,PAT), patient_preference(PAT,OP,W)} = N. [N@3]
8 :∼ #count{PAT: assignment(-1, PAT)} = N. [N@2]
9 :∼ #sum{W, PAT:assignment(OP,PAT), history_preference(PAT,OP,W)} = N. [N@1]

Fig. 4: ASP encoding for the board problem.

– Instances of operator contract(ID,TIME,MAX) represent the contract of
the operator with identifier ID, and include the quantity of time (in time
units) the operator works in a day (TIME), and the maximum number of
patients the operator can visit during the day (MAX).

– Instances of operator limit(ID,T,VALUE) represent the maximum number
of patients (VALUE) of type T the operator with identifier ID can visit. The
operator with ID equals to -1 has no patients limits.

– Instances of patient data(ID,T,MIN) represent the data associated to the
patient with the identifier ID, and include the type of the patient (T), and
the minimum cumulative time of all sessions of the patient during the day
(MIN).

– Instances of patient session(ID,MIN,LOC) represent a rehabilitation ses-
sion that the patient with identifier ID needs to perform during the day. The
session is characterized by a minimum length for the session in time units
(MIN), and the location of the session (LOC).

– Instances of patient preference(ID,OP,W) represent the preference of the
patient with identifier ID to be treated by the operator with identifier OP,
where W specifies the weight of the preference.

– Similarly, instances of history preference(ID,OP,W) represent the prefer-
ence of the patient based on the history of previous sessions.

The output is an assignment represented by atoms of the form assignment(OP,

PAT) stating that the patient PAT will be treated by the operator OP.

Encoding. The related encoding is shown in Figure 4, and is described in the
following. To simplify the description, the rule appearing at line i in Figure 4
is denoted with ri. Rule r1 ensures that each patient is assigned to exactly one
operator. Rules r2 and r3 are used to define if the session between a patient
and an operator will be performed individually in a single location (r2), or it
will be executed in the same location of another session (r3). Rule r4 ensures
that the time required by the patients assigned to an operator does not exceed
the maximum time of her/his contract. Rule r5 ensures that each operator does
not exceed the maximum number of patients to visit during the day. Rule r6 is

14 Cardellini et al.

similar to the previous one, but in this case the limits are imposed according to
the type of the patient.

Weak constraints from r7 to r9 are then used to provide preferences among
different models, having levels in this order. In particular, r7 is used to maximize
the assignments that fulfil the preferences of each patient. Then, r8 is used to
minimize the number of patients that are assigned to the fictitious operator.
Finally, r9 is used to maximize the solutions that preserve assignments dictated
by the history of previous sessions.

4.2 Agenda encoding

Data Model. The following atoms constitute the input data:

– Instances of patient(ID,MIN) represent a patient identified by ID, and a
minimum rehabilitation session of MIN length in time units that the patient
has to undertake during the day.

– Instances of period(PER,OP,STA,END) define the start (STA) and end (END)
time in the period PER (which can be morning or afternoon), which corre-
sponds to the shift, of the operator with identifier OP.

– Instances of time(PER,OP,T) define the time slots T during the period PER

where the operator OP works. In particular, T ranges from STA to END defined
for instances of period(PER,OP,STA,END).

– Instances of location(ID,CAP,PER,STA,END) represent a location, with an
identifier ID, a maximum capacity of CAP, and during the period PER is open
from the time unit STA until END.

– Instances of macro location(MLOC,LOC) define that the location LOC is in-
side the macro-location MLOC.

– Instances of session(ID,PAT,OP) represent a session between the patient
PAT and the operator OP, coming from the assignment(OP,PAT) output of
the board phase to which a unique ID is added (to discriminate between
morning and afternoon shifts).

– Instances of session type(ID,OP,TYPE) represent that the session with
identifier ID assigned to operator OP is of type TYPE (which can be indi-
vidual or supervised).

– Instances of session macro location(ID,MLOC) represent that the session
with identifier ID has to be held in the macro-location MLOC.

– Instances of session length(ID,MIN,IDEAL) represent that the session ID

has a minimum length (MIN) that has to be performed in individual, and an
ideal length (IDEAL) that would be beneficial to the patient, but it is not
mandatory to perform.

– Instances of mandatory session(ID) and optional session(ID) identify
sessions that are mandatory and optional, respectively.

– Instances of forbidden(PAT,PER,STA,END) represent an unavailability of
the patient PAT in the period PER from the time unit STA to END.

– Instances of session preference(ID,PER,START,TYPE) represent the pref-
erence of the patient, stating that the session should be held during the

Rescheduling Rehabilitation Sessions with Answer Set Programming 15

1 {start(ID,PER,TS) : time(PER,OP,TS)} = 1 :- session(ID,_,OP), mandatory_session(ID).
2 {start(ID,PER,TS) : time(PER,OP,TS)} <= 1 :- session(ID,_,OP), optional_session(ID).
3 {length(ID,PER,NL) : time(PER,OP,L), NL=L-ST, TS+NL <= END, NL>= MIN, NL<= IDEAL} = 1 :-

start(ID,PER,TS), period(PER,OP,ST,END), session(ID,_,OP),
session_length(ID,MIN,IDEAL).

4 {session_location(ID,LOC): macro_location(MAC,LOC)} = 1 :- session_macro_location(ID,MAC).
5 {before(ID,NL): time(PER,OP,L), NL=L-ST, NL<=TS-ST} = 1 :- start(ID,PER,TS),

period(PER,OP,ST,_), session(ID,_,OP).
6 {after(ID,NL): time(PER,OP,L), NL=L-ST, NL<=END-TS-LEN} = 1 :- start(ID,PER,TS),

period(PER,OP,ST,END), length(ID,PER,LEN), session(ID,_,OP).
7 ext_start(ID,PER,TS-LB) :- start(ID,PER,TS), before(ID,LB).
8 ext_length(ID,PER,L+LA+LB) :- length(ID,PER,L), after(ID,LA), before(ID,LB).
9 individual_session_location(ID,LOC,OP,MIN,IDEAL) :- session_type(ID,OP,individual),

session_location(ID,LOC), session_length(ID,MIN,IDEAL).
10 session_time(ID,OP,PL,PER,TS..TS+L-1) :- session(ID,_,OP), session_location(ID,PL),

ext_start(ID,PER,TS), ext_length(ID,PER,L).
11 :- start(ID,PER,TS), length(ID,PER,L), session_type(ID,OP,individual), start(ID2,PER,TS2),

session_type(ID2,OP,individual), ID!=ID2, TS2>=TS, TS2<TS+L.
12 :- session(ID1,PAT,_), session(ID2,PAT,_), start(ID1,PER,_), start(ID2,PER,_), ID1!=ID2.
13 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),

individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 <=
OPT2-MIN2, OPT2-L2 <= OPT1-MIN1 , |OPT1 -L1 - OPT2 + L2| > 1.

14 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),
individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 >
OPT2-MIN2, L2 > MIN2.

15 :- individual_session_location(ID1,LOC,OP,MIN1,OPT1), length(ID1,PER,L1),
individual_session_location(ID2,LOC,OP,MIN2,OPT2), length(ID2,PER,L2), OPT1-L1 <=
OPT2-MIN2, OPT2-L2 <= OPT1-MIN1, OPT2 < OPT1, OPT1-L1 < OPT2-L2.

16 :- session_time(ID,OP,PL,PER,T), session_time(ID2,OP,PL2,PER,T), ID != ID2, PL != PL2.
17 :- patient(PAT,MIN), #sum{LEN, ID: session(ID,PAT,_), ext_length(ID,_,LEN)} < MIN.
18 :- location(LOC,LIM,PER,ST,END), LIM>0, time(PER,_,T), T>=ST, T<END, #count{ID:

session_time(ID,_,LOC,PER,T)} > LIM.
19 :- forbidden(PAT,PER,ST,_), session(ID,PAT,_), ext_start(ID,PER,TS), ext_length(ID,PER,L),

ST>=TS, ST<TS+L.
20 :- forbidden(PAT,PER,_,END), session(ID,PAT,_), ext_start(ID,PER,TS), ext_length(ID,PER,L),

END>TS, END<=TS+L.
21 :- forbidden(PAT,PER,ST,END), session(ID,PAT,_), ext_start(ID,PER,TS),

ext_length(ID,PER,L), ST<=TS,END>TS.
22 :- time(PER,_,T), macro_location(MAC,LOC1), macro_location(MAC,LOC2),

#sum{1,ID1:session_time(ID1,_,LOC1,PER,T); -1,ID2:session_time(ID2,_,LOC2,PER,T)} > 2.
23 :∼ length(ID,_, L), session_length(ID,MIN,IDEAL), D=|L-IDEAL|. [D@6, ID]
24 :∼ start(ID,PER,_), session_type(ID,_,individual), session_preference(ID,PER2,_,high),

D=|PER-PER2|. [D@5, ID]
25 :∼ start(ID,PER,TS), session_type(ID,_,individual), session_preference(ID,PER,TS2,high),

D=|TS-TS2|. [D@4, ID]
26 :∼ optional_session(ID), time(PER,_,TS), not start(ID,PER,TS). [1@3,ID]
27 :∼ start(ID,PER,_), session_preference(ID,PER2,_,low), session_type(ID,_,individual),

optional_session(ID), D=|PER-PER2|. [D@2, ID]
28 :∼ start(ID,PER,TS), session_preference(ID,PER,TS2,low), session_type(ID,_,individual),

optional_session(ID), D=|TS-TS2|. [D@1, ID]

Fig. 5: ASP encoding for the agenda problem.

period PER and it must start at the time unit START, where TYPE indicates
if the preference is high or low.

The output is represented by atoms start(ID,PER,T), length(ID,PER,L),
and session location(SES,LOC), which indicate the start, length and location
of each session, respectively.

16 Cardellini et al.

Encoding. In Figure 5 the encoding for the agenda is presented.
Rules r1 and r2 assign a start time to every session; for the optional session,

the start atom can be unassigned. Rule r3 defines a length for all the sessions:
the session length cannot be lower than the minimum time of the session and
cannot be greater than the ideal time the session should take. Rule r4 assigns
a location for each session. Rules r5 and r6 reserve to each session slots of time
before it starts and after it ends, in which the session can be performed in a su-
pervised fashion. These extensions cannot be longer than the difference between
the maximum and the minimum length of the session.

Then, rules r7 and r8 define auxiliary atoms ext start and ext length using
the slots of times reserved for the extensions. Rule r9 defines an auxiliary atom
of the form individual session location(ID,LOC,OP,MIN,IDEAL) which rep-
resents that an individual session ID is in the location LOC, is assigned to the
operator OP, and its minimum and ideal lengths are equal to MIN and IDEAL, re-
spectively. Rule r10 defines session time(ID,OP,PL,PER,T) which states that
during time T of period PER the session ID is being performed by operator OP.

Rule r11 states that two individual assignments shall not overlap. Rule r12
imposes that each patient is assigned to at most one session per period. Rules
r13 through r15 impose that the optional individual time (i.e., the difference
between the minimum length of the session and the planned length) is added
fairly to all individual sessions, starting with shorter ones. Rule r16 imposes that
for each time slot, the operator is not in two different places. Rule r17 states that
patients must have their minimum time reserved. Rule r18 imposes a limit on the
concurrent use of locations with limited capacity. Rules from r19 to r21 impose
that a session cannot happen during a forbidden time. Rule r22 avoids that,
during a time slot, the distribution of sessions between each pair of locations
inside the same macro location is unfair (i.e., a location is at its full capacity
while another is empty).

Weak constraints from r23 to r28 represent preferences, in a prioritized way.
The weak constraint r23 states that each session duration should be as close
as possible to the ideal duration. Rules r24 and r25 minimize the distance be-
tween the actual and the preferred starting time for the high session priority
preferences. Rule r26 maximizes the number of optional sessions included in the
scheduling. Rules r27 and r28 are similar to r24 and r25, respectively, but for the
low session priority preferences.

5 Rescheduling

In this section, we present RRSP encoding for both phases, with the aim of
providing an alternative schedule when the original generated one is no longer
viable. The need for rescheduling could arise if patients, operators, or both,
are no longer available to perform physiotherapy sessions for the totality of the
day, or for some specific amount of time. For this reason, the output of the
RSP of the two phases (i.e., the coupling between patients and operators in
the board phase and a time and place for the physiotherapy sessions to happen

Rescheduling Rehabilitation Sessions with Answer Set Programming 17

in the agenda phase) is now given as input to the correspondent rescheduling
encoding, together with facts representing the (total or partial) unavailability of
patients and/or operators. In general, as we have seen in Section 2.4, the goal of
the rescheduling is to find another schedule as close as possible to the original
one and in which both the constraints of the problem and the unavailability
are respected, and this must be done in very short time: for this reason, some
constraints of the scheduling, e.g., those related to locations, have been relaxed to
deal with emergency situations, and are practically dealt with in post-processing
by the coordinator. In the following subsections, the RRSP encoding for both
phases are presented.

5.1 Rescheduling of the board

As stated in the previous sections, in the board phase the main goal is to couple
operators and patients together, respecting the qualifications and working time
of operators and preferences between patients and operators. A rescheduling of
the board could be needed if patients and/or operators become unavailable for
some period of time (or even for the whole day). If operators become unavailable,
the patients which were previously assigned to them must be reassigned to the
other operators, being careful of respecting their qualifications, working times
and distributing patients as fairly as possible (i.e., spreading the new patients
among all the operators with available time left). If, on the other hand, some
patients become unavailable, this could cause an imbalance of the distribution of
patients among the operators and, for this reason, a redistribution of the patients
between the operators should be carried out.

With respect to the RSP encoding presented in Section 4.1, the input data
model is enriched with the following atoms:

– Instances of assignment(OP,PAT), which represent the original assignment
of operator OP to patient PAT, found in the scheduling.

– Instances of unavailable(OP, H), which determine the unavailability of
operator OP during its working hours for H time slots.

– Instances of absent(OP, A), which determine the unavailability of patient
PAT where A can be either total or partial.

The output of the rescheduling process is now given by the use of a new atom
reassignment(OP,PAT) which signals that, in the rescheduling, the operator OP
is now assigned to patient PAT.

In Figure 6, we present the ASP encoding of the RRSP of the board. Rule r1
defines the auxiliary atom unavailable(OP) for cases in which operators have
an unavailability which lasts for the totality of their shift. Then, rule r2 is used
to guess a new assignment for each patient whose previously assigned operator
is no longer available for the whole working day. Note that such a reassignment
is not computed for patients that are absent for the totality of the day; in fact,
patients with a partial absence still need to be rescheduled in case the operator
to which they were previously scheduled has become unavailable. Rules r3 and

18 Cardellini et al.

1 unavailable(OP) :- unavailable(OP,H), operator_contract(OP,T,_), H>=T.

2 {reassignment(OP,PAT): operator(OP), pref(OP,PAT), not unavailable(OP)} = 1 :-
assignment(OPN,PAT), unavailable(OPN), not absent(PAT,total).

3 final_assignment(OP,PAT) :- reassignment(OP,PAT).
4 final_assignment(OP,PAT) :- assignment(OP,PAT), not unavailable(OP), not absent(PAT,total).

5 :- operator_limit(OP,T,MAX), reassignment(OP,PAT), patient_data(PAT,T,_), MAX < 1.

6 :∼ #sum{W, PAT: reassignment(_,PAT), patient_preference(PAT,OP,W)} = N. [N@4]
7 :∼ #count{PAT: reassignment(-1,PAT)} = N. [N@3]
8 :∼ #sum{W, PAT: reassignment(_,PAT), history_preference(PAT,OP,W)} = N. [N@2]
9 :∼ operator_contract(OP,ET,_), not unavailable(OP), #sum{T, PAT: patient_data(PAT,_,T),

final_assignment(OP,PAT)} = N, DF = (ET-N)*(ET-N). [DF@1,OP]
10 :∼ operator_contract(OP,ET,_), unavailable(OP,NP), #sum{T, PAT: patient_data(PAT,_,T),

final_assignment(OP,PAT)} = N, DF = (ET-N-NP)*(ET-N-NP). [DF@1,OP]

Fig. 6: ASP encoding for the rescheduling of the board caused by total or partial
unavailability of either operators or patients.

r4 define the auxiliary atom final assignment(OP,PAT) with the intention of
joining the assignments which need a reassignment, caused by the unavailability
of some operators, and the assignments which do not need a reassignment, since
the operator coming from the scheduling is still available. Rule r5 enforces that
a patient with a type T (e.g., a neurological patient covered by the NHS which
needs a lifter to perform the session) is not assigned to operators that cannot
handle patients of that type. Then, weak constraints r6–r8 are the same as the
scheduling but applied only to the reassignments which need to be rescheduled.
Finally, r9 and r10 minimize the square difference between the working time of an
operator and the sum of the minimum time needed to treat each patient assigned
to the operator, accounting also for the unavailability time of the operator; in this
way, among the solutions having the same costs for rules r6–r8, the reassignments
will be chosen with the aim of assigning patients to operators with the larger
free time available.

5.2 Rescheduling of the agenda

As in the case of the rescheduling of the board, the rescheduling of the agenda
is needed if operators and/or patients become unavailable. With respect to the
scheduling encoding presented in Section 4.2, all the atoms over predicates start,
length, extstart, and extlength are now part of the input of the reschedul-
ing. Atoms of the form session(ID,PAT,OP), which were part of the input of
the scheduling, are also part of the input of the rescheduling, with the addi-
tion of new instances of such atoms computed during the rescheduling of the
board and representing that a patient is assigned to a new operator. Moreover,
additional input atoms are of the form unavailable(OP,PER,ST,END) (resp.
absent(PAT,PER,ST,END)), whose instances determine the unavailability of op-
erator OP (resp. absence of patient PAT) during the period PER, and during the
time slots from ST to END.

Rescheduling Rehabilitation Sessions with Answer Set Programming 19

1 all_un_sess(ID,OP,T,resc) | all_un_sess(ID,OP,supervised,resc) :- session(ID,PAT,OP), session_type(ID,OP,T), session(ID,PAT,OPN),

unavailable(OPN,_,_,_), not absent(PAT,_,_,_), OP != OPN.

2 all_un_sess(ID,OP,T,orig) | all_un_sess(ID,OP,supervised,orig) :- session(ID,PAT,OP), session_type(ID,OP,T), not

all_un_sess(ID,_,_,resc), unavailable(OP,_,_,_), not absent(PAT,_,_,_).

3 all_abs_sess(ID,OP,individual,other) :- session(ID,PAT,OP), session(_, PAT2,OP,_), PAT!=PAT2, session_type(ID,OP,individual), not

unavailable(OP,_,_,_), not all_un_sess(ID,OP,_,_), session_length(ID,_,IL), session_preference(ID,IP,IH,_), not

absent(PAT,_,_,_), absent(PAT2,_,_,_), #count{IDX: start(IDX,_,ST), IH!=ST; IDX: start(IDX,PER,_), IP!=PER; IDX:

length(IDX,_,L), L!=IL} > 0.

4 all_abs_sess(ID,OP,T,abs) :- session(ID,PAT,OP), session_type(ID,PAT,T), absent(PAT,PER,_,_), PER != total.

5 fin_sess(ID,OP,T,new) :- all_un_sess(ID,OP,T,_).

6 fin_sess(ID,OP,T,new) :- all_abs_sess(ID,OP,T,_).

7 fin_sess(ID,OP,T,old) :- session(ID,PAT,OP), session_preference(ID,OP,T) not absent(PAT,_,_,_), not unavailable(OP,_,_,_), not

fin_sess(ID,OP,_,new).

8 {n_start(ID,PER,TS): time(PER,OP,TS)} = 1 :- fin_sess(ID,_,OP,new), mandatory(ID).

9 {n_start(ID,PER,TS): time(PER,OP,TS)} :- fin_sess(ID,_,OP,new), optional(ID).

10 fin_start(ID,PER,TS) :- start(ID,PER,TS), fin_sess(ID,OP,_,old).

11 fin_start(ID,PER,TS) :- n_start(ID,PER,TS).

12 {n_length(ID,PER,NL): time(PER,OP,L), NL=L-ST, TS+NL<=END, NL>=1, NL<=MAX} = 1 :- n_start(ID,PER,TS), period(PER,OP,ST,END),

all_un_sess(ID,OP,_,_), session(ID,_,OP), session_length(ID,_,MAX).

13 {n_length(ID,PER,NL): time(PER,OP,L), NL=L-ST, TS+NL<=END, NL>=MIN, NL<=MAX} = 1 :- n_start(ID,PER,TS), period(PER,OP,ST,END),

all_abs_sess(ID,OP,_,_), session_length(ID,MIN,MAX).

14 final_length(ID,PER,NL) :- length(ID,PER,NL), fin_sess(ID,OP,_,old).

15 final_length(ID,PER,NL) :- n_length(ID,PER,NL).

16 {before(ID,NL): time(PER,OP,L), NL=L-ST, NL<=TS-ST} = 1 :- n_start(ID,PER,TS), period(PER,OP,ST,_), fin_sess(ID,OP,_,new).

17 {after(ID,NL): time(PER,OP,L), NL=L-ST, NL<=END-TS-LEN} = 1 :- n_start(ID,PER,TS), period(PER,OP,ST,END), n_length(ID,PER,LEN),

fin_sess(ID,OP,_,new).

18 n_ext_start(ID,PER,TS-LB) :- n_start(ID,PER,TS), before(ID,LB).

19 n_ext_length(ID,PER,L+LA+LB) :- n_length(ID,PER,L), after(ID,LA), before(ID,LB).

20 fin_ext_start(ID,PER,TS) :- n_ext_start(ID,PER,TS).

21 fin_ext_start(ID,PER,TS) :- ext_start(ID,PER,TS), fin_sess(ID,_,_,old).

22 fin_ext_length(ID,PER,L) :- n_ext_length(ID,PER,L).

23 fin_ext_length(ID,PER,TS) :- ext_length(ID,PER,TS), fin_sess(ID,_,_,old).

24 :- fin_ext_length(ID,_,RL), n_ext_length(ID,_,SL), RL > SL.

25 :- unavailable(OP,PER,ST,END), fin_sess(ID,OP,_,new), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L), ST<=TS, END>TS.

26 :- unavailable(OP,PER,_,END), fin_sess(ID,OP,_,new), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L), END>TS, END<=TS+L.

27 :- unavailable(OP,PER,ST,_), fin_sess(ID,OP,_,new), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L), ST>=TS, ST<TS+L.

28 :- absent(PAT,PER,ST,END), all_abs_sess(ID,_,_,abs), session(ID,PAT,_), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L),

ST<=TS, END>TS.

29 :- absent(PAT,PER,_,END), all_abs_sess(ID,_,_,abs), session(ID,PAT,_), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L),

END>TS, END<=TS+L.

30 :- absent(PAT,PER,ST,_), all_abs_sess(ID,_,_,abs), session(ID,PAT,_), fin_ext_start(ID,PER,TS), fin_ext_length(ID,PER,L), ST>=TS,

ST<TS+L.

31 :- fin_start(ID1,PER,TS), final_length(ID1,PER,L), fin_sess(ID1,OP,individual,_), n_start(ID2,PER,TS2),

fin_sess(ID2,OP,individual,new), ID1!=ID2, TS2>=TS, TS2<TS+L.

32 :- n_start(ID1,PER,TS), n_length(ID1,PER,L), fin_sess(ID1,OP,individual,new), fin_start(ID2,PER,TS2),

fin_sess(ID2,OP,individual,_), ID1!=ID2, TS2>=TS, TS2<TS+L.

33 :- fin_start(ID1,PER1,_), fin_sess(ID1,PAT,_,_), fin_start(ID2,PER2,_), fin_sess(ID2,PAT,_,_), ID1!=ID2, PER1=PER2.

34 :- patient(PAT,MIN), not absent(PAT,_,_,_), #sum{LEN, SES: fin_sess(SES,_,_,_), session(SES,PAT), finalExtLength(SES,_,LEN)} <

MIN.

35 :∼ patient(PAT,MIN), absent(PAT,_,_,_), S = #sum{LEN, SES: fin_sess(SES,_,_), session(SES,PAT,_), fin_ext_length(SES,_,LEN)}.

[|S-MIN|@7, PAT]

36 :∼ #count{ID: all_un_sess(ID,_,supervised,_)} = N. [N@6]

37 :∼ n_length(ID,_,NL), fin_sess(ID,_,_,new), session_length(ID,_,IL), DF=|NL-IL|. [DF@5, ID]

38 :∼ n_start(ID,NPER,_), all_abs_sess(ID,_,_,_), session_preference(ID,PER,_,_), DF=|PER-NPER|. [DF@4, ID]

39 :∼ n_start(ID,PER,NTS), all_abs_sess(ID,_,_,_), session_preference(ID,PER,IH,_), DF=|IH-NTS|. [DF@3, ID]

40 :∼ n_start(ID,NPER,_), all_un_sess(ID,_,_,_), start(ID,PER,_), DF=|NPER-PER|. [DF@2,ID]

41 :∼ n_start(ID,PER,NTS), all_un_sess(ID,_,_,_), start(ID,PER,TS), DF=|NTS-TS|. [DF@1,ID]

Fig. 7: ASP encoding for the rescheduling of the agenda caused by total or partial
unavailability of either operators or patients.

Rule r1 defines atoms of the form all un sess(ID,OP,T,resc) for sessions
reassigned in the board phase to another operator, to which no absence is as-
sociated. If there is no sufficient time, the session can be converted into a su-
pervised one. Rule r2 defines atoms of the form all un sess(ID,OP,T,orig),
representing sessions held by an operator with partial unavailability, that can be
still executed by the same operator (i.e., they were not reassigned in the board
phase). Rule r3 defines all abs sess(ID,OP,individual,other), representing
sessions that are not in their ideal time (length, period or time) and that are,
in the scheduling, assigned to the same operator of a patient with an absence.
Thus, they include all sessions (i) that are not supervised; (ii) assigned to an op-

20 Cardellini et al.

erator with an absent patient; or (iii) that were not assigned in their ideal time
during the original scheduling. Intuitively, they identify all sessions that can ben-
efit from the absence of another patient, since they can be moved closer to their
ideal time. Rule r4 defines the atom all abs sess(ID,OP,individual,abs) rep-
resenting sessions associated to a partial absence. Indeed, atoms of the form
absent(PAT,total, ,) indicate that the patient PAT is absent for all day.
Then, rules r5 and r6 are used to define the atom fin sess(ID,OP,T,new),
which collects all new sessions that must be rescheduled. Sessions that must
not change in the new scheduling are instead collected as instances of the atom
fin sess(ID,OP,T,old), defined by rule r7. Then, rules from r8 to r23 are used
to compute the preliminary starting time of the sessions (r8–r11), and their pre-
liminary lengths (r12–r15), to reserve time slots before and after their starting
times (r16 and r17), and then to compute the actual starting times and lengths
using the preliminary ones and the reserved time slots (r18–r23). Rule r24 imposes
that supervised parts of sessions cannot be further extended in the reschedul-
ing. Rules from r25 to r27 ensure that a session cannot be scheduled during the
period in which its operator is (partially) unavailable. Rules from r28 to r30 en-
sure that a session cannot be scheduled during the period in which its patient
is (partially) absent. Rules r31 and r32 ensure that two individual sessions can-
not overlap. Rule r33 ensures that for each patient there is at most one session
per period. Rule r34 states that patients with no absence must have their mini-
mum time reserved between all the sessions of the day. Finally, weak constraints
from r35 to r41 are used to express preferences among the different schedules,
in a prioritized way: if partially absent patients have more than one session per
day, and there is the possibility they cannot complete one of them due to the
(partial) absence, the distance between the minimum cumulative time and the
extended length of the remaining session must be minimized (r35); the number
of supervised sessions must be minimized (r36); for each session the difference
between the new and the maximum length must be minimized (r37); original
sessions must be placed as close as possible to their ideal period (r38) and their
ideal starting time (r39); and new sessions must be placed as close as possible to
their ideal period (r40) and their ideal starting time (r41).

6 Experimental Analysis

In this section, we present an empirical evaluation of the encodings described
in Section 4 and 5. We performed our analysis on real data coming from the
institutes of Genova Nervi and Castel Goffredo. The section is organized in
three subsections: the first subsection describes the real data employed, then the
second subsection overviews the results obtained with the RSP encoding, while
the third subsection presents in details the results about the RRSP.

The analysis was performed using the ASP solver clingo [27], employing
two different optimization methods: the first one is the default Branch&Bound
(BB) optimization method [26] configured with the option --restart-on-model

enabled; the second instead leverages the Unsatisfiable Core (USC) algorithm [3,

Rescheduling Rehabilitation Sessions with Answer Set Programming 21

Institute # Operators # Patients Density

Genova Nervi [9,18] [37,67] [2.4,5.2]

Castel Goffredo [11,17] [51,78] [3.5, 6.4]

Table 1: Main dimensions of the ICS Maugeri’s institutes.

Branch & Bound + RoM Unsatisfiable Core

Genova Nervi Castel Goffredo Genova Nervi Castel Goffredo

Board Agenda Board Agenda Board Agenda Board Agenda

% Optimum 35% 0% 0% 0% 22% 45% 0% 0%

% Satisfiable 65% 100% 100% 67% 78% 55% 100% 70%

% Unknown 0% 0% 0% 33% 0% 0% 0% 30%

Avg Time for opt 1.1s - - - 10s 0.01s - -

Avg Time Last SM 1.3s 30s 5.2s 30s 12.1s 21.3s 10.4s 30s

Table 2: Results on ICS Maugeri institutes.

4] with the options --opt-strategy=usc,k,0,4 and --opt-usc-shrink=bin

enabled. All the experiments were conducted on a MacBook Pro, 2.5 GHz Intel
Core i7 quad-core, 16 GB of RAM and imposing a cut-off of 30s per instance.

Encodings and benchmarks used in the experiments can be found at: http:
//www.star.dist.unige.it/~marco/CILC2021JLC/material.zip.

6.1 Real data

ICS Maugeri utilizes, in its daily activity of scheduling the rehabilitation ses-
sions of its patients, a web-based software called QRehab [41], developed by
SurgiQ, which is built on top of the specified encoding; thus, the analysis can be
performed on real data coming from the institutes of Genova Nervi and Castel
Goffredo, which tested and used this software since mid 2020 for Genova Nervi
and the beginning of 2021 for Castel Goffredo. This allowed us to access 290 RSP
problem instances for Genova Nervi and 100 for Castel Goffredo. Table 1 pro-
vides an overview of the dimension of the instances in the two institutes in terms
of number of physiotherapists (column # Operators), number of daily patients
(column # Patients), and density of patients per operator (column Density).

6.2 RSP results

In Table 2, the results obtained by the two RSP encodings are presented in terms
of percentage of instances for which an optimal/satisfiable/no solution is com-
puted. The last two rows report the mean time of instances solved optimally and
of the last computed solution for all satisfiable instances, respectively. As a gen-
eral observation, results are mixed. Indeed, the USC algorithm performs better
in the agenda encoding while BB algorithm is better on the board scheduling.
Moreover, 100% of the board instances are solved, while for approximately one

22 Cardellini et al.

third of the agenda instances a solution cannot be found. Considering these are
hard real instances, results are positive and highly appreciated by the personnel
of the ICS Maugeri: according to data elaborated by ICS Maugeri, the introduc-
tion of the automatic scheduling system in the hospital of Genova Nervi allowed
saving 74.75 minutes of the operators time per day.

6.3 RRSP results

In this section, we focus on the scalability of our approach in relation to the
number of absences of patients and/or unavailability of operators. For every
real world instance, absences and unavailability, as well as their periods and
time slots, were randomly assigned between patients and operators. Then, in
our experiment, we analyse how the encodings of the two phases performed
while increasing the number of absences and unavailability. In particular, based
on the feedback from the coordinators of the hospitals in Genova Nervi and
Castel Goffredo, we only considered unavailability and absences of at most 5
operators and 5 patients, which are usually an upper bound of the number
which could occur in a real-world hospital of that sizes daily. Starting from
the scheduling results, the experiments on the board phase have been run with
the Branch&Bound optimization method, while the experiments on the agenda
phase have been run with the Unsatisfiable Core algorithm.

(a) Optimal result

Time to last model

0.499

0.112

1.588 1.996

0.423

4.168 0.352 3.7545

0 1 2 3 4 5

Absences of Patients

0

1

2

3

4

5

U
n

a
v
a

ila
b

ili
ty

 o
f
O

p
e

ra
to

rs

0

5

10

15

20

25

30

T
im

e
 [
s
]

(b) Time to last model

Fig. 8: Scalability results of the board phase. On the left, the percentage of
instances in which the scheduling outputted an optimal result. On the right, the
average time it took to find the last model.

Scalability of the board. Figure 8 shows the results of the scalability experiments
when the encoding of the board phase is considered. On the left, in Figure 8a, we
show the percentage of instances where clingo provided an optimal solution for
the rescheduling encoding. Every square inside the image represents a collection

Rescheduling Rehabilitation Sessions with Answer Set Programming 23

of instances (almost 100 instances coming from real scheduling in the Genova
Nervi and C. Goffredo hospitals) having a specified (randomly chosen) number
of absences of patients (x-axis) and number of unavailability of operators (y-
axis). On the right, in Figure 8b, we show the average running time required
to find the latest stable model. As it can be seen from the figure, for the board
phase, an increasing number of unavailability of operators and/or absences of
patients does not cause a noticeable increase in the solving time of clingo which
is able to always find an optimal solution. Only when dealing with 5 unavailable
operators, a small percentage of instances (less than 5%) return a suboptimal
solution, but, looking at the time it takes to output the last model, it can be
seen that clingo outputs the last stable model, on average, in the first 5s,
meaning that the solution is probably optimal but clingo is not able to prove
its optimality before the cut-off time.

Optimal Instances

1

0.76

0.54639

0.50538

0.39474

0.5

0.98947

0.78351

0.59341

0.3494

0.30864

0.32258

1

0.72222

0.58889

0.3625

0.23188

0.30769

0.98851

0.75581

0.55556

0.42857

0.32759

0.32143

0.95238

0.59524

0.39241

0.32051

0.14516

0.24138

0.97333

0.75325

0.43902

0.27941

0.13333

0.17857

0 1 2 3 4 5

Absences of Patients

0

1

2

3

4

5

U
n

a
v
a

ila
b

ili
ty

 o
f
O

p
e

ra
to

rs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
in

s
ta

n
c
e

s

(a) Optimal result

Time to last model

0

6.7841

11.176

10.0059

10.9326

14.9381

0.218

11.0055

9.664

9.427

12.4878

11.2197

0

8.6662

11.1414

13.2708

9.6788

14.1305

0.261

9.0455

12.294

15.0293

12.5247

13.2452

3.5328

9.1774

9.534

12.8765

11.3089

15.7405

1.287

7.9371

10.6023

13.3781

11.517

13.3037

0 1 2 3 4 5

Absences of Patients

0

1

2

3

4

5
U

n
a

v
a

ila
b

ili
ty

 o
f
O

p
e

ra
to

rs

0

5

10

15

20

25

30

T
im

e
 [
s
]

(b) Time to last model

Fig. 9: Scalability results of the agenda phase following the same representation
structure of Figure 8.

Scalability of the agenda. Figure 9 shows, in the same representation as dis-
cussed in the previous paragraph, the scalability results for the agenda encoding.
Differently from the board phase, in the agenda it can be noted that increasing
the number of absences of patients and unavailability of operators has a negative
impact on the performance of clingo in terms of number of times it provides
an optimal solution. Nonetheless, Figure 9b shows that even if the solutions are
not marked by Clingo as optimal, the last stable model is found on average in
the first 15s, meaning that, as in the board phase, the solution may be optimal
but Clingo is not able to prove it before the cut-off.

Finally, note that the rescheduling encodings cannot be unsatisfiable since
it always exists a solution in which all the sessions belonging to unavailable
operators are given to other operators which will perform them in a completely
supervised fashion.

24 Cardellini et al.

7 Web Application

In this section, we present a web application developed to be used by an end
user who wants to access our solution easily, e.g., a physiotherapists’ coordinator.
The software is a full-stack JavaScript application with an Angular Graphical
User Interface (GUI) and a Node.js as back-end which behaves as a wrapper
for the ASP encoding and the clingo solver. The encodings and their input
(expressed as ASP facts) are dynamically composed at run-time reflecting the
user choices, and then the ASP solver clingo is executed directly on the back-
end. In this way, end users do not need to install and run the solver. Moreover,
the application includes (i) a database for storing and retrieving previous test
data and new generated data, and (ii) a GUI to easily load pre-made scheduled
scenarios, and create and customize the rescheduling. The GUI is divided into
the two main parts: the board screen and the agenda screen. The board screen
(reported as Figure 10) shows the assignment between operators and patients,
identified by their IDs. At the top of the screen, the user can define the unavail-
ability of operators and/or the absence of patients, which represents an input of
the rescheduling. After the input is inserted, the board is updated accordingly,
showing the rescheduled assignments. In particular, the reassigned patients are
highlighted in green, whereas the unavailable operators and patients are high-
lighted in red.

Fig. 10: Rescheduled board and input screen.

The agenda screen (reported as Figure 11) shows the agenda for each oper-
ator. In particular, rehabilitation sessions are shown in their time slots, where
blue bars represent individual sessions, whereas yellow bars represent supervised
ones. For each session the bar contains the patient, start and end times of the
session, and a note to determine whether the session has been rescheduled or
not. Moreover, the time slots when the operator does not work are coloured in
grey.

Rescheduling Rehabilitation Sessions with Answer Set Programming 25

Fig. 11: Rescheduled agenda screen.

8 Related Work

This section describes, in three separate subsections, the new added material
w.r.t. the conference version of the paper, the motivation for employing ASP
and its usage in other scheduling problems, and the discussion of the related
work.

8.1 Contribution

This paper is an extended and revised version of a paper presented at the 36th
Italian Conference on Computational Logic (CILC 2021), and published in [13].
The main difference is that in the present paper we focus on rescheduling, thus
all the related parts of this paper are improvements w.r.t. such work, i.e.: (i)
the problem description in Section 2.4 and the examples in Section 2.5, (ii) the
RRSP encoding for both phases in Section 5, (iii) the experimental analysis of
our RRSP solution, focused on real instances, in Section 6.3, and (iv) the web
application in Section 7. Moreover, previous work contains also an analysis on
synthetic benchmarks and a study about real and synthetic instances for val-
idating synthetic instances: the details of the synthetic benchmarks as well as
the details of such analysis can be found in Section 4 of [13], and all material
is available at the link provided above. Another, orthogonal direction has been
followed in [14] (invited for a special issue of the best papers published in the
RuleML+RR 2021 conference [13]): here, we have instead focused on strength-
ening and extending the scheduling solution, thus with no relation with the main
contribution of the current paper which is on rescheduling.

8.2 ASP in scheduling problems

ASP has been successfully used for solving hard combinatorial and application
scheduling problems in several research areas. The reasons for the success are
manyfold: (a) ASP specifications are often appreciated even by non-experts since

26 Cardellini et al.

they found them readable; (b) There are free and open source systems (like
clingo, and wasp [1]), whose performances are often comparable (or even bet-
ter) to the ones of industrial tools like, e.g. CPLEX, or to Gurobi, also thanks
to a number of ASP competitions held until recently [28, 29]; and (c) ASP allows
expressing and solving multi-level optimizations. In the Healthcare domain, the
first solved problem with ASP was the Nurse Scheduling Problem [22, 5], where
the goal is to create a scheduling for nurses working in hospital units. Then, the
problem of assigning ORs to patients, denoted as Operating Room Scheduling
[20], has been treated, and further extended to include bed management [18]
and surgical teams [19]. More recent problems in which ASP is employed in-
clude the Chemotherepy Treatment Scheduling problem [17], in which patients
are assigned a chair or a bed for their treatments. For an overview, we refer to
[2].

Concerning scheduling problems beyond the healthcare domain, ASP en-
coding were proposed for the following problems: Incremental Scheduling Prob-
lem [7], where the goal is to assign jobs to devices such that their executions
do not overlap one another; Team Building Problem [40], where the goal is to
allocate the available personnel of a seaport for serving the incoming ships; the
work in [30], where, in the context of routing driverless transport vehicles, the
setup problem of routes such that a collection of transport tasks is accomplished
in case of multiple vehicles sharing the same operation area is solved via ASP,
in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, and the
recent survey paper by Falkner et al. [24], where industrial applications dealt
with ASP are presented, including those involving scheduling problems.

8.3 Discussion of the related work

There have been some attempts to solve rehabilitation scheduling, since most
hospitals are still doing it in a manual way. Among the automated solutions, often
they are applied to real world data. However, their results are not directly com-
parable to ours, since their constraints and objective functions are different from
the ones that emerged from our meetings with the physiotherapists and man-
agement of ICS Maugeri. In particular, to the best of our knowledge, no other
solution takes into account several aspects like the preferred time for the session
scheduling and devised the solution as a two-phase approach with the possibility
of manual corrections in between. Huang, Zheng and Chien [32] developed a sys-
tem, equipped with a GUI, which can generate the optimal schedules for rehabil-
itation patients to minimize waiting time, and thus enhance service quality and
overall resource effectiveness of rehabilitation facilities. More recently, Huyinh,
Huang and Chien [33] further refined the algorithm in order to develop a hybrid
genetic algorithm (GASA) that integrates genetic algorithm (GA) and simulated
annealing (SA). Recently, Li and Chen [35] designed a genetic algorithm based
on a Waiting Time Priority Algorithm, which was tested on a rehabilitation
department. Schimmelpfeng, Helber and Kasper [42] developed a decision sup-
port system for the scheduling process based on mixed-integer linear programs

Rescheduling Rehabilitation Sessions with Answer Set Programming 27

(MILPs) to determine appointments for patients of rehabilitation hospitals, sub-
ject to numerous constraints that are often found in practice. J. Wang and Fung
[44] formulated a dynamic programming (DP) model to optimize appointment
scheduling taking into account patient preferences and choices. The DP model
is transformed into an equivalent linear programming (LP) model. Liyang et al.
[36] developed a system aiming to minimize the total waiting time between suc-
cessive treatments for patients in rehabilitation hospitals. They formulated the
problem as a MILP model, taking into consideration real-life requirements, and
used the commercial solver Gurobi. Then, they developed an improved cuckoo
search algorithm to obtain good quality solutions quickly for large-sized prob-
lems. Their model was demonstrated with data collected from a medium-sized
rehabilitation hospital in China.

While we are not aware of any other rescheduling article applied to rehabili-
tation, the generic problem of rescheduling in case of disruption of the original
schedule, has been studied in several works in the healthcare domain, espe-
cially for nurse re-rostering problems. Among them, Uhmn et al. [43] solved the
rescheduling of nursing shifts with a deterministic, depth-first iterative search al-
gorithm which minimizes the difference between the original and the rescheduled
rosters. In Kitada and Morizawa [34], a recursive search is used in the case of a
shortage that finds the first valid solution; in the process, a tree is constructed,
whose nodes contain candidate operators to replace the missing positions; then,
through a search strategy in these nodes, the best rescheduling can be found.
Pato and Moz [39] instead used genetic heuristics that build on the Pareto ap-
proach, including a diversification strategy. Clark and Walker [16] used a combi-
nation of weighted sums and objective planning, using weights to prioritize; first,
the method tries to minimize the number of changes from the original planning,
while then it evaluates how various types of changes may affect rescheduling
differently. Bäumelt et al. [45] solved nurse rescheduling by decomposing the
problem and using a parallel algorithm running on the GPU. It uses an evolu-
tionary algorithm to solve nurse rescheduling (Maenhout and Vanhoucke [37])
by minimizing additional costs and unsatisfiability, and breaking ties by mini-
mizing shift changes from the original schedule. Temporary staffing is considered
in Bard and Purnomo [9] to accommodate the absence of nurses; however, this
approach may be necessary in hospitals where the scope of work cannot be met
by permanent staff, which is not our case. Finally, an ASP-based approach has
already been employed to solve rescheduling problems in some applications men-
tioned in the previous subsection: Nurse and Operating Room Rescheduling by
Alviano et al. [6, 21], and Chemotherapy Treatment Re-Planning by Dodaro et
al. [17].

9 Conclusion

In this paper, we have presented scheduling and rescheduling solutions for solving
rehabilitation scheduling, by means of a two-phase ASP encoding. In particular,
we have focused on the completely new rescheduling solution for the problem and

28 Cardellini et al.

our solution has been tested with clingo on real benchmarks provided by ICS
Maugeri, who provided also the specifications of the problem. We have tested
our rescheduling encoding for the board and agenda by randomly generating
increasing unavailability of operators and/or absence of patients. Results are
satisfying for the institutes considered at the moment: for the board phase, we
are always able to find an optimal solution and in short time, while for the
agenda phase, whose problem and encoding are more elaborated, by increasing
the number of operators and/or patients unavailable, the quality of the solution
decreases and the time increases, but still obtaining satisfying results even for our
larger benchmarks. A possible future development of the rescheduling techniques
is their application to other types of patients whose rehabilitation scheduling
operates on different principles compared to the ones described in this article,
e.g., patients with cardiorespiratory issues.

References

1. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Eval-
uation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran,
S. (eds.) Proceedings of the 15th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2019). Lecture Notes in Computer Science,
vol. 11481, pp. 241–255. Springer (2019)

2. Alviano, M., Bertolucci, R., Cardellini, M., Dodaro, C., Galatà, G., Khan, M.K.,
Maratea, M., Mochi, M., Morozan, V., Porro, I., Schouten, M.: Answer set pro-
gramming in healthcare: Extended overview. In: Joint Proceedings of the 8th IPS
Workshop and the 27th RCRA Workshop co-located with AIxIA 2020. CEUR
Workshop Proceedings, vol. 2745. CEUR-WS.org (2020)

3. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core
shrinking. Theory and Practice of Logic Programming 16(5-6), 533–551 (2016)

4. Alviano, M., Dodaro, C.: Unsatisfiable core analysis and aggregates for optimum
stable model search. Fundamenta Informaticae 176(3-4), 271–297 (2020)

5. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming en-
coding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.A. (eds.)
Advances in Artificial Intelligence - Proceedings of the 16th International Con-
ference of the Italian Association for Artificial Intelligence (AI*IA 2017). Lecture
Notes in Computer Science, vol. 10640, pp. 468–482. Springer (2017)

6. Alviano, M., Dodaro, C., Maratea, M.: Nurse (re)scheduling via answer set pro-
gramming. Intelligenza Artificiale 12(2), 109–124 (2018)

7. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Van-
couver, Canada, May 16-19, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6645, pp. 284–296. Springer (2011). https://doi.org/10.1007/978-3-642-20895-
9 33

8. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003). https://doi.org/10.1017/CBO9780511543357

9. Bard, J., Purnomo, H.: Incremental changes in the workforce to accommo-
date changes in demand. Health care management science 9, 71–85 (03 2006).
https://doi.org/10.1007/s10729-006-6281-y

Rescheduling Rehabilitation Sessions with Answer Set Programming 29

10. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

12. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20(2), 294–309 (2020)

13. Cardellini, M., Nardi, P.D., Dodaro, C., Galatà, G., Giardini, A., Maratea, M.,
Porro, I.: A two-phase ASP encoding for solving rehabilitation scheduling. In:
Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds.)
Proceedings of the 5th International Joint Conference on Rules and Reasoning
(RuleML+RR 2021). Lecture Notes in Computer Science, vol. 12851, pp. 111–125.
Springer (2021)

14. Cardellini, M., Nardi, P.D., Dodaro, C., Galatà, G., Giardini, A., Maratea, M.,
Porro, I.: Solving Rehabilitation Scheduling problems via a Two-Phase ASP ap-
proach. Submitted to Theory and Practice of Logic Programming (2022)

15. Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S., Vos, T.: Global
estimates of the need for rehabilitation based on the Global Burden of Disease
study 2019: a systematic analysis for the Global Burden of Disease Study 2019.
The Lancet 396(10267), 2006–2017 (2020), publisher: Elsevier

16. Clark, A., Walker, H.: Nurse rescheduling with shift preferences and minimal dis-
ruption. Journal of Applied Operational Research 3 (01 2011)

17. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-
based solution to the chemotherapy treatment scheduling problem. Theory Practice
of Logic Programming 21(6), 835–851 (2021)

18. Dodaro, C., Galatà, G., Khan, M.K., Maratea, M., Porro, I.: An ASP-based solu-
tion for operating room scheduling with beds management. In: Fodor, P., Montali,
M., Calvanese, D., Roman, D. (eds.) Proceedings of the Third International Joint
Conference on Rules and Reasoning (RuleML+RR 2019). Lecture Notes in Com-
puter Science, vol. 11784, pp. 67–81. Springer (2019)

19. Dodaro, C., Galatà, G., Khan, M.K., Maratea, M., Porro, I.: Solving operating
room scheduling problems with surgical teams via answer set programming. In:
Baldoni, M., Bandini, S. (eds.) AIxIA 2020 - Advances in Artificial Intelligence
- Revised Selected Papers OF THE 19th International Conference of the Italian
Association for Artificial Intelligence (AI*IA 2020). Lecture Notes in Computer
Science, vol. 12414, pp. 204–220. Springer (2020)

20. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: Operating room scheduling via
answer set programming. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P.
(eds.) Advances in Artificial Intelligence - Proceedings of the 17th International
Conference of the Italian Association for Artificial Intelligence (AI*IA 2018). Lec-
ture Notes in Computer Science, vol. 11298, pp. 445–459. Springer (2018)

21. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: An ASP-based framework for
operating room scheduling. Intelligenza Artificiale 13(1), 63–77 (2019)

22. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Bal-
duccini, M., Janhunen, T. (eds.) Proceedings of the 14th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2017). Lecture
Notes in Computer Science, vol. 10377, pp. 301–307. Springer (2017)

23. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2011)

30 Cardellini et al.

24. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. Künstliche Intelligenz 32(2-3), 165–176
(2018)

25. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A., Saeedloei, N., Vos,
M.D. (eds.) Proceedings of ICLP (Technical Communications). OASICS, vol. 52,
pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

26. Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp
Series 3. In: LPNMR. LNCS, vol. 9345, pp. 368–383. Springer (2015)

27. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89 (2012)

28. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR. Lecture Notes
in Computer Science, vol. 10377, pp. 3–9. Springer (2017)

29. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming com-
petition: Design and results. Theory and Practice of Logic Programming 20(2),
176–204 (2020)

30. Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Routing
driverless transport vehicles in car assembly with answer set programming. Theory
Practice of Logic Programming 18(3-4), 520–534 (2018)

31. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9(3/4), 365–386 (1991)

32. Huang, Y.C., Zheng, J.N., Chien, C.F.: Decision support system for rehabilitation
scheduling to enhance the service quality and the effectiveness of hospital resource
management. J. of the Chinese Inst. of Industrial Engineers 29, 348 – 363 (2012)

33. Huynh, N.T., Huang, Y.C., Chien, C.F.: A hybrid genetic algorithm with 2D en-
coding for the scheduling of rehabilitation patients. Computers & Industrial Engi-
neering 125, 221–231 (2018)

34. Kitada, M., Morizawa, K.: A heuristic method in nurse rerostering following a
sudden absence of nurses (01 2010)

35. Li, X., Chen, H.: Physical therapy scheduling of inpatients based on improved ge-
netic algorithm. Journal of Physics: Conference Series 1848(1), 012009 (apr 2021)

36. Liyang, X., Dridi, M., Hajjam, A., Lin, W., Fei, H.: A solution method for treatment
scheduling in rehabilitation hospitals with real-life requirements. IMA Journal of
Management Mathematics 30 (07 2018). https://doi.org/10.1093/imaman/dpy009

37. Maenhout, B., Vanhoucke, M.: An artificial immune system based ap-
proach for solving the nurse re-rostering problem. vol. 7832 (01 2011).
https://doi.org/10.1007/978-3-642-37198-1 9

38. Niemelä, I.: Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. AMAI 25(3-4), 241–273 (1999)

39. Pato, M., Moz, M.: Solving a bi-objective nurse rerostering problem by us-
ing a utopic pareto genetic heuristic. J. Heuristics 14, 359–374 (08 2008).
https://doi.org/10.1007/s10732-007-9040-4

40. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.:
Team-building with answer set programming in the Gioia-Tauro seaport. Theory
and Practice of Logic Programming 12(3), 361–381 (2012)

41. Saverino, A., Baiardi, P., Galata, G., Pedemonte, G., Vassallo, C., Pistarini, C.: The
challenge of reorganizing rehabilitation services at the time of covid-19 pandemic:
A new digital and artificial intelligence platform to support team work in planning
and delivering safe and high quality care. Frontiers in neurology 12, 643251 (2021)

Rescheduling Rehabilitation Sessions with Answer Set Programming 31

42. Schimmelpfeng, K., Helber, S., Kasper, S.: Decision support for rehabilitation hos-
pital scheduling. OR Spectrum 34(2), 461–489 (Apr 2012)

43. Uhmn, S., Ko, Y.W., Kim, J.: A deterministic approach to nurse rerostering prob-
lem. International Journal of Applied Engineering Research 12, 14246–14250 (01
2017)

44. Wang, J., Fung, R.: Dynamic appointment scheduling with patient preferences
and choices. Industrial Management & Data Systems 115, 700–717 (2015).
https://doi.org/10.1108/IMDS-12-2014-0372

45. Zdeněk, B., Dvořák, J., Sucha, P., Hanzálek, Z.: A novel approach for nurse reros-
tering based on a parallel algorithm. European Journal of Operational Research
251 (12 2015). https://doi.org/10.1016/j.ejor.2015.11.022

